
Log. Univers. 9 (2015), 411–473
c© 2015 Springer Basel
1661-8297/15/040411-63, published online April 25, 2015
DOI 10.1007/s11787-015-0119-7 Logica Universalis

Equilibrium States in Numerical
Argumentation Networks

D. M. Gabbay and O. Rodrigues

Abstract. Given an argumentation network with initial values to the ar-
guments, we look for algorithms which can yield extensions compatible
with such initial values. We find that the best way of tackling this prob-
lem is to offer an iteration formula that takes the initial values and the
attack relation and iterates a sequence of intermediate values that even-
tually converges leading to an extension. The properties surrounding the
application of the iteration formula and its connection with other nu-
merical and non-numerical techniques proposed by others are thoroughly
investigated in this paper.

Mathematics Subject Classification. Primary 68T27; Secondary 60B12,
68T30.

Keywords. Argumentation, numerical methods, aggregation.

1. Orientation and Background

1.1. Orientation

A finite system 〈S,R〉, with R a binary relation on S, can be viewed in many
different ways; among them are

1. As an abstract argumentation framework [10], and
2. As a generator of equations [13,14].

When viewed as an abstract argumentation framework, the basic con-
cepts studied are those of extensions (being certain subsets of S) and different
semantics (being sets of extensions). When studied as generators of equations,
one can generate equations in such a way that the solutions f to the equations
correspond to (complete) extensions and sets of such solutions correspond to
semantics.

This paper offers an iteration schema for finding specific solutions to the
equations responding to initial requirements and shows what these solutions
correspond to in the abstract argumentation sense.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11787-015-0119-7&domain=pdf

412 D. M. Gabbay and O. Rodrigues Log. Univers.

We now explain the role iteration formulas play in general in the equa-
tional context.

When we have a system of equations designed to model an application
area1 we face two problems: (1) find any solution to the system of equations,
which will have a meaning in the application area giving rise to the equations;
(2) given boundary conditions and/or other requirements not necessarily math-
ematical which are meaningful in the application area,2 we would like to find
a solution to the system of equations that is compatible/respects the initial
conditions/requirements.

These two problems are distinct. The first one of finding any solution is a
numerical analysis problem. There are various iteration methods in numerical
analysis to find solutions, of which one of the most known is Newton’s method.3

The second problem is totally different. It calls for an understanding of the
requirements coming from the application area and possibly the design of a
specialised iteration formula which respects the type of requirements involved.

This paper provides the Gabbay–Rodrigues Iteration Schema, for the case
of the equational approach to argumentation, seeking solutions (which we shall
see will correspond to complete extensions) respecting as much as possible ini-
tial demands and restrictions of what arguments are in or out of the extension.
We compare what our iteration schema does with Caminada and Pigozzi’s
down-admissible and up-complete constructions [7]. Because we are dealing
with iteration formulas (involving limits) and we are comparing with set theo-
retical operations (as in Caminada and Pigozzi’s paper) we have to be detailed
and precise and despite it being conceptually clear and simple, the proofs turn
out to be mathematically involved, and require some patience from our read-
ers. However, once we establish the properties of our iteration schema, its use
and application are straightforward and computationally simple, especially in
the context of such tools as MATHEMATICA and others like it. The reader
may wish to just glance at the technical proofs and concentrate on the exam-
ples and discussions. Note the iteration schema idea is very general and applies
to other systems of equations possibly using other iteration formulas.

The actual technical development of the paper will start in Sect. 2. In
Appendix A we emphasise the distinction between the above two problems
with two detailed examples, the first modelling the dynamics of predator-prey
interactions and the second about merging/voting in argumentation networks.
We shall see that Newton’s method does not work in these scenarios and that
there is the need for a new type of iteration schema. Thus this paper is not just

1 For example, equations of fluid flow in hydrodynamics or equations of particle motion
in mechanics, or equations modelling argumentation networks according to the equational
approach (to be explained later), or equations modelling a biological system of predator–prey
ecology, or some polynomial equation arising in macroeconomics.
2 For example, initial conditions in the case of particle mechanics, or initial size of population
in the ecology, or arguments that we would like to be accepted.
3 This method starts with an initial guess of a possible solution and uses various iteration
formulae hoping that it will converge to a solution (for an introduction on numerical analysis
see [21]).

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 413

X

Y Z

Figure 1. A sample argumentation network

incremental to the equational approach but constitutes a serious and necessary
conceptual extension.

1.2. Background

An abstract argumentation framework is a formalism proposed by Dung [10]
and defined in terms of a tuple 〈S,R〉, where S is a non-empty set of arguments
and R ⊆ S×S is a binary attack relation. We will refer to an abstract argumen-
tation framework 〈S,R〉 simply as an argumentation network. If (X,Y) ∈ R,
we say that the argument X attacks the argument Y . 〈S,R〉 can be seen as a
directed graph (see Fig. 1). As informally introduced in Sect. 1, Att(X) will
be used to denote the set {Y ∈ S | (Y,X) ∈ R}, i.e., the set of arguments
attacking the argument X. Following graph theory convention, if X has no
attackers (i.e., Att(X) = ∅), we say that X is a source node in 〈S,R〉. Given a
set E ⊆ S, we write E → X as a shorthand for ∃Y ∈ E, such that (Y,X) ∈ R.
Furthermore, following [4], we use E+ to denote the set {Y ∈ S|E → Y }.

Given an argumentation network, one usually wants to reason about the
status of its arguments, i.e., whether an argument persists or is defeated by
other arguments. It should be clear that arguments that have no attacks on
them always persist. However, an attack from X to Y may not in itself be
sufficient to defeat Y , because X may be defeated by some argument that
attacks it, and thus one needs an evaluation process to determine the status
of all arguments systematically. In Dung’s original formulation, this was done
through an acceptability semantics defining conditions for the acceptability of
an argument. The semantics can be defined in terms of extensions—subsets of
S with special properties. These subsets are based on two fundamental notions
which are explained next.

A set E ⊆ S is said to be conflict-free if for all elements X,Y ∈ E, we
have that (X,Y) �∈ R. Intuitively, arguments of a conflict-free set do not attack
each other. However, this does not necessarily mean that all arguments in the
set are properly supported. Well supported sets satisfy special admissibility
criteria. We say that an argument X ∈ S is acceptable with respect to E ⊆ S,
if for all Y ∈ S, such that (Y,X) ∈ R, there is an element Z ∈ E, such
that (Z, Y) ∈ R. A set E ⊆ S is admissible if it is conflict-free and all of its
elements are acceptable with respect to itself. An admissible set E is a complete
extension if and only if E contains all arguments which are acceptable with
respect to itself. E is called a preferred extension of S, if and only if E is
maximal with respect to set inclusion amongst all complete extensions of S.

414 D. M. Gabbay and O. Rodrigues Log. Univers.

(R)(L)

X Y

Z

Y

X

Figure 2. Sample argumentation networks

Similarly, E is called a stable extension of S if and only if E is conflict-free
and for every X ∈ S\E, there is an element Y ∈ E, such that (Y,X) ∈ R.

Now consider the argumentation networks (L) and (R) depicted in Fig. 2.
According to the semantics given above, the network (L) has three extensions
E0 = ∅, E1 = {X} and E2 = {Y }. Both E1 and E2 are preferred and stable
extensions. The network (R) only has only one extension, which is empty, and
hence this is also its only preferred extension. This extension is however not
stable.

Besides Dung’s acceptability semantics, it is also possible to give meaning
to these networks through Caminada’s labelling semantics [5,6] and through
Gabbay’s equational approach [13,14]. These are explained next.
The labelling semantics.

The labelling semantics uses labelling functions λ : S −→ {in, out,und}
satisfying certain conditions tailored so as to obtain a complete correspondence
with Dung’s semantics.

The labelling of an argument in disagreement with Dung’s semantics is
said to be “illegal”. This is explained further as follows.

Definition 1.1. (Illegal labelling of an argument [7]) Let 〈S,R〉 be an argumen-
tation network and λ a labelling function for S.
1. An argument X ∈ S is illegally labelled in by λ if λ(X) = in and there

exists Y ∈ Att(X) such that λ(Y) �= out.
2. An argument X ∈ S is illegally labelled out by λ if λ(X) = out and there

is no Y ∈ Att(X) such that λ(Y) = in.
3. An argument X ∈ S is illegally labelled und by λ if λ(X) = und and

either for all Y ∈ Att(X), λ(Y) = out or there exists Y ∈ Att(X), such
that λ(Y) = in.

A legal (complete) labelling is a labelling in which no argument is illegally
labelled.

It is possible to have more than one legal labelling function for the same
argumentation network. Each labelling function will correspond to an exten-
sion in Dung’s semantics. For example, for network (L), we have the three
functions λ1, λ2 and λ0 below.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 415

λ1 ⇔ E1 = {X} λ2 ⇔ E2 = {Y } λ0 ⇔ E0 = ∅

λ1(X) = in λ2(X) = out λ0(X) = und
λ1(Y) = out λ2(Y) = in λ0(Y) = und

For the network (R), we have only the function λ such that λ(X) =
λ(Y) = λ(Z) = und. This gives the empty extension.

The equational approach.
The equational approach views an argumentation network 〈S,R〉 as a

mathematical graph generating equations for functions in the unit interval
U = [0, 1]. Any solution f to these equations conceptually corresponds to
an extension. Of course, the end result depends on how the equations are
generated and we can get different solutions for different equations. Once the
equations are fixed, the totality of the solutions to the system of equations is
viewed as the totality of extensions via an appropriate mapping. One equation
schema we can possibly use for generating equations is the Eqmax below, where
V (X) is the value of a node X ∈ S:

(Eqmax) V (X) = 1 − maxYi∈Att(X){V (Yi)}
Another possibility is Eqinv:

(Eqinv) V (X) =
∏

Yi∈Att(X)(1 − V (Yi))

It is easy to see that according to Eqmax the value of any source argument
will be 1 (since they have no attackers) and the value of any argument with
an attacker with value 1 will be 0. The situation is more complex with nodes
participating in cycles. Consider the network (L) again, with equations

V (X) = 1 − V (Y)
V (Y) = 1 − V (X)

If values are taken from the unit interval, this system of equations will accept
any solution V such that V (X) + V (Y) = 1. We can divide these solutions
between three classes: V 1(X) = 1, V 1(Y) = 0; V 2(X) = 0, V 2(Y) = 1 and
0 < V 0(X) < 1, 0 < V 0(Y) < 1 with V 0(X) + V 0(Y) = 1. These again
correspond to the three extensions E1, E2 and E0 given before.

In fact, Gabbay has shown that in the case of Eqmax the totality of
solutions to the system of equations corresponds to the totality of extensions
in Dung’s sense [14]. The correspondence is best explained in terms of the
labelling semantics, using the following correspondence:

V (X) = 1 :: λ(X) = in
V (X) = 0 :: λ(X) = out
0 < V (X) < 1 :: λ(X) = und

The advantage of the equational approach is that it allows us to think
of an argumentation network as a numeric system in which nodes are given
certain values depending on specific rules governing their interaction with their
neighbours. A rule may for instance require the value of a node to be 0 if the
value of any attacking node is 1. Another rule may force the value of a node

416 D. M. Gabbay and O. Rodrigues Log. Univers.

X

Y1

Y2

Yk

Figure 3. Multiple attacks on a node

to be 1 if it has no attacking nodes. The schema Eqmax and Eqinv embed
these rules, and they agree with Dung’s semantics. A solution to the system
of equations is any combination of values of nodes satisfying the equations. Of
course, since the node values are no longer discrete we have more freedom to
design rules which are appropriate for a given application. Part of the objective
of this paper is to explore the nature of these rules.

We start by generalising some concepts a bit further. Consider the net-
work in Fig. 3 in which Att(X) = {Y1, Y2, . . . , Yk}. To agree with Dung’s
semantics, if the value of any attacker of X is 1, we want the value of X to
be 0. If all of the attackers of X have value 0, we want the value of X to be
1. For any other combination of values of the attackers we want the value of
X to be anything other than 0 or 1. So within the traditional semantics but
taking the extended set of values of the unit interval, we can think of a single
attack by a node with value v as the order-reversing operation which returns
the value 1 − v. This is a kind of negation.4 Since a node can have multiple
attacks, we also need an operation to combine the values of the attackers. We
can think of this as a type of conjunction, which numerically can be obtained
through several operations. For instance, in fuzzy logic, the standard semantics
of (weak) conjunction is given by the operation min.

Therefore, the value of a node X can be defined as

V (X) = min
Y ∈Att(X)

{1 − V (Y)}

which is equivalent to

V (X) = 1 − max
Y ∈Att(X)

{V (Y)}

obtained by our now familiar schema Eqmax. Note that the conjunction oper-
ation in the schema Eqinv is product. The operations min and product are two
examples of t-norms. They are two instances of functions that are particularly
suitable for argumentation semantics. The following definition elaborates on
this further.

Definition 1.2. A function g with domain being the family of all finite sequences
of elements from U and range U is argumentation-friendly if g satisfies the
following conditions.

4 If we make und equals 1
2
, then an attack by a single undecided node will have value 1

2
.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 417

(T1) g(∅) = 1
(T2) g(1;Δ) = g(Δ)5

(T3) g(〈x1, . . . , x, . . . , y, . . . , xn〉) = g(〈x1, . . . , y, . . . , x, . . . , xn〉)
(T4) g(Δ) = 0 if and only if 0 ∈ Δ
(T5) g(Δ) = 1 if and only if x = 1 for every x ∈ Δ
(T6) g is continuous as a multi-variable function6

Example 1.3. Below are some examples of argumentation-friendly functions:

1. g(Δ) =
{

1, if Δ = ∅

min{xi}, if Δ = 〈x1, . . . , xn〉

2. g(Δ) =
{

1, if Δ = ∅

Πn
1 (1 − xi), if Δ = 〈x1, . . . , xn〉

3. gλ(Δ) = (1 − λ)min{ 1
2 , g(Δ)} + λ max{ 1

2 , g(Δ)}, for any g satisfying
(T1)–(T6).

Later on, we will see that argumentation-friendly functions will be used
both to calculate aggregation of attacks as well as for combining the value
of attacks with initial values. However, as we mentioned attack is a type of
negation and hence when operating on the attack of a node with value v, we
will consider the complement of v to 1, i.e., (1 − v).

Notice that t-norms satisfy conditions (T1)–(T4) above.

Definition 1.4. For any assignment of values v : S
−→ U define the sets
in(v) = {X ∈ dom v|v(X) = 1} and out(v) = {X ∈ dom v|v(X) = 0}.

Theorem 1.5. Let N = 〈S,R〉 be a network, g an argumentation-friendly func-
tion, and T a system of equations written for N , where for each node X,
V (X) = gY ∈Att(X)({1 − V (Y)}). Take any solution V to T , it follows that
in(V) is a complete extension.

Proof. Suppose that in(V) is not conflict-free. Then there are X,Y ∈ in(V),
such that (X,Y) ∈ R. Since Y ∈ in(V), then V (Y) = 1 = gW∈Att(Y)({1 −
V (W)}). But X ∈ Att(Y) and X ∈ in(V), and hence V (X) = 1. It then
follows by (T4) that g(〈. . . , 0, . . .〉) = 0 and hence 1 �= 0, a contradiction.

Now suppose that X ∈ in(V). We show that for all Y ∈ Att(X) there
exists Z ∈ in(V), such that (Z, Y) ∈ R. If V (X) = 1, then gY ∈Att(X)({1 −
V (Y)}) = 1 and then by (T5) it follows that 1−V (Y) = 1, for all Y ∈ Att(X)
and hence V (Y) = 0 for all Y ∈ Att(X). Take any such Y . Since V (Y) = 0,
we have by (T4) that for some W ∈ Att(Y), V (W) = 1. It then follows that
W ∈ in(V). �
Theorem 1.6. Let N = 〈S,R〉 be a network, g an argumentation-friendly func-
tion, and T a system of equations written for N , where for each node X,
V (X) = gY ∈Att(X){1 − V (Y)}. Then for every preferred extension EN of N ,
there exists a solution V to T such that

5 The values of g for any sequence containing the value 1 is the same as the value of g for
the subsequence without the 1.
6 In fact, this condition is only needed to guarantee the existence of solutions to the
equations.

418 D. M. Gabbay and O. Rodrigues Log. Univers.

(C1) If X ∈ EN , then V (X) = 1
(C2) If EN → X, then V (X) = 0
(C3) If X �∈ EN and EN �→ X, then 0 < V (X) < 1

Proof. Let us start by partitioning the set S using EN into three sets Δ1 = EN ,
Δ0 = {X ∈ S|EN → X}, and Δu = S\(Δ0 ∪ Δ1). Note that the elements of
Δu are the undecided elements in S with respect to EN . Each element of Δu is
not attacked by any element of Δ1 and its attackers cannot all come from Δ0,
i.e., at least one attacker comes from Δu itself. Consider the argumentation
network 〈Δu, R�Δu〉. Write a system of equations Tu using g for 〈Δu, R�Δu〉.
For each X ∈ Δu, the equation is

Vu(X) = gY ∈Δu s.t. (Y,X)∈R�Δu
{1 − Vu(Y)}

By Brouwer’s theorem, the above equations have a solution Vu.7 To be clear Vu

is defined on Δu, giving values Vu(X), such that for every X ∈ Δu, Vu(X) =
gY ∈Δu s.t. (Y,X)∈R�Δu

{1 − Vu(Y)}
We are seeking however a solution V defined for all of S = Δ0 ∪Δ1 ∪Δu,

which satisfies the system of equations T for 〈S,R〉:
V (X) = gY ∈Att(X){1 − V (Y)}

Furthermore, we want V to be such that V (X) = 1 for X ∈ Δ1, V (X) = 0,
for X ∈ Δ0 and V (X) ∈ (0, 1) for X ∈ Δu. We now define such a solution V .
Let

V (X) = 1, for all X ∈ Δ1

V (X) = 0, for all X ∈ Δ0

V (X) = Vu(X), for all X ∈ Δu

We have to show now that V indeed solves the system of equations T for
〈S,R〉. Take X ∈ S:
Case 1: X ∈ Δ1. We defined V (X) = 1. We need to show that 1 = gY ∈Att(X)

{1−V (Y)}. Since X ∈ EN , then all of its attackers are in Δ0, and then V (Y) =
0 (by definition), for all Y ∈ Att(X). Therefore, gY ∈Att(X){1 − V (Y)} = 1, by
(T5).
Case 2: X ∈ Δ0. We defined V (X) = 0. We need to show that 0 = gY ∈Att(X)

{1−V (Y)}. Since EN → X, then there exists Y ∈ Att(X), such that Y ∈ Δ1.
By definition, V (Y) = 1, and then gY ∈Att(X){1 − V (Y)} = 0, by (T4).
Case 3: X ∈ Δu. We defined V (X) = Vu(X) = gY ∈Δu s.t. (Y,X)∈R�Δu

{1 −
Vu(Y)}. We need to show that gY ∈Att(X){1 − V (Y)} = gY ∈Δu s.t. (Y,X)∈R�Δu

{1 − Vu(Y)}. We noted above, that X ∈ Δu implies that none of its attackers
belong to Δ1 and therefore any remaining attackers Z not in Δu must be in
Δ0. By definition, V (Z) = 0, therefore 1 − 0 = 1 and by (T2), such values
can be safely deleted in the calculation of gY ∈Att(X){1 − V (Y)}. Therefore,

7 The Euclidean version of the theorem states that if g is a real-valued function, defined and

continuous on a bounded closed interval I of the real line where g(x) ∈ I, for all x ∈ I, then
g has a fixed-point. In our case, there are n = |S| variables in the network 〈S, R〉, which we

can associate with the vector
−→
X . We can then see each equation as

−→
X = −→g (

−→
X), where −→g

is a continuous function on the n-dimensional space [0, 1]n (see Theorem 1.2 in [21]).

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 419

deleting all such values will show that gY ∈Δu s.t. (Y,X)∈R�Δu
{1 − Vu(Y)} =

gY ∈Δu∪Δ0 s.t. (Y,X)∈R{1 − Vu(Y)}.
Having shown that V above solves the system of equations T , we can use

Theorem 1.5 to show that in(V) is a complete extension. We now ask whether
any of the values Vu(X), for X ∈ Δu can be 0 or 1. The answer is no, for if
Vu(X) = 1 for any X ∈ Δu, then V (X) = 1 and then X ∈ in(V)\EN , which
is impossible, since EN is a preferred extension. Analogously, we can only get
V (X) = 0 for some X ∈ Deltau, if for some of its attackers Z ∈ Δu, V (Z) = 1,
which as we mentioned is impossible. This completed the proof. �

The condition of preferred extension of the Theorem 1.6 is necessary, as
shown in the example below.

Example 1.7. Consider the complete extension E = {X} of the network below.
E is not preferred, since E is a proper subset of {X,W}.

X Y W Z

The network generates the following equations.

V (X) = 1 − V (Y) (1)
V (Y) = 1 − V (X) (2)
V (W) = 1 − V (Z) (3)
V (Z) = g({1 − V (W), 1 − V (Z)}) (4)

Since V (X) = 1, we get that V (Y) = 0 and these values satisfy Eqs. (1) and
(2) above. However, replacing (3) in (4) gives us

V (Z) = g(V (Z), 1 − V (Z))

If g is product, this gives us V (Z) = V (Z) · (1 − V (Z))), and hence 1 =
1 − V (Z) ∴ V (Z) = 0, and hence V (W) = 1, and therefore no solution
corresponding to E using g exists. Note that the two preferred extensions
{X,W} and {Y,W} include W . No extension can include Z.

However, with g as min, we have that (4) becomes

V (Z) = min({1 − V (W), 1 − V (Z)})

and for this set of equations, the values V (X) = 1, V (Y) = 0, V (W) = V (Z) =
1
2 form a solution corresponding to E.

The loop in the example above is quite elucidating. Let us analyse it in
some more detail.

Example 1.8. Consider the network with a single self-referencing loop below.

X

420 D. M. Gabbay and O. Rodrigues Log. Univers.

The network generates the equation:

V (X) = g({1 − V (X)})

Notice that g({1 − V (X)}) = 1 − V (X) and hence we have that V (X) =
1 − V (X) ∴ V (X) = 1

2 , whatever the function g is, as long as it satisfies
(T1)–(T5).

Note that min satisfies (T1)–(T4). As a result, we have that:

Corollary 1.9. Let N = 〈S,R〉 be a network and T a system of equations
written for N , where for each node X, V (X) = minY ∈Att(X)({1 − V (Y)}).
Take any solution V to T . It follows that in(V) is a complete extension.

This follows from Theorem 1.5. What it means is that any solution to
the system of equations defined in terms of Eqmax can be translated into a
complete extension simply by defining that extension as the set containing the
nodes whose solution values are 1. Obviously, different solutions will give rise
to different extensions.

Proposition 1.10. Let N = 〈S,R〉 be a network and T a system of equations
written for N , where for each node X, V (X) = minY ∈Att(X)({1 − Y }). Then
for every complete extension E of N , there exists a solution V to T satisfying:

(C1) If X ∈ E, then V (X) = 1.
(C2) If E → X, then V (X) = 0.
(C3) If X �∈ E and E �→ X, then 0 < V (X) < 1.

Proof. Let E be a complete extension. Consider the following assignment of
values to the nodes in S:

• if X ∈ E, then V (X) = 1
• if E → X, then V (X) = 0
• V (X) = 1

2 , otherwise

We now show that the values above form a solution to the system of equations
T . As in Theorem 1.6, replacing the above values in the original system of
equations will reduce them to the following types.

(1) 1 = min(Δ1)
(2) 0 = min(Δ2)
(3) 1

2 = min(Δ3)

We have seen that Δ1 = {1} and since 1 = min({1}), (1) is satisfied. Similarly,
0 ∈ Δ2 and since min({0, . . .}) = 0, so is (2). Notice that the image of V is
{0, 1

2 , 1}. All values in Δ3 are greater than 0, but at least one of them is 1
2 ,

therefore min(Δ3) = 1
2 , and hence the above assignment solves the equations.

�

So far, we have shown the basics of the equational numerical approach to
abstract argumentation frameworks. In the next section we consider two addi-
tional developments that follow naturally. Firstly, we know that solutions do
exist to the system of equations, but can we find them using some numerical

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 421

method? For example, by applying iterations given some initial guess?8 Sec-
ondly, we would like to apply our methodology to questions of merging, voting,
or any other application where a set of initial values emerges and needs to be
transformed to the “closest” extension. How can we do that? The following
section provides a method to answer these questions.

2. The Gabbay–Rodrigues Iteration Schema

Suppose we are given initial values which do not correspond to any extension
in the way that we presented them in the previous section. These values may
come attached to the nodes for different reasons. For instance, the arguments
themselves may be expressed as some proof in a fuzzy logic and the initial
values can represent the values of the conclusions of the proofs, or they can
be obtained as the result of the merging of some networks, or they may come
from some voting mechanism, etc. Whatever the reason, the initial values
may or may not correspond to a complete extension in Dung’s sense and we
seek a mechanism that would allow us to find the “best” possible extension
corresponding to them.

Consider the equation Eqmax:

V (X) = 1 − maxYi∈Att(X){V (Yi)} (Eqmax)

Eqmax is satisfied when the value of the node X is legal (in Caminada and
Pigozzi’s terminology [7]). That is, if the value of X is 1 and the value of all of
X’s attackers are 0; or if the value of X is 0 and at least of one X’s attackers
has value 1; or if the value of X ∈ (0, 1) and at least one of X’s attackers has
value in (0, 1) and no attacker of X has value 1. If we aim to correct the values
of the nodes in a network iteratively, we need a mechanism that leaves legal
in, out and und node values intact, changing illegal in or out values into und.9

To make a distinction between these classes of values, we will call the values
in {0, 1} crisp and the values in (0, 1) undecided.

Now consider the following averaging function:

(1 − X) · min
{

1
2 , 1 − maxY ∈Att(X) Y

}
+ X · max

{
1
2 , 1 − maxY ∈Att(X) Y

}

For legal assignments of values, we have three cases to consider:
(L1) X is legally in. In this case X = 1 and all of its attackers have value 0.

We want the value of X to remain 1. We have that:

(1 − X) · min
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

+ X · max
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

=

1 · max
{

1
2
, 1

}

=

= 1

8 As can be done to find the square root of numbers using Newton’s method.
9 We will come to the correction of illegal und nodes later.

422 D. M. Gabbay and O. Rodrigues Log. Univers.

(L2) X is legally out. In this case X = 0 and at least one of its attackers has
value 1. We want the value of X to remain 0. We have that:

1 · min
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

+ X · max
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

=

1 · min
{

1
2
, 0

}

+ 0 · max
{

1
2
, 0

}

=

= 0

(L3) X is legally und. In this case 0 < X < 1, none of its attackers has value 1
and at least one of its attackers has value greater than 0. This means that
0 < maxY ∈Att(X) Y < 1 and therefore 0 < (1 − maxY ∈Att(X) Y) < 1. Let
α1 = min{ 1

2 , 1 − maxY ∈Att(X) Y } and α2 = max{ 1
2 , 1 − maxY ∈Att(X) Y }.

It follows that 0 < α1 < 1 and 0 < α2 < 1. We want the value of X
to remain undecided, although we are prepared to accept changes to its
initial value as long as its final value remains in the interval (0, 1). We
have that:

(1 − X) · min
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

+ X · max
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

=

(1 − X) · α1 + X · α2 =
α1 − X · α1 + X · α2 =

α1 − X · (α1 − α2) = κ

Notice that α1 ≤ 1
2 and α2 ≥ 1

2 , therefore α2 �< α1. If α1 = α2, then
κ = α1 and hence 0 < κ ≤ 1

2 . If α1 < α2, then 0 < α1 < 1
2 and α2 = 1

2 .
Therefore, − 1

2 < (α1 − α2) < 0. It then follows that 0 < α1 ≤ κ < 1
2 and

therefore the value of X remains in (0, 1).

What (L1)–(L3) above give us is that legal labellings are preserved.10

Later on, we shall see that our iteration schema also eventually corrects all
illegal values. It does so in two stages. In the first stage, all illegal crisp values
are turned into undecided (this is done in t ≤ |S| iterations). In the second
stage, all remaining illegal undecided values converge to whatever legal crisp
values they should be, so that in the limit, all of the values in the sequence
are legal. Therefore, the Gabbay–Rodrigues Iteration Schema introduced below
provides a numerical iterative method to turn any initial illegal assignment of
values to arguments into its closest legal assignment.11

10 Legal undecided values may change, although they remain in the undecided range (by
(L3)).
11 The precise definition of “closest” will be made clear in Theorem 2.37.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 423

Definition 2.1. Let N = 〈S,R〉 be an argumentation network and V0 be an as-
signment of values to the nodes in S. The Gabbay–Rodrigues Iteration Schema
is defined by the following system of equations T , where for each node X ∈ S,
the value Vi+1(X) is defined in terms of the values of the nodes in Vi as follows:

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, 1 − max

Y ∈Att(X)
Vi(Y)

}

+ Vi(X) · max
{

1
2
, 1 − max

Y ∈Att(X)
Vi(Y)

}

(T)

We call the system of equations for N using the above iteration schema
its GR system of equations.

We ask whether we can regard the iteration schema above as an equation
schema as in the previous section, i.e.,

X = (1 − X) · min
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

+ X · max
{

1
2
, 1 − max

Y ∈Att(X)
Y

}

(GR)

To further clarify this point, let us take an equation written with an ar-
gumentation-friendly function g for a node X in terms of its attackers. The
equation would be

X = g(∪Y ∈Att(X){1 − Y })

It is clear that if one of the attackers of X is 1, the value of X solves to 0,
and if all the attackers of X are 0, the value of X will solve to 1. This follows
from the properties (T1)–(T5) of an argumentation-friendly function. Now let
us compare and see what happens when we use the formula above. If the value
of one of the attackers of X is 1, the first component of the sum will be 0,
whereas the second component will be 1

2 , because the equation is implicit, we
have the equation

X =
X

2
which solves to X = 0, which is correct. If the values of all attackers of X are
0, then we get the equation

X =
(1 − X)

2
+ X

which solves to X = 1, which again gives a correct result. Otherwise, assume
that the values of all attackers are either 0 or 1

2 , with at least one of them
being 1

2 . We get the equation

X =
(1 − X)

2
+

X

2
which again solves to the correct value of X = 1

2 . By correct we mean that
the results are exactly compatible with the Caminada labelling mentioned in
Sect. 1, where X = 1 means X is in, X = 0 means X is out and X = 1

2 means
X is und.

424 D. M. Gabbay and O. Rodrigues Log. Univers.

Therefore, the Gabbay–Rodrigues schema remains faithful to the spirit
of Dung’s semantics captured through the legal Caminada labellings just as
Eqmax does. Its advantage over Eqmax is that it can be used iteratively as we
will show in the rest of this section.12

We start by showing some properties of the schema. The first one ensures
that the values of all nodes remain in the unit interval in all iterations.

Proposition 2.2. Let N = 〈S,R〉 be an argumentation network and V0 : S
−→
U an assignment of initial values to the nodes in S. Let each assignment Vi,
i > 0, be calculated by the Gabbay–Rodrigues Iteration Schema for N . It follows
that Vi(X) ∈ U , for all i ≥ 0 and all X ∈ S.

Proof. The base of the induction is the initial value assignment that holds
trivially. The induction step is proven by looking at the maximum and mini-
mum values that the nodes can take and showing that the sum in the iterated
schema is always a number in U . Now, suppose that indeed for all nodes X ∈ S,
0 ≤ Vk(X) ≤ 1, for a given iteration k. Pick any node X. It follows that

Vk+1(X) = (1 − Vk(X)) · min
{

1
2
, 1 − max

Y ∈Att(X)
Vk(Y)

}

+Vk(X) · max
{

1
2
, 1 − max

Y ∈Att(X)
Vk(Y)

}

So we have that Vk+1(X) = (1−α) ·x+α ·y, where 0 ≤ α ≤ 1, 0 ≤ (1−α) ≤ 1,
0 ≤ x ≤ 1

2 , and 1
2 ≤ y ≤ 1.

The lowest value for Vk+1(X) is obtained with the lowest values for x and
y, when we get that Vk+1(X) = α

2 . If α = 0, then Vk+1(X) = 0 ≥ 0. If α = 1,
then we get Vk+1(X) = 1

2 ≤ 1. The highest value for Vk+1(X) is obtained with
the highest values for x and y, when we get that Vk+1(X) = (1−α)

2 + α. If
α = 0, then Vk+1(X) = 1

2 ≤ 1. If α = 1, then we get Vk+1(X) = 1 ≤ 1. In all
cases, 0 ≤ Vk+1(X) ≤ 1. �

We now show that a given “legal” set of initial values for the nodes in S
satisfies the equations and hence the values remain unchanged.

Proposition 2.3. Let N = 〈S,R〉 be a network and T its GR system of equa-
tions. Then for every complete extension E of N and all X ∈ S, if V0 is
defined using E by the clauses (C1)–(C3) below, we have that V1(X) = V0(X).
(C1) If X ∈ E, then V0(X) = 1
(C2) If E → X, then V0(X) = 0
(C3) If X �∈ E and E �→ X, then V0(X) = 1

2

Proof. Let E be a complete extension and suppose V0(X) = 1. Then X ∈ E
and hence, (i) either Att(X) = ∅, or (ii) for all Y ∈ Att(X), E → Y (since E
is admissible). As a result, 1 − maxY ∈Att(X){V (Y)} = 1, and hence we have
that

12 As an equation, we can regard the expression (GR) just as another type of g, a special
eqGR.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 425

V1(X) = max
{

1
2
, 1

}

= 1 = V0(X).

If on the other hand, V0(X) = 0, then E → X. Therefore, there exists some
Y ∈ Att(X), such that Y ∈ E and hence V0(Y) = 1. It follows that

V1(X) = min
{

1
2
, 1 − 1

}

= 0 = V0(X).

Finally, if V0(X) = 1
2 , then X �∈ E and E �→ X. We must have that for

all Y ∈ Att(X), V0(Y) < 1 (otherwise, we would have that E → X). We
must also have that for some Y ∈ Att(X), V0(Y) > 0, otherwise E would
defend X and since it is complete X ∈ E, but then V0(X) = 1. Therefore,
1 − maxY ∈Att(X){V (Y)} = 1

2 , and hence we have that

V1(X) =
1
2

· min
{

1
2
,
1
2

}

+
1
2

· max
{

1
2
,
1
2

}

=
1
4

+
1
4

=
1
2

= V0(X).

�

Obviously, if for all nodes X, V1(X) = V0(X) as above, then for all nodes
X, Vi+1(X) = Vi(X), for all i ≥ 0.

Furthermore, crisp values do not “swap” between each other and unde-
cided values do not become crisp:

Theorem 2.4. Let N = 〈S,R〉 be an argumentation network, T a system of
equations for N using the Gabbay–Rodrigues Iteration Schema, and V0 : S
−→
U an assignment of initial values to the nodes in S. Let V0, V1, V2, . . . be a
sequence of value assignments where each Vi, i > 0, is generated by T . Then
the following properties hold for all X ∈ S and for all k ≥ 0

1. If Vk(X) = 0, then Vk+1(X) �= 1.
2. If Vk(X) = 1, then Vk+1(X) �= 0.
3. If 0 < Vk(X) < 1, then 0 < Vk+1(X) < 1.

Proof. 1. Suppose Vk(X) = 0, then Vk+1(X) = min{ 1
2 , 1 − maxY ∈Att(X)

Vi(Y)} ≤ 1
2 .

2. Suppose Vk(X) = 1, then Vk+1(X) = max{ 1
2 , 1 − maxY ∈Att(X) Vi(Y)} ≥

1
2 .

3. Suppose 0 < Vk(X) < 1. We first show that Vk+1(X) > 0. Note that
0 < (1 − Vk(X)) < 1. Therefore, we have that

Vk+1(X) = (1 − Vk(X)) · min
{

1
2
, 1 − max

Y ∈Att(X)
Vi(Y)

}

+Vk(X) · max
{

1
2
, 1 − max

Y ∈Att(X)
Vi(Y)

}

It is easy to see that the first component of the above sum is greater than
or equal to 0, whereas the second is strictly greater than 0, and hence
Vk+1(X) > 0.

426 D. M. Gabbay and O. Rodrigues Log. Univers.

Since we start with values in U , Proposition 2.2, gives us that
Vk+1(X) ≤ 1, for all X ∈ S. We therefore only need to show that
Vk+1(X) �= 1. Again we have that Vk+1(X) = (1 − α) · x + α · y, where

0 < α < 1
0 < (1 − α) < 1

0 ≤ x ≤ 1
2

1
2

≤ y ≤ 1

Suppose Vk+1(X) = 1. It follows that

(1 − α) · x + α · y = 1
x − α · x + α · y = 1

α(y − x) = (1 − x)

α =
1 − x

y − x

Since α < 1, we have that 1−x < y−x, and hence y > 1, a contradiction.
�

The above theorem shows that any changes between iterations can only
generate new values for nodes in the interval (0, 1), i.e., successive iterations
can only turn crisp values into undecided. Therefore, the sets of nodes with
crisp values can only decrease throughout the iterations:

Corollary 2.5. Let N = 〈S,R〉 be an argumentation network, V0 : S
−→ U an
initial assignment of values to the nodes in S and T its GR system of equations.
It follows that for all 0 ≤ i ≤ j, in(Vj) ⊆ in(Vi) and out(Vj) ⊆ out(Vi).

The situation in the limit of the sequence of values is more complex and
we will deal with it later. If between two successive iterations there are no
changes in the crisp values, then these values “stabilise”:

Theorem 2.6. Let N = 〈S,R〉 be a network, T its GR system of equations, and
V0 an initial assignment of values to the nodes in S. Let V0, V1, V2, . . . be a
sequence of value assignments where each Vi, i > 0, is generated by T . Assume
that for some iteration i and all nodes X ∈ S such that Vi(X) ∈ {0, 1}, we
have that Vi+1(X) = Vi(X), then for all j ≥ 1, Vi+j(X) = Vi(X).

Proof. Assume that Vi(X) ∈ {0, 1} for some node X. There are two cases to
consider.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 427

Case 1: Vi(X) = 0. By assumption, we have that Vi+1(X) = 0. We show that
Vi+2(X) = 0. If Vi+1(X) = 0, we have that

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

+Vi(X) · max
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

0 = min
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

So, maxY ∈Att(X){Vi(Y)} = 1 and hence for some Y ∈ Att(X), Vi(Y) = 1. By
assumption Vi+1(Y) = 1 and hence maxY ∈Att(X){Vi+1(Y)} = 1. Therefore,

Vi+2(X) = min
{

1
2
, 1 − max

Y ∈Att(X)
{Vi+1(Y)}

}

= 0

Case 2: Vi(X) = 1. By assumption, we have that Vi+1(X) = 1. We show that
Vi+2(X) = 1. If Vi+1(X) = 1, we have that

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

+Vi(X) · max
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

1 = max
{

1
2
, 1 − max

Y ∈Att(X)
{Vi(Y)}

}

So, maxY ∈Att(X){Vi(Y)} = 0, and hence for all Y ∈ Att(X), Vi(Y) = 0. By
assumption, maxY ∈Att(X){Vi+1(Y)} = 0, and hence

Vi+2(X) = max
{

1
2
, 1 − max

Y ∈Att(X)
{Vi+1(Y)}

}

= 1

�
Definition 2.7. Let N = 〈S,R〉 be an argumentation network and V0 : S
−→ U
an assignment of initial values to the nodes in S. A sequence of assignments
Vi : S
−→ U where each i > 0 is generated by the Gabbay–Rodrigues Iteration
Schema for N becomes stable at iteration k, if for all nodes X ∈ S we have
that
1. If Vk(X) ∈ {0, 1}, then Vk+1(X) = Vk(X); and
2. k is the smallest value for which the condition above holds.

Note that if Vk(X) ∈ (0, 1), then Vk+1(X) ∈ (0, 1), for all k ≥ 0, by
Theorem 2.4.

Corollary 2.8. Consider a sequence of value assignments V0, V1, V2, . . . as
described in Theorem 2.6. If the sequence becomes stable at iteration k, then
the sequence remains stable for all iterations k + j, j ≥ 0.

Proof. The first stability condition in Definition 2.7 follows from Theorem 2.4
and the second condition follows from Theorem 2.6. �

428 D. M. Gabbay and O. Rodrigues Log. Univers.

Corollary 2.9. Let N = 〈S,R〉 be an argumentation network, V0 : S
−→ U
an assignment of initial values to the nodes in S and T its GR system of
equations. The following hold:

1. If the sequence of value assignments is not stable at iteration k, then there
exists X ∈ S, such that Vk(X) ∈ {0, 1} and Vk+1(X) ∈ (0, 1).

2. Let |S| = n. Then, the sequence is stable for some k ≤ n.

Proof. (1) follows from Theorem 2.4. For (2), notice that each iteration i which
is not stable causes at least one node to change value from {0, 1} into (0, 1).
Theorem 2.4 states that all values in (0, 1) remain in (0, 1). Since S is finite,
there are only finitely many nodes that can change from {0, 1} into (0, 1) and
the number of iterations in which this can happen is bounded by |S|. �

Corollary 2.9 shows that for some value 0 ≤ k ≤ |S|, the sequence of
value assignments V0(X), V1(X), V2(X), . . . eventually becomes stable. That
is, there exists k ≥ 0, such that for all j ≥ 0 and all nodes X

• if Vk(X) = 0, then Vk+j = 0;
• if Vk(X) = 1, then Vk+j = 1; and
• if Vk(X) ∈ (0, 1), then Vk+j ∈ (0, 1).

Remark 2.10. Given an argumentation-friendly function g, we can define the
Gabbay–Rodrigues Iteration Schema for g, denoted by GR(g), as follows.

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, g(∪Y ∈Att(X){1 − Vi(Y)})

}

+Vi(X) · max
{

1
2
, g(∪Y ∈Att(X){1 − Vi(Y)})

}

If we further assume that g satisfies the optional condition
(T6) If for all x ∈ Δ, we have that x < 1 and for some x ∈ Δ, x > 0, then

g(Δ) ∈ (0, 1).
Then the above sequence of definitions and theorems in this section still holds
if we replace GR by GR(g).

The above discussion laid out the properties of the Gabbay–Rodrigues
Iteration Schema. In what follows we shall apply it to the following question.
Suppose we have an argumentation network 〈S,R〉 with associated equations
and an initial assignment f : S
−→ U . f may come from a single agent who
insists on giving certain values to the arguments of S; or f may be the result of
merging several argumentation frameworks with the nodes in S (through some
well-defined process, e.g., voting); or f may arise from any other process. Our
problem is to find the function f ′, closest to f , which also corresponds to an
extension of 〈S,R〉 (for example, solves the equations generated from 〈S,R〉).
Now, what do we mean by “closest”? Following Caminada and Pigozzi [7],
we take the view that “closest” means agreeing on the maximal number of
nodes with f -values in {0, 1}. In what follows, we show how to find such an
assignment f ′, through the Gabbay–Rodrigues Iteration Schema.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 429

Theorem 2.11. Let 〈S,R〉 be a network and f : S
−→ U an assignment of
values to the nodes in S. Then there is an assignment h : S
−→ U such that
the sets in(h) ⊆ in(f) and out(h) ⊆ out(f) are maximal and for every node
X ∈ S:

Ifh(X) = 1, thenmaxY ∈Att(X){h(Y)} = 0; and (5)
Ifh(X) = 0, thenmaxY ∈Att(X){h(Y)} = 1. (6)

Proof. The proof is analogous to the proof of Theorem 5 in [7].
Take any two assignments g1 and g2 such that for all X ∈ S:

• g1(X) = 0 implies f(X) = 0 and g2(X) = 0 implies f(X) = 0; and
• g1(X) = 1 implies f(X) = 1 and g2(X) = 1 implies f(X) = 1

and

Ifg1(X) = 1, then maxY ∈Att(X){g1(Y)} = 0; and (7)
Ifg2(X) = 1, then maxY ∈Att(X){g2(Y)} = 0; and (8)
Ifg1(X) = 0, then maxY ∈Att(X){g1(Y)} = 1; and (9)
Ifg2(X) = 0, then maxY ∈Att(X){g2(Y)} = 1 (10)

It follows that in(g1) ⊆ in(f) and out(g1) ⊆ out(f); and in(g2) ⊆ in(f)
and out(g2) ⊆ out(f).

Let us construct an assignment h : S
−→ U , such that for all X ∈ S:

h(X) = 1 iff max(g1(X), g2(X)) = 1 (11)
h(X) = 0 iff min(g1(X), g2(X)) = 0 (12)

h(X) =
1
2

iff 0 < g1(X) < 1 and 0 < g2(X) < 1 (13)

We now show that the assignment h is a well-defined function and that
in(h) ⊆ in(f) and that out(h) ⊆ out(f). It is easy to see that every node
X gets at least one value h(X). We need to show that for every node X, this
value is unique and that the above inclusions are satisfied. From (13), it is easy
to see that h(X) is equal to 1

2 if and only if both g1(X) ∈ (0, 1) and g2(X) ∈
(0, 1). To show inclusion, suppose X ∈ in(h). Then h(X) = 1 and hence
max(g1(X), g2(X)) = 1. Either g1(X) = 1 or g2(X) = 1 (or both), and hence
f(X) = 1. Therefore X ∈ in(f). To show that h(X) is unique in this case, it is
sufficient to show that min(g1(X), g2(X)) > 0. Suppose min(g1(X), g2(X)) =
0, then either g1(X) = 0 or g2(X) = 0, in which case f(X) = 0, a contradiction,
since f is a function. Analogously, if X ∈ out(h), then h(X) = 0 and hence
min(g1(X), g2(X)) = 0. Then either g1(X) = 0 or g2(X) = 0 (or both), and
hence f(X) = 0. Therefore, X ∈ out(f). To show that h(X) is also unique
in this case, it suffices to show that max(g1(X), g2(X)) < 1. Suppose that
max(g1(X), g2(X)) = 1, then either g1(X) = 1 or g2(X) = 1, in which case
f(X) = 1, a contradiction, since f is a function.

We now show that h satisfies (5) and (6).
Suppose h(X) = 1. By construction, max(g1(X), g2(X)) = 1. It follows

that (i) either X ∈ in(g1), and then by (7), maxY ∈Att(X){g1(Y } = 0. This
means that for every Y ∈ Att(X), g1(Y) = 0. By (12), for every Y ∈ Att(X),

430 D. M. Gabbay and O. Rodrigues Log. Univers.

h(Y) = 0, and hence maxY ∈Att(X){h(Y)} = 0; or (ii) X ∈ in(g2), and
then by (8), maxY ∈Att(X){g2(Y } = 0. By (12), for in(g2) is also admissi-
ble, Y ∈ out(g2), and hence for every Y ∈ Att(X), h(Y) = 0, and hence again
maxY ∈Att(X){h(Y)} = 0. This shows that h satisfies (5).

As for (6), suppose h(X) = 0, then by the construction of h either
g1(X) = 0 or g2(X) = 0 (or both). The two cases are identical. We con-
sider only the case g1(X) = 0. By (9), maxY ∈Att(X){g1(Y)} = 1, and hence
for some Y ∈ Att(X), g1(Y) = 1. By (11), we have that h(Y) = 1 and then
maxY ∈Att(X){h(Y)} = 1.

Note that in(g1) ⊆ in(h), out(g1) ⊆ out(h), in(g2) ⊆ in(h) and out(g2) ⊆
out(h). Therefore, since every g1 and g2 satisfying (7)–(10) give rise to a func-
tion h as described, and the number of all such functions is finite, then there
exists one such h that the sets in(h) and out(h) are maximal. �

Corollary 2.12. Let 〈S,R〉 be a network and f : S
−→ U an assignment of
values to the nodes in S and h : S
−→ U the assignment such that the sets
in(h) ⊆ in(f) and out(h) ⊆ out(f) are maximal and for every node X ∈ S:

Ifh(X) = 1, thenmaxY ∈Att(X){h(Y)} = 0; and (14)
Ifh(X) = 0, thenmaxY ∈Att(X){h(Y)} = 1. (15)

as given by Theorem 2.11. Then the set in(h) is the largest admissible subset
of in(f) such that also out(h) ⊆ out(f).

Proof. in(h) is conflict-free: if you take X ∈ in(h), then h(X) = 1 and then
maxY ∈Att(X){h(Y)} = 0. Therefore, either Att(X) = ∅; or for all Y ∈ Att(X),
h(Y) = 0, and hence Y �∈ in(h).

To show that in(h) is admissible, we just need to show that if X ∈ in(h)
and Y ∈ Att(X), then there exists Z ∈ Att(Y), such that Z ∈ in(h). Assume
that X ∈ in(h) and Y ∈ Att(X). By definition, h(X) = 1, and then by
(14), maxWx∈Att(X){h(Wx)} = 0, and hence h(Y) = 0. By (15), maxWy∈Att(Y)

{h(Wy)} = 1. Therefore, there exists Z ∈ Att(Y), such that Z ∈ in(h).
The fact that in(h) is the largest subset of in(f) subject to out(h) ⊆

out(f) comes directly from Theorem 2.11. �

Remark 2.13. Consider the following network.

X Y

There is no largest admissible subset of E = {X,Y }! There are two
maximal admissible subsets E1 = {X} and E2 = {Y }, so the requirement
that “no new out nodes are generated” is very important in Theorem 2.11.
In terms of assignments (or labellings for that matter) this was expressed as:
out(h) ⊆ out(f).13

13 If we are given just E, we may want to think of an assignment f such that in(f) = E
and out(f) = {X|E → X}, leaving the nodes in S\(in(E) ∪ out(E)) with a value in (0, 1).

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 431

If we are given an assignment f(A) = 1 and f(B) = 1, there is a class of
assignments h such that the sets in(h) ⊆ in(f) and out(h) ⊆ out(f) are the
largest. For instance, h(A) = h(B) = 1

2 . In the example above, it is sufficient
to set 0 < h(A) < 1 and 0 < h(B) < 1 (we chose the value 1

2 in Theorem 2.11
simply because we wanted to show that one existed and because as we shall
see the legal undecided values will end up converging to 1

2).
Note, in particular that the assignment f does not satisfy the conditions

of Theorem 2.11 (which guarantee by Corollary 2.12 that in(f) is an admissible
set). We could turn f into an admissible assignment by just flipping one of the
values of A or B to 0. However, if we did this, for instance, by generating the
assignment f ′(A) = 1 and f ′(B) = 0, then although in(f ′) is admissible and
in(f ′) ⊆ in(f), we would not have that out(f ′) = {B} ⊆ out(f) = ∅!

This is as it should be, because an initial assignment f encodes not only
which nodes we would like to be in, but also those that we would like to be
out, and we cannot decide without further information to optimise on the in’s
in detriment of the out’s.

Theorem 2.14. Let N = 〈S,R〉 be a network and T its GR system of equations.
If the sequence of values V0, V1, . . . becomes stable at iteration k, then in(Vk)
is the largest admissible set such that in(Vk) ⊆ in(V0) and out(Vk) ⊆ out(V0).

Proof. We first show that in(Vk) is an admissible set.
1. Suppose in(Vk) is not conflict-free. Therefore, there must exist X,Y ∈

in(Vk), such that (Y,X) ∈ R. Since X,Y ∈ in(Vk), Vk(X) = Vk(Y) = 1.
Vk+1(X) = max{ 1

2 , 1 − maxY ∈Att(X) Vk(Y)} = 1
2 , and then the sequence

is not stable at k, a contradiction. Therefore, in(Vk) is conflict-free.
2. Suppose in(Vk) is not admissible. It follows that there exists X ∈ in(Vk)

and some Y ∈ S with (Y,X) ∈ R, such that in(Vk) �→ Y . Since X ∈
in(Vk), then Vk(X) = 1 and since the sequence is stable at k, Vk+1(X) =
1 = max{ 1

2 , 1−maxW∈Att(X) Vk(W)}. Therefore, maxW∈Att(X) Vk(W) =
0. In particular, Vk(Y) = 0, and hence Vk+1(Y) = min{ 1

2 , 1−maxZ∈Att(Y)

Vk(Z)} = 0, and therefore there exists Z ∈ Att(Y), such that Vk(Z) = 1,
and hence Z ∈ in(Vk), and hence in(Vk) → Y , a contradiction. Therefore,
in(Vk) is admissible.

Now we need to show that in(Vk) is indeed the maximal admissible set such
that in(Vk) ⊆ in(V0) and out(Vk) ⊆ out(V0). By Theorem 2.11, there are
unique maximal sets in(Vmax) ⊆ in(V0) and out(Vmax) ⊆ out(V0) such that
in(Vmax) is admissible. Furthermore, in(Vmax) ⊇ in(Vk) and out(Vmax) ⊇
out(Vk). Suppose either in(Vk) or out(Vk) are not maximal and let 0 < j < k
be the first index such that there is some X ∈ in(Vmax), such that X �∈ in(Vj)
or that there is some Y ∈ out(Vmax) such that Y �∈ out(Vj) (or both). We
start with the first case. Since X ∈ in(Vmax), then X ∈ in(Vj−1) and hence
Vj−1(X) = 1. Since X �∈ in(Vj), then Vj(X) < 1. It follows that Vj(X) =
max

{
1
2 , 1 − maxY ∈Att(X) Vj−1(Y)

}
< 1. Therefore, there exists Y ∈ Att(X),

such that Vj−1(Y) > 0 and hence Y �∈ out(Vj−1). Since in(Vmax) is admissible,
Y ∈ out(Vmax) and this is a contradiction with the fact that j was the first
index such that there was some Y ∈ out(Vmax) such that Y �∈ out(Vj).

432 D. M. Gabbay and O. Rodrigues Log. Univers.

The second case is analogous. Take Y ∈ out(Vmax) such that Y �∈ out(Vj).
Since Y ∈ out(Vmax), then Y ∈ out(Vj−1) and hence Vj−1(Y) = 0. Since
Y �∈ out(Vj), then Vj(Y) > 0. It follows that Vj(Y) = min{ 1

2 , 1 − maxZ∈Att(Y)

Vj−1(Z)} > 0. Therefore, for all Z ∈ Att(Y) we have that Vj−1(Z) < 1 and
hence there is no Z ∈ Att(Y), such that Z ∈ in(Vj−1). Since Y ∈ out(Vmax),
there must be some Z ′ ∈ Att(Y), such that Z ′ ∈ in(Vmax), but this is a
contradiction since Z ′ �∈ in(Vj−1) and j was the first index such that there
was some X ∈ in(Vmax), such that X �∈ in(Vj). �

Remark 2.15. Given an argumentation network N = 〈S,R〉, an argumenta-
tion-friendly function g, a system of equations T written for N using g, and
an assignment v : S
−→ U , which represents initial desired values, then if v
corresponds to a complete extension then the above theorems tell us that the
sequence of equations V0 = v, V1, V2, . . . will become stable at some iteration
k and Vk = v. Otherwise, Vk is the function giving the maximal possible crisp
part in(Vk) and out(Vk) agreeing with v such that the set in(Vk) is admissible.
We now have the option of extending in(Vk) into a complete extension Ecomp

that is the closest extension agreeing with in(v). If this extension is also pre-
ferred, then it would correspond to an assignment f ′, which solves the original
system of equations T (by Theorem 1.6). If the extension is not preferred,
then whether such an f ′ exists depends on the nature of the function g. Some
such functions, such as min can always find an f ′ for every complete extension.
Others, such as product, can not always find them.14

We will see that with the Gabbay–Rodrigues Iteration Schema, if we
continue iterating, in the limit of the sequence, we will get an extension.

The following definition helps to translate between values in U and values
in {in, out,und}.

Definition 2.16. (Caminada–Pigozzi/Gabbay–Rodrigues Translation) A label-
ling function λ and a valuation function V can be inter-defined according to
the table below.

λ(X) → Vλ(X) V (X) → λV (X)
in → 1 1 → in
out → 0 0 → out
und → 1

2 (0, 1) → und

The choice of the value 1
2 in the translation from und is arbitrary. Any

value in (0, 1) would do, but we will see that legal undecided values will con-
verge to 1

2 in the limit, and so 1
2 is the natural choice.

Definition 2.17. A legal assignment V is an assignment of values V : S
−→ U
such that the corresponding labelling function λV defined according to Defin-
ition 2.16 is also legal.

14 Product is given in Item 2. of Example 1.3. For the network S = {A, B}, R =
{(A, B), (B, A), (B, B)} and the complete extension “all undecided”, there is no solution
using product.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 433

Proposition 2.18. Let λ be a labelling function and Vλ its corresponding
Caminada–Pigozzi translation. If the Gabbay–Rodrigues Iteration Schema is
employed using Vλ as V0, then for some value k ≥ 0, the sequence of values
V0, V1, . . . will become stable and the sets in(Vk) and out(Vk) will correspond
to the down-admissible labelling of λ.

Proof. This follows directly from Theorem 2.14 and Corollary 2.9. �

We may also arbitrarily start with V0(X) = 1 for all nodes X ∈ S and
see if this assignment satisfies the equations. At each iteration, the equations
may force the crisp values of some nodes to turn to und. Eventually, some
iteration k ≤ |S| will produce the last set of new undecided values, at which
point we say that the sequence has stabilised. We have that in(Vk) and out(Vk)
correspond to the largest admissible labelling such that in(Vk) ⊆ in(V0) and
out(Vk) ⊆ out(V0). in(Vk) can now form the basis of a complete extension.
The smallest of such (complete) extensions comes from what Caminada and
Pigozzi called the up-complete labelling of λVk

:

Definition 2.19. [7] Let λ be an admissible labelling. The up-complete labelling
of λ is a complete labelling λ′ s.t. in(λ′) ⊇ in(λ) and out(λ′) ⊇ out(λ) and
in(λ′) and out(λ′) are the smallest sets satisfying these conditions.

If we continue with our calculations we can see what happens with the
values V0, V1, . . . , Vi, . . . in the limit of the sequence. We call these the equilib-
rium values. Formally,

Definition 2.20. Let N = 〈S,R〉 be an argumentation network, T its GR
system of equations, and V0 an assignment of initial values to the nodes in S.
The equilibrium value of the node X is defined as Ve(X) = limi→∞ Vi(X).

The understanding of the meaning of the equilibrium values requires an
analysis of the behaviour of the sequence. The value of a node X is essentially
determined by the values of the nodes in Att(X). At the stable point k we
know that the crisp values remain crisp. The values of the attackers of a node
at the stable point k can be of one of three types:

1. maxY ∈Att(X){Vk(Y)} = 0
2. maxY ∈Att(X){Vk(Y)} = 1
3. 0 < maxY ∈Att(X){Vk(Y)} < 1

If the value of a node Y at the stable point k is in {0, 1}, then Theo-
rem 2.6 ensures that it will remain the same in the limit limi→∞ Vi(Y). As
it turns out, if maxY ∈Att(X){Vk(Y)} = 0, then limi→∞ Vi(X) = 1. And if
maxY ∈Att(X){Vk(Y)} = 1, then limi→∞ Vi(X) = 0, as shown by the next
theorem.

Theorem 2.21. Let N = 〈S,R〉 be an argumentation network and V0 : S
−→ U
assign initial values to the nodes in S. Let the sequence of value assignments
V0, V1, V2, . . . where each Vi, i > 0, is generated by the Gabbay–Rodrigues
Iteration Schema be stable at iteration k. For every X ∈ S:

434 D. M. Gabbay and O. Rodrigues Log. Univers.

1. If maxY ∈Att(X){Vk(Y)} = 0, then Ve(X) = 1; and
2. If maxY ∈Att(X){Vk(Y)} = 1, then Ve(X) = 0.
3. If Vk(X) ∈ {0, 1}, then Ve(X) = Vk(X);

Proof. 1. If maxY ∈Att(X) Vk(Y) = 0, and the sequence is stable at k, then
by Corollary 2.8, maxY ∈Att(X) Vk+j(Y) = 0, for all j ≥ 0. We have that

Vk+1(X) = (1 − Vk(X)) · min
{

1
2
, 1

}

+ Vk(X) · max
{

1
2
, 1

}

=
1
2

− Vk(X)
2

+ Vk(X) =
1
2

+
Vk(X)

2

Vk+2(X) =
1
2

+
1
4

+
Vk(X)

4

Vk+j(X) =
j∑

k=1

1
2k

+
Vk(X)

2j

Ve(X) = lim
j→∞

Vk+j(X)

=
∞∑

k=1

1
2k

+ lim
j→∞

Vk(X)
2j

= 1 + 0 = 1

So if the maximum value mk of all attackers of X at iteration k is
0, then the value of X converges to 1; and finally

2. If maxY ∈Att(X) Vk(Y) = 1, and the sequence is stable at k, then by Corol-
lary 2.8, maxY ∈Att(X) Vk+j(Y) = 1, for all j ≥ 0. We have that

Vk+1(X) = (1 − Vk(X)) · min
{

1
2
, 0

}

+ Vk(X) · max
{

1
2
, 0

}

=
Vk(X)

2

Vk+2(X) =
Vk(X)

4
∴ Vk+j(X) =

Vk(X)
2j

Ve(X) = lim
j→∞

Vk+j(X) = lim
j→∞

Vk(X)
2j

= 0

So if the maximum value mk of all attackers of X at iteration k is
1, then the value of X converges to 0.

3. This follows from the fact that the sequence is stable at k;
�

The theorem above asserts self-correction for the values of nodes whose
attackers are either all out or that have an attacker that is in. Case 3 above,
in which 0 < maxY ∈Att(X){Vk(Y)} < 1, is harder and will be dealt with in
stages. We start with the case of a cycle whose values of the nodes are all in
(0, 1) (see Fig. 4). Such cycles may involve an even or odd number of nodes,
so we have chains of attacks of one of the following types:
• either X = Z1 ← Z2 ← . . . ← Z2n = X (even cycle)
• or X = Z1 ← Z2 ← . . . ← Z2n+1 = X (odd cycle)

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 435

...

... Yi Z2

Zk

Z3

Z4

Yj

X = Z1

Figure 4. A network with a cycle with k nodes

The next lemma shows that in either case, the value of X in the limit is 1
2 .

Theorem 2.22. Let the sequence of values V0, V1, . . ., be stable at iteration k.
Let X be a point such that Vk+i(X), Vk+i+1(X), . . . ∈ (0, 1), for all i ≥ 0. Our
final aim is to show that limi→∞ Vk+i(X) = 1

2 . As a first step towards our
goal, we show that any converging subsequence V c

k+j(X) converges to 1
2 (by a

subsequence V c
k+j(X) we mean some of the elements of the sequence Vk+i(X),

that is for every j there is an ij such that V c
k+j(X) = Vk+ij (X)). From now

on we talk about the subsequence V c
k+j(X), which we further assume that it

converges to V c
e (X), for every such X, and we will show that V c

e (X) = 1
2 , for

every X.
To be absolutely clear we assume for the time being that there is a sequence

of values s1, s2, s3, . . ., such that for every X, the sequence V c
si

(X) converges
to V c

e (X) and we show that under these conditions V c
e (X) = 1

2 .
Consider all possible cycles X = Z1 ← Z2 ← . . . ← Z2n = X (even)

and X = Z1 ← Z2 ← . . . ← Z2n+1 = X (odd) and assume that amongst
them we have a cycle such that there exists a sequence of values r1, r2, . . .
such that for each Zi, Zi+1 is the node in Att(Zi) with maximum value and
0 < V c

k+r1+r2+...+rm
(Zi) < 1, for every m ≥ 0. Then V c

e (Zi) = 1
2 , for all Zi.

Proof. Since the Gabbay–Rodrigues Iteration Schema uses continuous func-
tions, if the schema holds for the elements of the sequence V c

k+j(X), for every
X ∈ S, it also holds for the limit V c

e (X).
We get the following systems of equations

1. For the cycle X = Z1 ← Z2 ← . . . ← Z2n = X:
V c

e (X) = (1 − V c
e (X)) · min{ 1

2 , 1 − V c
e (Y)} + V c

e (X) · max{ 1
2 , 1 −

V c
e (Y)}, where Y is the node in Att(X) with maximum value. We have

two cases to consider.
• V c

e (Y) ≥ 1
2 , then we get that

V c
e (X) =

1 − V c
e (Y)

1.5 − V c
e (Y)

• V c
e (Y) ≤ 1

2 , the we get that

V c
e (X) =

1
1 + 2 · V c

e (Y)

it is easy to see from the equations that if V c
e (Y) ≥ 1

2 , then V c
e (X) ≤ 1

2

and if V c
e (Y) ≤ 1

2 , then V c
e (X) ≥ 1

2 . Therefore, if we have the cycle

436 D. M. Gabbay and O. Rodrigues Log. Univers.

X = Z1 ← Z2 ← · · · ← Z2n = X, then we get that 1
2 ≤ Z1 ≤ 1

2 , so all
Zi = 1

2 .
2. For the cycle X = Z1 ← Z2 ← · · · ← Z2n+1 = X, we have that

• Either V c
e (Y) ≥ 1

2 . Let us write V c
e (Y) = 1

2 + ε(Y), for some 0 ≤
ε(Y) < 1

2 . We then get that

V c
e (X) =

1 − V c
e (Y)

1.5 − V c
e (Y)

=
1 − 1

2 − ε(Y)
1.5 − (1

2 + ε(Y))

=
1
2 − ε(Y)
1 − ε(Y)

Write V c
e (X) = 1

2 − η, for some 0 < η < 1
2 .

1
2

− η =
1
2 − ε(Y)
1 − ε(Y)

η =
1
2

−
1
2 − ε(Y)
1 − ε(Y)

=
(1ε(Y)) − 2(1

2 − ε(Y))
2(1 − ε(Y)

=
1 − ε(Y) − 1 + 2ε(Y)

2(1 − ε(Y))

=
ε(Y)

2(1 − ε(Y))

• or V c
e (Y) ≤ 1

2 . Let us write V c
e (Y) = 1

2 − ε(Y), for some 0 ≤ ε(Y) <
1
2 . We then get that

V c
e (X) =

1
1 + 2(1

2 − ε(Y)

=
1

1 + 1 − 2ε(Y)

=
1

2(1 − ε(Y))

=
1
2

+ η

η =
1

2(1 − ε(Y))
− 1

2

=
1 − 1 + ε(Y)
2(1 − ε(Y))

=
ε(Y)

2(1 − ε(Y))

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 437

Where are we now? We saw that if we start from V c
e (Y) = 1

2 ± ε(Y) and
Y → X (Y attacks X as in a cycle), then V c

e (X) = 1
2 ± η, where η is in

the other direction and

η =
ε(Y)

2(1 − ε(Y))
.

Let us now assume a cycle

X = Z1 ← Z2 ← · · · ← Zn = X

Assume Z1 = 1
2 ± ε. What would the value of Zk be?

We claim that

Zk =
1
2

± ηk

where

ηk =
ε

2(2k − (2k − 1)ε)

The proof is by induction. Let X = Zk, then Y = Zk+1, and then

ηk+1 =
ηk

2(1 − ηk)

=
ε

2(2k−(2k−1)ε)

2
(
1 − ε

2(2k−(2k−1)ε)

)

=
ε

2(2k−(2k−1)ε)

2
(

2(2k−(2k−1)ε−ε)
2(2k−(2k+1)ε)

)

=
ε

2(2k+1 − 2k+1ε + 2ε − ε)

=
ε

2(2k+1 − (2k+1 − 1)ε)

So the recursion works. Now if we have a loop, we get

Zn = Z1

So ηn = η1 and thus

η =
η

2(2k+1 − (2k+1 − 1)ε)

If we divide by η (�= 0), we get

1 =
1

2(2k+1 − (2k+1 − 1)ε)

It is easy to see that only ε = 1
2 solves the equation. This means that

V c
e (Zi) = 1

2 , for all Zi.

�

438 D. M. Gabbay and O. Rodrigues Log. Univers.

Remark 2.23. Ordinarily we cannot guarantee that Zi+1 is the node in Att(Zi)
with maximum value for all k′ > k, we need to find a subsequence. This is done
as follows: we start with a node X and since there are a finite number of nodes
attacking it (the network is finite), there exists a subsequence such that there is
a single attacker whose V c

k′ value is the maximum for all k′ in the subsequence.
We can assume it is Z2. This Z2 is not unique, there may be other choices. Let
Zα2

2 be one arbitrary such choice. Repeating this consideration now for Zα2
2

and for the subsequence thus obtained, we get a Zα3
3 and a further subsequence

of the subsequence and so on. Eventually, we get a final subsequence (which
depends on the choices of Zαi

i) V c
k+r1

,V c
k+r1+r2

, . . ., such that Z
αi+1
i+1 is the node

in Att(Zαi
i) with maximum value and 0 < V c

k+r1+r2+···+rm
(Zαi

i+1) < 1, for each
m.

Remark 2.24. We use a similar argument to the one in Remark 2.23 to show
that if a subsequence V c

k+j(X) converges to V c
e (X), then it can be further re-

fined to a subsequence V c
si

such that V c
si

(Y) converges for all Y . The reason
is that the number of such Y is finite (since S is finite). We can then succes-
sively refine the sequence V c

k+j(X) into subsequences for which V c
k+j(Y) also

converges. Therefore, Theorem 2.22, can be used to show that the convergent
sequence V c

k+j converges to 1
2 . We can therefore further conclude that every

convergent subsequence of Vk+m(X) converges to 1
2 . The next lemma shows

that the sequence Vk+m(X) itself converges to 1
2 .

Lemma 2.25. Let α = α1, α2, α3, . . ., be an infinite sequence of values in [0, 1].
If every convergent subsequence of α converges to 1

2 , then limi→∞ αi = 1
2 .

Proof. For every 0 < ε < 1
2 , [12 − ε, 1

2 + ε] only a finite number of αi’s are in
[0, 1

2 − ε] ∪ [12 + ε, 1]. Otherwise, say [0, 1
2 − ε] has an infinite number of αi’s.

Then since [0, 1
2 − ε] is a closed interval with an infinite number of values in it,

there would exist an infinite convergent subsequence of α in it that does not
converge to 1

2 .
Therefore, we have shown that for every 0 < ε < 1

2 , ε small, there exists
a number m such that for every n > m, (1

2 − αn) ∈ [12 − ε, 1
2 + ε], that is

limi→∞ αi = 1
2 . �

Theorem 2.21 asserts what the limit values of the nodes whose values of
the attackers are known at the stable iteration k. Theorem 2.26 asserts the
same in terms of the limit values of the attackers.

Theorem 2.26.

1. If maxY ∈Att(X){Ve(Y)} = 0, then Ve(X) = 1.
2. If maxY ∈Att(X){Ve(Y)} = 1, then Ve(X) = 0.

Proof. Note that limj→∞{Vj+1(X)} = limj→∞{Vj(X)}.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 439

1. If maxY ∈Att(X){Ve(Y)} = 0, then we have that

Ve(X) = (1 − Ve(X)) · min
{

1
2
, 1

}

+ Ve(X) · max
{

1
2
, 1

}

Ve(X) = (1 − Ve(X)) · 1
2

+ Ve(X)

2 · Ve(X) = 1 − Ve(X) + 2 · Ve(X)
Ve(X) = 1

So if the equilibrium values of all attackers of X is 0, then the equilibrium
value of X is 1.

2. If maxY ∈Att(X){Ve(Y)} = 1, then we have that

Ve(X) = (1 − Ve(X)) · min
{

1
2
, 0

}

+ Ve(X) · max
{

1
2
, 0

}

Ve(X) =
Ve(X)

2
Ve(X) = 0

So if the equilibrium value of any of the attackers of X is 1, then the
equilibrium value of X is 0.

�

Theorem 2.27. Let 〈S,R〉 be an argumentation network and T its GR system
of equations. If the assignment V0 : S
−→ U is legal then the sequence V0, V1,
V2, . . ., where each Vi, i > 0, is generated by T , is stable at iteration 0.

Proof. Suppose V0 is legal. Then if V0(X) = 0, then there exists Y ∈ Att(X)
such that V0(Y) = 1. Therefore V1(X) = min{ 1

2 , 0} = 0. If V0(X) = 1, then
for all Y ∈ Att(X), V0(Y) = 0, and hence maxY ∈Att(X)V0(Y) = 0. Therefore,
V1(X) = max{ 1

2 , 1} = 1.
The stability of the crisp values then follows from Theorem 2.6 and since

0 < V0(X) < 1, then by Theorem 2.4 (case 3), so does the stability of the
remaining non-crisp values. �

Proposition 2.28. Let 〈S,R〉 be an argumentation network; T its GR system
of equations and Ve a function with the equilibrium values of the nodes in S
calculated according to the Gabbay–Rodrigues Iteration Schema. Let λ be a
legal labelling function.

Take any X ∈ S. If λ and Ve agree on the values of all nodes in Att(X),
then λ and Ve agree on the value of X.

Proof. There are three cases to consider. Proofs of cases 1. and 2. are similar
to the proofs of cases 1. and 2. of Theorem 2.21.
1. maxY ∈Att(X){Ve(Y)} = 0, then for all Y ∈ Att(X), Ve(Y) = 0. It follows

that Ve(X) =
∑∞

k=1
1
2k +limj→∞

Vk(X)
2j = 1+0 = 1. Since Ve and λ agree

with each other on the values of all nodes in Att(X), we have that for
all Y ∈ Att(X), λ(Y) = out and since λ is legal, λ(X) = in, and hence λ
and Ve agree with each other with respect to the value of X as well.

440 D. M. Gabbay and O. Rodrigues Log. Univers.

2. maxY ∈Att(X){Ve(Y)} = 1, then there exists Y ∈ Att(X), such that
Ve(Y) = 1. It follows that Ve(X) = limj→∞

Ve(X)
2j = 0. Since Ve and

λ agree with each other on the values of all nodes in Att(X), we have
that λ(Y) = in and since λ is legal, λ(X) = out. Hence λ and Ve agree
with each other with respect to the value of X as well.

3. maxY ∈Att(X){Ve(Y)} = 1
2 , then there exists Y ∈ Att(X), such that

Ve(Y) = 1
2 (and hence λ(Y) = und) and for no Y ∈ Att(X), Ve(Y) = 1

(and hence for no Y ∈ Att(X), λ(Y) = in). It follows that

Ve(X) =
1 − Ve(X)

2
+

Ve(X)
2

2 · Ve(X) =1

Ve(X) =
1
2

Since λ is legal, λ(X) = und, and hence λ and Ve agree with each
other with respect to the value of X.

�

And now to the main theorem of this section, which explains the equi-
librium values of all nodes and shows their relationship to Caminada and
Pigozzi’s down-admissible/up-complete constructions. A down-admissible la-
belling is obtained after a series of contraction operations as defined below.

Definition 2.29. ([7]) Let λ be a labelling of an argumentation network 〈S,R〉.
A contraction sequence from λ is a sequence of labellings [λ1 = λ, . . . λk] such
that

1. For each i ∈ {1, . . . , k − 1}, λi+1 = λi − {(X, in), (X, out)} ∪ {(X,und)},
where X is an argument that is illegally labelled in, or illegally labelled
out in λj ; and

2. λk is a labelling without any arguments illegally labelled in or illegally
labelled out.

Theorem 6 of [7] shows us that if we successively contract an initial
labelling λ, then at the end of the contraction sequence [λ1 = λ, λ2, . . . λk],
λk corresponds to the down-admissible labelling of λ, which is the largest
admissible labelling that is smaller or equal to λ.

Not every admissible labelling corresponds to a complete extension. How-
ever, an admissible labelling can be turned into a labelling that corresponds
to a complete extension by changing the labels of nodes that illegally labelled
und, to in or out as appropriate. Each such operation is called an expansion,
and an expansion sequence corresponds to a list of all such operations:

Definition 2.30. ([7]) Let λ be an admissible labelling of the argumentation
network 〈S,R〉. An expansion sequence from λ is a sequence of labellings [λ1 =
λ, . . . λk] such that

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 441

1. For each i ∈ {1, . . . , k − 1},

λi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

λi − {(X,und)} ∪ {(X, in)}, if X is an argument that is
illegally labelled und in λi and all its attackers are labelled out

λi − {(X,und)} ∪ {(X, out)}, if X is an argument that is
illegally labelled und in λi and it has an attacker labelled in

2. λk is a labelling without any arguments illegally labelled und.

Caminada and Pigozzi have shown us that if [λ1 = λ, . . . λk] is an ex-
pansion sequence,15 then λk is a complete labelling and it is the smallest such
labelling containing λ. We now introduce a few concepts to help us in the proof
of our main theorem.

Definition 2.31. Let 〈S,R〉 be an argumentation network; V be an assignment
of values to the nodes in S; and λ a labelling of these nodes. We say that V
and λ agree with each other with respect to the value of a node X if and only
if the following conditions hold:
1. V (X) = 1 if and only if λ(X) = in
2. V (X) = 0 if and only if λ(X) = out
3. V (X) = 1

2 if and only if λ(X) = und

We say that V and λ agree with each other if they agree with the values
of all nodes in S.

Definition 2.32. (Attack tree of a node) Let 〈S,R〉 be a network. The attack
tree tree(X) of a node X ∈ S is the tree with root X and for every node N in
Tree(X), the children of N are the nodes in Att(N).

Definition 2.33. (Path from a node) Let 〈S,R〉 be a network. Take X ∈ S. A
path from X is a sequence of nodes X = Z0, Z1, Z2, . . . such that each Zi+1,
i ≥ 0, is a child of Zi in the attack tree of X. The set of all paths from a node
X is denoted Π(X). We allow for a single node to be a path.

Using paths, we can define a strongly connected component (SCC) to be
a maximal subset C ⊆ S, such that for every X,Y ∈ C, there exists a path
from X containing Y .

Note that in a SCC C for every path π = Z0, Zi, . . . from every node
Z0 ∈ C, there exists a smallest i(π) such that for some r(π), Zi(π) = Zi(π)+r(π).
i(π) < |C|. i(π) is the index of the first node in the path π that is involved in
a loop, or you can think of it as the minimum distance from the starting node
of the path π to a looping node in the path. If i(π) = 0, then Z0 attacks itself.
Let us call the loop head of the path π = Z0, Z1, . . ., the node Zi(π).

Definition 2.34. (Vmax-paths) Let Z be a node in a SCC C and let the sequence
of values V0, V1, . . . be stable at iteration k. The set of Vmax-paths of Z is
defined as Vmax-paths(Z) = {π = [Z = Z0, Z1, . . .] ∈ Π(Z) | for each Zi,
Vk+r(Zi+1) = maxZ′

i+1
{Vk+r(Z ′

i+1)} for an infinite number of r’s}.

15 Note λ1 must be admissible.

442 D. M. Gabbay and O. Rodrigues Log. Univers.

For every Z ∈ C, the set of Vmax-paths from Z is non-empty (see Re-
mark 2.23).

Definition 2.35. (Bar of a node) Let C be a SCC and take X ∈ C. The bar of
X is the set

bar(X) = {Z ∈ C | Z is the loop head of a path in Vmax-paths(X)}.

Definition 2.36. Let Γ(X) be the set of Vmax-paths of X and take U ⊆ C a set
of points. The bar of X modified by U is defined as

bar(X,U) =
⋃

π∈Γ(X)

{
y y is the first node in π such that either y is

the loop head of π or y ∈ U

}

Theorem 2.37. Let 〈S,R〉 be an argumentation network; V0 be an initial as-
signment of values to the nodes in S; λ0 an initial labelling of these nodes; and
V0 and λ0 faithful to each other according to Definition 2.16. Let λda be the
labelling at the end of a contraction sequence from λ0 and λCP the labelling
at the end of an expansion sequence after λda. Let k be the point at which the
sequence V0, V1, . . . becomes stable and Ve(X) the equilibrium value of a node
calculated through the Gabbay–Rodrigues Iteration Schema. Then λCP and Ve

agree with each other according to Definition 2.31.

Proof. The proof is done on induction on the depth of a node X. Suppose the
depth of X is 0. There are three main cases to consider.
Case 1: X is a source node. By definition, X has no attackers, and hence

maxY ∈Att(X) V0(Y) = maxY ∈Att(X) Vk(Y) = 0 and then by
Theorem 2.21, Ve(X) = 1.

If λ0(X) = in, then X is legally labelled in, X does not take part
in the contraction or expansion sequences and therefore λCP (X) =
in. If λ0(X) = out, then X is illegally labelled out, and therefore the
label of X is changed to und in the contraction sequence and since it
is illegally labelled und, then it is subsequently changed to in in the
expansion sequence. If λ0(X) = und, then X cannot be contracted,
and since it is illegally labelled und, its label must be changed to in
during the expansion sequence. In all cases, λCP (X) = in, and hence
λCP and Ve agree with each other with respect to the value of X.

Case 2: X is part of a source SCC C and both V0�C and λ0�C are legal
assignments within C. Let us partition C into two components: Cc

containing all nodes with crisp values and Cu containing all nodes
with undecided values.

Since λ0�C is a legal assignment, and the nodes in Cc only have
values in {in, out}, then no nodes in Cc are illegally labelled and hence
their labels are unaffected by the contraction sequence. Likewise, since
no node is labelled undecided in Cc, nothing can be subsequently ex-
panded and λCP �Cc = λ0�Cc. By construction, the values of all nodes
in Cu are und, and hence these nodes are not affected by the contrac-
tion sequence. Furthermore, they are all legally labelled undecided
and hence the values remain unchanged, and hence λCP �C = λ0�C.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 443

Since V0�C is a legal assignment, then by Theorem 2.27, it is
stable at iteration 0. As a result, for all nodes X ∈ Cc, V1(X) = V0(X).
Hence by Theorem 2.6, Ve(X) = V0(X) for all nodes X ∈ Cc, and then
since λ0 and V0 are faithful to each other (Definition 2.16), conditions
1. and 2. of Definition 2.31 are satisfied. We now show that condition
3. also follows. For all nodes X ∈ Cu, we have that 0 < V0(X) <
1. Since V0�C is a legal assignment, then for every X ∈ Cu, 0 <
maxY ∈Att(X){V0(Y)} < 1.16 Notice that by construction Cu = C\Cc.
Stage two of case 3 below shows that for all nodes X ∈ Cu, Ve(X) = 1

2 .
Therefore, condition 3. of Definition 2.31 is also satisfied and as a
result, λCP and Ve agree with each other with respect to all nodes in
C.

Case 3: X is part of a source SCC C and λ0�C and V0�C are not legal assign-
ments.
Stage one:

We know that the sequence of assignments V0, V1, . . ., eventually
becomes stable at some iteration k and by Theorem 2.14, in(Vk) ⊆
in(V0), out(Vk) ⊆ out(V0) and in(Vk) is the largest admissible subset
of in(V0). By Theorem 6 of [7], in(λCP) is the largest (and unique)
admissible subset of in(λ0) and since λ0 and V0 are faithful to each
other, we can conclude that in(Vk) = in(λda) and out(Vk) = out(λda).

Note that since the sequence is stable at k, in(Vk) ⊆ in(Ve) and
out(Vk) ⊆ out(Ve).

Consider the sequence of expansion operations e1, e2, . . ., em and
the sequence of labellings λ0 = λda, λ1, λ2, . . . , λm = λCP , where for
each i > 0, λi is obtained from λi−1 via the expansion ei. We show by
induction on m that in(λCP) ⊆ in(Ve) and out(λCP) ⊆ out(Ve). In a
second step, we show that if λCP (X) = und, then Ve(X) = 1

2 .
Suppose that e1 turns the node X illegally labelled und by λda

into in. Then out(λ1) = out(λda) and in(λ1) = in(λda) ∪ {X}. Then
for all Y ∈ Att(X), λda(X) = out. Therefore, Vk(Y) = 0 for all
Y ∈ Att(X), and hence maxY ∈Att(X){Vk(Y)} = 0. By Theorem 2.21,
Ve(X) = 1 and therefore X ∈ in(Ve). We set V 1,out

k = out(Vk) and
V 1,in

k = in(Vk) ∪ {X}.
Suppose that e1 turns the node X illegally labelled und by λda

into out. Then in(λ1) = in(λda) and out(λ1) = out(λda) ∪ {X}. Then
there exists Y ∈ Att(X) such that λda(X) = in. Therefore, Vk(Y) =
1 for some Y ∈ Att(X), and hence maxY ∈Att(X){Vk(Y)} = 1. By
Theorem 2.21, Ve(X) = 0 and therefore X ∈ out(Ve(X)). We set
V 1,out

k = out(Vk) ∪ {X} and V 1,in
k = in(Vk).

Assume that for some i, in(λi) = V i,in
k and out(λi) = V i,out

k .
Now consider the i + 1-th expansion operation ei+1.

16 This effectively means that the only possible incoming attacks from Cc are from nodes

labelled out. Otherwise, the attacked nodes in Cu should have been labelled out and hence
would have been illegally labelled und.

444 D. M. Gabbay and O. Rodrigues Log. Univers.

Suppose that e1+1 turns the node X illegally labelled und in λi

into in. Then for all Y ∈ Att(X), λi(X) = out. Therefore, Ve(Y) = 0
for all Y ∈ Att(X), and hence maxY ∈Att(X){Ve(Y)} = 0. By The-
orem 2.26, Ve(X) = 1 and therefore X ∈ in(Ve). As before, we set
V i+1,out

k = V i,out
k and V i+1,in

k = in(Vk) ∪ {X}.
Suppose that ei+1 turns the node X illegally labelled und by

λi into out. Then there exists Y ∈ Att(X) such that λi(X) = in.
Therefore, Ve(Y) = 1 for some Y ∈ Att(X), and hence maxY ∈Att(X)

{Ve(Y)} = 1. By Theorem 2.26, Ve(X) = 0 and therefore X ∈
out(Ve(X)). Again, we set V i+1,out

k = V i
k ∪ {X} and V i+1,in

k = V i,in
k .

By now we know that if X ∈ V m,in
k , then Ve(X) = 1 and

λCP (X) = in and that X ∈ V m,out
k , then Ve(X) = 0 and λCP (X) =

out. We ask if there is some Z �∈ V m,in
k such that Ve(Z) = 1 or

Z �∈ V m,out
k such that Ve(Z) = 0. The answer is no as it is explained

in stage two below.

Stage two:
Let us use Cc to denote (V m,in

k ∪V m,out
k) and Cu to denote C\Cc.

Suppose X ∈ Cu.
We know that V m,in

k = in(λCP) is a complete extension and
that no further expansion operation is possible from λCP , therefore
if X �∈ in(λCP), then either λCP (X) = out and hence X ∈ V m,out

k ,
which is not possible, or λCP (X) = und and legally so. Therefore
there exists Y ∈ Att(X), such that λCP (Y) = und and hence 0 <
maxY ∈Att(X){Ve(Y)} < 1.

Similarly, if X �∈ out(λCP), then either λCP (X) = in and hence
X ∈ V m,in

k , which is not possible, or λCP (X) = und and legally so.
Therefore there exists Y ∈ Att(X), such that λCP (Y) = und and
hence 0 < maxY ∈Att(X){Ve(Y)} < 1 and therefore 0 < Ve(X) < 1.

So we know that for all X ∈ Cu, λCP (X) = und and 0 <
Ve(X) < 1. In what follows, we will show that indeed for all nodes
in C − Cc, Ve(X) = 1

2 . Note that since we are in a SCC C, for all
X ∈ Cu, there is an infinite attack tree with root X, in which every
branch is of the form X = Z0, Z1, Z2, . . . , Zk = X, where for every
i > 0, (Zi+1, Zi) ∈ R. Some of the Zi are in V m,out

k , but none can be
in V m,in

k , for that would make Zi−1 out.
The proof is done by induction on the maximum distance from a

node X in Cu to a loop Z1, Z2, . . . , Zk = Z1, where every Zi ∈ C\V m
k .

There are infinitely many paths from X in the attack tree of X, but
we only need to consider the set Γ(X) with all Vmax-paths of X. Each
such path is of the form π(X) = (Z0 = X), Z1, Now define the
distance of X, dim X, as the maximum index i such that for each path
π(X), Zi ∈ bar(Z, V m,out

k). This means that Zi is the first point in
the path π(X) which is either a repetition of a previous point or a
point in V m,out

k .

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 445

If dimX = 0, then X must be attacked by a cycle involving
only X (otherwise X ∈ V m,out

k , and then Ve(X) = 0, a contradiction).
Therefore, we have a cycle that attacks X and which involves X alone.
All attackers in this cycle (i.e., X) have maximum value and 0 <
Vk+r(X) < 1 for every r ≥ 0. By Theorem 2.22, the value of every
node in the cycle is Ve(X) = 1

2 . Now the equilibrium value of the node
X attacked by the cycle is calculated by

Ve(X) = (1 − Ve(X)) · min
{

1
2
,
1
2

}

+ Ve(X) · max
{

1
2
,
1
2

}

=
1 − Ve(X)

2
+

Ve(X)
2

=
1 − Ve(X) + Ve(X)

2

=
1
2

Now assume that the equilibrium value of all nodes with distance
up to k is 1

2 and consider the node X with distance k + 1. For all
Y ∈ Att(X), we have that dim Y ≤ k. Therefore, either Y ∈ V m,out

k

in which case Ve(Y) = 0, or by the inductive hypothesis Ve(Y) = 1
2 .17

Therefore we have that max Y ∈ Att(X){Ve(Y)} = 1
2 and as before

Ve(X) = (1 − Ve(X)) · min
{

1
2
,
1
2

}

+ Ve(X) · max
{

1
2
,
1
2

}

=
1
2

To conclude, for all X ∈ V m,in
k , Ve(X) = 0; for all X ∈ V m,out

k ,
Ve(X) = 0; and for all X ∈ Cu, Ve(X) = 1

2 . in(Ve�C) (resp.,
in(λCP �C)) in this case is the minimal complete extension containing
in(Vk�C) (resp., in(λda�C)).

Assume the theorem holds for all nodes of depth up to k. We now show
that it holds for nodes of depth k + 1.

Define Known0
k+1 = {X ∈ S | depth(X) ≤ k} and Knownm+1

k+1 = {X ∈
S | depth(X) = k + 1 and for all Y ∈ Att(X), Y ∈ Knownm

k+1}.
We show that for all i ≥ 0, we have that λCP (X) = Ve(X), for all X ∈

Knowni
k+1. First notice that by induction hypothesis, λCP (X) = Ve(X) for all

X ∈ Known0
k+1. Now suppose that λCP (X) = Ve(X) for all X ∈ Knowni

k+1,
then by Proposition 2.28, λCP (X) = Ve(X) for all X ∈ Knowni+1

k+1. Since the
network is finite, Knowne

k+1 = Knowne+1
k+1, for some e ≥ 0. Define Cu

k+1 =
{X ∈ S|depth(X) = k + 1}\Knowne

k+1.
By definition, if there exists X ∈ Cu

k+1 and Y ∈ Att(X) such that Y ∈
Knowne

k+1, then λCP (Y) = out and Ve(Y) = 0 (otherwise the value of X
would be known). Therefore, we can exclude the nodes in Knowne

k+1 and

17 Note that Att(X) �⊆ V m,out
k , otherwise X would be illegally labelled und.

446 D. M. Gabbay and O. Rodrigues Log. Univers.

consider Cu
k+1 in isolation. Cu

k+1 can therefore be treated as a network of
depth 0, and the proof will follow exactly from Cases 2 and 3 of the base of
the main induction, and hence for all X ∈ Cu

k+1, Ve(X) = λCP (X). �

Corollary 2.38. Let 〈S,R〉 be an argumentation network and V0 be an initial
assignment of values to the nodes in S. Let Ve(X) be the equilibrium value of
a node X calculated through the Gabbay–Rodrigues Iteration Schema. For all
nodes X ∈ S, Ve(X) ∈ {0, 1

2 , 1}.

Proof. Follows from the possible equilibrium values of all nodes in Theo-
rem 2.37. �

3. Discussion and Worked Examples

Suppose we are given a network such as the one in Fig. 5 with some initial
values to its nodes. The values may or may not correspond to a complete ex-
tension. We can write equations for the network, apply the Gabbay–Rodrigues
Iteration Schema and obtain extensions for the network.

For the sake of illustration, we consider three sets of representative initial
values 1., 2. and 3.. The table in Fig. 5 shows what happens when these values
are applied to the equations, giving both the values at the stable point (Vk)
and at the limit (Ve). The corresponding down-admissible labellings and their
resulting up-completion according to Caminada–Pigozzi’s procedure can be
obtained simply by replacing 0 with out, 1 with in and values in (0, 1) with
und.

Case 1. represents the situation in which the initial values in the cy-
cle W ↔ Z are compatible with an extension and hence the crisp values
are preserved by the calculations. We end up with the complete extension
E1 = {X,Z}. Contrast this with case 2., in which the initial values of W and
Z are 1 and 0, resp. The extension E = {X,W} is also complete but is obtained
neither by our procedure nor by Caminada–Pigozzi’s down-admissible/up-
complete construction. This can be explained as follows. The initial illegal
value of Y invalidates the initial acceptance of W , turning it into undecided in
the calculation of the down-admissible subset. From that point on, the origi-
nal legal assignments for W and Z can no longer be restored and they both
end up as undecided. As a result, we obtain the complete (but not preferred)

Figure 5. Network used in Sect. 3

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 447

extension E2 = {X}. This interference does not happen in case 1., because
there the interference of the undecided value of Y over W is dominated by Z’s
1 value that keeps W ’s 0 value in check (because of the behaviour of max). As
a result, both W ’s and Z’s initial values are retained.

If however we start with a preferred extension, which is also complete
by definition, we get as a result unchanged initial values (cf. Theorem 2.37).
Caminada–Pigozzi also give the same result because the down-admissible la-
belling of a labelling yielding a preferred extension is the labelling itself and
since that labelling is also complete, then the up-completion does not change
anything (case 3. in the table of Fig. 5.

We can suggest an enhanced procedure to improve on the results obtained
in case 2., which is outlined below. The procedure starts with an empty set of
crisp values (Crisp) and a set of initial values to the nodes.

1. Calculate the equilibrium values for all nodes using the iteration schema.
2. If {X ∈ S|Ve(X) ∈ {0, 1}} ⊆ Crisp, stop. The extension is defined in the set

{X|Ve(X) = 1}. Otherwise, set Crisp = Crisp ∪ {X ∈ S|Ve(X) ∈ {0, 1}} and
proceed to step 3.

3. For every X ∈ {X | Ve(X) ∈ {0, 1}}, set V0 = Ve(X) and leave V0(X) as before
for the remaining nodes.

4. Repeat from 1.

The above procedure is sound, since at each run the equilibrium values
computed yield a complete extension. Note that re-using some of the original
values does not affect soundness. If they cannot be used to generate a larger
extension, they will just converge to 1

2 . The procedure also terminates as long
as the original network S is finite, since a new iteration is invoked only when
new crisp values are generated and this is bound by |S|.

If we apply the procedure to Case 2. above, in the first run we will get
Ve(X) = 1, Ve(Y) = 0, Ve(W) = Ve(Z) = 1

2 . Hence, Crisp = {X,Y }. We
then run it once more, this time with initial values V0(X) = 1, V0(Y) = 0,
V0(W) = 1 and V0(Z) = 0. This will stabilise immediately at these values and
then Crisp = {X,Y,W,Z}. In the third run, no new crisp values are generated,
so we stop with extension {X,W}, which is a preferred extension (see case 3.
above). This is closer to the original values, because the preference of W over
Z is preserved.

Obviously, the procedure can also be applied using Caminada–Pigozzi’s
construction instead of the Gabbay–Rodrigues Iteration Schema of step 1.
above.

3.1. Worked Examples with Cycles

The table in Fig. 6 displays initial, stable and equilibrium values (V0, Vk, Ve)
for all nodes in the networks (L) and (R). The last row of the table indicates
the iteration in which the stable values were reached and the equilibrium values
approximated (S,E). Obviously the equilibrium values are an approximation.
We set our tolerance as 10−19, the upper bound of the relative error due to

448 D. M. Gabbay and O. Rodrigues Log. Univers.

Figure 6. Equilibrium and stable values of nodes involved in cycles

rounding in the calculations in our 64-bit machine.18 Independent nodes, such
as Z in the networks above always converge to 1 independently of their initial
values. This also happens to all nodes whose values of the attackers all converge
to 0. Cases (L) and (R) explore different scenarios involving cycles. The odd
cycle in (L) attacks the even cycle X ↔ Y and the even cycle in (R) attacks
the odd cycle A → B → C → A. We start with (L), which contains an odd
cycle attacking an even cycle. The values in the odd cycle in this case will
converge to 1

2 independently of their initial values. This may or may not have
an effect on nodes that are attacked by any of the nodes in the cycle. We start
with an initial valid configuration for X and Y in both (L1) and (L2). The end
results will differ though as explained next. If X starts with 0 and Y with 1
(L1), then the interference of the undecidedness of B over X is dominated by
the Y ’s value of 1 and the initial values of both X and Y persist. However, if
X starts with 1 and Y with 0, the undecidedness of B will then “contaminate”
the X–Y loop. It will force X to become undecided, which in turn makes Y
also become undecided. As a result, all of the values will converge to 1

2 apart
from Z’s, which as we said is independent and will converge to 1 (L2).

Now let us look at (R) in which the even cycle attacks the odd one. (R1)
and (R2) contain different initial valid configurations for the even cycle. This
time the nodes in the even cycle are independent of external values and their
original values remain. If X starts with 1, it remains with 1 and this in turn
breaks the odd cycle. The attacked node B is forced to converge to 0, forcing C
to converge to 1 and A to converge to 0 (independently of their initial values).
An initial value of 0 for X cannot break the odd cycle and its values will
converge to 1

2 independently of their initial values (R2).

18 Effectively this means that if the maximum variation in node values between two suc-
cessive iterations is smaller than 10−19, we cannot be sure it is not simply the result of
a rounding error due to the precision of the computer. At that point we assume we have
reached the limit of what can be accurately calculated.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 449

4. Comparisons with Other Work

This section compares our framework with other techniques that deal with
initial values. Our discussions so far and the use of the Gabbay–Rodrigues
Iteration Schema were in the context of the equational approach to an argu-
mentation network when we are given some initial values. Our problem was
to find a solution to the system of equations that was “close” to these initial
values.

Two important concepts which are directly related to the work presented
in this paper were proposed in [7], which addressed the problem of finding
an extension of an argumentation network given an initial labelling of its
arguments. Their procedure works in two steps. Firstly, they calculate the
downward-admissible labelling of the original labelling, which essentially con-
sists of an admissible labelling whose crisp part is maximally included in the
original labelling. This is done by a procedure which at each step, turns an
illegally labelled argument from in or out into und until no illegal crisp values
remain. They called this step a contraction sequence and it is similar to what
our schema does to the sequence of value assignments until it becomes stable,
except that at each iteration our schema may contract more than one node
simultaneously, whereas theirs contracts only one node per iteration. More im-
portantly, their procedure is non-deterministic: it selects an illegally labelled
node for contraction, but this requires searching for such nodes. Hence there
is an implicit cost involved in it. Even though the search can be optimised, it
renders the overall cost of the procedure in terms of steps higher than ours,
which is truly bounded by |S|. Now, given an admissible labelling, a complete
extension is constructed by turning nodes that are illegally labelled und into in
or out as appropriate. They call this step an expansion and its counterpart in
our procedure is the calculation of the limit values of the sequence. Obviously,
in a computer program, we can only approximate these limit values. In our
implementation, we stop the iterations when we can no longer guarantee the
accuracy of the calculations without introducing rounding errors due to the
limitations of the processor. This happens in linear time too (see Fig. 6). In
practice, the limit values can be guessed much earlier as the iteration values
can be seen to be converging towards one of the three values 0, 1

2 and 1.
We stress that neither are we limited to the discreet values out, in and

und, nor to the Eqmax equation used in the iteration schema and this allows
the application of the schema in the calculation of extensions given different
semantics (see Sect. 5).

One can take a different approach to the one above, especially if one is
not using any equations. One can take the view that given a network with
initial values, we should give an iteration formula that will stabilise on some
limit final values. This approach is a bit risky. One needs to explain where the
initial values come from and what is the meaning of the iteration formula. One
also needs to check whether or not the iteration formula is sound relative to
the network’s extensions in Dung’s sense. In other words, if the initial values
correspond to an acceptable Dung extension, does the iteration formula yield

450 D. M. Gabbay and O. Rodrigues Log. Univers.

a result which does not correspond to a Dung extension? We begin with the
work of Pereira et al. [9], which does not take any equational approach but
simply iterates on the values of the nodes. We examine in detail what they do.

In what follows, 〈S,R〉 is an acyclic argumentation network and f : S
−→
U is a function assigning initial values to the nodes in S.

Definition 4.1. Consider the sequence α0(X), α1(X), . . . , αi(X), . . ., where

α0(X) = f(X)
αi(X) = αi−1(X) + min{f(X), 1 − max

Y ∈Att(X)
αi−1(Y)}

and let

α(X) = lim
i→∞

1
2
αi +

1
2

min(f(X), 1 − max
Y ∈Att(X)

αi(Y))

Definition 4.2. The attack depth of a node X of an acyclic argumentation
network, in symbols a-depth(X), is defined recursively as

a-depth(X) =

{
0, if Att(X) = ∅(

max
Y ∈Att(X)

a-depth(Y)
)

+ 1, otherwise

The function a-depth is well-defined, because there are no cycles in 〈S,R〉.
Definition 4.3. Given initial values for the nodes of an acyclic network, the
function β : S
−→ U provides a means of calculating fixed-point values for all
nodes as follows.

β(X) =

{
f(X), if a-depth(X) = 0
min{f(X), 1 − max

Y ∈Att(X)
β(Y)}, otherwise

Theorem 4.4. α(X) = β(X) for all X ∈ S.

Proof. The proof is done by induction on the depth of a node.
Base cases: (Depth 0) Let X be an argument node of depth 0. By definition,
X has no attacks. It follows that

α0(X) = f(X)

α1(X) =
1
2
α0(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

=
1
2
f(X) +

1
2
f(X)

= f(X)

α2(X) =
1
2
α1(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

α1(Y)}

=
1
2
f(X) +

1
2
f(X) = f(X)

α(X) = lim
i→∞

{
1
2
αi +

1
2
f(X)

}

α(X) = f(X) = β(X)

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 451

(Depth 1) Let X be an argument node of depth 1. By definition, all nodes
Y attacking X have depth 0. For all such nodes f(Y) = α0(Y) = α1(Y) =
αi(Y) = · · · = α(Y) = β(Y).

α0(X) = f(X)

α1(X) =
1
2
α0(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

=
1
2
f(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

α2(X) =
1
2

(
1
2
f(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

β(Y)}
)

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

=
1
22

f(X) +
1
22

min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

αi(X) =
1
2i

f(X) +
t∑

i=1

1
2i

· min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

=
1
2i

f(X) +
(

1 − 1
2i

)

· min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

α(X) = lim
i→∞

αi(X)

= lim
i→∞

1
2i

f(X) +
(

1 − 1
2i

)

· min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

= min{f(X), 1 − max
Y ∈Att(X)

β(Y)}

= β(X)

Assume that the theorem holds for nodes with attack depth up to k and
let X be an argument node whose attack depth is k + 1. We have that

α0(X) = f(X)

α1(X) =
1
2
α0(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

=
1
2
f(X)

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

α2(X) =
1
2

(
1
2
f(X) +

1
2

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}
)

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α1(Y)}

452 D. M. Gabbay and O. Rodrigues Log. Univers.

=
1
22

f(X) +
1
22

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α1(Y)}

α3(X) =
1
2

(
1
22

f(X) +
1
22

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α1(Y)}
)

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α2(Y)}

=
1
23

f(X) +
1
23

min{f(X), 1 − max
Y ∈Att(X)

α0(Y)}

+
1
22

min{f(X), 1 − max
Y ∈Att(X)

α1(Y)}

+
1
2

min{f(X), 1 − max
Y ∈Att(X)

α2(Y)}

αi(X) =
1
2i

f(X) +
1

2i−0
min{f(X), 1 − max

Y ∈Att(X)
α0(Y)}

+
1

2i−1
min{f(X), 1 − max

Y ∈Att(X)
α1(Y)} + · · ·

+
1
21

min{f(X), 1 − max
Y ∈Att(X)

αi−1(Y)}

αi+1(X) =
1
2i

f(X) +
i∑

i=1

1
2i

· min{f(X), 1 − max
Y ∈Att(X)

αi(Y)}

=
1
2i

f(X) +
(

1 − 1
2i

)

· min{f(X), 1 − max
Y ∈Att(X)

αi(Y)}

α(X) = lim
i→∞

1
2i

f(X) +
(

1 − 1
2i

)

· min{f(X), 1 − max
Y ∈Att(X)

αi(Y)}

= lim
i→∞

(

1 − 1
2i

)

min{f(X), 1 − max
Y ∈Att(X)

αi(Y)}

= lim
i→∞

min{f(X), 1 − max
Y ∈Att(X)

αi(Y)}

= min{f(X), 1 − max
Y ∈Att(X)

lim
i→∞

αi(Y)}

α(X) = min{f(X), 1 − max
Y ∈Att(X)

α(Y)}

But the attack depth of the nodes Y ∈ Att(X) is no higher than k. By the
induction hypothesis we have that α(Y) = β(Y) for all Y ∈ Att(X) and hence

α(X) = min{f(X), 1 − max
Y ∈Att(X)

β(Y)} = β(X)

�

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 453

The theorem above shows that when there are no cycles, for any node
X, the sequence αi(X) converges to the value β(X), which can be calculated
by considering the tree with root X and propagating values from the leaves to
the root according to Definition 4.3.

One can argue that the procedure is not sound with respect to admissi-
bility. In particular, the algorithm does not turn arbitrary initial values into
admissible ones. If we give initial value 0 to a node which should not be labelled
out, the algorithm does not correct the node’s value and it remains illegally
out. Likewise, if we start with a two-node cycle A ↔ B and provide initial
values to A and B that correspond to a complete extension, say A = 1, B = 0,
in the limit we get values A = 1

2 and B = 0. Ideally, the initial values should
remain the same as in the Gabbay–Rodrigues Iteration Schema (and indeed
Caminada and Pigozzi’s down-admissible/up-complete construction).

5. Conclusions and Future Research

This paper investigated aspects concerned with argumentation networks where
the arguments are provided with initial values. We are aware that assigning
values to nodes and propagating values through the network has been indepen-
dently investigated before as in, e.g., [2,8]. However, our approach is different
because we see a network as a generator for equations whose solutions gener-
alise the concept of extensions of the network.

There are advantages to using equations to calculate extensions in this
way as numerical values arise naturally in many applications where argumen-
tation systems are used and the behaviour of the node interactions can be
described naturally using equations. In addition, there are many mathemati-
cal tools to help find solutions to the equations.

The equational approach is general enough to be adapted to particular
applications. For instance, the arguments themselves may be expressed as some
proof in a fuzzy logic and then the initial values can represent the values of
the conclusions of the proofs, in the spirit of Prakken’s work [20]; or they can
be obtained as the result of the merging of several networks, as proposed in
[16,17].

In this paper, we showed that the equations can be solved through an iter-
ative process, as in Newton’s method and as such one can regard initial values
as initial guesses or a desired configuration of the extension. The Gabbay–
Rodrigues Iteration Schema takes the following generalised form:

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, g(N (X))

}

+ Vi(X) · max
{

1
2
, g(N (X))

}

In this paper, we considered the special case where g is min and N (X)
is the set of complemented values of the nodes in the “neighbourhood” of X
(i.e., the attackers of X).19 Other operations can be used for argumentation
systems, whose relationship with the schema is being further investigated.

19 Note that 1 − maxY ∈Att(X){V (Y)} = minY ∈Att(X){1 − V (Y)}.

454 D. M. Gabbay and O. Rodrigues Log. Univers.

One such operation is product, which unlike min combines the strength of the
attacks on a node. Another interesting possibility is to use the schema for
abstract dialectical frameworks (ADFs) [3]. ADFs require the specification of a
possibly unique type of equation for each node. Consider the ADF with nodes
a, b, c and d with R = {(a, b), (b, c), (c, c)}. The ADF equations are: Ca = �,
Cb = a, Cc = c ∧ b and Cd = ¬d. The complete models for this ADF are
m1 = (t, t, u, u), m2 = (t, t, t, u) and m3 = (t, t, f, u). The Gabbay–Rodrigues
schema converges to m1 given initial values (1, 1, 1

2 , 1
2); to m2 given initial

values (1, 1, 1, 1); and to m3 given initial values (0, 0, 0, 0).
For the case of min, we showed that the values generated at each itera-

tion in the schema eventually “stabilise” by changing illegal crisp values into
undecided. This process will calculate the down-admissible labelling of the ini-
tial values, as in [7], in time t linear to the set of arguments (t ≤ |S|). If we
carry on the calculation, the values of the sequence in the limit will correspond
to a complete extension of the original network. Obviously, the values corre-
sponding to a legitimate extension are all legal. If they are given as input, the
sequence will immediately stabilise. In practice, a few iterations are sufficient
to indicate what the values will converge to in the limit. We have also out-
lined a procedure which can improve on the calculation above by propagating
crisp values and replacing the remaining undecided values with their initial
counterparts after each run of the iterations. This procedure terminates when
no new crisp values are generated. Original crisp values which are compatible
with a calculated extension can thus be preserved and hence we can end up
with a larger complete extension than the one obtained through a single run.
This extension is as compatible as possible with the initial values.

Acknowledgements

The authors would like to thank Massimiliano Giacomin, Gabriella Pigozzi,
Martin Caminada and Sanjay Modgil for comments and discussions on the
topic of this paper.

Appendix A. Predator–Prey and Argumentation Motivating
Case Studies

Let us motivate our ideas through two main examples. Our purpose is to make
some conceptual distinction about iteration processes.

Example A.1. Let us look at an example from biology. This is a model by
Hassell [18] of the dynamics of a system with two parasitoids (P and Q) and
one host (N). The interactions in the ecology are depicted in Fig. 7. The
equations modelling the dynamics are the following (see [1, p. 295]).

N t+1 = λN tf1(P t)f2(Qt)
P t+1 = N t[1 − f1(P t)]

Qt+1 = N tf1(P t)[1 − f2(Qt)]

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 455

P N

Q

Figure 7. A sample biological network

In the above equations the subscripts t and t + 1 indicate two successive
generations of P , Q and N ; λ is the finite host rate of increase; and the
functions f1 and f2 are the probabilities of a host not being found by P t or
Qt parasitoids, respectively. This model applies to two quite distinct types of
interaction that are frequently found in real systems. It applies to cases where
P acts first, to be followed by Q acting only on the survivors. Such is the case
where a host population with discrete generations is parasitized at different
developmental stages. In addition, it applies to cases where both P and Q act
together on the same host stage, but the larvae of P always out-compete those
of Q, should multi-parasitism occur.

The functions f1 and f2 are:

f1(P t) =
[

1 +
a1P t

k1

]−k1

f2(Qt) =
[

1 +
a2Qt

k2

]−k2

where a1, a2, k1 and k2 are constants.
To simplify and later compare the biological model with the argumenta-

tion model, we put k1 = k2 = −1.
This gives

f1(P t) = 1 − a1P t

f2(Qt) = 1 − a2Qt

and therefore, the equations are

(1, t): N t+1 = λNt(1 − a1P t)(1 − a2Qt)
(2, t): P t+1 = a1NtP t

(3, t): Qt+1 = a2QtN t(1 − a1P t)

At a state of equilibrium, we get the following fixpoint equations:

N = λN(1 − a1P)(1 − a2Q) (16)
P = a1NP (17)
Q = a2QN(1 − a1P) (18)

It can be easily seen from the above equations that one of the solutions is
P = Q = N = 0 (the “all zero” solution). If we ignore it, we get from (17)
that

456 D. M. Gabbay and O. Rodrigues Log. Univers.

N =
1
a1

(19)

and from (18) we get

1 = a2 · 1
a1

(1 − a1P) (20)

and hence

a1 = a2 − a2a1P

P =
a2 − a1

a1a2

From (16), we get

1 = λ
(
1 − a1(a2 − a1)

a1a2

)
(1 − a2Q)

1 =
λa1

a2
(1 − a2Q)

so
a2

λa1
= 1 − a2Q

a2Q =
λa1 − a2

λa1

Q =
λa1 − a2

λa1a2

To have a specific example for discussion let a1 = 2, a2 = 3, λ = 2. We
get N = 0.5, P = 1

6 and Q = 1
12 . Indeed, substituting these values in the

equations we have
(1) 1 = 2

(
1 − 2 · 1

6

) (
1 − 3

12

)

= 2 · 2
3 · 9

12
= 2 · 18

36
= 1

(2) 1 = 2 · 1
2

= 1
(3) 1 = 3 · 1

2

(
1 − 2

6

)

= 3
2 · 4

6
= 1

Let us substitute a1, a2 and λ in the equations and pretend we do not
know the solution. We get the equations:

(1*) N = 2N(1 − 2P)(1 − 3Q)
(2*) P = 2PN
(3*) Q = 3

2Q(1 − 2P)

So we have a system of equations modelling a certain ecology.
The equations above give rise to the iteration equations

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 457

(1∗, i): N i+1 = 2N i(1 − 2P i)(1 − 3Qi)
(2∗, i): P i+1 = 2N iP i

(3∗, i): Qi+1 = 3
2Qi(1 − 2P i)

Let us discuss our options. We have a system of equations involving N ,
P and Q and we want to solve it. We do not know whether there are solutions.
Option 1 A mathematical view. Let us just find a solution. We can guess a
candidate solution, use Newton’s method and iterate. Let us do this with the
guess N0 = P 0 = Q0 = 1

2 and iterate. These are equations (1∗, i), (2∗, i) and
(3∗, i) for i = 1.

Because the equations come from ecological considerations, the iterations
are not just a numerical device but also have an evolutionary meaning. How-
ever, our view is purely mathematical. The corresponding to the meaning is
accidental.

We get
N1 = 2 · 1

2 · Ni(1 − 1)
(
1 − 3

2

)
= 0

P 1 = 2 · 1
2 · 1

2 = 0

Q1 = 3
2 · Qi(1 − 2P i) = 0

N2 = 0
P 2 = 0
Q2 = 0

We converge to the “all zero” solution.
Option 2 A semantical view. We seek a solution motivated not by mathematics
but by the meaning of the equations: by ecological considerations. So let us
adopt the friends of parasites view and say that we are equal and we all have a
right to live and so let us seek a steady state of compromise and living together
in tolerance and understanding, namely N0 = P 0 = Q0 = 1

2 .
Unfortunately using Newton’s method leads us, as shown above, to the

solution P = Q = N = 0. In biological terms this is not good, it means
everything is dead. So we may need a better iteration schema, a schema suitable
for the biological interpretation.

We can choose to be selfish and cruel and start with N0 = 1 and P 0 =
Q0 = 0. This means we aim at full population and no parasites. Iterating the
equations will give us
N1 = 2
P 1 = 0
Q1 = 0

Nk = 2k

P k = 0
Qk = 0

This does not lead to a solution. It diverges!
The reader can check that even if the initial values are very close to a

solution, the method in general will not converge to the solution.

458 D. M. Gabbay and O. Rodrigues Log. Univers.

Remark A.2. The conclusion we draw from Example A.1 is that we must be
aware that some iteration processes can be mathematical only, just possibly
leading to a mathematical solution but otherwise semantically meaningless,
and some may be semantically meaningful and useful in the context of the
application area from which the equations arise.

This observation shall become sharper and clearer in the case of our next
example from abstract argumentation.

Example A.3. Consider Fig. 7 again but this time as an argumentation network
where N , P , Q are arguments. This network has three extensions E1, E2 and
E3, namely

E1 = P is in
= N and Q are out

E2 = N is in
= P and Q are out

E3 = P , N and Q are all und
In [13–15], we showed how to provide semantics for abstract argumenta-

tion in terms of equations. These equations are generated according to equation
schema, of which two of the most significant ones are Eqmax and Eqinv, de-
scribed next.

Let Att(X) = {Y1, . . . , Yk} be all the attackers of X. Consider X, Y1, . . . ,
Yk as variables ranging over [0, 1]. Define

Gmax(Att(X)) = 1 − max{Y1, . . . , Yk}
Ginv(Att(X)) = Πk

i=1(1 − Yi)

The equation we write for a node X is

X = G(Att(X)) (*)

where G can be Gmax or Ginv or some other function. We consider X = 1
to mean X is in; X = 0 to mean X is out; and 0 < X < 1 to mean that X
is und. The background material on the equational approach is given in the
next section. It is sufficient to say here that Gmax follows more closely the
traditional semantics of argumentation networks being only concerned about
the highest strength of attack to a node. The solutions to the equations using
Gmax correspond to the traditional concept of extensions (in Dung’s sense)
taking the nodes with value 1 in a solution to be the nodes in the extension.

Ginv on the other hand is also sensitive to the number of attackers to
a node. For example, assume there are 10 undecided attackers Yi of X each
having value 1

2 (und), then the value of X becomes 1
210 under Ginv, while

under Gmax, the value of X is simply 1
2 . Note that X is nearer to 0 (i.e., out)

in the Ginv case!

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 459

The Gmax equations for the network in Fig. 7 are:

N = 1 − max{P ,Q} (21)
P = 1 − N (22)
Q = 1 − max{P ,N} (23)

and its Ginv equations are:

N = (1 − P)(1 − Q) (24)
P = (1 − N) (25)
Q = (1 − P)(1 − N) (26)

The Gmax equations have the solutions: N = Q = 0 and P = 1 (E1);
N = 1, P = Q = 0 (E2); and N = P = Q = 1

2 (E3). The Ginv only accepts
the first two solutions with the extension E3 not being possible.20

Now suppose we actually do not know whether there are solutions or
what they would be and let us consider our options. We have a system of
equations involving N , P and Q and we want to try and solve it.
Option 1 A mathematical view. Let us just find a solution. This is a numer-
ical analysis problem. We can guess a candidate solution; use, for instance,
Newton’s method; and iterate in the hope of converging to a solution.
Option 2 A semantical view. We seek a solution motivated not by mathematics
but by the meaning of the equations; by argumentation considerations. New-
ton’s method may not be adequate here. We want a method which, if we start
very near a solution, then we get convergence to that desired solution. Here we
cannot accept any solution. We want solutions which reflect the input. So we
need to devise algorithms involving iterations which have a semanical meaning,
in addition to the usual mathematical properties that the iteration sequences
calculated by these algorithms converge. This point is important. Suppose we
give the following interpretation to the network. 100 voters need to form a
committee from amongst three experts P , Q and N to give an opinion on a
crucial issue. All of them vote for N to be included (in), none of them want P
to be included (i.e, they want P to be out), and they are equally divided on
their support for Q (und). There is however an additional information about
these candidates which is of a personal nature of which the voters are not
aware. These are represented by the attack relation in the network, in which
X → Y means X refuses to work with Y . We thus say that we have a numeri-
cal assignment N = 1, P = 0 and Q = 1

2 and we now ask what extension (i.e.,
what committee membership) is nearest to this majority vote? At first glance,
the reader may think that it is extension E2 (N is in, and P and Q are out),
because it agrees with the wishes of all of the voters that N is in and P is
out. We would like our iteration algorithm to give us this result if possible.

Let us look at what Newton’s method would do to these initial values.

20 The specific behaviour of Ginv is outside of the scope of this paper. However it is explored
in detail in [12].

460 D. M. Gabbay and O. Rodrigues Log. Univers.

We start with initial values N0 = 1, P 0 = 0 and Q0 = 1
2 and iterate for

the case of Gmax (Eqs. (21)–(23)). We shall see that iterating in this way is
not satisfactory. We get

N1 = 1
2 , P 1 = 0, Q1 = 0

N2 = 1, P 2 = 1
2 , Q2 = 1

2
N2 = 1

2 , P 2 = 0, Q2 = 0

There is no convergence here, so this is not satisfactory as we do not get
an answer for membership (i.e., no extension in the argumentation sense).

Let us now compare with the Gabbay–Rodrigues Iteration Schema for
Gmax, which is the main subject matter of this paper and is introduced in
Sect. 2. The schema always yields a solution which corresponds to an extension
in the argumentation sense.

Let 〈S,R〉 be an argumentation network and X,Yi ∈ S be considered
variables. Let Att(X) = {Yj} (j ≥ 0) be the attackers of X and let the
equations be X = Gmax(Att(X)).21 Let Vi(X) be the value of X at iteration
step i. Then the value of X at step i + 1 is calculated as

Vi+1(X) = (1 − Vi(X)) · min
{

1
2
, G({Vi(Yj)})

}

+Vi(X) · max
{

1
2
, G({Vi(Yj)})

}

So for the network in Fig. 7 and Gmax we get

Vi+1(N) = (1 − Vi(N)) · min
{

1
2
, 1 − max{Vi(P), Vi(Q)}

}

+Vi(N) · max
{

1
2
, 1 − max{Vi(P), Vi(Q)}

}

Vi+1(P) = (1 − Vi(P)) · min
{

1
2
, 1 − Vi(N)

}

+Vi(P) · max
{

1
2
, 1 − Vi(N)

}

Vi+1(Q) = (1 − Vi(Q)) · min
{

1
2
, 1 − max{Vi(P), Vi(N)}

}

+Vi(Q) · max
{

1
2
, 1 − max{Vi(P), Vi(N)}

}

Let us now take the initial conditions V0(N) = 1, V0(P) = 0 and V0(Q) =
0 and calculate the iterations. All values will converge to 1

2 .
The perceptive reader might ask what is the philosophy behind the

schema that led us to the extension E3, rather than to the larger extension
E2. The schema is very sensitive to the undecided values. It acts cautiously
in considering the votes for N ’s being included, because a proportion of the
voters wanted Q to be included but N and Q cannot work together.

21 Ginv can also be used, with different results.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 461

Appendix B. Numerical Argumentation Networks

In [1], the idea of support and attack networks was initially proposed. These
networks allow for the assignment of initial values to the nodes of the graph;
the specification of a transmission factor associated with the strength with
which an attack between arguments is carried out; and the higher-level notion
of an attack to an attack. In [17], we showed how some of these features can
be used in the merging of argumentation networks. The numerical argumen-
tation networks we now propose share some of the features of the support and
attack networks, but introduce a functional approach to the computation of
interaction between nodes.

Definition B.1. (Numerical Argumentation Network) A numerical argumenta-
tion network is a tuple 〈S,R, V0, Ve, g, h,Π〉, where
• S is a set of nodes, representing arguments;
• R ⊆ S2 is an attack relation, where (X,Y) ∈ R means “X attacks Y ”;
• V0 : S −→ U is a function assigning initial values to the nodes in S;
• g is a function to combine attacks to a node;
• h is a function to combine the initial value of a node with the value of

its attack;
• Π is an algorithm to compute equilibrium values Ve(X), for each node

X ∈ S.

We assume that g and h are possibly distinct argumentation-friendly
functions according to Definition 1.2. The equilibrium value of a node X,
Ve(X), is defined as h(V0(X), gY ∈Att(X)({1 − Ve(Y)})) and computed by the
algorithm Π. Since the computation of the equilibrium values of the nodes
takes the values of the attacking nodes into account, in Cayrol and Lagasquie-
Schiex’s terminology, the algorithm Π offers a procedure to perform an
interaction-based valuation of the graph 〈S,R〉. However, our approach is more
general because the computation is done in terms of equations satisfying ab-
stract principles.

We start our discussion with a simple graph without cycles, such as the
one in Fig. 8 to illustrate how numerical argumentation networks are used in
the context of the argumentation-friendly functions seen in this paper.

Given initial values V0(X), V0(Y), and V0(Z) for the nodes X, Y and Z,
respectively, we want the values of Ve(X), Ve(Y) and Ve(Z) to depend on them.
Since the node X is not attacked by any node, its equilibrium value Ve(X) is
defined as h(V0(X), g(∅)) = h(V0(X), 1) = V0(X). However, the value of Ve(Y)
and Ve(Z) depend not only on their initial values, but also on the equilibrium
values of their attackers. This suggests some notion of directionality in the
computation.

Y ZX

Figure 8. A simple argumentation graph without cycles

462 D. M. Gabbay and O. Rodrigues Log. Univers.

Figure 9. Attacks to a node and its initial value

X

Z2

Z1

Ve(Z2) = y

Ve(Z1) = V0(X)

Figure 10. Combination of a node’s initial value with its attacks

Now consider a more complex network, in which the node X has a number
of attackers as well as an initial value V0(X) as depicted in Fig. 9.

We can compute g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}) = y, which gives us
the value of the attack on X. The equilibrium value of X is the result of
combining its initial value V0(X) with the value of the combined attacks on
it, so we can pretend we have the interaction depicted in Fig. 10 and com-
pute h(Ve(Z1), Ve(Z2)), i.e., h(V0(X), g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}). We get
equations of the kind

Ve(X) = h(V0(X), g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}) (27)

to solve. As we mentioned, g and h may be different functions, so for example
we could have g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}) = min({1 − Ve(Y1), . . . , 1 −
Ve(Yk)}) and h(x, y) = x · y.

When f and g are the same, e.g., f = g = min, we can pretend we have
Fig. 11. And then we get Ve(X) = min({1 − (1 − V0(X)), 1 − Ve(Y1), . . . , 1 −
Ve(Yk)}) = min({V0(X), 1 − Ve(Y1), . . . , 1 − Ve(Yk)}). Note that in this situa-
tion, the traditional equation (without h and initial values) is a special case of
V0(X) = 1, because h(1, z) = z and then Ve(X) = h(1, g({1 − Ve(Y1), . . . , 1 −
Ve(Yk)})) = g({1 − Ve(Y1), . . . , 1 − Ve(Yk)}).

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 463

X

Z2

Z1

Ve(Z2) = y

Ve(Z1) = 1 − V0(X)

Figure 11. Combining attacks and initial value

Figure 12. Combining attacks and initial value

We now address another issue. Once we solve Eq. (27), we get a function
Ve such that

Ve(X) = h(V0(X), g({1 − Y1, . . . , 1 − Yk}))

Can we use Ve(X) itself as an initial value?
In other words, do we have that Eq. (28) below holds?

Ve(X) = h(Ve(X), g({1 − Y1, . . . , 1 − Yk})) (28)

The answer is “no”, because g and h are not necessarily the same function.
In case it is the same function, we have

Ve(X) = h(Ve(X), g({1 − Y1, . . . , 1 − Yk}))
= g({Ve(X), g({1 − Y1, . . . , 1 − Yk})})
= g({Ve(X), 1 − Y1, . . . , 1 − Yk})
= g({Z, 1 − Y1, . . . , 1 − Yk})

where Z is the equilibrium value of a new point attacking X, whose value is
fixed at V0(X). We can simulate this by adding new points Z1

X and Z2
X for each

X and form the graph depicted in Fig. 12. All solutions to the cycle Z1
X ↔ Z2

X

are of the form (Ve(Z1
X),1 − Ve(Z1

X)), which means that Z1
X can get any value

in U and hence so can its attack on X. This can be seen as having the same
effect as giving X a particular initial value in U .

These conditions are satisfied by the t-norm min. An attack takes the
complement of the value of the attacking node to 1 (co-norm).

464 D. M. Gabbay and O. Rodrigues Log. Univers.

We have that

min
Y ∈Att(X)

{1 − Ve(Y)} = 1 − max
Y ∈Att(X)

{Ve(Y)}

giving us our now familiar Eqmax.
The t-norm min only cares about the strength of the strongest argument.

In some applications, one could argue that attacks by multiple arguments
should bear more weight than the value of any of the arguments alone. One
way of modelling this is by combining attacks via product.

∏

Y ∈Att(X)

(1 − Ve(Y)) (29)

Again, if any attacker of an argument has equilibrium value 1, then the
value of the product will be 0. Otherwise, if all attackers of X are fully defeated,
i.e., if they all have equilibrium value 0, then the value of the product will be
1.

Combining the value of attacks in this way was initially proposed in [1].
The expression (29) is equivalent to

1 − �Y ∈Att(X)Ve(Y) (30)

where x� y = x+ y −x.y and for V = {x1, . . . , xk}, �V = (((x1 �x2)� . . .)�
xk). Equation (30) is the complement of the probabilistic sum t-conorm. It
is well known that in probability theory, the probabilistic sum expresses the
probability of the occurrence of independent events. Since we want to weaken
the value of the attacked node, we take the complement of this sum to 1.

A network generates a system of equations. If there are cycles in the
graph, then some of the variables associated with equilibrium values will be
expressed in terms of each other. We now explore this in a bit more detail.

Consider the following example.
Assume that all initial values are 1, that g and h are product. The graph

in Fig. 13 will generate the system of equations

Ve(X) = 1 − Ve(Y)
Ve(Y) = 1 − Ve(X)

which has an infinite number of solutions given by the formula Ve(X)+Ve(Y) =
1. A way to arrive at a unique solution to the equations is to introduce a
constant κ < 1 and analyse the solution to the system of equations in the limit
κ → 1. This would give us

Figure 13. A cycle involving two nodes

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 465

Figure 14. Unravelling the cycle in the network of Fig. 13

Ve(X) = κ(1 − Ve(Y))
Ve(Y) = κ(1 − Ve(X))
Ve(X) = κ − κVe(Y)

= κ − κ(κ − κVe(X))
= κ − κ2 + κ2Ve(X)

Ve(X) − κ2Ve(X) = κ − κ2

Ve(X)(1 − κ2) = κ − κ2

Ve(X) =
κ(1 − κ)

(1 − κ)(1 + κ)

Ve(X) =
κ

1 + κ

Hence, when κ → 1, Ve(X) = Ve(Y) = 1
2 . This result explains the implicit

introduction of the parameter ε to the vote aggregation function proposed by
Leite and Martins in [19].22

Since the initial values of the two nodes in the network of Fig. 13 are
the same, another way of looking at the network is by unravelling the cycle
starting arbitrarily at one of its nodes, say X. In our example, this would result
in the (infinite) network of Fig. 14.

If we assume the initial values for X and Y are both x, the equilibrium
value for X could be calculated as

Ve(X) = x · (1 − (x · (1 − (x · (1 − . . .))))

Now suppose x = 1
1+ε , for some ε > 0, we have that

Ve(X) =
1

1 + ε

(

1 −
(

1
1 + ε

(

1 −
(

1
1 + ε

(1 − . . .)
))))

Thus, in fact, we would be multiplying the initial value x = 1
1+ε by the number

δ = 1 −
(

1
1 + ε

(

1 −
(

1
1 + ε

(1 − . . .)
)))

Let us calculate what the value δ is. To simplify the calculation we set
α = (1 + ε), we then get

δ = 1 −
(

1
α

(

1 −
(

1
α

(1 − . . .)
)))

22 We disagree with the reasons for the introduction of the parameter itself, although tech-
nically it is the reason why the solution converges. A full discussion about this is given on
Sect. 4.

466 D. M. Gabbay and O. Rodrigues Log. Univers.

If we expand the first multiplication, we get

δ = 1 −
(

1
α

− 1
α2

(

1 − 1
α

(. . .)
))

= 1 −
[

1
α

− 1
α2

+
1
α3

(

1 − 1
α

(. . .)
)]

= 1 −
[

1
α

− 1
α2

+
1
α3

− 1
α4

(

1 − 1
α

(. . .)
)]

= 1 −
[(

α − 1
α2

)

+
(

α − 1
α4

)

+
(

α − 1
α6

)

+ . . .

]

The component
(

α − 1
α2

)

+
(

α − 1
α4

)

+
(

α − 1
α6

)

+ · · ·

can be re-written as
∞∑

k=1

(α − 1)
(

1
α2

)k

which is the same as
∞∑

k=0

(α − 1)
(

1
α2

)k

− (α − 1)

The first component in the main subtraction above is the sum of a geo-
metric series with common ratio 1

α2 and scale factor α − 1. Now note that the
ratio 1

α2 < 1, since α = 1 + ε > 1, and hence
∞∑

k=0

(α − 1)
(

1
α2

)k

=
(α − 1)
1 − 1

α2

=
α2(α − 1)

α2 − 1

The subtraction can therefore be re-written as
α2(α − 1)

α2 − 1
− (α − 1) =

α2(α − 1) − (α2 − 1)(α − 1)
α2 − 1

=
(α − 1)(α2 − α2 + 1)

α2 − 1

=
α

α2 − 1
Remember that α = 1 + ε, hence

α

α2 − 1
=

1 + ε − 1
(1 + ε)(1 + ε) − 1

=
ε

ε2 + 2ε + 1 − 1

=
ε

ε(ε + 2)

=
1

ε + 2

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 467

Therefore,

δ =
(

1 − 1
ε + 2

)

and hence in the limit ε → 0, we get

Ve(X) = lim
ε→0

1
1 + ε

(

1 − 1
ε + 2

)

=
1
2

as expected.
If we just have an acyclic sequence of attacks such as the one in Fig. 15,

we can analyse what happens with the equilibrium values of each node, given
a fixed initial value v for all nodes (again we consider f as product).

From the network in Fig. 15, we get that Ve(X1) = v, Ve(X2) = v ·(1−v),
Ve(X3) = v · (1 − (v · (1 − v))), and so forth. If v = 1, then Ve(X1) = 1,
Ve(X2) = 0, Ve(X3) = 1,. . . . The values alternate between 0 and 1, agreeing
with Dung’s original semantics as expected. If v = 0, then Ve(Xi) = 0 for all
0 ≤ i ≤ k. This is a consequence of the fact, that by using g, the equilibrium
value depends on the node’s initial value and if this is 0, so is the equilibrium
value of the node when g is product. Similarly, if the initial values of all nodes
is 1

2 , we get Ve(X1) = 1
2 , Ve(X2) = 1

4 , Ve(X3) = 3
8 ,

Contrast the calculation of the equilibrium values above with that of
Besnard and Hunter [2], in which the values are calculated by a so-called
categoriser function. In their paper, the given example of such a function was
the h-categoriser h, defined as

h(X) =

{
1, if Att(X) = ∅

1
1+

∑

Y ∈Att(X)
h(Y) , otherwise

Assuming initial value v = 1 in the example above, we would have that
h(X1) = 1, h(X2) = 1

2 , h(X3) = 2
3 , and so forth. This obviously does not agree

with Dung’s interpretation.
The effect on the equilibrium value of a node calculated using g and h

as product, when the node is attacked by a single node of same initial value is
now discussed. This is the scenario depicted in Fig. 16.

If we assume that X and Y get initial value x, we have that since X has
no attacking arguments, Ve(X) = x · (1 − 0) = x. We then have

...X1 X2 Xk

Figure 15. Sequence of attacks

X Y

Figure 16. Attack by a node of same initial value

468 D. M. Gabbay and O. Rodrigues Log. Univers.

Figure 17. Attack by a single node of same initial value

Ve(X) = x
Ve(Y) = x(1 − Ve(X)) = x − x2

If X gets initial value 1, then it gets equilibrium value 1 and since it
attacks Y , its equilibrium value is 0, as expected.23 On the other hand, if X
and Y get initial value 0, then Y ’s equilibrium value will also be 0. If X and
Y get initial value 1

2 , then the attack by X on Y is not sufficiently strong to
annihilate Y ’s initial value completely. In fact, it only brings it down by 50%,
i.e., giving it equilibrium value 1

4 . This is the maximum weakening that an
attack by an equally strong argument can inflict on Y using product. The full
range of values under these circumstances is illustrated by Fig. 17.

B.1. Comparisons with Social Abstract Argumentation Networks

In [19], Leite and Martins proposed social abstract argumentation frameworks
which can be seen as an extension of Dung’s abstract argumentation frame-
works to allow the representation of information about votes to arguments.
This work was subsequently extended in [11] to handle votes on attacks too.

The motivation for these networks is to provide a means to calculate the
result of the interaction between arguments using approval and disapproval
ratings from users of news forums. The idea is that when a user sees an argu-
ment, she may approve it, disapprove it, or simply abstain from expressing an
opinion. Since the arguments relate to each other through an attack relation
(not necessarily known to the users), the votes themselves are not sufficient
to provide an overall picture of the discussion. An interesting feature of these
environments is therefore their intrinsic informal nature in the sense that in
practice it is possible that voters vote for multiple arguments in the debate
and also that users may be unware of conflicts between the arguments.

23 This equilibrium value would be 0 independently of the initial value of Y in this case,
because we retain Dung’s semantics in the trivial cases.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 469

One immediate concern is the provision of an appropriate semantics which
can give an interpretation to the votes capturing the intuition of the voting
process. The semantics must take into account both the interactions between
the arguments as well as the votes originally cast for them.

We now introduce Eǧilmez et al.’s work [11], which is an extension to [19]
so we can compare it with our methodology.24

Definition B.2. [11] A social abstract argumentation framework is a tuple
〈S,R, VS , VR〉, where S is a set of arguments; R : S × S is a binary attack
relation between arguments; and VS : S −→ N × N and VR : R −→ N × N are
functions mapping arguments and attacks to tuples 〈v+, v−〉 representing the
total of approval and disapproval votes received by each.

In order to provide a semantical interpretation, Eǧilmez et al. introduce
the concept of a semantic framework presented below.

Definition B.3. [11] A social abstract argumentation semantic framework is a
tuple 〈L, τ,�,�,¬〉, where
• L is a totally ordered set with top and bottom elements � and ⊥, respec-

tively
• τ : N × N −→ L is a vote aggregation function that computes the social

support of arguments and attacks
• �S ,�R : L × L −→ L; � : L × L −→ L; and ¬ : L −→ L are algebraic

operations on L

The operations τ , �, � and ¬ are used to calculate the overall strength of
the arguments and attacks based on their initial votes. For the voting scenario
considered in [11], the so-called product semantics was given. In this semantics,
L is U (i.e., the interval [0, 1]); �S and �R are both the product t-norm �,
where x�y = x.y; � is its associated t-conorm, i.e., x�y = 1−(1−x).(1−y) =
x + y − x.y; ¬x = 1 − x; and τ is one of a family of operations τε defined as
follows:

Definition B.4. (Initial support for attacks and arguments) Let X be an argu-
ment and VS(X) = 〈p,m〉.

τε(X) =
p

p + m + ε

where ε > 0.
The initial support value for an attack (X,Y) is calculated identically,

except that we use VR((X,Y)) instead of VS(X).

One can regard τε and the operation that calculates the initial social
support value for arguments and attacks. However, one adverse effect of calcu-
lating the initial support in this way is that it fails to put the votes in context,

24 Note that [19] were not aware (and did not quote) [1], which was six years earlier. Thus,
the only new contribution in [1] was how they determine the initial values and the connection
with voting.

470 D. M. Gabbay and O. Rodrigues Log. Univers.

so an argument for which a single supporting vote is cast can get social support
close to 1 (depending on what the value of ε is).25

The semantics of a social abstract framework is then defined by a social
model presented below.

Definition B.5. [11] Let F be a social abstract argumentation framework and
T = 〈L, τ,�S ,�R,�,¬〉 a semantic framework. A social model of F under
semantics T is a total mapping M : S −→ L such that for every X ∈ S

M(X) = τ(X) � ¬ �Yi∈Att(X) {τ((Yi,X)) � M(Yi)}

Note that if � is product t-norm and � is its t-conorm, as in [11], then

M(X) = τ(X) � ¬ �Yi∈Att(X) {τ ((Yi,X)) � M(Yi)}

= τ(X) ·

⎛

⎝1 −

⎛

⎝1 −
∏

Yi∈Att(X)

(1 − τ((Yi,X)) · M(Yi))

⎞

⎠

⎞

⎠

= τ(X) ·
∏

Yi∈Att(X)

(1 − τ((Yi,X)) · M(Yi))

Contrast M(X) with the equilibrium value of X, Ve(X) as we proposed it in
[17, Definition 5]:

Ve(X) = V0(X) ·
∏

Yi∈Att(X)

(1 − ξ((Yi,X))Ve(Yi))

The calculation is exactly the same, except that we compute initial sup-
port differently as discussed next. We emphasise that the notion of the strength
of attack already existed since [1].

As Leite et al. initially pointed out in [19], there are difficulties with the
vote aggregation function τ . At first, the constant ε was introduced to avoid
the existence of infinite models. For example, consider the network

Y

1

1

X

And assume that VS(X) = VS(Y) = 〈x, 0〉. Then we have that τ0(X) =
τ0(Y) = 1 and hence any model M satisfying the equation M(X) = 1−M(Y)
is a social model of the network.

However, if the social support uses a very small value for ε that is never-
theless greater than 0, we get the following situation.

M(X) =
1

1 + ε
(1 − M(Y))

M(Y) =
1

1 + ε
(1 − M(X))

25 ε cannot be 0, because this would render τε ill defined for components with no votes.

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 471

If we substitute one value for the other, we get that

M(X) =
1

1 + ε

(

1 − 1
1 + ε

(1 − M(X))
)

=
1

1 + ε

(
1 + ε − 1 + M(X)

1 + ε

)

=
1

1 + ε

(
ε + M(X)

1 + ε

)

=
ε + M(X)
(1 + ε)2

M(X)(1 + ε)2 = ε + M(X)
M(X)(1 + ε)2 − M(X) = ε

M(X) =
ε

(1 + ε)2 − 1

=
ε

2ε + ε2

=
1

2 + ε

and hence limε→0 M(X) = 1
2 = M(Y), which provides a unique solution.

In our opinion, there is a methodological problem and a technical one.
The value ε > 0 solves the technical problem, which is the convergence to
a single model. However, methodologically speaking, the objective of τ is to
calculate initial support for components and in that respect, the constant
ε has no part to play. This situation does not arise in [16,17], because the
social support function there is normalised with respect to the total number of
argumentation networks being merged. We hope we have shed some light into
the technicalities of finding solutions to the equations throughout this paper.

A more difficult problem is the exaggerated role played by terminal ar-
guments with little support, as shown below. Consider the following example:

X Y

τ (X,Y)

and assume that VS(X) = 〈1, 0〉 and VS(Y) = 〈99, 0〉. According to Defini-
tion B.4, τ0(X) = 1. Since X is a terminal argument, M(X) = 1(1 − 0) = 1
and hence M(Y) = τ0(Y)(1−τ((X,Y))·M(X)) = τ0(Y)(1−τ((X,Y))). Hence,
the fate of Y depends on how strongly the attack from X is supported.26 Al-
though this technically solves the problem, it mixes the two issues, because a
voter must vote for an argument as well as for its attacks, if they are to have
any effect and an argument can get very high initial support even if it is voted
only by a very small number of voters.27

26 The main motivation for the introduction of the weights on attacks in [11].
27 High values of τ should correspond to high level of initial support.

472 D. M. Gabbay and O. Rodrigues Log. Univers.

References

[1] Barringer, H., Gabbay, D.M., Woods, J.: Temporal dynamics of support and
attack networks. In: Hutter, D., Stephan, W. (eds) Mechanizing Mathematical
Reasoning. LNCS, vol. 2605 (2005)

[2] Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif.
Intell. 128(1–2), 203–235, (2001)

[3] Brewka, G., Woltran S.: Abstract dialectical frameworks. In: Proceedings of the
12th International Conference on the Principles of Knowledge Representation
and Reasoning: KR’10. pp. 102–111. AAAI Press, Menlo Park (2010)

[4] Caminada, M.: An algorithm for computing semi-stable semantics. In: Proceed-
ings of the 9th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, ECSQARU ’07, pp. 222–234. Springer, Berlin
(2007)

[5] Caminada, M.: A labelling approach for ideal and stage semantics. Argum. Com-
put. 2(1), 1–21 (2011)

[6] Caminada, M., Gabbay, D.M.: A logical account of formal argumentation. Stud.
Log. 93(2–3), 109–145 (2009)

[7] Caminada, M., Pigozzi, G.: On judgment aggregation in abstract argumentation.
Auton. Agents Multi Agent Syst. 22(1), 64–102 (2011)

[8] Cayrol, C., Lagasquie-Schiex, M.-C.: Graduality in argumentation. J. Artif. In-
tell. Res. 23, 245–297 (2005)

[9] da Costa Pereira, C., Tettamanzi, A.G.B., Villata S.: Changing one’s mind:
erase or rewind? Possibilistic belief revision with fuzzy argumentation based on
trust. In: Proceedings of the 22nd International joint conference on artificial
intelligence, IJCAI’11, pp. 164–171. AAAI Press, Menlo Park (2011)

[10] Dung, P.M.: On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.
77, 321–357 (1995)

[11] Eǧilmez, S., Leite, J., Martins, J.: Extending social abstract argumentation with
votes on attacks. In: Proceedings of the 2nd International Workshop on Theory
and Applications of Formal Argumentation (TAFA’13) (2014, to appear)

[12] Gabbay D., Rodrigues O.: Probabilistic argumentation. An equational approach
(to appear)

[13] Gabbay D.M.: Introducing equational semantics for argumentation networks.
doi:10.1007/978-3-642-22152-1 2 (2011)

[14] Gabbay, D.M.: Equational approach to argumentation networks. Argum. Com-
put. 3, 87–142 (2012). doi:10.1080/19462166.2012.704398

[15] Gabbay, D.M.: Meta-Logical Investigations in Argumentation Networks. Studies
in Logic: Mathematical Logic and Foundations, vol. 44. College Publications
(2013). ISBN: 978-1-84890-103-2

[16] Gabbay, D.M., Rodrigues, O.: A equational approach to the merging of argumen-
tation networks. J. Log. Comput. 24(6), 1253–1277 (2014). doi:10.1093/logcom/
ext060

[17] Gabbay, D.M., Rodrigues, O.: A numerical approach to the merging of argu-
mentation networks. In: Fisher, M., van der Torre, L., Dastani, M., Governatori,
G. (eds.) Proceedings of CLIMA XIII, pp. 195–212. Springer, Berlin (2012)

http://dx.doi.org/10.1007/978-3-642-22152-1_2
http://dx.doi.org/10.1080/19462166.2012.704398
http://dx.doi.org/10.1093/logcom/ext060
http://dx.doi.org/10.1093/logcom/ext060

Vol. 9 (2015) Equilibrium States in Numerical Argumentation Networks 473

[18] Hassell, M.P.: The Dynamics of Arthropod Predator–Prey Systems. Princeton
University Press, New Jersey (1978)

[19] Leite, J., Martins, J.: Social abstract argumentation. In: Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, (2011, to appear)

[20] Prakken, H.: An abstract framework for argumentation with structured argu-
ments. Argum. Comput. 1, 93–124 (2010)

[21] Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge Uni-
versity Press, London (2003)

D. M. Gabbay
King’s College London
Department of Informatics
The Strand
London WC2R 2LS, UK

and

Bar Ilan University, Ramat Gan, Israel

and

University of Luxembourg, Luxembourg, Luxembourg
e-mail: dov.gabbay@kcl.ac.uk

O. Rodrigues
King’s College London
Department of Informatics
The Strand
London WC2R 2LS, UK
e-mail: odinaldo.rodrigues@kcl.ac.uk

Received: March 18, 2015.

Accepted: March 25, 2015.

	Equilibrium States in Numerical Argumentation Networks
	Abstract
	1. Orientation and Background
	1.1. Orientation
	1.2. Background

	2. The Gabbay--Rodrigues Iteration Schema
	3. Discussion and Worked Examples
	3.1. Worked Examples with Cycles

	4. Comparisons with Other Work
	5. Conclusions and Future Research
	Acknowledgements
	Appendix A. Predator--Prey and Argumentation Motivating Case Studies
	Appendix B. Numerical Argumentation Networks
	B.1. Comparisons with Social Abstract Argumentation Networks

	References

