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Abstract. The aim of this paper is to introduce an alternative to �Lukasie-
wicz’s 4-valued modal logic �L. As it is known, �L is afflicted by “�Lukasiewicz
(modal) type paradoxes”. The logic we define, P�L4, is a strong para-
consistent and paracomplete 4-valued modal logic free from this type of
paradoxes. P�L4 is determined by the degree of truth-preserving conse-
quence relation defined on the ordered set of values of a modification of
the matrix M�L characteristic for the logic �L. On the other hand, P�L4 is
a rich logic in which a number of connectives can be defined. It also has
a simple bivalent semantics of the Belnap–Dunn type.
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1. Introduction

The aim of this paper is to provide an alternative to �Lukasiewicz’s 4-valued
modal logic �L that will lack the “�Lukasiewicz type (modal) paradoxes” deriv-
able in �L. This alternative essentially consists in maintaining the strong con-
ditional of �L but introducing a paraconsistent De Morgan negation (instead of
the Boolean one characteristic of �L) along with a new definition of the necessity
operator.

As it is known, the motivation underlying �Lukasiewicz’s many-valued
systems lies in (1) the rejection of deterministic philosophy; (2) the aim to
provide an adequate logical foundation to the notions of possibility and neces-
sity (cf. [24]). Thus, for example, �Lukasiewicz points out the following about
the 3-valued logic �L3, the first one of the many-valued logics he defined: “The
indeterministic philosophy [. . . ] is the metaphysical substratum of the new
logic” [17, p. 88]. “The third logical value may be interpreted as “possibility”
” [17, p. 87].
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�Lukasiewicz presented two different analyses of modal notions by means
of many-valued logics: (a) the linearly ordered systems �L3,. . . , �Ln,. . . , �Lω he
defined since 1920 (cf. [20]); (b) the 4-valued modal logic �L he defined in the
last years of his career (cf. [18,19]). In the family �L3,. . . , �Ln,. . . , �Lω the modal
operators L (necessity) and M (possibility) can be defined as follows: LA =df

¬(A → ¬A), MA =df ¬A → A (these definitions were suggested by Tarski
when he was �Lukasiewicz’s student; the symbols L and M are �Lukasiewicz’s—
cf. [13], notes 2 and 3; cf. Definition 2.1 on the languages used in this paper).
On the other hand, L and M are defined in �L independently of the rest of the
connectives of the system (cf. [13,18,19]).

Unfortunately, both the systems of the sequence �L3,. . . ,�Ln,. . . ,�Lω and
the logic �L validate such theses as the following (cf. Proposition 7.13 below):
(F7) L(A ∨ B) → (LA ∨ LB) and (F8) (MA ∧ MB) → M(A ∧ B), which
are in principle difficult to accept from an intuitive point of view. Moreover,
in addition to F7 and F8, the following are provable in �L: (F5) (A → B) →
(MA → MB); (F6) (A → B) → (LA → LB); (F9) LA → (B → LB);
(F10) LA → (MB → B). Theses F9 and F10 are especially counterintuitive,
a fact that leads the authors of [13] to conclude that �L is a “dead end” as a
modal logic of necessity and possibility (the reader can find an analysis of �L
explaining why these counterintuitive consequences arise in the system in [23]).
Thus, it must be concluded that neither the family �L3,. . . ,�Ln,. . . ,�Lω nor �L can
be taken as a many-valued analysis of the notions of necessity and possibility
when understood in their customary sense.

The aim of this paper is to introduce the logic P�L4 (‘a paraconsistent
version of �Lukasiewicz’s 4-valued modal logic �L’). The logic P�L4 is determined
by the degree of truth-preserving consequence relation defined on the ordered
set of values of the matrix MP�L4 (cf. Definition 2.6), which is a modification of
�Lukasiewicz’s matrix M�L (cf. Definition 2.5) by keeping the conditional table
while modifying both the tables for negation and necessity (cf. Definitions 2.5,
2.6 and Proposition 7.5). It will be proved that the Tarskian definitions of
L and M work in MP�L4 in the following sense: (1) �Lukasiewicz type modal
paradoxes such as F5-F10 remarked above are falsified; (2) P�L4 is a strong
and genuine 4-valued modal logic (cf. Propositions 7.11–7.13 below).

In the rest of the Introduction, we shall limit ourselves to explain some
properties of P�L4 as briefly as possible and how the paper is organized.

P�L4 has the following properties:

1. It lacks �Lukasiewicz-type paradoxes as F5–F10 mentioned above (cf.
Proposition 7.13).

2. P�L4 is a strong logic as shown by the following facts:
(a) In addition to all theorems of classical positive logic, it contains,

for example, the double negation axioms, all forms of the De Mor-
gan laws and Contraposition as admissible rule, as well as the most
prominent characteristic theses of Lewis’ S5 together with the rule
Necessitation (it is admissible; cf. Proposition 7.12). A consequence
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of the admissibility of Contraposition is that ‘replacement of equiv-
alents’ holds for P�L4; a consequence of the admissibility of Necessi-
tation is that P�L4 is a quasi-normal modal logic. On the other hand,
classical propositional logic is definable in P�L4 (cf. Proposition 7.9).

(b) There are four possible significant ways of extending P�L4. These
four ways are the result of adding any of the following theses: (i)
A ∨ ¬A; (ii) ¬A → (A → B); (iii) (¬A ∨ B) → (A → B) (or,
equivalently, ¬(A → B) → (A ∧ ¬B)); (iv) (A → B) → (¬A ∨ B)
(or, equivalently, (A ∧ ¬B) → ¬(A → B)). But the extension of
P�L4 by addition of any of (i)–(iv) is classical propositional logic (cf.
Proposition 7.16 and Corollary 7.17).

3. P�L4 has a great expressive power: a number of interesting connectives
are definable, some examples of which are given in Sect. 7.

4. P�L4 can be endowed with a bivalent Belnap–Dunn semantics of the type
defined for FDE by Dunn. (Cf. [11,12]. These semantics go back to Dunn’s
doctoral dissertation [10], but as remarked by Dunn himself [11, p. 150],
essentially equivalent semantics are defined in [31,37]). The essential idea
in this semantics is the following. Let T and F represent the (truth) values
truth and falsity. Then, propositions can be assigned T , F , both values
or none of them. These four possibilities are represented in the present
paper as follows: 0 = F but not T ; 1 = neither T nor F ; 2 = both T and
F ; and 3 = T but not F . (Cf. Remark 2.8). The fact that P�L4 can be
endowed with this type of semantics makes it possible to provide an easy
completeness proof for this logic. (This part of our work in the present
paper has been inspired by Brady’s method for axiomatizing 3-valued
and 4-valued matrices developed in his excellent [7]—cf. also [8], Chapter
9).

5. P�L4 fills a place in the family of paraconsistent logics extending positive
classical propositional logic C+ among which the most famous exemplars
in the family of paraconsistent logics are to be found, such as Da Costa’s
systems, Pac or J3, for example (cf. [9,16,27] about these logics). P�L4
distinguishes itself from all these logics in the fact that the rule con-
traposition, Con, is admissible and so it holds as a rule of proof (cf.
Remark 6.1). However, Con is not assumed as a rule of proof in the
aforementioned systems. Furthermore, it is not even admissible in such
systems as Pac (notice that a convenient consequence of Con as a rule
of proof is that ‘replacement of equivalents’ holds). Therefore, P�L4 is
a strong paraconsistent (and paracomplete) logic useful in situations of
inconsistent and/or incomplete information.

6. As it has been remarked, P�L4 can be endowed with a simple bivalent
semantics of the type defined by Dunn for FDE. This fact connects �LB4
with relevant logics, actually, with the very basic foundations of relevant
logics, the logic FDE and Dunn’s semantics for it. Other facts pointing
in the same direction are the following: (i) P�L4 enjoys an easy intuitive
Routley–Meyer type ternary relational semantics (cf. [30]); (ii) P�L4 can
be interpreted with a binary Routley semantics of the kind defined in [29].
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The paper is organized as follows: Sect. 2: after some preliminary defi-
nitions, the matrices M�L and MP�L4 are defined. Section 3: the logic P�L4 is
defined and some facts about P�L4-theories are established. The section ends
with the proof of the primeness lemma. Section 4: Belnap–Dunn semantics
for P�L4 are defined and the soundness theorems w.r.t. this semantics and the
semantics based upon the matrix MP�L4 are proved. Section 5: completeness
theorems w.r.t. both the semantics mentioned in the preceding section are
proved. Section 6: some facts about P�L4 are proved. For example, that it
is a paraconsistent logic. Section 7: we remark some connectives definable in
P�L4 among which three types of negation and the necessity and possibility
operators are to be noted. Section 8: we briefly point out some remarks on the
results obtained and about some possible further work to be done in the same
line.

2. The Matrix MP�L4

The aim of this section is to define the 4-valued matrix MP�L4. We begin by
defining the logical languages and the notion of logic used in the paper.

Definition 2.1. (Languages) The propositional language consists of a denu-
merable set of propositional variables p0, p1, . . . , pn, . . . , and some or all of
the following connectives → (conditional), ∧ (conjunction), ∨ (disjunction), ¬
(negation), L (necessity), M (possibility). The biconditional (↔) and the set of
wffs are defined in the customary way. A,B, etc. are metalinguistic variables.
By P and F , we shall refer to the set of all propositional variables and the set
of all wffs, respectively.

Definition 2.2. (Logics) A logic S is a structure (L, �S) where L is a proposi-
tional language and �S is a (proof-theoretical) consequence relation defined on
L by a set of axioms and a set of rules of derivation. The notions of ‘proof’ and
‘theorem’ are understood as it is customary in Hilbert-style axiomatic systems
(Γ �S A means that A is derivable from the set of wffs Γ in S; and �S A means
that A is a theorem of S).

Next, the notion of a logical matrix and related notions are defined.

Definition 2.3. (Logical matrix) A (logical) matrix is a structure (V,D, F)
where (1) V is a (ordered) set of (truth) values; (2) D is a non-empty proper
subset of V (the set of designated values); and (3) F is the set of n-ary functions
on V such that for each n-ary connective c (of the propositional language in
question), there is a function fc ∈ F such that fc : Vn → V.

Definition 2.4. (M-interpretations, M-consequence, M-validity) Let M be a
matrix for (a propositional language) L. An M-interpretation I is a function
from F to V according to the functions in F. Then, there are essentially two dif-
ferent ways of defining a consequence relation in M: truth-preserving relation
(denoted by �1

M) and degree of truth-preserving relation (denoted by �≤
M).

These relations are defined as follows for any set of wffs Γ and A ∈ F : (1)
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Γ �1
M A iff I(A) ∈ D whenever I(Γ) ∈ D for all M-interpretations I; (2)

Γ �≤
M A iff a ≤ I(A) whenever a ≤ I(Γ) for all a ∈ V and M-interpretations

I (I(Γ) = inf{I(B) | B ∈ Γ}). In particular, �1
M A iff I(A) ∈ D for all M-

interpretations I, and �≤
M A iff a ≤ I(A) for all a ∈ V and M-interpretations I.

(Γ �1
M A ( Γ �≤

M A) can be read “A is a consequence of Γ according to M in the
truth-preserving (degree of truth-preserving) sense”. And �1

M A (�≤
M A) can

be read as A is M-valid or A is valid in the matrix M in the truth-preserving
(degree of truth-preserving) sense).

Notice that the set {A |�≤
M A} is not empty iff the order in V has a

maximum.
Next, we define (our version of) �Lukasiewicz’s matrix M�L (cf. [13,34])

and then the matrix MP�L4:

Definition 2.5. (The matrix M�L) The proposition language consists of the
connectives →,¬, L. The matrix M�L is the structure (V,D, f→, f¬, fL) where
V = {0, 1, 2, 3} and they are partially ordered as it is shown in the following
diagram

D = {3} and f→, f¬ and fL are defined according to the following tables:

→ 0 1 2 3
0 3 3 3 3
1 2 3 2 3
2 1 1 3 3
3 0 1 2 3

¬
0 3
1 2
2 1
3 0

L
0 0
1 0
2 2
3 2

The related notions of M�L-interpretation, etc. are defined according to
the general Definition 2.4.

Definition 2.6. (The matrix MP�L4) The propositional language consists of the
connectives → and ¬. The matrix MP�L4 for the logic P�L4 is the structure
(V,D, f→, f¬) where V, D and f→ are as in M�L and f¬ is defined according
to the following table:

¬
0 3
1 1
2 2
3 0

The notions of a MP�L4-interpretation, etc. are defined according to the
general Definition 2.4.
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Remark 2.7. (�≤
MP�L4A iff �1

MP�L4A) Notice that �≤
MP�L4A iff I(A) = 3 for all

MP�L4-interpretations I. Thus, for every wff A, �≤
MP�L4A iff �1

MP�L4A

Remark 2.8. (On the intuitive meaning of the truth values in MP�L4) The
truth values 0, 1, 2 and 3 can intuitively be interpreted in MP�L4 as follows.
Let T and F represent truth and falsity. Then, 0 = F , 1 = N (either), 2 =
B (oth) and 3 = T (cf. [4,5]) Or, in terms of subsets of {T, F}, we have:
0 = {F}, 1 = ∅, 2 = {T, F} and 3 = {T} (cf. [12] and references therein). It
is in this sense that we speak of “bivalent semantics” when referring to the
Belnap–Dunn semantics: there are only two truth values and the possibility
of assigning both or neither to propositions. (We use the symbols 0, 1, 2 and
3 because they are convenient for using the tester in [14] in case the reader
needs one).

3. The Logic P�L4

Definition 3.1. (The logic P�L4) The propositional language of P�L4 has → and
¬ as the sole primitive connectives. The logic P�L4 is axiomatized as follows:

Axioms: (A1) A → (B → A); (A2) [A → (B → C)] → [(A → B) →
(A → C)]; (A3) [(A → B) → A] → A; (A4) A → ¬¬A; (A5) ¬¬A → A; (A6)
¬(A → B) → (¬A → C); (A7) ¬(A → B) → ¬B; (A8) ¬B → [[¬A → ¬(A →
B)] → ¬(A → B)].

Rules of derivation: Modus Ponens (MP): A & A → B ⇒ B (That is,
A and A → B imply B).

Notice that A1–A3 (together with MP) axiomatize the implicative frag-
ment, C→, of classical propositional logic (this was firstly proved in [21]). Also,
remark that A8 is equivalent to A8′ ¬B → [¬A ∨ ¬(A → B)] (when disjunc-
tion is understood according to the definition A ∨ B =df (A → B) → B; cf.
Proposition 7.6). In any standard axiomatic system for propositional classical
logic (e.g. [22]), A8′ is an immediate consequence of the Modus Ponens axiom
[(A → B) ∧ A] → B by contraposition and the De Morgan laws.

Proposition 3.2. (Some theorems of P�L4) The following theorems of C→ will
be useful: (t1) A → A; (t2) [A → (A → B)] → (A → B); (t3) (A → C) →
[(B → C) → [[(A → B) → B] → C].

The Deduction Theorem (DT) is provable in P�L4.

Proposition 3.3. (The deduction theorem—DT) For any set of wffs Γ and wff
A, B, if Γ, A �P�L4 B, then Γ �P�L4 A → B.

Proof. As it is known, DT is provable in any extension of the implicative
fragment of propositional intuitionistic logic (axiomatized by A1, A2 and MP)
with MP as the sole rule of inference (cf. e.g., [22]). �

Definition 3.4. (Logics determined by matrices) Let L be a propositional lan-
guage, M a matrix for L and �S a (proof theoretical) consequence relation
defined on L. Then, the logic S (cf. Definition 2.2) is determined by M iff for
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every set of wffs Γ and wff A, Γ �S A iff Γ �M A (�M is here understood either
as a truth-preserving or as a degree of truth-preserving consequence relation).
In particular, the logic S (considered as the set of its theorems) is determined
by M iff for every wff A, �S A iff �M A (cf. Definition 2.4).

We shall prove that the logic P�L4 is determined by the matrix MP�L4
when �M is understood as the degree of truth-preserving consequence relation.

In the rest of this section, we prove some facts about the theories built
upon P�L4. These facts are used in the completeness proofs of the following
sections. Firstly, the notion of a theory is defined.

Definition 3.5. (P�L4-theories) A P�L4-theory (theory, for short) is a set of
formulas containing all theorems of P�L4 and closed under Modus Ponens (MP).
That is, a is a theory iff (1) if �P�L4 A then A ∈ a; and (2) if A → B ∈ a and
A ∈ a, then B ∈ a.

The following classes of theories are of interest for the aims of the paper.

Definition 3.6. (Classes of theories) Let a be a theory. We set (1) a is prime
iff whenever (A → B) → B ∈ a, then A ∈ a or B ∈ a; (2) a is trivial iff a
contains every wff; (3) a is a-consistent (“consistent in an absolute sense”) iff
a is not trivial.

Next, we prove some properties of theories and prime theories w.r.t. the
conditional and negation and, finally, the primeness lemma.

Lemma 3.7. (Theories and double negation) Let a be a theory. For A ∈ F ,
A ∈ a iff ¬¬A ∈ a.

Proof. Immediate by A4 and A5. �
Lemma 3.8. (The conditional in prime, a-consistent theories) Let a be a prime,
a-consistent theory. For A, B ∈ F , we have (1) A → B ∈ a iff A /∈ a or B ∈ a;
(2) ¬(A → B) ∈ a iff ¬A /∈ a and ¬B ∈ a.

Proof. (1a) Suppose A → B ∈ a and A ∈ a. Then, B ∈ a by MP. (1b)
Suppose A /∈ a. By t2, [A → (A → B)] → (A → B) ∈ a. By primeness,
A ∈ a or A → B ∈ a. So, A → B ∈ a. On the other hand, suppose B ∈ a.
By A1, A → B ∈ a. (2a) Suppose ¬(A → B) ∈ a but ¬A ∈ a. By A6,
¬(A → B) → (¬A → C) ∈ a for arbitrary C. Then, a is trivial, contradicting
the hypothesis. So, ¬A /∈ a. On the other hand, by A7, ¬(A → B) → ¬B ∈ a.
So, ¬B ∈ a and consequently, ¬A /∈ a and ¬B ∈ a, as was to be proved. (2b)
Suppose ¬A /∈ a and ¬B ∈ a. By A8, [¬A → ¬(A → B)] → ¬(A → B) ∈ a.
By primeness, ¬A ∈ a or ¬(A → B) ∈ a. So, ¬(A → B) ∈ a, as was to be
proved. �
Lemma 3.9. (Primeness) Let a be a theory and A a wff such that A /∈ a. Then,
there is a prime (and a-consistent) theory x such that a ⊆ x and A /∈ x.

Proof. Extend a to a maximal theory x such that A /∈ x. Now, suppose that
x is not prime. Then, there are wffs B and C such that (B → C) → C ∈ x
but B /∈ x and C /∈ x. Define the sets [x,B] = {D | B → D ∈ x}, [x,C] =
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{D | C → D ∈ x}. By using the Deduction Theorem, it is clear that [x,B] and
[x,C] are theories such that x ⊆ [x,B], x ⊆ [x,C] and (by t1) B ∈ [x,B] and
C ∈ [x,C]. Thus, x � [x,B], x � [x,C] (since by hypothesis, B /∈ x and C /∈ x).
Consequently, (by the maximality of x) we have A ∈ [x,B], A ∈ [x,C] whence
A ∈ x (by t3 and the hypothesis (B → C) → C ∈ x), which is impossible.
Therefore, x is prime. On the other hand, x is a-consistent (A /∈ x). �

Notice that the proof of Lemma 3.9 just given holds for any extension of
C→ with MP as the sole rule of inference.

In what follows, we shall provide a Belnap–Dunn type bivalent semantics
for P�L4.

4. Belnap–Dunn Type Semantics for P�L4

In this section, a Belnap–Dunn type semantics for P�L4 is provided and the
soundness theorem is proved. This semantics is “bivalent” in the sense of
Remark 2.8. Firstly, P�L4-models and notions of P�L4-consequence and P�L4-
validity are defined.

Definition 4.1. (P�L4-models) An P�L4-model is a structure (K4, I) where (i)
K4 = {{T}, {F}, {T, F}, ∅}; (ii) I is an P�L4-interpretation from F to K4, this
notion being defined according to the following conditions for all p ∈ P and
A,B ∈ F : (1) I(p) ∈ K4; (2a) T ∈ I(¬A) iff F ∈ I(A); (2b) F ∈ I(¬A) iff
T ∈ I(A); (3a) T ∈ I(A → B) iff T /∈ I(A) or T ∈ I(B); (3b) F ∈ I(A → B)
iff F /∈ I(A) and F ∈ I(B).

Definition 4.2. (P�L4-consequence; P�L4-validity) For any set of wffs Γ and wff
A, Γ �M A (A is a consequence of Γ in the P�L4-model M) iff (1) T ∈ I(A)
whenever T ∈ I(Γ); and (2) F /∈ I(A) whenever F /∈ I(Γ) (T ∈ I(Γ) iff
∀A ∈ Γ(T ∈ I(A)); F ∈ I(Γ) iff ∃A ∈ Γ(F ∈ I(A))). In particular, �M A (A is
true in M) iff T ∈ I(A) and F /∈ I(A). Then, Γ �P�L4 A (A is a consequence of
Γ in P�L4-semantics) iff Γ �M A for each P�L4-model M. In particular, �P�L4 A
(A is valid in P�L4-semantics) iff �M A for each P�L4-model M (by �P�L4, we
shall refer to the relation just defined).

Next, we prove that �≤
MP�L4 (the relation defined in the matrix MP�L4—

cf. Definition 2.6) and �P�L4 (the consequence relation just defined in P�L4-
semantics) are coextensive.

Proposition 4.3. (Coextensiveness of �≤
MP�L4 and �P�L4) For any set of wffs Γ

and wff A, Γ �P�L4 A iff Γ �≤
MP�L4 A.

Proof. It is trivial given the correspondence between the points of K4 and
those of the set values of MP�L4 established in Remark 2.8 (cf. [7], Lemmas 1
and 7). �

Theorem 4.4. (Soundness of P�L4 w.r.t. �≤
M�LP4) For any set of wffs Γ and wff

A, if Γ �P�L4 A, then Γ �≤
MP�L4 A.
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Proof. Induction on the length of the derivation. The proof is left to the reader.
(In case a tester is needed, the reader can use that in [14]). �

An immediate corollary of Theorem 4.4 is the following:

Corollary 4.5. (Soundness of P�L4 w.r.t. �P�L4) For any set of wffs Γ and wff
A, if Γ �P�L4 A, then Γ �P�L4 A.

Proof. Immediate by Theorem 4.4 and Proposition 4.3. �

5. Completeness of P�L4

We shall define the notion of a preferred model upon a-consistent and prime
theories. By using the primeness lemma, it is then shown that each non-
consequence A of a set of formulas Γ fails to belong to some a-consistent and
prime theory that includes Γ; that is, it is shown that each non-consequence
A of a set of formulas Γ is not true in some preferred model of Γ. We begin by
defining the basic notion of a T -interpretation.

Definition 5.1. (T -interpretation) Let K4 be the set {{T}, {F}, {T, F}, ∅} as
in Definition 4.1. And let T be an a-consistent and prime theory. Then, the
function I from F to K4 is defined as follows: for each p ∈ P, we set (a)
T ∈ I(p) iff p ∈ T ; (b) F ∈ I(p) iff ¬p ∈ T . Next, I assigns a member of
K4 to each A ∈ F according to conditions 2 and 3 in Definition 4.1. Then,
it is said that I is a T -interpretation. (As in Definition 4.1, T ∈ I(Γ) iff
∀A ∈ Γ(T ∈ I(A)); F ∈ I(Γ) iff ∃A ∈ Γ(F ∈ I(A))).

Definition 5.2. (Preferred P�L4-models) A preferred P�L4-model is a structure
(K4, IT ) where K4 is defined as in Definition 4.1 (or as in Definition 5.1) and
IT is a T -interpretation built upon an a-consistent and prime theory T .

Proposition 5.3. (Any preferred P�L4-model is a P�L4-model) Let M = (K4, IT )
be a preferred P�L4-model. Then, M is indeed a P�L4-model.

Proof. It follows immediately by Definitions 4.1 and 5.2 (by the way, notice
that each propositional variable—and so, each wff A—can be assigned {T},
{F}, {T, F} or ∅, since T is required to be a-consistent but nor complete or
consistent in the classical sense). �

The following lemma generalizes conditions a and b in Definition 5.1 to
the set F of all wffs.

Lemma 5.4. (T -interpreting the set of wffs F) Let I be a T -interpretation
defined on the theory T . For each A ∈ F , we have: (1) T ∈ I(A) iff A ∈ T ;
(2) F ∈ I(A) iff ¬A ∈ T .

Proof. Induction on the length of A (the clauses cited in points a, b and c
below refer to the clauses in Definition 5.1—Definition 4.1—H.I abbreviates
“hypothesis of induction”). (a) A is a propositional variable: by conditions a
and b in Definition 5.1. (b) A is of the form ¬B: (i) T ∈ I(¬B) iff (clause
2a) F ∈ I(B) iff (H.I) ¬B ∈ T . (ii) F ∈ I(¬B) iff (clause 2b) T ∈ I(B)
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iff (H.I) B ∈ T iff (Lemma 3.7) ¬¬B ∈ T . (c) A is of the form B → C: (i)
T ∈ I(B → C) iff (clause 3a) T /∈ I(A) or T ∈ I(B) iff (H.I) (A /∈ T or B ∈ T )
iff (Lemma 3.8) B → C ∈ T . (ii) F ∈ I(B → C) iff (clause 3b) F /∈ I(B) and
F ∈ I(C) iff (H.I) ¬(B → C) ∈ T (Lemma 3.8). �

In what follows, we turn to the completeness proof. The standard concept
of “set of consequences of a set of wffs” is useful and it is defined as follows
for the logic treated in this paper.

Definition 5.5. (The set CnΓ[P�L4]) The set of consequences in P�L4 of a set
Γ, CnΓ[ P�L4] is defined as follows: CnΓ[P�L4] = {A | Γ �P�L4 A} (cf. Defini-
tions 2.2, 3.1).

It is clear that CnΓ[P�L4] is a theory, for any Γ.

Theorem 5.6. (Completeness of P�L4 w.r.t. �P�L4) For any set of wffs Γ and
wff A, if Γ �P�L4 A, then Γ �P�L4 A.

Proof. We prove the contrapositive of the claim. For some set of wffs Γ and
wff A, suppose Γ �P�L4 A. Then, A /∈ CnΓ[P�L4]. So, by Definition 5.5 and
Lemma 3.9, there is a prime (and a-consistent) theory T such that CnΓ[P�L4] ⊆
T and A /∈ T . By Definition 5.1 and Lemma 5.4, T induces a T -interpretation
I such that (1) T /∈ I(A) and (2) T ∈ I(Γ) (Γ ⊆ CnΓ[P�L4] ⊆ T ). Thus,
by 1 and 2, we have Γ �T A (Definition 5.2), hence, by Definition 4.2 and
Proposition 5.3, Γ �P�L4 A, as it was required. �
Corollary 5.7. (Strong sound. and comp. w.r.t. �P�L4 and �MP�L4) For any set
of wffs Γ and wff A, we have (1) Γ �P�L4 A iff Γ �P�L4 A; (2) Γ �P�L4 A iff
Γ �≤

MP�L4 A.

Proof. (1) By Corollary 4.5 and Theorem 5.6. (2) By Theorem 4.4 and Theo-
rem 5.6 with Proposition 4.3. �

6. Some Facts About P�L4

We begin with the proof of an important fact for the significance of P�L4: the
rule Contraposition is admissible in P�L4 (cf. Point 5 in the Introduction to
this paper). Firstly, the notions of ‘admissible rule’ and ‘derivable rule’ and
the related ones ‘rule of proof’ and ‘rule of inference’ are defined.

Remark 6.1. (On ‘rules of inference’ and ‘rules of proof’) The distinction
between ‘rules of proof’ and ‘rules of inference’ is essential in the context of
some substructural logics formulated in the Hilbert-style way. Let S be a logic
formulated in this way (cf. Definition 2.2) and r: A1 & A2 & , . . . , & An ⇒
B be a rule of S. Then, r is a ‘rule of inference’ if it can be applied to no matter
which premises formulated in the language of S; but r is a ‘rule of proof’ if r
is applied only in case A1, . . . , An are theorems of S.

The case of relevant logics is paradigmatic. Actually, to the best of our
knowledge, Ackermann (the father of relevant logics) was the first logician
who defined a logic (his systems Π and Π′, cf. [1]) whose formulation leans
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essentially on the aforementioned distinction. Although he did not define the
notions involved, Ackermann strongly stressed (cf. [1], pp. 119–120) that the
rule δ, i.e., B & A → (B → C) ⇒ A → C can only be applied if B is a “Logis-
che Identität” (a logical theorem). A number of relevant logics are formulated
with both rules of inference and rules of proof. For example, Anderson and
Belnap’s logic of Entailment E can be axiomatized with MP and Adj as rules
of inference and Assertion (A ⇒ (A → B) → B) as a rule of proof (cf. [32]).
On the other hand, Routley and Meyer’s basic logic B (cf. [32]) or Brady’s
weak relevant logics (cf. [8]) have the rules Prefixing ans Suffixing as rules of
proof.

Rules of inference and rules of proof can be assumed as primitives in a
system S or else they can be proved as derived rules in S, which takes us to
the next remark.

Remark 6.2. (On ‘admissible rules’ and ‘derivable rules’) Anderson and Belnap
remark: “We will say that a rule: from A1, . . . , An to infer B, is derivable when
it is possible to proceed from the premisses to the conclusion with the help of
the axioms and primitive rules alone” [2, p. 54]. On the other hand, a rule is
admissible if “whenever there is a proof of the premisses, there is also a proof
of the conclusion” [2, p. 54].

Thus, for example, the rule Prefixing (Pref) (B → C ⇒ (A → B) →
(A → C)) is derivable in standard relevant logics such as T, E or R (cf. [2])
but Disjunctive Syllogism (DS) (A ∨ B & ¬A ⇒ B) is only admissible
(not derivable) in the said logics. From another perspective, Pref is a rule of
inference and DS is a rule of proof in T, E or R. Concerning Con in P�L4, it
is an admissible rule, as it is shown below. So, it could have been added as a
rule of proof to the formulation of P�L4 (cf. Definition 3.1), although such an
addition would be unnecessary. Nevertheless, Con is not derivable in P�L4 as
proved in Proposition 6.4.

Proposition 6.3. (Admissibility of Con and Efq in P�L4) The rules Contra-
position (Con) and ‘E falso quodlibet’ (‘Any proposition follows from a false
proposition’—Efq), that is, (Con) A → B ⇒ ¬B → ¬A (A → B implies
¬B → ¬A); (Efq) A ⇒ ¬A → B (A implies ¬A → B) are admissible in P�L4.

Proof. (1) Suppose that A → B is a theorem of P�L4. We prove that ¬B → ¬A
is a theorem as well. Let I be any MP�L4-interpretation (cf. Definition 2.6).
By Corollary 5.7 (soundness), I(A → B) = 3. Then, it is easy to check that
I(¬B → ¬A) = 3. So, ¬B → ¬A is a theorem by applying Corollary 5.7 again
(completeness). (2) If A is a theorem of P�L4, then ¬A → B is a theorem as
well. The proof of 2 is similar to that of 1 and is left to the reader (actually,
it can easily be proved (on purely proof-theoretic grounds) that, given P�L4, if
Con is admissible, then Efq is admissible as well—use A1). �
Proposition 6.4. (Con is not derivable in P�L4) The rule Con is not derivable
in P�L4.

Proof. Let Γ = {B1, . . . , Bn}. It is obvious that we have Γ �P�L4 A iff �P�L4

(B1 ∧ · · · ∧ Bn) → A. Consequently, {A → B} �P�L4 ¬B → ¬A since �P�L4
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(A → B) → (¬B → ¬A). (Anyway, we have, of course, �P�L4 A → B ⇒
�P�L4 ¬B → ¬A). �

Next, we briefly investigate the properties of P�L4 as a paraconsistent
logic.

As it is well-known, the notion of paraconsistency can be rendered as
follows (cf. [9] or [27]).

Definition 6.5. (Paraconsistent logics) Let � represent a consequence relation
(may it be defined either semantically or proof-theoretically). Then, a logic S
is paraconsistent if, for any wffs A, B, the rule Ecq A,¬A � B does not hold
in S.

In other words, a logic is paraconsistent if theories built upon S are not
necessarily trivial when a contradiction arises. Then, concerning the logic stud-
ied in this paper, we prove:

Proposition 6.6. (P�L4 is paraconsistent) The logic P�L4 is a paraconsistent
logic.

Proof. Consider an MP�L4-interpretation I such that I(pi) = 2 and I(pm) = 1
for the ith and mth propositional variables pi and pm. Then, I({pi,¬pi}) �
I(pm). So, pi,¬pi �≤

MP�L4 pm and consequently, Ecq does not hold in P�L4. �
Sometimes a logic is defined to be paraconsistent if at least one of its

inconsistent theories (i.e. theories containing a wff and its negation) is not
trivial. In this sense, we prove:

Proposition 6.7. (Inconsistent theories that are not trivial) There are prime,
inconsistent theories (i.e. theories containing a wff and its negation) that are
not trivial.

Proof. Let pi and pm (i �= m) be propositional variables and consider the
set y = {A | {pi,¬pi} �P�L4 A}. It is clear that y is a theory and that it is
inconsistent since pi and ¬pi belong to y. Anyway, y is not trivial: {pi,¬pi}
is assigned the value 2 and pm the value 1 for any MP�L4-interpretation I
such that I(pi) = 2 and I(pm) = 1. So, {pi,¬pi} �P�L4 pm by soundness
(Corollary 5.7). Consequently, pm /∈ y. Now, by Lemma 3.9, there is a prime
(and a-consistent) theory x such that y ⊆ x and pm /∈ x. Therefore, x is
inconsistent, but not trivial. �

Consider now the following definition:

Definition 6.8. (Weak consistency) Let a be a theory. Then, a is w-inconsistent
(“inconsistent in a weak sense”) iff for some theorem A of P�L4, ¬A ∈ a; a is
w-consistent (“consistent in a weak sense”) iff a is not w-inconsistent (cf. [28]
on the label “w-consistent”).

We prove:

Proposition 6.9. (a-consistency and w-consistency) Let a be a theory. Then, a
is a-consistent iff a is w-consistent.
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Proof. It is immediate by the admissibility of Efq in P�L4 (cf. Proposition 6.3):
if a contains the negation of theorem, then a contains every wff. �

Remark 6.10. (On the collapse of theories into triviality) As we have seen, a
theory containing the negation of a theorem is trivial. Also, a theory is trivial if
it contains a negated conditional together with the negation of the antecedent
(cf. A6 in Definition 3.1).

On the other hand, let us recall that, as it is well-known, Ecq does not
hold in minimal intuitionistic logic Im. So, according to Definition 6.5, Im is a
paraconsistent logic, no matter the fact that the following restriction of Ecq
(Ecq′) A ∧ ¬A � ¬B does hold in Im. This is not the case with P�L4, where
Ecq does not hold in general when B presents one of the forms C ∧ D, C ∨ D,
C → D or ¬C, as it is shown below (for any A,B ∈ F , A ∧ B abbreviates
¬[(¬A → ¬B) → ¬B] and A ∨ B, (A → B) → B; cf. Proposition 7.6).

Proposition 6.11. (Restricted forms of Ecq not holding in P�L4) Let A, B, C

be any wffs and let
n¬A represent that n (n ≥ 0) symbols of negation (¬) are

preceding A. Consider now the following restricted forms of Ecq: (1)
n¬A ∧

n+1¬ A � B → C; (2)
n¬A ∧ n+1¬ A � B ∧ C; (3)

n¬A ∧ n+1¬ A � B ∨ C; (4)
n¬A ∧ n+1¬ A � ¬B. (Cf. Definition 6.5). Then, the rules (1)–(4) do not hold in
P�L4.

Proof. Consider a MP�L4-interpretation I such that I(pj) = 1, I(pi) = 3,
I(pn) = 0, I(pm) = 0, for distinct propositional variables pj , pi, pn and pm.

This interpretation is such that I(
n¬pj∧

n+1¬ pj) = 1. Then, (1) I[(
n¬pj∧

n+1¬ pj) →
(pi → pm)] = 2; (2) I[(

n¬pj ∧ n+1¬ pj) → (pi ∧ pm)] = 2; (3) I[(
n¬pj ∧ n+1¬ pj) →

(pn ∨ pm)] = 2; (4) I[(
n¬pj ∧ n+1¬ pj) → ¬pi] = 2. �

7. Some Connectives Definable in P�L4

In this section we remark some of the connectives definable in P�L4. In partic-

ular, we define the following: three different negation operators (
•¬,

◦¬,
�¬), and

possibility (M), necessity (L), conjunction (∧) and disjunction (∨) operators.
Some of these are generally definable in negation expansions (by means of the
negation operator ¬ of MP�L4) of “natural implicative 4-valued matrices” (cf.
Definition 7.3). Since the proof of the general case does not add any special
difficulty to the particular case of the matrix MP�L4, we will derive the proof
of the latter from that of the former.

Following Tomova in [33], we define ‘natural conditionals’ as follows:

Definition 7.1. (Natural conditionals) Let L be a propositional language with
→ among its connectives and M be a matrix for L where the values x and
y represent the maximum and the infimum in V. Then, an f→-function on V
defines a natural conditional if the following conditions are satisfied:
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1. f→ coincides with (the f→-function for) the classical conditional when
restricted to the subset {x, y} of V.

2. f→ satisfies Modus Ponens, that is, for any a, b ∈ V, if a → b ∈ D and
a ∈ D, then b ∈ D.

3. For any a, b ∈ V, a → b ∈ D if a ≤ b.

Proposition 7.2. (Natural conditionals in 4-valued matrices) Let L be a propo-
sitional language and M a 4-valued matrix for L where V and D are defined
exactly as in M�L (or as in MP�L4). Now, consider the 2304 f→-functions
defined in the following general table:

→ 0 1 2 3
0 3 3 3 3

TI 1 a1 3 a2 3
2 a3 a4 3 3
3 0 b1 b2 3

where ai(1 ≤ i ≤ 4) ∈ {0, 1, 2, 3} and bj(j = 1 or j = 2) ∈ {0, 1, 2}. The
set of functions (contained) in TI is the set of all natural conditionals definable
in M.

Proof. (1) f→(0, 0) = f→(0, 1) = f→(0, 2) = f→(0, 3) = f→(1, 1) = f→(1, 3) =
f→(2, 2) = f→(2, 3) = f→(3, 3) = 3 are needed in order to fulfill clause 3 in
Definition 7.1. (2) f→(3, 0) = 0 is required by clause 1 in the same definition.
(3) Finally, f→(3, 1) ∈ {0, 1, 2} and f→(3, 2) ∈ {0, 1, 2} are necessary by clause
2 in Definition 7.1. �

Leaning on the notion just defined, we set:

Definition 7.3. (Natural implicative 4-valued matrices) Let L be a propositional
language with the connective →. And let M be a 4-valued matrix where V and
D are defined as in Definition 2.6. Moreover, let f→ be one of the functions
(defining one of the conditionals) in TI (in Proposition 7.2). Then, it is said
that M is a natural implicative 4-valued matrix. (Notice that we are supposing
that V is partially ordered as stated in Definition 2.5).

In what follows, we investigate some of the negation and modal connec-
tives definable in negation expansions (by means of the negation operator ¬
of MP�L4) of natural implicative 4-valued matrices.

Proposition 7.4. (Additional negations) Let M be a natural implicative matrix
where f¬ is defined as in MP�L4. Then, the additional negation connectives

•¬
and

◦¬ given by the following tables:

0 1 2 3
•¬ 3 3 3 0

0 1 2 3
◦¬ 3 0 0 0

are definable in M.

Proof. For any wff A, let
•¬A =df A → ¬A and

◦¬A =df ¬(¬A → A). �
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Proposition 7.5. (Possibility and necessity) Let M be a natural implicative
matrix where f¬ is defined as in MP�L4. Then, the possibility (M) and necessity
(L) operators given by the following tables:

0 1 2 3
M 0 3 3 3

0 1 2 3
L 0 0 0 3

are definable in M.

Proof. For any wff A, let MA =df
×¬ ◦¬A and LA =df

×¬ •¬A where
×¬ is any of

the three negation operators at our disposal (i.e., ¬,
•¬ and

◦¬; the operator
�¬

(defined in Proposition 7.8) would also work). �

Thus, the operators
•¬,

◦¬ , M and L are definable in any natural implica-
tive 4-valued matrix where f¬ is defined as in MP�L4. Consequently, they are
definable in P�L4. Furthermore, Proposition 7.8 shows that the Boolean nega-
tion characteristic of M�L is definable, whence classical propositional logic is
also definable in P�L4 as it is the case with �L. But firstly, conjunction (∧) and
disjunction (∨) are defined.

Proposition 7.6. (Conjunction and disjunction) The conjunction (∧) and dis-
junction (∨) connectives given by the following tables are definable in MP�L4.

∧ 0 1 2 3
0 0 0 0 0
1 0 1 0 1
2 0 0 2 2
3 0 1 2 3

∨ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

Proof. For any A,B ∈ F , let A ∨ B =df (A → B) → B and A ∧ B =df

¬(¬A ∨ ¬B). (We note that these definitions of ∧ and ∨ give the same tables
for these connectives in the matrix M�L as a result). �

We note the following proposition:

Proposition 7.7. (All theorems of C+ are theorems of P�L4) All theorems of
classical positive logic C+ are theorems of P�L4.

Proof. The following theses are MP�L4-valid, and so, provable in P�L4 by Corol-
lary 5.7: A → (A∨B); B → (A∨B); (A → C) → [(B → C) → [(A∨B) → C]];
(A ∧ B) → A; (A ∧ B) → B; A → [B → (A ∧ B)]. But these theses axiomatize
C+ together with MP and A1, A2 and A3 of P�L4. �

In addition to the negation operators
•¬ and

◦¬, the following proposition
shows that the Boolean negation characteristic of M�L is definable.

Proposition 7.8. (Another additional negation definable in P�L4) The addi-
tional negation connective given by the following table:

0 1 2 3
�¬ 3 2 1 0

is definable in P�L4.
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Proof. For any A, set
�¬A =df A → ¬(A → A). �

Then, we have:

Proposition 7.9. (All theorems of CL are theorems of P�L4) All theorems of
classical propositional logic CL are theorems of P�L4.

Proof. (
�¬A → �¬B) → (B → A) is provable in P�L4 since it is MP�L4-valid

(Corollary 5.7). But this thesis axiomatizes CL together with MP and A1, A2
and A3 of P�L4. �

In what follows, we note some more theorems of P�L4 expressed in the
new connectives. It will suffice to check that they are MP�L4-valid since they
are then theorems by Corollary 5.7 (in case a tester is needed, the reader can
use that in [14]).

Proposition 7.10. (The De Morgan laws are provable in P�L4) The following
are provable in P�L4: ¬(A ∨ B) ↔ (¬A ∧ ¬B); ¬(A ∧ B) ↔ (¬A ∨ ¬B);
(A ∨ B) ↔ ¬(¬A ∧ ¬B); (A ∧ B) ↔ ¬(¬A ∨ ¬B).

Next, we record some modal theses provable in P�L4.

Proposition 7.11. (Some modal theses provable in P�L4) The following are
provable in P�L4: (T1) LA ↔ ¬M¬A; (T2) MA ↔ ¬L¬A; (T3) LA → A; (T4)
A → MA; (T5) LA → LLA; (T6) MA → LMA; (T7) MLA → LA; (T8)
L(A → B) → (LA → LB); (T9) L(A ∧ B) ↔ (LA ∧ LB); (T10) M(A ∨ B) ↔
(MA ∨ MB); (T11) M(A → B) ↔ (LA → MB); (T12) (MA → LB) →
L(A → B) ; (T13) (MA → MB) → M(A → B); (T14) (LA ∨ LB) → L(A ∨
B); (T15) M(A ∧ B) → (MA ∧ MB); (T16) L(A ∨ B) → (LA ∨ MB); (T17)
(MA ∧ LB) → M(A ∧ B); (T18) A → (¬A ∨ LA); (T19) (¬LA ∧ A) → ¬A.

The reader has undoubtedly recognized T1–T17 as some significant the-
orems of Lewis’ S5. Theses T18 and T19 (that will briefly be commented on
in Remark 7.14) are not, however, provable in S5. Actually, addition of any of
them to S5 would cause the collapse of S5 into classical propositional logic.

In addition to the provable theses just recorded, the following important
modal rules are admissible in P�L4.

Proposition 7.12. (Admissibility of Nec, dM→ and dL→) Consider the follow-
ing rules. Necessitation (Nec) A ⇒ LA, Distribution of M in → (dM→) A →
B ⇒ MA → MB and Distribution of L in → (dL→) A → B ⇒ LA → LB.
The rules Nec, dM→ and dL→ are admissible in P�L4. That is, if A (A → B)
is a theorem of P�L4, then LA (MA → MB, LA → LB) is a theorem as
well.

Proof. It is immediate by using the soundness and completeness theorems (cf.
Corollary 5.7). Let us prove the admissibility of Nec as a way of an example.
Suppose �P�L4 A. By soundness, �MP�L4 A. Then, it is easy to check that
�MP�L4 LA, whence �P�L4 LA follows by completeness (cf. Corollary 5.7; cf. the
proof of the admissibility of Con in Proposition 6.3). �
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On the other hand, we record some schemes not provable in P�L4.

Proposition 7.13. (Modal wffs not provable in P�L4) The following wffs are
not provable in P�L4: (F1) A → LA; (F2) MA → A; (F3) LMA → A; (F4)
A → MLA; (F5) (A → B) → (MA → MB); (F6) (A → B) → (LA → LB);
(F7) (MA ∧ MB) → M(A ∧ B); (F8) L(A ∨ B) → (LA ∨ LB); (F9) LA →
(B → LB); (F10) LA → (MB → B).

Proof. It is easy to check that each one of these wffs is invalidated in the
matrix MP�L4. Consequently, they are not provable in P�L4 by the soundness
theorems (cf. Corollary 5.7). Provability of F1-F4 would result in collapse, that
is, in the provability of A ↔ LA (A ↔ MA). Concerning F5–F10, provable
in �Lukasiewicz’s 4-valued modal logic �L (cf. Definition 2.5; cf. [23]), they are
instances of the �Lukasiewicz-type modal paradoxes referred to in the title of
the paper. �

The section is ended with a brief comment on theorems T18 and T19 of
P�L4 on the one hand, and with a proof that P�L4 cannot be extended with the
“Principle of excluded middle” and other strong theses, on the other.

Remark 7.14. (On two modal theses of P�L4) In his nice paper [24], Minari notes
that �Lukasiewicz “skillfully takes advantage of the failure of the contraction
law in �L3” [24, p. 164] “and proposes the �L3-thesis A → (A → LA) as a
(partially) adequate formal version of the classical principle Unumquodque,
quando est, oportet esse” (cf. [24], p. 164). The P�L4-thesis A → (¬A ∨ LA)
(and the equivalent (¬LA ∧ A) → ¬A) can be similarly viewed: P�L4 does not
collapse in classical logic because of the failure of (¬A ∨ B) → (A → B) in
P�L4 ((A → B) → (¬A ∨ B) also fails, cf. Corollary 7.17 below). Only there is
a difference: in �L3 the paradoxes F7 and F8 are provable; in P�L4, they are not
(cf. Proposition 7.13).

In sum, Propositions 7.11–7.13 support the conclusion that P�L4 can be
understood as a (strong) genuine (4-valued) modal logic.

Proposition 7.15. (Given P�L4, PEM and AEfq are equivalent) The “Principle
of excluded middle” (PME) is the thesis A ∨ ¬A; the Efq-axiom (AEfq) is the
thesis ¬A → (A → B). Given the logic P�L4, PME and AEfq are deducible
from each other.

Proof. (a) Let A∨¬A be added to P�L4. Then, we have (1) ¬B → (A∨¬A) by
A1; by 1, Con, double negation and the De Morgan laws, (2) (A ∧ ¬A) → B.
Finally, ¬A → (A → B) is immediate by using the thesis [(A ∧ B) → C] ↔
[A → (B → C)]. (b) Let ¬A → (A → B) be added to P�L4. Then, A ∨ ¬A is
proved by proceeding backwards in the proof of case (a). �
Proposition 7.16. (P�L4 plus PEM or AEfq is CL) The result of adding PEM
or AEfq to P�L4 is a logic equivalent to classical propositional logic CL.

Proof. Suppose that PEM (so AEfq) is added to P�L4. It will be proved that
the contraposition axiom (¬B → ¬A) → (A → B) is derivable and thus, that
classical propositional logic is derivable as well. By C→ (cf. Definition 3.1), we
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have (1) [B → (A → B)] → [[¬B → (A → B)] → [(B ∨ ¬B) → (A → B)]].
By MP (with A1), we have (2) [¬B → (A → B)] → [(B ∨ ¬B) → (A → B)].
By the Permutation axiom and MP (with PEM), we obtain (3) [¬B → (A →
B)] → (A → B). By AEfq and the Prefixing rule, we get (4) (¬B → ¬A) →
[¬B → (A → B)]. Finally, the desired result follows by 3 and 4. �

Notice that an immediate corollary of Proposition 7.16 is the following:

Corollary 7.17. (P�L4 plus (A → B) → (¬A ∨ B)) The result of adding (A →
B) → (¬A ∨ B) or (¬A ∨ B) → (A → B) to P�L4 is equivalent to CL.

Proof. Immediate by Proposition 7.16. �

8. Concluding Remarks

We briefly record a few remarks around the results obtained and a conclusion
to the paper.
1. The basic paralogics extending C+f (C+ with a falsity constant f added)

are the following, according to [3]: (CLuN) C+f plus (A → ¬A) → ¬A
or A ∨ ¬A; (CLaN) C+f plus ¬A → (A → B); (CLoN) C+f without
further axioms added. (Recall that P�L4 contains all axioms of C+. Cf.
Proposition 7.7).

Maximal paralogics are obtained by adding to each one of these sys-
tems the following axioms: (a) A ↔ ¬¬A; (b) ¬(A ∨ B) ↔ (¬A ∧ ¬B);
(c) ¬(A ∧ B) ↔ (¬A ∨ ¬B); and (d) ¬(A → B) ↔ (A ∧ ¬B). According
to this classification, P�L4 is a paraconsistent and paracomplete extension
of CLoN with (in addition to Con as a rule of proof) axioms a, b and c.
Recall that addition of A∨¬A, ¬A → (A → B), ¬(A → B) → (A∧¬B) or
(A ∧ ¬B) → ¬(A → B) results in a collapse into CL—cf. Proposition 7.16
and Corollary 7.17). It would be interesting to investigate if P�L4 is a max-
imal paraconsistent and/or paracomplete logic w.r.t CL.

2. There is a number of paraconsistent logics extending C+ (cf., e.g., [9] or
[27]; cf. also [15]); of these, [25,26,35,36] have some relation with P�L4,
especially the systems investigated in [25,26] in which Con holds as a rule
of proof. It seems worthwhile to investigate the structure of the family of
paraconsistent logics extending C+ and the place P�L4 occupies in it.

3. In [6], some suggestions are advanced for defining 4-valued modal logics.
We think that P�L4 can be considered as a version of Beziau’s Partial Modal
4-valued logic, PM4, with a paraconsistent negation and when D = {3}.
(Recall that the set of all �1

P�L4-valid formulas is exactly the set of theorems
of P�L4—cf. Definition 2.6 and Remark 2.7).

4. P�L4 can be more conspicuously axiomatized by using the connectives ∧,∨
and L in addition to → and ¬. Then, we can add the following axioms to A1-
A8 in Definition 3.1: A9 (A∧B) → A/(A∧B) → B; A10 A → [B → (A∧B)];
A11 A → (A∨B)/B → (A∨B); A12 (A → C) → [(B → C) → [(A∨B) →
C]]; A13 LA → A; A14 (LA ∧ ¬A) → B; A15 A → (¬A ∨ LA). A Belnap–
Dunn semantics can be defined for this axiomatization of P�L4 by adding the
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following clauses to 1–3 in Definition 4.1: (4a) T ∈ I(A∧B) iff T ∈ I(A) and
T ∈ I(B); (4a) F ∈ I(A ∧ B) iff F ∈ I(A) or F ∈ I(B); (5a) T ∈ I(A ∨ B)
iff T ∈ I(A) or T ∈ I(B); (5b) F ∈ I(A ∨ B) iff F ∈ I(A) and F ∈ I(B);
(6a) T ∈ I(LA) iff T ∈ I(A) and F /∈ I(A); (6b) F ∈ I(LA) iff T /∈ I(A) or
F ∈ I(A). (The truth tables for ∧ and ∨ are displayed in Proposition 7.6;
the table for L, in Proposition 7.5). It would not be difficult to show that
the system just described and P�L4 are (definitionally) equivalent, but we
leave the matter for another paper.

5. Smiley’s 4-valued matrix MSm4 is the structure (V,D, F) where V and D
are defined exactly as in M�L (or in MP�L4) and F = {f→, f∧, f∨, f¬} where
f¬ is the function in Definition 2.5, f∧ and f∨ are defined according to the
tables in Proposition 7.6, and, finally, f→, according to the following table:

→ 0 1 2 3
0 3 3 3 3
1 0 3 0 3
2 0 0 3 3
3 0 0 0 3

MSm4 is characteristic for Anderson and Belnap’s First Degree Entail-
ment Logic, FDE (cf. [2], pp. 161–162). Now, P�L4 can be viewed as the
logic determined by the matrix MSm4′ where MSm4′ is defined exactly
as MSm4 except for the f→ function, defined according to the →-table in
Definition 2.5 (and in Definition 2.6). In other words, MSm4 and MP�L4
are two different implicative expansions of the matrix (V,D, F) where F=
{f∧, f∨, f¬} and V,D, f∧, f∨ and f¬ are defined as indicated above. From
another point of view, MSm4 and MP�L4 are natural 4-valued implicative
matrices.

6. It is conjectured that the logic characterized by the relation �1
MP�L4 (cf.

Definitions 2.4 and 2.6) can be axiomatized by adding to P�L4 Con as a rule
of inference, whence Ecq is immediately derivable. The investigation about
this logic is left for another paper.

We conclude by stating our belief that, as the title of the paper reads, P�L4
is a strong, rich (in expressive power) genuine modal logic that is quasi-normal
in the sense that the rule Necessitation (Nec) is admissible. Furthermore, it
is a paraconsistent and paracomplete logic that (we hope) may be useful in
inconsistent and/or incomplete situations.
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