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Abstract. Given a 4-tuple of Boolean variables (a, b, c, d), logical propor-
tions are modeled by a pair of equivalences relating similarity indicators
(a∧ b and a∧ b), or dissimilarity indicators (a∧ b and a∧ b) pertaining to
the pair (a, b), to the ones associated with the pair (c, d). There are 120
semantically distinct logical proportions. One of them models the analog-
ical proportion which corresponds to a statement of the form “a is to b as
c is to d”. The paper inventories the whole set of logical proportions by
dividing it into five subfamilies according to what they express, and then
identifies the proportions that satisfy noticeable properties such as full
identity (the pair of equivalences defining the proportion hold as true for
the 4-tuple (a, a, a, a)), symmetry (if the proportion holds for (a, b, c, d),
it also holds for (c, d, a, b)), or code independency (if the proportion holds

for (a, b, c, d), it also holds for their negations (a, b, c, d)). It appears that
only four proportions (including analogical proportion) are homogeneous
in the sense that they use only one type of indicator (either similarity or
dissimilarity) in their definition. Due to their specific patterns, they have
a particular cognitive appeal, and as such are studied in greater details.
Finally, the paper provides a discussion of the other existing works on
analogical proportions.
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1. Introduction

Proportions, understood as the identity of relations between two ordered pairs
of entities, say (A,B) and (C,D) play a crucial role in the way the human mind
perceives the world and tries to make sense of it. Thus, proportions involve
four terms, which may not be all distinct.

In mathematics, a proportion is a statement of equality between the result
of operations involving numerical quantities (i.e., A,B,C,D are numbers).
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The geometric proportion amounts to state the equality of two ratios, i.e.,
A/B = C/D, while the arithmetic proportion compares two pairs of numbers
in terms of their differences, i.e., A − B = C − D. In these equalities, which
emphasize the symmetric role of the pairs (A,B) and (C,D), geometric or
arithmetic ratios have an implicit comparative flavor, and the proportions
express the invariance of the ratios. Note that by cross-product for geometric
proportion, or by addition for the arithmetic one, the two proportions are
respectively equivalent to AD = BC and to A+D = B+C, which makes clear
that B and C, or A and D, can be permuted without changing the validity
of the proportion. Moreover, mathematical proportions are at the basis of
reasoning procedures that enable us to “extrapolate” the fourth value knowing
three of the four quantities. Indeed, assuming that D is unknown, one can
deduce D = C × B/A in the first case, which corresponds to the well-known
“rule of three”, or D = C + (B − A) in the second case. Besides, continuous
proportions where B = C are directly related to the idea of averaging, since
taking B = C as the unknown respectively yields the geometric mean (AD)1/2

and the arithmetic mean (A + D)/2.1 Thus, mathematical proportions have
the following distinctive features:
1. they involve four terms;
2. they satisfy an identity property, i.e., they trivially hold for (A,B) =

(C,D);
3. they are symmetric;
4. central terms, or extreme terms, can be permuted;
5. three of the terms in a proportion uniquely determine the fourth one;
6. in a proportion, two terms are in mean positions with respect to the two

others, namely (B,C) w.r.t. (A,D) (as well as (A,D) w.r.t. (B,C), due
to (3)).

Proportions have an important place in Ancient Greek mathematics, and play
a role in other areas as well (think for instance of the golden ratio obtained
as the solution ϕ = A/B of the geometric proportion (A + B)/A = A/B).
Thus, in the Book 5 about Justice of his Nicomachean Ethics, Aristotle makes
explicit reference to geometric proportions when discussing what is “fair”:

The just, then, is a species of the proportionate (proportion being
not a property only of the kind of number which consists of abstract
units, but of number in general). For proportion is equality of ratios,
and involves four terms at least. [· · · ] The ratio between one pair
is the same as that between the other pair; for there is a similar
distinction between the persons and between the things. As the

1 A third type of proportion, called harmonic, combines geometric and arithmetic compar-
isons by stating that A/D = (A − B)/(C − D). It is equivalent to 2AD = AC + BD, which
expresses that the double product of the extreme terms is the sum of the product of the
odd rank terms and of the product of the even rank terms. In this proportion, the pairs
(A, B) and (C, D) no longer play a symmetric role, as they do for the geometric and arith-
metic proportions. When taking B = C as the unknown number, one obtains the harmonic
mean 2 AD/(A + D). The arithmetic, geometric and harmonic means are known as the
Pythagorean means.
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term A, then, is to B, so will C be to D, and therefore, alternando,
as A is to C, B will be to D. Therefore also the whole [A+ C]
is in the same ratio to the whole [B +D]; and this coupling the
distribution effects, and, if the terms are so combined, effects justly.
The conjunction, then, of the term A with C and of B with D is what
is just in distribution, and this species of the just is intermediate,
and the unjust is what violates the proportion; for the proportional
is intermediate, and the just is proportional.

(translation by W. D. Ross)

But Aristotle does not only make use of quantitative proportions. In
many places, he also considers comparative relations between four terms that
form in modern words an analogical proportion, again expressing an identity
of relation between two ordered pairs. For instance, in the Book 1 (Part 17)
of his Topics, when discussing the idea of “likeness”, he provides examples of
such proportions between things belonging to different genera:

[· · · ] As sight is in the eye, so is reason in the soul, and as is a calm
in the sea, so is windlessness in the air. Practice is more especially
needed in regard to terms that are far apart; for in the case of the
rest, we shall be more easily able to see in one glance the points of
likeness. We should also look at things which belong to the same
genus, to see if any identical attribute belongs to them all, e.g. to a
man and a horse and a dog; for in so far as they have any identical
attribute, in so far they are alike.

(translation by W. A. Pickard-Cambridge)

Another example by Aristotle can be found in his Prior Analytics:

For example let A be evil, B making war against neighbours, C
Athenians against Thebans, D Thebans against Phocians. If then
we wish to prove that to fight with the Thebans is an evil, we must
assume that to fight against neighbours is an evil. Evidence of this is
obtained from similar cases, e.g. that the war against the Phocians
was an evil to the Thebans. Since then to fight against neighbours
is an evil, and to fight against the Thebans is to fight against neigh-
bours, it is clear that to fight against the Thebans is an evil. Now
it is clear that B belongs to C and to D (for both are cases of mak-
ing war upon one’s neighbours) and that A belongs to D (for the
war against the Phocians did not turn out well for the Thebans):
but that A belongs to B will be proved through D. Similarly if the
belief in the relation of the middle term to the extreme should be
produced by several similar cases. Clearly then to argue by example
is neither like reasoning from part to whole, nor like reasoning from
whole to part, but rather reasoning from part to part, when both
particulars are subordinate to the same term, and one of them is
known.

(translation by A. J. Jenkinson)
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Thus, due to their structural similarity with mathematical proportions,
statements of the form “A is to B as C is to D” have been called analogical pro-
portions, where A, B, C, D are no longer necessarily numbers, but may refer
to situations described through words, equations, pictures, . . . and they can be
used for the so called “analogical reasoning”. Since Aristotle’s time, analogical
reasoning has received a lot of attention from researchers in many areas, and
more particular from scholars in philosophy [17,32], anthropology [21,47], cog-
nitive psychology [25–28,34] and linguistics [18,46], including artificial intelli-
gence more recently [31]. However, strangely enough, it seems that there has
been no attempt at providing some logical model of analogical proportions up
to two noticeable exceptions, which have been however fully ignored by the
mainstream literature.

The first exception can be found in the Appendix of a 1952 French book
by the psychologist Jean Piaget [57] (see also [58] pp. 35–37), where the fol-
lowing definition of a so-called proportion logique is given: four propositions
A, B, C, and D make a logical proportion if the two following conditions hold
A ∧D = B ∧ C and A ∨D = B ∨ C. However, this logical proportion, which
turns out, as we shall see, to be one among the possible (equivalent) definitions
of an analogical proportion, usually denoted A :B ::C :D,2 is introduced by
Piaget without any reference to analogy.3

The second exception is provided by Sheldon Klein [36–38], a computer
scientist with a strong background in anthropology and linguistics, who intro-
duced a so-called ATO operator (where ATO stands for “Appositional Trans-
formation Operator”). This Boolean operator, which is based on the logical
equivalence connective, amounts to compute the fourth argument of an ana-
logical proportion between Boolean vectors (describing the items in terms of
binary features) by applying D = C ≡ (A ≡ B) componentwise. Strictly
speaking, this calculation does not always fit with the correct definition of an
analogical proportion, as we shall see.

In this paper we provide a systematic investigation of logical proportions
viewed in terms of two equivalences between conjunctions of pairs of atoms
which may be negated or not. The conjunction of two positive or two negative
atoms, by modeling their common truth or common falsity, expresses similar-
ity, while the conjunction of a positive atom and a negative atom expresses
dissimilarity. The analogical proportion then appears as a particular logical
proportion, still especially remarkable.

The paper is organized as follows. The next Sect. 2 introduces a gen-
eral notion of logical proportions as pairs of logical equivalences linking four

2 The use of “::” for denoting the equality of ratios in (numerical) proportions (see [73] p.
394) dates back to the 17th century mathematician William Oughtred [10], while “:” just
denotes ratios. Interestingly enough, this notation has been currently used for a longtime
to denote analogical proportions, although they are generally non numerical, while it is no
longer in use for numerical proportions.
3 However, in a previous book [55] (pp. 97–99), Piaget informally investigates a similar idea,
even using an example of linguistic analogical proportion, still without explicitly mentioning
analogy.
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Boolean variables a, b, c, d combined two by two conjunctively, possibly in
a negated form. It also provides a typology of logical proportions into five
classes. Section 3 studies the semantics of logical proportions in terms of
truth tables, and highlights the fact that any logical proportion is true for
6 and only 6 valuations among 24 = 16 possible ones. Section 4 investigates
meaningful properties of logical proportions, such as identity, symmetry, per-
mutability, code independency, transitivity, equation solvability by identifying
the proportions that satisfy them among the 120 distinct logical proportions.
Section 5 further studies the class of four homogeneous logical proportions
which includes analogical proportion, and analyzes them at the light of the
square of oppositions and other more general geometrical constructs. Section
6 provides a structured overview of related works, first coming back on the two
early attempts by Piaget and Klein at providing a logical view of (ana)logical
proportions, before reviewing other logical and non logical approaches to
analogical reasoning.

2. Logical Proportions

Before introducing the formal definitions, let us briefly clarify the notations
used.

• When dealing with Boolean logic, a, b, . . . denote propositional variables
(having 0 or 1 as truth value), and we use the standard symbols ∧,∨
to build up formulas (with parenthesis when needed). For the negation
operator, instead of using the standard ¬ symbol, we will use a to denote
¬a. This is done for saving space when writing long formulas. As usual
� (resp. ⊥) denotes the always true (resp. false) proposition.

• 0 and 1 denote the Boolean truth values, and a valuation v is just a
function from the set of propositional variables to {0, 1}. As we generally
consider only four variables a, b, c, d, it is sometimes convenient to refer
to v by the 4-tuple (v(a), v(b), v(c), v(d)).

• When we propose a new definition, we will use the symbol � meaning
definitional equality. For instance, F (a, b, c, d) � a ∨ b ∨ c ∨ d. The right
hand side of the equation is the definition of the left-hand side.

• When we consider syntactic identity, we use =Id: for instance a ∧ b =Id

a ∧ b but we do not have a ∧ b =Id b ∧ a.
• Finally, the symbol ≡ is reserved for the equivalence, i.e.

a → b � a ∨ b
a ≡ b � a → b ∧ b → a

2.1. Similarity and Dissimilarity Indicators

Generally speaking, the comparison of two items A and B relies on the repre-
sentation of these items. For instance, the items may be represented as a set
of features A and B. Then, one may define a similarity measure. This is the
aim of the well-known work of Tversky [80], taking into account the common
features, the specificities of A w.r.t. B, and the specificities of B w.r.t. A,
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respectively modeled by A ∩ B, A \ B, and B \ A. Here, we are not looking for
any global measure of similarity, we are rather interested in keeping track in
what respect items are similar and in what respect they are dissimilar using
Boolean indicators. This is why we adopt a logical setting: features are viewed
as Boolean properties. Let P be such a property, which can be seen as a predi-
cate: P (A) may be true (in that case ¬P (A) is false), or false. When comparing
two items A and B w.r.t. such a property P , it makes sense to consider A and
B similar:

– when P (A) ∧ P (B) is true or
– when ¬P (A) ∧ ¬P (B) is true.

In the remaining cases:
– when ¬P (A) ∧ P (B) is true or
– when P (A) ∧ ¬P (B) is true,

we can consider A and B as dissimilar w.r.t. property P . Since P (A) and P (B)
are ground formulas, they can simply be considered as Boolean variables, and
denoted a and b by abstracting w.r.t. P . If the conjunction a ∧ b is true, the
property is satisfied by both items A and B, while the property is satisfied by
neither A nor B if a∧ b is true. The property is true for A only (resp. B only)
if a∧ b (resp. a∧ b) is true. This is why we call such a conjunction of Boolean
literals an indicator, and for a given pair of Boolean variables (a, b), we have
exactly four distinct indicators:

• a ∧ b and a ∧ b that we call similarity indicators,
• a ∧ b and a ∧ b that we call dissimilarity indicators.

Let us observe that negating anyone of the two terms of a dissimilarity indi-
cator turns it into a similarity indicator, and conversely. Hence, negating the
two terms of an indicator yields an indicator of the same type. But negating
an indicator does not give an indicator. Besides, it is worth noting that the
indicators we are going to use are also those involved in Tversky’s similarity
measure. Namely, his similarity measure s(A,B) between two sets of features
A and B is a combination F involving the three components A∩B,A\B and
B\A, i.e. s(A,B) = F (A\B,B\A,A ∩B), where \ denotes set difference.

2.2. Defining Logical Proportions

In a logical proportion, four items are involved: A, B, C, and D. Let a, b, c
and d the four Boolean variables corresponding to the same property. We
have again four indicators per pair of Boolean variables, and a comparison of
two pairs of items can be only based on these indicators. The simplest way
for expressing a comparison is an equivalence between two indicators, like for
instance a ∧ b ≡ c ∧ d.

A point has to be raised now: it seems natural that the informal idea
of a logical proportion should be independent of the way we encode items in
terms of the truth or the falsity of properties (just as a numerical proportion
holds independently of the base used for encoding numbers, or of the system of
units representing the quantities at hand). It means that the formula defining
the proportion should be valid when we switch 0 to 1 and 1 to 0. So let us
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consider a formula based on a unique equivalence between indicators, denoted
l1 ∧ l2 ≡ l3 ∧ l4, where the li’s are literals. Let us now consider a valuation v
such that v(l1) = v(l2) = v(l3) = 0 and v(l4) = 1. Obviously this valuation
makes the equivalence valid since v(l1 ∧ l2) = v(l3 ∧ l4) = 0. But when we
switch 0 to 1 and 1 to 0, it appears that the new valuation v′ such that
v′(l1) = v′(l2) = v′(l3) = 1 and v′(l4) = 0 does not validate the equivalence
anymore. Then one equivalence is not enough if we are interested in “code-
independency”. We have to consider at least two equivalences to capture this
behavior. For instance, (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d) clearly satisfies code
independency.

As a consequence, it is legitimate to consider conjunctions of two equiv-
alences between indicators, and such a conjunction will be called logical pro-
portion [62,64]. More formally, let us denote I(a,b) and I ′

(a,b), (resp. I(c,d) and
I ′
(c,d)) two indicators for (a, b) (resp. (c, d)). Note that I(a,b) (or I ′

(a,b)) refers to
one element in the set {a ∧ b, a ∧ b, a ∧ b, a ∧ b}, and should not be considered
as a functional symbol. Still, we use this notation for the sake of readibility.
Then

Definition 1. A logical proportion T (a, b, c, d) is the conjunction of two distinct
equivalences between indicators of the form

I(a,b) ≡ I(c,d) ∧ I ′
(a,b) ≡ I ′

(c,d)

An example of such proportion is ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
where

• I(a,b) � a ∧ b, I(c,d) � c ∧ d,
• I ′

(a,b) � a ∧ b, I ′
(c,d) � c ∧ d.

Obviously, this formal definition goes beyond what may be expected from the
informal idea of “logical proportion”, since equivalences may be put between
things that are not homogeneous (i.e., mixing similarity and dissimilarity indi-
cators in various ways).

Let us first determine the number of logical proportions. Since we have to
choose two distinct indicators among four for a given pair of variables (a, b), we
have [42] = 6 candidate sets for (I(a,b), I

′
(a,b)). Building the pair of equivalences

then leads to 6×6×2 = 72 logical proportions. Indeed there are 6×6 candidate
sets for choosing a 4-tuple (I(a,b), I

′
(a,b), I(c,d), I

′
(c,d)), and there are two ways

for combining these indicators according to Definition 1. In this count, we have
assumed that the two indicators that we choose for a pair are distinct, which
is quite natural. It means that we use exactly four distinct indicators to build
up a proportion: two for (a, b) and two for (c, d). But if we accept that the
same indicator appears twice, i.e., we use only three indicators to build up a
proportion (indeed using only two indicators would not allow to build up two
distinct equivalences). Then on top of the 72 previous proportions, we have
to add the 4 × 6 = 24 proportions that we can build using only one indicator
for (a, b) (and we have 4 choices), and 2 distinct ones for (c, d) (for instance
(a∧b ≡ c∧d)∧(a∧b ≡ c∧d) and similarly 24 when using one indicator only for
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(c, d). So a total of 48 new proportions can be added. These proportions that
use three indicators only are called “degenerated logical proportions”[62]. This
leads to a total of 72 + 48 =120 logical proportions, included the degenerated
ones, which are potentially semantically distinct.

Clearly, thanks to the De Morgan’s laws, an equality a ∧ b = c ∧ d is
equivalent to a ∨ b = c ∨ d, without any use of a negation operator. Still, we
stick for the moment to the use of conjunctions and negations on each side of
the equivalences, which leaves the indicators explicit. The next subsection is
devoted to a brief typology of all these proportions.

2.3. Typology of Logical Proportions

Depending on the way the indicators are chosen, one may mix the similarity
and the dissimilarity indicators differently in the definition of a proportion.
This leads us to distinguish a specific subfamily of proportions, the so-called
degenerated proportions: those ones involving only three distinct indicators in
their definition. For instance (a∧b ≡ c∧d)∧(a∧b ≡ c∧d) is such a proportion
where I(c,d) =Id I

′
(c,d).

For the remaining proportions, it is required that all the indicators
appearing in the definition of the proportion are distinct. At this stage, it
makes sense to distinguish between two types of indicators: similarity indica-
tors that are denoted by S, and dissimilarity indicators that are denoted by
D: e.g., D(a,b) ∈ {a∧ b, a∧ b}. With this notation, among the non-degenerated
proportions, we can identify four subfamilies that we describe below.

2.3.1. The Four Homogeneous Proportions. For these proportions, we do not
mix different types of indicators in the two equivalences. The homogeneous
proportions are of the form

S(a,b) ≡ S(c,d) ∧ S′
(a,b) ≡ S′

(c,d)

or

D(a,b) ≡ D(c,d) ∧D′
(a,b) ≡ D′

(c,d)

Thus, it appears that only four proportions among 120 are homogeneous. They
are (with names that will be explained later):

• analogy : A(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
• reverse analogy : R(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
• paralogy : P (a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
• inverse paralogy : I(a, b, c, d), defined by

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
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These four proportions are studied in details in Sect. 5. Analogy already
appeared under this form in [52]; paralogy and reverse analogy were first intro-
duced in [60], and inverse paralogy in [64]. While the analogical proportion
(analogy, for short) reads “a is to b as c is to d” and expresses that “a differs
from b as c differs from d, and conversely b differs from a as d differs from c”,
reverse analogy expresses that “a differs from b as d differs from c, and con-
versely”, paralogy expresses that “what a and b have in common, c and d
have it also”.4 Finally, inverse paralogy expresses that “what a and b have in
common, c and d miss it, and conversely”. As can be seen, inverse paralogy
expresses a form of antinomy between pair (a, b) and pair (c, d). Note that we
use two different words, “inverse” and “reverse”, since the changes between
analogy and reverse analogy on the one hand, and paralogy and inverse par-
alogy on the other hand, are not of the same nature. The meanings of the
four above proportions is perhaps still more easy to grasp when moving from
Boolean variables, to situations described in terms of sets of properties.

From now on, we denote analogy with A, paralogy with P , reverse analogy
with R, inverse analogy with I. When we need to denote any unspecified
proportion, we will use the letter T .

2.3.2. The 16 Conditional Proportions. Their expression is made of the con-
junction of an equivalence between similarity indicators and of an equivalence
between dissimilarity indicators. Thus, they are of the form

S(a,b) ≡ S(c,d) ∧D(a,b) ≡ D(c,d)

There are 16 conditional proportions (2 × 2 choices per equivalence). They
appear in Table 9 in Appendix A. An example is

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d))
Let us explain the term “conditional”. It comes from the fact that these

proportions express “equivalences” between conditional statements. Indeed, it
has been advocated in [19] that a rule “if a then b” can be seen as a three
valued entity that is called “conditional object” and denoted b|a [16]. This
entity is:

• true if a∧ b is true. The elements making it true are the examples of the
rule “if a then b”,

• false if a∧b is true. The elements making it true are the counter-examples
of the rule “if a then b”,

• undefined if a is true. The rule “if a then b” is then not applicable.
Thus, the above proportion ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b) ≡ (c ∧ d)) may
be denoted b|a :: d|c combining the two conditional objects in the spirit of
the usual notation for analogical proportion. Indeed, it expresses a semantical
equivalence between the two rules “if a then b” and “if c then d” by stating

4 Although we have been using the term “paralogy” since we introduced this proportion
in [60], “parallelogy” could be a more accurate term for expressing a logic of parallelism
between situations (a, b) and (c, d).
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that they have the same examples, i.e. (a∧ b) ≡ (c∧d)) and the same counter-
examples (a ∧ b) ≡ (c ∧ d).

It is worth noticing that such proportions have equivalent forms, e.g.:

b|a :: d|c ≡ b|a :: d|c
which agrees with the above semantics and more generally with the idea of
conditioning. Indeed the examples “if a then b” are the counter-examples of
“if a then b”, and vice-versa. Due to this remark, it is enough to consider the
equivalences between one of the four conditional objects a|b, b|a, a|b, b|a, and
the four other conditional objects built with (c, d), yielding 4×4 proportions as
expected. Besides, eight conditional proportions have been already considered
in [64], but not the eight remaining ones, since they do not satisfy the “full
identity” property, as we shall see in the next section.

2.3.3. The 20 Hybrid Proportions. They are characterized by equivalences
between similarity and dissimilarity indicators in their definitions. They are of
the form

S(a,b) ≡ D(c,d) ∧ S′
(a,b) ≡ D′

(c,d)

or

D(a,b) ≡ S(c,d) ∧D′
(a,b) ≡ S′

(c,d)

or

S(a,b) ≡ D(c,d) ∧D(a,b) ≡ S(c,d)

They appear in Table 10 in Appendix A. There are 20 hybrid proportions: 2
of the first kind, 2 of the second kind, 16 of the third kind since we have here
4 choices for an equivalence S(a,b) ≡ D(c,d), and 4 choices for D(a,b) ≡ S(c,d).

If we remember that negating anyone of the two terms of a dissimilarity
indicator turns it into a similarity indicator, and conversely, we understand
that changing a into a (and a into a), or applying a similar transformation
with respect to b, c, or d, turns

– an hybrid proportion into an homogeneous or a conditional proportion;
– an homogeneous or a conditional proportion into an hybrid proportion.

This indicates the close relationship of hybrid proportions with homogeneous
and conditional proportions. More precisely,

– on the one hand there are four hybrid proportions such that replacing a
with a leads to the four homogeneous proportions A, R, P, I. They are
obtained by the two first kinds of patterns for building hybrid propor-
tions. Moreover, we shall see in the next section that they constitute with
the four homogeneous proportions the eight proportions that are the only
ones satisfying “code independency” property.

– on the other hand, there are 16 remaining hybrid proportions, obtained
by the third kind of pattern for building them. They can be written as
the equivalence of two conditional objects, although they do not obey the
conditional proportion pattern. For instance, ((a∧b) ≡ (c∧d))∧((a∧b) ≡
(c ∧ d)) can be written as a|b :: c|d. This proportion is indeed obtained
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from the conditional proportion a|b :: c|d by changing a into a. Thus,
these 16 new equivalences between conditional objects are not of the
form a|b :: c|d (or equivalently a|b :: c|d) produced by the pattern of
conditional proportions, but of a “mixed” form having an odd number of
negated terms.

2.3.4. The 32 Semi-Hybrid Proportions. One half of their expressions involve
indicators of the same kind, while the other half requires equivalence between
indicators of opposite kinds. They are of the form

S(a,b) ≡ S(c,d) ∧ S′
(a,b) ≡ D(c,d)

or

S(a,b) ≡ S(c,d) ∧D(a,b) ≡ S′
(c,d)

or

D(a,b) ≡ D(c,d) ∧ S(a,b) ≡ D′
(c,d)

or

D(a,b) ≡ D(c,d) ∧D′
(a,b) ≡ S(c,d)

They are listed in Table 11 in Appendix A. There are 32 semi-hybrid pro-
portions (8 of each kind: four choices for the first equivalence, times 2
choices for the element that is not of the same type as the three others (D
or S) in the second equivalence). An example of semi-hybrid proportion is
((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ b ≡ (c ∧ d)).

Applying a change from a to a (and a to a), or applying a similar trans-
formation with respect to b, c, or d, turns a semi-hybrid proportion into a semi-
hybrid proportion (since as already said, negating anyone of the two terms of
a dissimilarity indicator turns it into a similarity indicator, and conversely).
This contrasts with the hybrid proportion class which is not closed under such
a transformation.

2.3.5. The 48 Degenerated Proportions. In all the above categories, the four
terms related by equivalence symbols should be all distinct. In degenerated
proportions, there are only three different terms and it is simpler to come
back to our initial notation. With this notation, these proportions are of the
form

I(a,b) ≡ I(c,d) ∧ I(a,b) ≡ I ′
(c,d)

or

I(a,b) ≡ I(c,d) ∧ I ′
(a,b) ≡ I(c,d)

They are listed in Table 12 in Appendix A. Their number is easy to compute:
we have to choose I(a,b) among 4 indicators and then to choose 2 distinct
indicators among four pertaining to (c, d): we then get 4 × 6 = 24 proportions
of the first form. The same reasoning with the second kind of expression leads
to a total of 48 degenerated proportions. Note that the change from a to a
(and a to a), or a similar transformation with respect to b, c, or d, turns a
degenerated proportion into a degenerated proportion.
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It can be seen that degenerated proportions always involve a mutual
exclusiveness condition between two positive or negative literals pertaining to
either the pair (a, b) or the pair (c, d). Indeed, if we consider the first form, we
get I(a,b) ≡ I(c,d) on the one hand, and I(c,d) ≡ I ′

(c,d) on the other hand, i.e.
an equivalence between two syntactically distinct indicators pertaining to the
same pair (c, d). There are six cases only:

• (c ∧ d) ≡ (c ∧ d) iff c ≡ d
• (c ∧ d) ≡ (c ∧ d) iff c ≡ d
• (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff c ≡ ⊥
• (c ∧ d) ≡ (c ∧ d) iff d ≡ ⊥

Thus, we also have I(a,b) ≡ ⊥ (since we have I(c,d) ≡ ⊥ and I ′
(c,d) ≡ ⊥),

which expresses a mutual exclusiveness condition. Since we have 4 possible
choices for I(a,b), it yields 4 × 6 = 24 distinct proportions, and exchanging
(a, b) with (c, d) gives the 24 other degenerated proportions.

Thus, generally speaking, degenerated proportions correspond to a
mutual exclusiveness condition between component(s) or negation of compo-
nent(s) of one of the pairs (a, b) or (c, d), together with

– either an identity condition pertaining to the other pair,
– or a tautology condition on one of the literals of the other pair without

any constraint on the other literal.

2.4. Two Other Classes of Interest: Uniform and Weakly Uniform Proportions

As recalled in the introduction, a numerical proportion states the equality of
two ratios a

b = c
d , or of two differences a− b = c− d, comparing quantities of

the same types, namely ratios or differences. In no case, we mix them as, e.g.,
a
b = c× d or a− b = c+ d. In logical proportions the equality of quantities is
converted into equivalence. Then, if we want to completely fit with the spirit of
numerical proportions, we may insist on using the same indicators on each side
of the equivalence symbol. It means that when we have chosen two distinct
indicators for the pair (a, b), we should stick to the same indicators for the
other pair (c, d). For instance, let us assume that we choose (a ∧ b, a ∧ b)
as indicators for the pair (a, b), then we have to use the indicators (c ∧
d, c ∧ d) for the pair (c, d). Strictly speaking, we have exactly four uniform
equivalences:

• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d
• a ∧ b ≡ c ∧ d

Since we need two equivalences to build up a proportion, we get exactly [42] = 6
uniform proportions, thus built up with a pair of uniform equivalences. As can
be seen, A and P are uniform, but R and I are not uniform.

The four remaining uniform proportions are given below; note that they
are conditional proportions:
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• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d); (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d); (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)

Relaxing a little bit the constraint of uniformity by allowing us to switch
the indicators in the equivalences, we are led to 12 weakly uniform proportions:
we can exchange the right hand side of the equivalences, we get 6 × 2 = 12
such proportions. R and I are weakly uniform. It has to be noticed that,
since we cannot build a weakly uniform proportion with only three distinct
indicators, a degenerated proportion cannot be weakly uniform. If we go one
step further, we may decide to consider proportions, not only satisfying the
previous uniformity constraint, but also where the equivalences use only one
type of indicators (similarity or dissimilarity). In that case, we have only two
candidates set of indicators for the pair (a, b), each candidate set for (a, b)
leading to a unique candidate set for (c, d), then to the two uniform proportions
A and P . Allowing weak uniformity adds R and I to this list and we are back
to the “homogeneous” proportions.

3. Truth Tables of Logical Proportions

Since a, b, c, d are Boolean variables, logical proportions can be considered as
quaternary Boolean formulas, whose semantics is given via their truth tables
(which then have 24 = 16 lines). We start by considering the case of the
four homogeneous proportions A,R, P, I defined in Sect. 2.3.1, since it is the
smallest family, and it contains the “Analogy” proportion. Then, we shall
establish two general results pertaining to the truth tables of the whole class
of logical proportions.

3.1. Homogeneous Proportions Truth Tables

Starting from their Boolean expressions, it is an easy game to build up the
truth tables of proportions A,R, P, I: they are exhibited in Table 1, where only
the valuations leading to the truth value 1, are shown. This means that all the
other ones lead to the truth value 0. There is one fact immediately appearing:
only 6 valuations among 16 in the tables lead to a truth value 1. We also
observe that there are only eight distinct 4-tuples that appear in Table 1.
This emphasizes their collective coherence as the whole class of homogeneous

Table 1. Truth tables: analogy, reverse analogy, paralogy,
inverse paralogy

A R P I
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0
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proportions. Moreover, they go by pairs where 0 and 1 are exchanged, thus
pointing out their “code independency”.

It is interesting to take a closer look at the truth tables of the four
homogeneous proportions. First, one can observe in Table 1, that eight possible
valuations for (a, b, c, d) never appear among the patterns that make A, R, P ,
or I true: these eight valuations are of the form xxx y, x x y x, x y x x, or y x xx
with x 
= y and (x, y) ∈ {0, 1}2. As can be seen, it corresponds to situations
where a = b and c 
= d, or a 
= b and c = d, i.e., similarity holds between
the components of one of the pairs, and dissimilarity holds in the other pair.
Moreover, the truth table of each of the four homogeneous proportions, is built
in the same manner:
1. two lines of the table correspond to the characteristic pattern of the

proportion; namely the two lines where one of the two equivalences in its
definition holds true under the form 1 ≡ 1 (rather than 0 ≡ 0). Thus,

• A is characterized by the pattern x y x y (corresponding to valua-
tions 1 0 1 0 and 0 1 0 1), i.e. we have the same difference between a
and b as between c and d;

• R is characterized by the pattern y x x y (corresponding to valua-
tions 1 0 0 1 and 0 1 1 0), i.e. the differences between a and b and
between c and d are in opposite directions;

• P is characterized by the pattern xxxx (corresponding to valua-
tions 1 1 1 1 and 0 0 0 0), i.e. what a and b have in common, c and d
have it also;

• I is characterized by the pattern xx y y (corresponding to valuations
1 1 0 0 and 0 0 1 1), i.e. what a and b have in common, c and d do
not have it, and conversely. Thus, the six lines of the truth table of
A that makes it true are induced by the characteristic patterns of
A, P , and I,5 the six valuations that makes P true are induced by
the characteristic patterns of P, A, and R, and so on for R and I.

2. the four other lines of the truth table of an homogeneous proportion T
are generated by the characteristic patterns of the two other proportions
that are not opposed to T (in the sense that A and R are opposed, as
well as P and I). For these four lines, the proportion holds true since its
expression reduces to (0 ≡ 0) ∧ (0 ≡ 0).

As an illustration of analogy and other homogeneous proportions, let us con-
sider Fig. 1 where a pair of items (A,B) is shown together with an incomplete
pair (C, ?). Each of the three pictures can be represented by a vector of Boolean
variables acknowledging, in this order, the presence or not of outside squares,
of outside circles, of an inside circle (upper position), of an inside hexagon
(lower position), of hatching (upper position). Namely, A (the first picture)
corresponds to (1, 0, 1, 0, 0), B (the second picture) to (1, 0, 0, 1, 1), C (the

5 The measure of analogical dissimilarity introduced in [50] is 0 for the valuations correspond-
ing to the characteristic patterns of A, P , and I, maximal for the valuations corresponding
to the characteristic patterns of R, and takes the same intermediary value for the eight
valuations characterized by one of the patterns x x x y, x x y x, x y x x, or y x x x.
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Figure 1. An illustration: logical proportions at work

Table 2. Boolean encoding of the illustrative example

out. squ. out. cir. ins. cir. ins. hex. hatc.
A 1 0 1 0 0
B 1 0 0 1 1
C 0 1 1 0 0
D ? ? ? ? ?

third picture) to (0, 1, 1, 0, 0). Then, one may wonder if we can associate a 4th
item D (represented as ?) to the three previous ones, using analogy or another
homogeneous proportion. The situation can be thus summarized by Table 2.
Working feature by feature, this amounts to try to complete the five vectors
(1, 1, 0, ?), (0, 0, 1, ?), (1, 0, 1, ?), (0, 1, 0, ?), and (0, 1, 0, ?) using the same
homogeneous proportion, if possible. It can be checked on Table 1 that there
are here two solutions, either using analogy, or inverse paralogy, yielding the
unique description of D as (0, 1, 0, 1, 1), i.e., an item with outside circles, with
an inside hexagon (lower position), and hatching (upper position). Note that
if in the description, we add features such that “the figure has two parts”, or
“there is a triangle”, we are also led to complete the following vectors (1, 1, 1, ?)
or (0, 0, 0, ?) respectively, and then only analogy would work.

3.2. Characterization of the Truth Tables of Logical Proportions

The fact that the truth tables of the homogeneous proportions have only 6
lines making the proportion valid is not proper to this family, but is shared
by the whole set of the 120 logical proportions. Indeed the following general
result can be proved:

Proposition 1. The truth table of a logical proportion has six and only six
valuations with truth value 1.

Proof (indication)6: In fact, a simple equivalence eq1 between indicators has
exactly 10 lines leading to true. Since a logical proportion T is the conjunction

6 We only give in the main text the proofs that are short, or that may be useful for the
general understanding of the discussed matter. Otherwise they can be found in Appendix B.
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eq1 ∧ eq2 of 2 equivalences between indicators, it appears from the previous
property that T has a maximum of 10 valid valuations and a minimum of 4
valid valuations. Obviously, adding eq2 to eq1 may only reduce the number
of valid valuations for T . Starting from eq1 and reasoning on the number of
literals where eq1 and eq2 differ, we show that we keep only six valid valuations
for T ; see complete proof in Appendix B. �

It follows that the negation of a logical proportion is not a logical pro-
portion (since such a negation has 10 valuations leading to true in its table).

As previously explained, due to the symmetry of the ∧ operator, we
have 120 proportions which are potentially semantically distinct. A question
remains: can we reduce this number of semantically distinct proportions? The
answer is negative, as now stated.

Proposition 2. The truth tables of the 120 proportions are all distinct.

Proof (indication): We shall show that, when two proportions T � eq1 ∧ eq2
and T ′ � eq′

1 ∧ eq′
2 have the same truth table, they are syntactically identical

(up to a permutation of the two equalities) i.e. T =Id T ′. This is done by
showing that in that case, every literal occurring in one of them appears in
the other one; see complete proof in Appendix B. �

It appears that despite their similar structure, logical proportions are
semantically distinct and then they cover distinct situations. This result may
look all the more amazing as logical proportions are quite rare. Indeed we know
that we have (166 ) = 16×15×14×13×12×11/6! = 5765760/720 = 8008 truth
tables with exactly 6 valuations leading to 1, while only 120 tables among
them are the truth table of a logical proportion.

4. Noticeable Properties of Subfamilies of Logical Proportions

Thinking of proportions, and more particularly of symbolic proportions, natu-
rally suggest properties of interest that might be expected, such as symmetry,
or equation solving as already suggested in the introduction, or code indepen-
dency also discussed previously. As we shall see in Sect. 4.9, these properties
are in fact the counterparts of properties satisfied by numerical proportions.

4.1. Full Identity

Let us carry on the investigation of the truth tables in Table 1. A,R and P
include the valuations 1111 and 0000: a common property is then satisfied by
these three proportions which can be stated as a simple axiom T (a, a, a, a)
(where T denotes a proportion). This property means that when a, b, c, d have
a common truth value, then the proportion is satisfied whatever this truth
value. We call this property full identity. Obviously I does not satisfy this
property because of the exchange of the negation operator between pairs (a, b)
and (c, d) in the definition. Still this property can be considered as intuitively
appealing, and it is interesting to identify the proportions that satisfy it. The
following result can be established:
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Proposition 3. There are only 15 proportions satisfying full identity: 3 of them
are homogeneous (they are A, R, and P), 8 of them are conditional proportions
and the 4 remaining ones are degenerated. (these proportions are shown in
Appendix A Table 13).

Proof. See Appendix B. �

Then a new question arises: Are there proportions satisfying only “half”
of the full identity property, i.e., with truth value 1 for valuation 1111 and 0
for 0000, or vice-versa? We have the following result:

Proposition 4. There are 30 proportions validated with 1111 but not with 0000.
Dually, there are also 30 proportions validated with 0000 but not with 1111.

Proof. See Appendix B. �

Each of the above two categories satisfying “half of full identity” contains four
hybrid proportions, 12 semi-hybrid ones, and 14 degenerated ones. The four
hybrid ones satisfying 1111 are defined by

• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional b|a :: c|d,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional a|b :: c|d,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional b|a :: d|c,
• (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d), corresponding to conditional a|b :: d|c.

The four hybrid ones satisfying 0000 correspond to a|b :: c|d, b|a :: c|d, a|b ::
d|c, b|a :: d|c. As a consequence of the previous results, there are 45 (= 120 −
15−30−30) proportions that are false for both valuations 1111 and 0000. They
include 1 homogeneous proportion (the inverse paralogy), 8 conditional ones,
12 hybrid ones, 8 semi-hybrid ones and 16 degenerated ones. Among hybrid
ones, let us mention the presence of the proportions corresponding to analogy
(or paralogy) where one literal is negated, such as A(a, b, c, d) for instance.

4.2. Reflexivity, Reverse Reflexivity and Sameness

It can be easily checked that A(a, b, a, b) holds (which means that the analogical
proportion satisfies “a is to b as a is to b”). We may refer to this property as
reflexivity of the proportion. Obviously, reflexivity entails full identity. There
are two other natural ways7 to strengthen full identity, namely, T (a, b, b, a)
referred as reverse reflexivity, and T (a, a, b, b) referred as sameness (meaning
“a is to a as b is to b” for an analogical proportion, for which A(a, a, b, b)
holds).

We are thus led to look for the logical proportions T satisfying at least
one of the three properties: T (a, a, b, b), T (a, b, a, b), or T (a, b, b, a). Since, such
a proportion should obviously satisfy full identity, we have a maximum of 15
such proportions for each of the 3 properties. In fact, it can be shown that:

7 Strictly speaking, one might also wonder about other strengthening of full identity such as
T (a, a, a, b). It turns out that with an odd number of a (and b), there is no logical proportions
satisfying such property.
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Table 3. The six proportions satisfying reflexivity

ab ≡ cd ab ≡ cd (A) ab ≡ cd ab ≡ cd (P )

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Proposition 5.

• There is no proportion simultaneously satisfying the three properties.
• A is the only proportion to satisfy T (a, a, b, b) and T (a, b, a, b).
• R is the only proportion to satisfy T (a, a, b, b) and T (a, b, b, a).
• P is the only proportion to satisfy T (a, b, a, b) and T (a, b, b, a).
• Six proportions satisfy T (a, b, a, b), including A and P but not R and I.
• Six proportions satisfy T (a, b, b, a), including P and R but not A and I.
• Six proportions satisfy T (a, a, b, b), including A and R but not P and I.

Proof. This is an easy proof for the first four statements since each property
generates a set of four valid valuations (and two of them yield six valid valua-
tions). For instance, having the simultaneous satisfaction of the three proper-
ties leads to a truth table where the eight valuations 0000, 1111, 1010, 0101,
0110, 1001, 0011, 1100 are valid: then this cannot be the truth table of a logi-
cal proportion. Let us consider the fifth statement. Given a logical proportion
T (a, b, c, d) of the form (I1

(a,b) ≡ I2
(c,d))∧(I3

(a,b) ≡ I4
(c,d)), reflexivity enforces the

two equivalences I1
(a,b) ≡ I2

(a,b) and I3
(a,b) ≡ I4

(a,b). This tells us that the indica-
tors I1 and I2 coincide, as well as I3 and I4. Since we have four indicators, there
are four such equivalences a∧b ≡ c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d.
Since a logical proportion is defined from two distinct, non-ordered equiva-
lences, there are 4×3/2 = 6 proportions satisfying T (a, b, a, b). They are given
in Table 3 where we omit the ∧ symbol for the benefit of more compact nota-
tions. We recognize the proportions A, P , and the four conditional proportions
b|a :: d|c, a|b :: c|d, a|b :: c|d, and b|a :: d|c. Similar proofs can be made for the
two last statements; see Appendix B. �

4.3. Symmetry

Observing Table 1, there is a common property clearly satisfied by P, A, R and
I, the so-called symmetry property which can be stated as (where T denotes a
proportion):

T (a, b, c, d) → T (c, d, a, b)

This property tells us that we can exchange the pair (a, b) with the pair (c, d) in
the logical proportion T . This is an expected property for analogical proportion
for instance, since if a is to b as c is to d holds, we want c is to d as a is to
b to hold as well. Nevertheless, symmetry is a quite rare property as stated in
the following result:

Proposition 6. There are only 12 proportions satisfying symmetry. Apart from
A,R, P, I (homogeneous proportions), there are four conditional proportions
and four hybrid proportions satisfying symmetry. (These proportions are shown
in Table 14 in Appendix A)
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Proof. See Appendix B. �

Then it can be checked in Table 14 that the six uniform logical proportions
are symmetrical proportions. But the six other symmetrical proportions are not
weakly uniform.

This result points out that we have to be careful: despite the definitions
of proportions are based on equalities between two terms (involving negation
and conjunction), the symmetrical nature of an equality is not sufficient to
ensure the symmetry of all logical proportions. Only few of them satisfy the
symmetry property (12 over 120), although it may be considered as being a
desirable property for something which is called ‘proportion’. Note that none of
the semi-hybrid proportions and none of the degenerated ones is symmetrical.

4.4. Central Permutation and Other Permutations

As highlighted in the introduction, a well known property of mathematical
proportions, often called central permutation property, is the fact that we can
exchange the two central elements of such a proportion without changing its
truth value. We can check on the truth table that this property is still satisfied
when dealing with its logical counterpart, namely analogical proportion. The
central permutation property is formally expressed by:

T (a, b, c, d) → T (a, c, b, d)

We have the following result:

Proposition 7. There are exactly 16 proportions satisfying the central permu-
tation property. Only two homogeneous proportions A and I satisfy it.

Proof. See Appendix B. �

We may also consider other permutations: since we have four variables, there
are exactly six ways to exchange two variables among four. Notably, it can be
checked that:

• A and I are the only homogeneous proportions to satisfy central
and external permutations, namely, T (a, b, c, d) → T (a, c, b, d) and
T (a, b, c, d) → T (d, b, c, a);

• P and I are the only homogeneous proportions to satisfy the permuta-
tions T (a, b, c, d) → T (b, a, c, d) and T (a, b, c, d) → T (a, b, d, c);

• R and I are the only homogeneous proportions to satisfy the permuta-
tions T (a, b, c, d) → T (c, b, a, d) and T (a, b, c, d) → T (a, d, c, b).
Inverse paralogy is thus the unique homogeneous proportion to satisfy

the six permutations. In fact, a stronger result holds concerning this logical
proportion.

Proposition 8. Inverse paralogy is the unique logical proportion to satisfy the
six permutations.

Proof. It is easy to check that these permutations induce a partition of the
set of valuations into five classes, each of them being closed for these six
permutations:
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• the class {0000} and the class {1111}
• the class {0111, 1011, 1101, 1110}
• the class {1000, 0100, 0010, 0001}
• the class {0101, 1100, 0011, 1010, 1001, 0110}

Taking into account that a logical proportion is true for only 6 valu-
ations (Proposition 1), we only have three options: a proportion valid
for {0000}, {1111} and {0111, 1011, 1101, 1110}, or for {0000}, {1111} and
{1000, 0100, 0010, 0001}, or for {0101, 1100, 0011, 1010, 1001, 0110}. It appears
that the latter class is just the truth table of inverse paralogy. Lemma 5
(see Appendix B) allows us to achieve the proof since there is no logi-
cal proportion valid for the class {0111, 1011, 1101, 1110} or for the class
{1000, 0100, 0010, 0001}. �

The two following propositions lay bare the links between the different
permutations and the homogeneous proportions.

Proposition 9.

• A and I are the only logical proportions satisfying symmetry and being
stable for permutation p23, i.e. the permutation of the means. The same
result holds replacing p23 by p14 (permutation of extremes).

• P and I are the only logical proportions satisfying symmetry and being
stable for permutation p12. The same result holds replacing p12 by p34.

• There are 10 proportions including only 2 homogeneous,8 namely R and
I, satisfying symmetry and being stable for permutation p24. The same
result holds replacing p13 by p24.

Proof. See Appendix B. �

We have the following result:

Proposition 10. A is the unique proportion satisfying T (a, b, a, b) and p23 (and
thus also T (a, a, b, b)). P is the unique proportion satisfying T (a, b, a, b) and p34
(and thus also T (a, b, b, a)). R is the unique proportion satisfying T (a, a, b, b)
and p24 (and thus also T (a, b, b, a)).

Proof. Let us consider the first statement for instance. T (a, b, a, b) implies that
T (0, 0, 0, 0), T (1, 1, 1, 1), T (1, 0, 1, 0) and T (0, 1, 0, 1) hold. Adding the fact that
T is stable for the permutation of the mean p23, we get that T (1, 1, 0, 0) and
(T (0, 0, 1, 1) hold as well, leading to the truth table of A.

A similar reasoning is still valid for P and R and achieves the proof. �

4.5. Code Independency

We now consider an important property which has been already suggested
and that we call code independency: this property can be observed in Table 1.
Indeed from a semantical viewpoint, it may be meaningful for a proportion
to be independent from the coding convention (i.e., true represented by 1 and

8 We made a mistake in a previous paper [65], where we suggested that the two homogeneous
R and I were the only ones to satisfy this property.
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Table 4. The four hybrid proportions satisfying code independency

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

false by 0). That is why if we switch the values 0 and 1 in the coding of a given
valuation, the truth value of the proportion should remain the same. This is
formally expressed by the code independency property:

T (a, b, c, d) → T (a, b, c, d)

Unfortunately, many logical proportions do not satisfy code independency, and
we have the following result:

Proposition 11. There are exactly eight proportions satisfying the code indepen-
dency property: the four homogeneous proportions A,R, P, I, and four hybrid
proportions.

Proof. See Appendix B. �
We exhibit these four hybrid proportions in Table 4 (where we use the same
convention as in Table 3).

It is remarkable that, apart from A,R, P, I which are the homogeneous
proportions, we get the hybrid proportions of Table 4 simply by negating one
of the four variables in the equivalences. For instance, the first hybrid one
corresponds to the definition of A(a, b, c, d), the second to R(a, b, c, d), the
third one to I(a, b, c, d), and the fourth one to P (a, b, c, d).
Moreover, the inspection of Table 4 reveals that none of these four hybrid
proportions are symmetrical. Then, this remark together with Proposition 11
lead to the following remarkable proposition.

Proposition 12. There are exactly four proportions satisfying code indepen-
dency and symmetry. They are the four homogeneous proportions A,R, P, I.

This result confirms the central role played by the proportions A, R, P and I
as the most important ones.

4.6. Transitivity

If we remember that analogical proportion describes an equality between
ratios, it is natural to expect a kind of transitivity property to hold for analogy
A and more generally for some other proportion T which could be stated as
follows:

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

It can be checked that the analogical proportion A, as well as the paralogical
proportion P , are transitive in that sense. The question is to find how many
logical proportions satisfy this property. We have the following result:

Proposition 13. There are 54 transitive proportions: 2 homogeneous A and P ,
4 conditional proportions, namely (ab ≡ cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡
cd); (ab ≡ cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡ cd), and the 48 degenerated
proportions.
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Table 5. Chaining properties for homogeneous proportions

Chaining Result
A ∧A A
R ∧R A
P ∧ P P
I ∧ I P
A ∧R R
P ∧ I I

Proof. See Appendix B. �

The fact that the 48 degenerated proportions are transitive should not
come as a surprise, as it is a straightforward consequence of their syntactic
pattern structure involving only 3 indicators. The transitivity of the four con-
ditional proportions is due to the fact that they express equivalences between
conditional objects, namely b|a :: d|c, a|b :: c|d, a|b :: c|d, and b|a :: d|c.

Moreover, it is worth noticing that for logical proportions, reflexivity
entails both symmetry (as it can be checked from Tables 3 and 14), and tran-
sitivity (due to the above proposition). In other words, a reflexive logical pro-
portion is an equivalence relation.

Besides, having a closer look on the homogeneous proportions, we can
easily build Table 5 which gives what T (a, b, c, d) ∧ T (c, d, e, f) entails for the
four homogeneous proportions.

4.7. Other Interesting Properties Involving Negation

It is quite tempting to consider a is to b as a is to b should hold or even
a is to a as b is to b just because of a formal symmetry. But, for instance,
0110 does not validate the analogical proportion, which means that none of
these two properties is satisfied by the analogical proportion. Nevertheless, for
a given proportion T , it is worth to consider if T (a, b, a, b), T (a, a, b, b) or even
T (a, b, b, a) holds.

• T (a, b, a, b) will be called semi-mirroring property and
• T (a, a, b, b) will be called negation-compatibility property.
• T (a, b, b, a) will be called exchange-mirroring property.

Proposition 14. A logical proportion satisfying two properties among semi-
mirroring, negation-compatibility and exchange-mirroring satisfies the
remaining one, and is unique. This is the inverse paralogy I.

Proof. Let us choose for instance semi-mirroring and negation-compatibility.
First of all, we can observe that, for a proportion T to satisfy semi-
mirroring, means the four valuations 1010,1001,0110,0101 are valid. For
negation-compatibility to be satisfied, the four valuations 1100,0011,1001,0110
should be valid. Then the truth table of a proportion satisfying both proper-
ties should contains all these valuations i.e. 1010,1001,0110,0101,1100,0011:
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this is the truth table of inverse paralogy I. A similar reasoning applies for the
remaining of the proposition. �

When we consider the three properties separately, we get the following
result:

Proposition 15. Among the 120 logical proportions, only 6 (among which the
homogeneous R and I) satisfy semi-mirroring, only 6 (among which the
homogeneous P and I) satisfy negation-compatibility, and only 6 (among
which the homogeneous A and I) satisfy exchange-mirroring.

Proof. See Appendix B. �
4.8. Equation Solving

As said in the introduction, the idea of proportion is closely related to the
idea of extrapolation, i.e. to guess/compute a new value on the ground of
existing values. In other words, if for some reason, it is believed or known that
a proportion holds between four binary items, three of them being known,
then one may try to infer the value of the fourth one, at least in the case this
extrapolation leads to a unique value.

For a proportion T , there are exactly six valuations v such that
v(T (a, b, c, d)) = 1. In our context, the problem can be stated as follows. Given
a logical proportion T and a valuation v such that v(a), v(b), v(c) are known,
does it exist a Boolean value x such that v(T (a, b, c, d)) = 1 when v(d) = x,
and in that case, is this value unique?

We will refer to this problem as “the equation solving problem”, and for
the sake of simplicity, a propositional variable a is denoted as its truth value
v(a), and we use the equational notation T (a, b, c, x) = 1, where x ∈ {0, 1}
is unknown. First of all, it is easy to see that there are always cases where
the equation has no solution. Indeed, the triple a, b, c may take 23 = 8 values,
while any proportion T is true only for six distinct valuations, leaving at least
two cases with no solution. For instance, when we deal with analogy A, the
equations A(1, 0, 0, x) and A(0, 1, 1, x) have no solution.

We first focus on the four homogeneous logical proportions A,R, P, I that
have been previously highlighted. We have the following results

Proposition 16. The analogical equation A(a, b, c, x) is solvable iff (a ≡ b) ∨
(a ≡ c) holds.
The reverse analogical equation R(a, b, c, x) is solvable iff (b ≡ a) ∨ (b ≡ c)
holds.
The paralogical equation P (a, b, c, x) is solvable iff (c ≡ b) ∨ (c ≡ a) holds.
In each of the three above cases, when it exists, the unique solution is given by
x = c ≡ (a ≡ b), i.e. x = a ≡ b ≡ c.
The inverse paralogical equation I(a, b, c, x) is solvable iff (a 
≡ b) ∨ (b 
≡ c)
holds. In that case, the unique solution is x = c 
≡ (a 
≡ b).

Proof. By immediate investigation of the truth tables. �
As we can see, the first three homogeneous proportions A,R, P behave

similarly. Still, their conditions of equation solvability differ. Moreover, it can
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be checked that at least two of these proportions are always simultaneously
solvable. Besides, when they are solvable, there is a common expression that
yields the solution. This suggests a close relationship between A, R, and P .
This strong link between these three homogeneous proportions will be made
clear thanks to Proposition 21 in the next section. This contrasts with propor-
tion I which in some sense behaves in an opposite manner. This will be also
made clearer in the next section.

Generally speaking, it should be clear that the unicity of the solution of
an equation T (a, b, c, x) = 1 when it exists, is unique if and only if T is such
that each of the six lines of its truth table starts with a different triple of values
for a, b, c. We have the following result.

Proposition 17. There are 64 proportions for which the solution is always
unique when it exists, and 56 proportions for which the equation T (a, b, c, x) =
1 may have 2 solutions for some entries. These 56 proportions divide into 8
conditional ones, 8 hybrid ones, 8 semi-hybrid ones, and 32 degenerated ones.

Proof. see Appendix B. �

As already said, homogeneous proportions A, R, P and I always lead to
a unique solution when it exists. Remarkably enough, this is also true for half
of the conditional ones (e.g., b|a :: c|d, which is true for 1100, 1010, 0111, 0101,
0011, 0001), and false for the other half (e.g. b|a :: d|c, which is true for 1111,
1010, 0101, 0100, 0001, 0000).

As we have seen, the four homogeneous proportions A,R, P, I not only
enjoy interesting properties but they are, in some sense, the easiest to interpret.
This is why we further investigate these proportions and their links in the
following section.

Table 6 summarizes the results obtained regarding the potential prop-
erties of the logical proportions. In the table, we provide the number of pro-
portions satisfying the target property and due to their particular status, we
specify which are the homogeneous ones if any.

As can be seen from Table 6, homogeneous proportions look especially
interesting, since they enjoy many properties. It is why the next main section
is devoted to a deeper investigation of these proportions. Before that, we close
the current section with a discussion that parallels logical proportions and
numerical proportions in terms of properties. Again, as we are going to see,
homogeneous proportions stand out.

4.9. To What Extent Logical Proportions are Proportions

Since numerical proportions are paradigmatic of the idea of a proportion, it is
worth understanding why the logical proportions discussed in this paper really
deserve the status of “proportion”. In the numerical case, due to the symmetry
of the = operator and to the properties of the multiplication (for geometric
proportions) or addition (for arithmetic proportions), these proportions both
enjoy a set of well known properties that we recall here in the case of geometric
proportions (a similar parallel could be made with arithmetic proportions,
using opposites as inverses).
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Table 6. Properties of logical proportions

Property name Formal definition nb prop. Homoge.
full identity T (a, a, a, a) 15 A,R, P
1-full identity T (1, 1, 1, 1) ∧ ¬T (0, 0, 0, 0) 30 none
0-full identity T (0, 0, 0, 0) ∧ ¬T (1, 1, 1, 1) 30 none
reflexivity T (a, b, a, b) 6 A,P
reverse reflexivity T (a, b, b, a) 6 R,P
sameness T (a, a, b, b) 6 A,R
symmetry T (a, b, c, d) → T (c, d, a, b) 12 A,R, P, I
means permut. T (a, b, c, d) → T (a, c, b, d) 16 A, I
extremes permut. T (a, b, c, d) → T (d, b, c, a) 16 A, I
all permut. ∀i, j, T (a, b, c, d) → T (pi,j(a, b, c, d)) 1 I
transitivity T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f) 54 A,P

code independ. T (a, b, c, d) → T (a, b, c, d) 8 A,R, P, I

semi-mirror. T (a, b, a, b) 6 R, I

exchange mirror. T (a, b, b, a) 6 A, I

negation compatib. T (a, a, b, b) 6 P, I

1. When a
b = c

d holds, then c
d = a

b holds as well. Its counterpart for logical
proportions is formally expressed via the “symmetry property”, i.e.

T (a, b, c, d) → T (c, d, a, b)

2. There is a well-known property, pertaining to “the permutation of
extremes and means”, which in fact covers a pair of properties:

• means’s permutation: if a
b = c

d holds then a
c = b

d holds;

• extremes’s permutation: if a
b = c

d holds then d
b = c

a holds.

The counterpart of these two properties in the logical setting is expressed
as

T (a, b, c, d) → T (a, c, b, d) for the means’s permutation

and

T (a, b, c, d) → T (d, b, c, a) for the extremes’s permutation

3. With geometric proportions, we also have a
b = c

d implies
1
a
1
b

=
1
c
1
d

. Consid-
ering the negation operator as the counterpart for logical proportions of
the inverse for geometrical proportion, the formal expression of the above
property writes:

T (a, b, c, d) → T (a, b, c, d)

i.e., what we have called “code independency”. Another reason to look
for this property is to note that a numerical proportion a

b = c
d holds

independently of the base used for encoding numbers. Therefore, it seems
natural to expect the logical proportions behavior to be independent of
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the way we encode items in terms of the truth or the falsity of properties.
For instance a ∧ b represents what is specific to a w.r.t. b, without any
consideration about the way we represent the truth and the falsity. As
a consequence, the formula defining a proportion should be valid when
we switch 0 to 1 and 1 to 0 in the encoding of a valuation. Which is, as
above, exactly translated into

T (a, b, c, d) → T (a, b, c, d)

4. In the numerical case, a
b = c

d and c
d = e

f entails a
b = e

f . For a logical
proportion T , this formally translates into the transitivity property:

T (a, b, c, d) ∧ T (c, d, e, f) → T (a, b, e, f)

5. Finally, when dealing with geometrical proportions, we have the following
trivial proportions:

• a
a = a

a whose Boolean counterpart is T (a, a, a, a) (full identity),
• a

b = a
b whose Boolean counterpart is T (a, b, a, b) (reflexivity),

• a
a = b

b whose Boolean counterpart is T (a, a, b, b) (sameness),

• a
b =

1
b
1
a

whose Boolean counterpart is T (a, b, b, a)
(exchange-mirroring).

We have investigated in details the set of the 120 logical proportions to identify
the ones satisfying some of the properties above. It appears that only one
logical proportion satisfies all the above requirements, namely the analogical
proportion A. Regarding the other proportions, Table 6 highlights the fact
that the homogeneous proportions still behave quite similarly to numerical
proportions.

5. Back to Homogeneous Proportions

Proposition 11 has made clear how remarkable are proportions A,R, P, I; see
also [65]. Indeed they are the only four logical proportions to enjoy two key
properties: symmetry (the ordering between pairs (a, b) and (c, d) does not
matter in the comparison), and code independency (the truth value of the
proportion remains unchanged with a positive or a negative encoding). In this
section, we study the links between A, R, P , and I, some additional properties,
and we investigate the structures of opposition inside these proportions.

Starting with a commonality/specificity analysis of a pair of objects,
we first retrieve the classical postulate-based view of analogical proportions,
together with two other related systems of postulates. It turns out that the
logical proportions A,R, P introduced in the previous sections are the only
Boolean models (up to logical equivalence) satisfying these respective systems.
We close the subsection with a geometrical view of proportions A,R, P , which
emphasizes their close relationship.

We shall see in the rest of the section how I is related to these proportions
through another system of postulates involving negation.
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5.1. Postulates for Analogical Proportion and Two Related Proportions

In the following, we show by a simple analysis first suggested in [60] that an
analogical proportion-like statement a is to b as c is to d, should still hold
when permuting the central items b and c. Moreover, this analysis also reveals
the existence of two other sister proportions. Note that in this subsection
we continue to use lowercase letters, a, b, c, d although it may refer to items
described by vectors of Boolean variables rather than to a unique Boolean
variable.

An analogical statement a is to b as c is to d puts in parallel the pair
(a, b), and the pair (c, d). This leads to consider what is common to a and
b (let us denote it com(a, b)), and what is specific to a and not shared by b
(we denote it spec(a, b)). So com(a, b) can be seen as a set of binary features
shared by a and b, while spec(a, b) is a set of binary features possessed by a
and not by b. Clearly, com(a, b) and spec(a, b) are then disjoint subsets. Clearly
com(a, b) = com(b, a) and generally, spec(a, b) 
= spec(b, a). With this view,
each item can be represented through its comparison with another one. Thus,

• a is represented by the pair (com(a, b), spec(a, b)),
• b by the pair (com(a, b), spec(b, a)),
• c by the pair (com(c, d), spec(c, d)),
• d by the pair (com(c, d), spec(d, c)).

We notice that when going from a to b (resp. from c to d), spec(a, b)
is changed into spec(b, a) (resp. spec(c, d) is changed into spec(d, c)), while
com(a, b) and com(c, d) are the respective common parts of the pairs (a, b)
and (c, d). An analogical statement such as a is to b as c is to d amounts
to compare the pairs (a, b) and (c, d). This can be done in terms of what is
common, or in terms of what is specific. Namely, one may state that

• the way a and b differ is the same as the way c and d differ, namely

spec(a, b) = spec(c, d) and spec(b, a) = spec(d, c) (1)

• the way a and b differ is the same as the way d and c differ, namely

spec(a, b) = spec(d, c) and spec(b, a) = spec(c, d) (2)

• a and b are similar in the same as the way as c and d are similar, namely

com(a, b) = com(c, d) (3)

Note that the three options preserve symmetry : Comparing a, b and c, d, or
comparing c, d and a, b are equivalent.

Let us consider first the statement (1). If we compare a represented
as (com(a, b), spec(a, b)) to c represented as (com(c, d), spec(c, d)), it appears
due to statement (1) that their common part com(a, c) includes spec(a, b) =
spec(c, d), while com(a, b) is changed into com(c, d) when going from a to
c. Note that com(a, b) and com(c, d) may have a non empty common part
com(a, b, c, d). Thus, in set terms, com(a, c) = spec(a, b) ∪ com(a, b, c, d) and
spec(a, c) = com(a, b)\ com(a, b, c, d). We also have spec(c, a) = com(c, d)\
com(a, b, c, d). Similarly, when comparing b and d, the common part is
spec(b, a)∪ com(a, b, c, d) = spec(d, c)∪ com(a, b, c, d) due to (1) and com(a, b)
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is again changed into com(c, d) when going from b to d (i.e. com(a, b) \
com(a, b, c, d) = spec(b, d), and com(c, d)\ com(a, b, c, d) = spec(d, b)). This
amounts to write spec(a, c) = spec(b, d), and spec(c, a) = spec(d, b). This is
exactly statement (1) where b and c are exchanged.

Thus choosing (1), we have retrieved the central permutation postu-
late that most authors (see, e.g., [17]) associate with analogical proportion
(together with the symmetry already mentioned). To avoid any confusion with
the previous Boolean model of the analogy proportion, we stick to the tradi-
tional notation a : b :: c : d (as recalled in the introduction). This leads to the
following postulates:

• a : b :: a : b (and a : a :: b : b) hold (reflexivity).
• if a : b :: c : d holds then a : c :: b : d should hold (central permutation)
• if a : b :: c : d holds then c : d :: a : b should hold (symmetry).

Remember that the logical proportion A satisfies the three above postulates.
Since, as seen in the proof of Proposition 8, reflexivity and central permutation
lead to the truth table of the analogical proportion, analogical proportion is
the unique Boolean formula (up to equivalence) satisfying the three above pos-
tulates. Note that symmetry applies here to the comparison between two pairs
of items (a, b) and (c, d), but not internally since a : b cannot be replaced with
b : a. Indeed a : b :: b : a cannot hold since spec(a, b) 
= spec(b, a) in general.
Such a postulate is more in the spirit of option (2) that we consider now.

Still focusing on specificities, we can consider a new proportion denoted
with “!” where a ! b :: c ! d holds as soon as spec(a, b) = spec(d, c) and
spec(b, a) = spec(c, d). It expresses the reverse analogy a is to b as d is to c,
which obeys the postulates (as can be checked):

• a ! b :: b ! a (and a ! a :: b ! b) should hold (reverse reflexivity)
• if a ! b :: c ! d holds then c ! b :: a ! d should hold (odd permutation)
• if a ! b :: c ! d holds then c ! d :: a ! b should hold (symmetry).

Except if a = b, a ! b :: a ! b does not hold in general. Having investigated all
the possibilities from the viewpoint of specificities, it seems natural to focus
on the shared properties, which leads to introduce a new kind of proportion
denoted with “ ;”. Then, we have no other choice than defining a ; b :: c ; d
as com(a, b) = com(c, d). We decide to call this new proportion paralogical
proportion. It states that what a and b have in common, c and d have it also.
Obviously, this proportion does not satisfy the permutation properties of its
two sister relations, but rather:

• a ; b :: a ; b and a ; b :: b ; a always holds (bi-reflexivity)
• if a ; b :: c ; d holds b ; a :: c ; d should hold (even permutation)
• if a ; b :: c ; d holds then c ; d :: a ; b should hold (symmetry).

In summary, the three logical proportions A,R, P separately satisfy a
set of three essential postulates, as seen above. These postulates, which are
first order axioms, can be considered as defining three types of relation that
we called analogy, reverse analogy and paralogy. It is has to be noticed that
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A,R, P are the unique Boolean formulas (up to equivalence) satisfying their
corresponding set of postulates.

It is quite clear that such relations can be defined on other domains than
the Boolean one considered in the previous sections. The link with logical pro-
portions is obvious: analogical (resp. reverse analogical, paralogical) proportion
is an analogy (resp. reverse analogy, paralogy) on the Boolean universe. In such
a general setting, it is worth noticing that full identity is easily deducible for
all relations obeying one of the three above sets of postulates, but this is not
the case for transitivity (see [61]). This simply means that the Boolean model
of logical proportions that we suggest in this paper is richer than a basic model
based on the postulates of analogy.

Starting from the postulates of analogy, it is a simple exercise to prove
that the following properties are satisfied by an analogy in general (and then,
as a particular case, by the analogical proportion A):

Proposition 18.

a : b :: c : d → a : c :: b : d
a : b :: c : d → d : b :: c : a
a : b :: c : d → d : c :: b : a
a : b :: c : d → c : d :: a : b
a : b :: c : d → b : d :: a : c
a : b :: c : d → c : a :: d : b
a : b :: c : d → b : a :: d : c

This means that if a : b :: c : d holds then a total of 8 permutations
among 24 hold (including a : b :: c : d) as analogies.
Let us now consider the two following permutations (a, b, d, c) and (a, d, c, b),
which do not belong to the previous set of permutations:

Proposition 19. For an analogy, we have:

a : b :: c : d � a : b :: d : c
a : b :: c : d � a : d :: c : b

Proof. A simple way to get it is to consider the Boolean model where the
valuation 0101 validates the left side of the first implication but not the right
side. The valuation 0011 does the same job for the second implication. �

As a consequence, among the 24 combinations of a, b, c, d, we then distin-
guish 3 classes of permutations related to analogy that we exhibit in Table 7,
with representative on top in bold font.

If one element (x, y, z, t) of a class is such that x : y :: z : t holds,
then a similar analogy holds for each element in the whole class. The previous
proposition exhibits the fact that if we have an element of a class being an
analogy, there is no way to conclude for the two remaining classes.
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Table 7. Permutation classes of analogy

a b c d b a c d c b a d
a c b d b c a d c a b d
d b c a d a c b d b a c
d c b a d c a b d a b c
c d a b c d b a a d c b
b d a c a d b c b d c a
c a d b c b d a a c d b
b a d c a b d c b c d a

The following proposition, easily deducible from the postulates, estab-
lishes a strong link between analogy, reverse analogy and paralogy:

Proposition 20. a : b :: c : d ≡ a ! b :: d ! c and a : b :: c : d ≡ a ; d :: c ; b

Thanks to Proposition 20, we have that if a : b :: c : d holds, then
b ! a :: c ! d and c ; b :: a ; d hold. These expressions correspond to the three
permutations appearing in the first row of Table 7. But b ! c :: a ! d (corre-
sponding to row 2 of column 2) does not hold: in that case, it is b ; c :: a ; d that
holds. This simply means that we cannot go from one column to the next one
through a simple operator in Table 7. The above proposition states the inter-
play between the three sets of three postulates discussed above. Since A,R, P
satisfy reflexivity, symmetry, and respectively central permutation (p23), odd
permutation (p13), and even permutation (p12), Proposition 20 can be restated
in the Boolean model:

Proposition 21. A(a, b, c, d) ≡ R(a, b, d, c) and A(a, b, c, d) ≡ P (a, d, c, b)

Proposition 21 may be also directly derived from the definitions of propor-
tions A,R, P in terms of equivalence between indicators, where their syntactic
similarity reflects semantical links that are also visible on their truth tables.

To highlight the differences and the relations between the three propor-
tions A,R, P , we may also revisit the “parallelogram metaphor” often used
when discussing analogical reasoning in a numerical setting [4,44,77], since
the parallel between the pairs (a, b) and (c, d) is reminiscent of the equality of
two vectors.

It amounts, for instance, to consider a, b, c and d as elements of the real
plan R

2, and to interpret a : b :: c : d as
−→
ab =

−→
cd. This vectorial equality

holds because the coordinates of the four points a, b, c, d satisfy an arithmetic
analogy: ∀i ∈ {1, 2}, ai − bi = ci − di. It simply means that the quadrilateral
abcd is a parallelogram.

In contrast with the Boolean case where an equation A(a, b, c, x) is not
always solvable (see Proposition 16), given three points a, b, c of the real plan
R

2, one can always find a point d such that abdc is a parallelogram (see Fig. 2).
In fact, from three non aligned points, one can build three distinct parallelo-
grams; it is the geometrical counterpart of the permutations linking the three
proportions A,R, P via Proposition 21. See Fig. 2 where the index of d refers
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Figure 2. Three parallelograms

to the proportion that generates it from (a, b, c). In Fig. 2, we have used dif-
ferent types of lines (with different width, dotted or not, arrows or not) to try
to help visualizing the three parallelograms.

It is possible to complete the Fig. 2 in the following way, in order to
introduce the inverse paralogy I. Since I can be related to A through the
relation I(a, b, c, d) = A(a, b, c, d), we introduce two points associated to b and
c, as the symmetric of b and c with respect to a. dI is then the symmetric
of dA. We thus obtain Fig. 3, where many relations can be read such that
I(a, b, c, d) = A(a, b, c, d) (i.e., dI is obtained from a, b and c, as dA from a, b
and c), P (a, b, c, d) = R(a, b, c, d) (which acknowledges the symmetry of dP

and dR with respect to a), or A(b, c, a, d) = P (a, b, c, d) (i.e., dP is obtained by
applying to b, c and a the construction of dA from a, b and c), or A(c, a, b, d) =
R(a, b, c, d) (i.e., dP is obtained by applying to c, a, and b the construction of
dA from a, b and c), as well as the fact that A(b, c, c, b) holds.

5.2. Additional Properties of Homogeneous Proportions

Let us come back to the Boolean setting, where the logical proportions live.
We now lay bare some remarkable properties of the proportions A,R, P, I. We
first provide some equivalent expressions for these proportions, before study-
ing their behavior with respect to conjunction, disjunction and negation, and
investigating the power of A as a functionally complete logical operator.

Using the link between proportions A and P expressed by Proposition 21
(and De Morgan laws), we come to a new characterization for analogical pro-
portion which involves the pair (a, d) of the extremes and the pair (b, c) of the
means:

A(a, b, c, d) ≡ (a ∧ d ≡ b ∧ c) ∧ (a ∨ d ≡ b ∨ c)
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Figure 3. Geometric view of the four homogeneous proportions

This property will be considered again when discussing the works of Piaget
[57] where this characterization is just taken as the definition of a logical pro-
portion (in Piaget’s sense). Similarly, using Proposition 21 again, one obtains
equivalent expressions for R or for P , namely:

R(a, b, c, d) ≡ (a ∧ c ≡ b ∧ d) ∧ (a ∨ c ≡ b ∨ d)
P (a, b, c, d) ≡ (a ∧ b ≡ c ∧ d) ∧ (a ∨ b ≡ c ∨ d)

The above characterizations of proportions A,R, P , involving only con-
junction and disjunction (without negation) make the investigation of their
behavior w.r.t. these Boolean operators easier. We only consider the case of A
below, for which it is easy to establish the following proposition:

Proposition 22.

A(a ∨ b, a, b, a ∧ b) and A(a, a ∨ b, a ∧ b, b)
A(a, b, c, d) → A(a ∨ e, b ∨ e, c ∨ e, d ∨ e)
A(a, b, c, d) → A(a ∧ e, b ∧ e, c ∧ e, d ∧ e)
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Table 8. Behavior of A,R, P, I wrt negation

Analogy Reverse analogy
A(a, b, b, a) R(a, b, a, b)
A(a, b, b, a) R(a, b, a, b)
A(a, b, c, d) → A(a, b, c, d) R(a, b, c, d) → R(a, b, c, d)
Paralogy Inverse paralogy
P (a, a, b, b) I(a, b, b, a), I(a, b, a, b), I(a, a, b, b)
P (a, a, b, b) I(a, b, b, a), I(a, b, a, b), I(a, a, b, b)
P (a, b, c, d) → P (a, b, c, d) I(a, b, c, d) → I(a, b, c, d)

The two last statements express a form of compatibility of the analogical
proportion with respect to the disjunction or conjunction with a Boolean con-
stant. The first expression shows that any Boolean pair (a, b) is in analogy with
its meet and its join. Thanks to Proposition 21, counterparts of these prop-
erties can be established for both R and P . Regarding the inverse paralogy
I, this proportion is not directly linked to the previous ones through a per-
mutation. However, a link can be established through the use of the negation
operator.

The behavior of A,R, P, I proportions with respect to negation is sum-
marized in Table 8 which is easily derived from their definitions. The third
row of this table simply highlights the code independency property. In terms
of negation, the link between A,R, P, I proportions is as follows:

Proposition 23.

A(a, b, c, d) ≡ R(a, b, c, d),

A(a, b, c, d) ≡ P (a, b, c, d),

A(a, b, c, d) ≡ I(a, b, c, d)

Proof. This is an immediate consequence of our definitions: for instance, start-
ing from the definition of A(a, b, c, d), a∧ b ≡ c∧ d and a∧ b ≡ c∧ d, negating
b and d gives a ∧ b ≡ c ∧ d and a ∧ b ≡ c ∧ d, which is exactly the definition of
P (a, b, c, d). �

It is remarkable that I cannot be linked to the other proportions without
the use of negation: this emphasizes the fact that, among the four homogeneous
logical proportions, I plays a particular role. In fact, a general inverse paralogy
could also be defined via a set of postulates. We have diverse options. For
instance, using the symbol? to denote this proportion:

• ¬(a ? b :: a ? b) should hold (non reflexivity)9

• if a ? b :: c ? d holds then a ? c :: b ? d should hold (central permutation)

9 It has to be noticed that I, viewed as a binary relation between pairs is not irreflexive
(S is irreflexive iff ∀x, ¬S(x, x)) in the classical sense, as 0101 and 1010 are valid valuations
for I.
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• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry).
or even

• ¬(a ? a :: b ? b) should hold (non sameness)
• if a ? b :: c ? d holds then b ? a :: c ? d should hold (even permutation)
• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry).

As a consequence, we have the following result:

Proposition 24. I is the unique Boolean formula (up to equivalence) satisfying
these two sets of postulates.

Proof. See Appendix B. �

However, we may also notice that if we consider the following other set of pos-
tulates for instance, which is the set of postulates related to Reverse Analogy
R but negating the first postulate:

• ¬(a ? b :: b ? a) should hold (non reverse reflexivity)
• if a ? b :: c ? d holds then c ? b :: a ? d should hold (odd permutation)
• if a ? b :: c ? d holds then c ? d :: a ? b should hold (symmetry),

I is not the unique proportion that satisfies this set of postulates in the Boolean
model. For instance, the conditional proportion a|b :: c|d satisfies the above
postulates.
Another natural question is to wonder if each of the logical proportions
A,R, P, I is functionally complete. For instance, let us see if we recover all
the Boolean connectives by using the analogical proportion only. It is quite
straightforward to check the following equivalences:

• 1 ≡ A(1, 1, 1, 1), or more generally 1 ≡ A(a, a, a, a),
• 0 ≡ A(0, 0, 0, 1) or more generally 0 ≡ A(0, a, a, 1),
• a ≡ A(a, 1, 1, 1) and ¬a ≡ A(a, 0, 0, 0),
• a ∧ b ≡ A(1, a, b, 1) and ¬a ∧ ¬b ≡ A(0, a, b, 0),
• a ∧ ¬b ≡ A(1, a, b, 0) and ¬a ∧ b ≡ A(0, a, b, 1),
• (a ≡ b) ≡ A(a, b, 1, 1),
• ¬(a ≡ b) ≡ A(a, 0, 1, b) (i.e., the exclusive or connective).

Due to the previous equivalences, it appears that the analogical proportion A,
considered as a quaternary connector, is functionally complete since we can
express negation and conjunction as a single analogical proportion. Similar
results hold for the 3 other homogeneous proportions; we have, e.g. ¬a ≡
I(a, 1, 1, 0) and a ∧ b ≡ I(a, 0, 0, b) (since a ∧ b ≡ A(1, a, b, 1) ≡ A(a, 1, 1, b) ≡
I(a, 0, 0, b)).

Starting from A(a, a∨ b, a∧ b, b), using the permutation property of ana-
logical proportion, we also see that:

• a ≡ A(1, a∨ b, a∧ b, b) since A(1, a∨ b, a∧ b, b) only holds when a is true,
whatever the truth value of b. Similarly, b ≡ A(a, a ∨ b, a ∧ b, 1),

• a ∨ b ≡ A(a, 1, a ∧ b, b) (similar reasoning),
• a ∧ b ≡ A(a, a ∨ b, 1, b) (similar reasoning).

Nevertheless, the disjunction a ∨ b cannot be defined via a unique ana-
logical proportion involving only a, b, 0 and 1. The reason is that a valuation
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σ validates a proportion A(a, b, c, d) only when there is an even number of
variables having the truth value 1. But the three valuations leading (a, b) to
(1, 1) or (1, 0) or (0, 1) validate a ∨ b, which implies that we should have at
least one valuation with an odd number of 1 validating A(a, b, c, d) in order to
have an equivalence. This reasoning applies to all the other proportions R,P, I
and shows that it is not possible to define the ∨ connective using only one of
the homogeneous proportion among R,P or I.

5.3. Homogeneous Proportions and Piaget’s Group of Transformations

In his studies about the principles of knowledge acquisition by a human being,
the psychologist Jean Piaget [56] investigated basic transformations of state-
ments which are at work in human language. He identified a group of four
transformations, denoted I,N ,R, C which operate on Boolean logical formu-
las of the form φ(p, q, r, . . .). They are defined in the following way:

• the identity I: I(φ(p, q, r, . . .)) = φ(p, q, r, . . .)
• the negation or inverse N : N (φ(p, q, r, . . .)) = ¬φ(p, q, r, . . .)
• the reciprocation R: R(φ(p, q, r, . . .)) = φ(¬p,¬q,¬r, . . .)
• the correlation C: C(φ(p, q, r, . . .)) = ¬φ(¬p,¬q,¬r, . . .)

Obviously, these transformations are not independent and we can note that
I = N ◦ R ◦ C, N = C ◦ R = R ◦ C... Basically {I,N ,R, C} is a commutative
group w.r.t. the composition of operators (denoted ◦).

Let us first notice that the code independency property directly involves
Piaget’s reciprocation, i.e., T (a, b, c, d) → R(T (a, b, c, d)). More importantly,
homogeneous proportions behave nicely with respect to Piaget’s transforma-
tions. Indeed the following easy result holds for the analogical proportion.

Proposition 25.

∀φ, ψ, A(I(φ), C(ψ),R(ψ),N (φ))

Proof. Indeed the truth value of I(φ) and N (φ) are opposite whatever φ, the
same is true with R(ψ) and C(ψ) whatever ψ. So this proportion necessarily
obeys one of the four valid analogical patterns 1100,1010,0011,0101. �

Moreover, thanks to Propositions 21 (for R and P ) and 23 (for I), we
can recover similar properties for R,P, I, namely

∀φ, ψ, R(I(φ), C(ψ),N (φ),R(ψ)),
∀φ, ψ, P (I(φ),N (φ),R(ψ), C(ψ)),
∀φ, ψ, I(I(φ),R(ψ), C(ψ),N (φ)).

5.4. Structures of Opposition Among Proportions A, R, P and I

The construction of the logical proportions rely on the interplay of two similar-
ity indicators and two dissimilarity indicators. When this interplay is “homo-
geneous” with respect to the pairs of binary variables considered, we obtain
the four homogeneous proportions, as explained in this paper. The fact that
there are four indicators, and then four homogeneous proportions, suggests to
organize them into squares in order to lay bare and visualize the forms of oppo-
sitions that exist between them. In some sense, this fits with the tradition of
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Figure 4. Square of indicators

Figure 5. Square of homogeneous logical proportions

Aristotelian logic where a so-called square of opposition was introduced at the
basis of syllogistic reasoning. The Aristotelian square involves four logically
related statements exhibiting universal or existential quantifications (“every
x is p”, “no x is p”, “some x is p”, “some x is not p”), where two negations
are at work. However, the structure of oppositions in the square of indicators
and in the square of homogeneous proportions differs from the one existing in
the Aristotelian square, as we shall see. In the second part of this subsection,
we shall use an hexagonal extension of the Aristotelian square for some fur-
ther analysis of the relations between logical operators related to the ideas of
similarity/dissimilarity and the analogical/paralogical proportions [67].

5.4.1. A Square of Opposition for Similarity and Dissimilarity. As made clear
in the previous sections, the formalization of the analogical proportion and the
other logical proportions leads to introduce the concept of indicators. In logical
terms, similarity corresponds to the indicators Sa,b � a ∧ b and S′

a,b � a ∧ b,
while dissimilarity corresponds to indicators Da,b � a ∧ b and D′

a,b � a ∧ b.
These four expressions can be easily arranged into an elementary square of
opposition, where one moves horizontally (resp. vertically) by negating the first
logical variable, i.e. a (resp. the second logical variable, i.e. b). The expressions
that are related by diagonals are exchanged by negating each variable. See
Fig. 4. Note that the four vertices of the square correspond here to mutually
exclusive situations, which is not the case in the Aristolelian square.
Following the same principle, the four homogeneous proportions can be orga-
nized into a similar square. See Fig. 5. Indeed, analogy A defined by (Da,b ≡
Dc,d) ∧ (D′

a,b ≡ D′
c,d), (corresponding to the logical expression (a ∧ b ≡

c∧d)∧(a∧b ≡ c∧d)) and paralogy P defined by (Sa,b ≡ Sc,d)∧(S′
a,b ≡ S′

c,d) (cor-
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Figure 6. Square of opposition

responding to the logical expression (a∧b ≡ c∧d)∧(a∧b ≡ c∧d)) are exchanged
horizontally by negating the second and the fourth (or the first and the third)
logical variable. Reverse analogy R defined by (Da,b ≡ D′

c,d) ∧ (D′
a,b ≡ Dc,d)

(corresponding to the logical expression (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d))
and inverse paralogy I defined by (Sa,b ≡ S′

c,d) ∧ (S′
a,b ≡ Sc,d) (corresponding

to the logical expression (a ∧ b ≡ c ∧ d) ∧ (a ∧ b ≡ c ∧ d)) are exchanged in
the same way. P and R are exchanged vertically by negating the first and the
fourth (or the second and the third) logical variable, and it is the same for A
and I. Moreover A and R one the one hand, and P and I on the other hand
are nicely opposed through diagonals. Again the four vertices of the square
correspond to mutually exclusive situations. Note also that the names of the
vertices here, P, A, I and R, should not be confused with the traditional names
of the vertices of the Aristotelian square, i.e., A, E, O and I.
It would be possible to organize into squares other logical proportions, in
particular the 16 conditional proportions, but this is beyond the scope of this
paper.

5.4.2. Analogical and Paralogical Proportions in Hexagons of Opposition. We
first provide a brief reminder about the hexagonal extension of the Aristotelian
square, before applying it to homogeneous proportions. It has been noticed
since Aristotle that a statement (A) of the form “every x is p” is negated
by the statement (O) “some x is not p”, while a statement like (E) “no x
is p” is clearly in even stronger opposition to the first statement (A). These
three statements, together with the negation of the last statement, namely (I)
“some x is p”, give birth to the Aristotelian square of opposition in terms of
quantifiers A : ∀x p(x), E : ∀x ¬p(x), I : ∃x p(x), O : ∃x¬p(x), pictured in
Fig. 6. Such a square is usually denoted by the letters A, I (affirmative half)
and E, O (negative half). The names of the vertices come from a traditional
Latin reading: AffIrmo, nEgO). Another standard example of the square of
opposition is in terms of modalities: A : �r, E : �¬r, I : ♦r, O : ♦¬r (where
♦r ≡ ¬�¬r). As can be seen from these two examples, different relations hold
between the vertices. Namely,

– (a) A and O are the negation of each other, as well as E and I;
– (b) A entails I, and E entails O;
– (c) A and E cannot be true together, but may be false together, while
– (d) I and O cannot be false together, but may be true together.
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Figure 7. Hexagon induced by a tri-partition (J,K,L)

As proposed and advocated by Blanché [7,8], it is always possible to complete
a square of opposition into a hexagon by adding the vertices Y =def I ∧ O,
and U =def A ∨ E. It fully exhibits the logical relations inside a structure of
oppositions generated by the three mutually exclusive situations A, E, and Y ,
where two vertices linked by a diagonal are contradictories, A and E entail
U , while Y entails both I and O. Moreover I = A ∨ Y and O = E ∨ Y . The
interest of this hexagonal construct has been especially advocated by Béziau
[5] in the recent years for solving delicate questions in paraconsistent logic
modeling. Conversely, three mutually exclusive situations playing the roles of
A, E, and Y always give birth to a hexagon [20], which is made of three squares
of opposition: AEOI, AY OU , and EY IU . See Fig. 7.
We are going now to apply the fact that a tri-partition leads to a hexagon
of opposition, by considering tri-partitions of sets of 4-tuples of binary
valuations. It is clear that there is a unique quaternary connective that
makes true a particular subset of 4-tuples of binary valuations, and which
is false on all the other subsets of 4-tuples of valuations. We start by
considering the whole set of the 16 possible 4-tuples of binary valua-
tions. The partition that we are going to consider is the following one
J = {0110, 1001)}, K = {0001, 0010, 0100, 1000, 1110, 1101, 1011, 0111)}, L =
{0000, 1111, 1010, 0101, 1100, 0011)}. As can be seen, in this partition of the
16 possible 4-tuples of valuations into three mutually exclusive subsets, L cor-
responds to the truth table of the analogy A, K gathers the eight patterns
including an odd number of ‘1’ (and thus of ‘0’ ), while J gathers the two
characteristic patterns 0110 and 1001 of the reverse analogy. The correspond-
ing hexagon is pictured in Fig. 8. This hexagon has a nice interpretation in
terms of analogical dissimilarity in the sense of [50]. Indeed the analogical dis-
similarity of the six valuation patterns in L is 0, since they correspond to the
six cases where A holds true; the analogical dissimilarity of the eight valuation
patterns in K is 1, since in each case it is enough to switch one bit for getting
a pattern for which proportion A is true; the analogical dissimilarity of the
two patterns in J is 2 since one needs to change two bits to get a pattern
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Figure 8. Hexagon induced by analogical dissimilarity

where proportion A is true. It is also noticeable that the set of patterns in
J ∪ L corresponds to the truth table of a quaternary connective that exactly
corresponds to Klein’s view of analogy [37,38], defined as:

Klein(a, b, c, d) � (a ≡ b) ≡ (c ≡ d), 10

which is closely related to the equation solving problem for proportions
A, R, P , and which we further comment in the related work section. The
vertex corresponding to K ∪ L, named “approximate similarity” in Fig. 8, is
associated with an operator which is true in the cases where the analogical
dissimilarity is not maximal. The hexagon of Fig. 8 is clearly associated with
the analogical proportion A. There are three other similar hexagons associated
with each of the three other homogeneous proportions, changing L and J in
the appropriate way.

When choosing a tri-partition, it is not compulsory to consider all the
16 valuation 4-tuples. One may, for instance, restrict ourselves to the patterns
that make the analogical proportion, or the paralogical proportion true. Then,
as can be seen in Fig. 9, we get interesting results since one may provide a
logical semantic counterpart to two hexagons respectively hinted by Moretti
[53] and by Béziau [6] recently. Note that in the second hexagon “analogy” is
understood in the strong sense of the restriction of A to its characteristic pat-
tern, while “opposition” corresponds to the restriction of R to its characteristic
pattern. “Contrariety” in the first hexagon corresponds to the characteristic

10As indicated by the hexagonal structure of Fig. 8, A(a, b, c, d) logically entails
Klein(a, b, c, d). It is also worth noticing that A(a, b, c, d) has two remarkable implicants,
namely (a ≡ b) ∧ (c ≡ d) and (a ≡ c) ∧ (b ≡ d) which are true for only four valuation pat-
terns. Similar logical bracketing can be obtained for the three other homogenous proportions.
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Figure 9. Moretti’s and Béziau’s hexagons induced by
decomposing analogy and paralogy truth tables. The hexa-
gons show the patterns for which the corresponding vertices
are true

pattern of the inverse paralogy I. Note also that the notions of “similarity” and
“difference” slightly differ in the two hexagons, while the notions of “identity”
and “sameness” coincide (and correspond here to the characteristic pattern of
paralogy).

This section has surveyed properties that make the four homogeneous
proportions A,R, P, I remarkable among the 120 logical proportions. Indeed,
using different points of view, we have seen that these proportions naturally
emerge thanks to their singular properties. To the best of our knowledge, nei-
ther the 120 logical proportions, nor the four homogeneous ones have been
considered in the literature before (if we except our own recent works). This
is why the following related work section only deals with the analogical pro-
portion.

6. Related Work

As emphasized by many authors, analogical reasoning is central in human
intelligence. For instance, the psychologist William James in his 1890 book [35]
wrote “A native talent for perceiving analogies is . . . the leading fact in genius
of every order”. Moreover, as said in the introduction, analogical proportion,
and more generally analogy, is a very old concept whose interest is shared by
diverse scientific communities. In the following, we only concentrate on works
focusing on analogical proportion, and which are logically, or at least compu-
tationally oriented. We first summarize the pioneering works of [57] and [37]
which are, as far as we know, the only ones who contributed to a Boolean view
of analogical proportions. Also somewhat close to the framework presented
here, are the works of a group of researchers who developed a set-theoretic
view of analogical proportion in the last decade, which will be reviewed next.
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We will then successively consider logical or algebraic approaches differing
from the framework presented here, and other psychologically inspired and
computationally oriented works.

6.1. Boolean View of Analogical Proportions: the Works of J. Piaget
and S. Klein

As already said in the introduction, at the occasion of the study of the behavior
of his transformation group on ternary connectives, Piaget [57] introduces a
notion logical proportion. Namely, four Boolean formulas α, β, γ, δ make a
logical proportion iff α ∧ δ ≡ β ∧ γ and α ∨ δ ≡ β ∨ γ holds. Moreover, Piaget
used the notation α

β = γ
δ in this situation. As we have previously observed, the

conjunction of the two above conditions is strictly equivalent to the definition
given for A(α, β, γ, δ). On this basis, Piaget [57] provides many valid logical
proportions (in his sense), that can be easily translated in known properties
of the analogical proportion A, for instance, in the notations of this paper,
Piaget showed that the following holds

∀φ, ψ, A(I(φ),R(ψ), C(ψ),N (φ))

which can be recovered from Proposition 25 using central permutation, or

∀φ, ψ, A(I(φ), I(ψ),N (ψ),N (φ))

which is just exchange mirroring. More generally, Piaget gave different
instances of Proposition 25, substituting different formulas for α, β, γ, δ. For
instance, with φ = (p ∧ q) ∨ (p ∧ q) and ψ = p ∨ q in the above expression, we
get N (φ) = p and N (ψ) = p ∧ q leading to

A((p ∧ q) ∨ (p ∧ q), p ∨ q, p ∧ q, p).
In fact, all the Piaget’s formulas, involving general Boolean formulas can

be recovered using the properties of the analogical proportion A. This shows
once again that the notion of logical proportion is definitely linked to the
human cognitive process. But, what is retrospectively amazing, is that Piaget
never referred to analogical proportions, when speaking of his logical propor-
tions [57,58], although he mentioned analogy in some of his previous book
[55].

In a series of works, Klein [36–38] has proposed a way of solving analogical
proportion-like equations based on a so-called Appositional Transformation
Operator or ATO (later named “Analogical Transformation Operators” [39]),
denoted ∗, which is nothing but the strong binary equivalence: ∗ab is just
a ≡ b. He observed that the repeated use of ∗ allows him to obtain the solution
d = ∗c(∗ab) = c ≡ (a ≡ b). We have seen that this is indeed the solution of the
analogical proportion equation when the solution exists, but otherwise provides
the solution of a paralogical, or a reverse analogical proportion equation. In
other words, his constructive view of analogy corresponds to what we called
Klein quaternary connective in Sect. 5.4.2, namely Klein(a, b, c, d) = (a ≡ b)
≡ (c ≡ d), which is less restrictive than the definition given in this paper. With
this definition, if “a is to b as c is to d”, then “b is to a as c is to d”, which
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is hardly acceptable since it does not fit well with the commonsense idea of
analogy. In its truth table, Klein connective has two more lines, corresponding
to the valuations 0110 and 1001, leading to true than the analogical proportion
defined in this paper. Nevertheless, Klein’s definition allows him to solve simple
verbal and visual analogies, and to explain numerous anthropological patterns
appearing in various cultures.

The above-mentioned contributions by Piaget and Klein are the two first
works that have some relation with the idea of a logical model for analogical
proportion. In the following we review more recent works that propose either
a formal modeling of analogy or a computational approach to analogical rea-
soning.

6.2. Other Algebraic and Logical Models

A formal study of analogical proportions (obeying the three postulates of
Sect. 5.1) has been first proposed in [43,44] in a computational linguistics
perspective, and further developed in [76]. These authors have proposed dif-
ferent set-theoretic definitions of analogical proportions. The main one, due
to [76], reads as follows. Let A, B, C, D be subsets of features, the analog-
ical proportion A : B :: C : D holds if and only if there exist four subsets
U, V, W and Z, such that A = U ∪ V, B = U ∪W, C = Z ∪ V, D = Z ∪W .
An algebraic, factorization-based, generalization of this definition has been
proposed and applied to various structures ranging from semi-groups to lat-
tices, including words over finite alphabets and finite trees [1,51,75,76]. One
of the main interest of these approaches is the fact that they also lead to effec-
tive implementations, generally dedicated to machine learning applications.
In particular, the works of [3,50] highlight the fact that the use of analogical
proportions as a classification tool, leads to results which outperform standard
classification techniques. Besides, the above set-theoretic definition has been
later restated in a different, simpler but equivalent way in [52], as A\B = C\D
and B\A = D\C. Moreover, the logical counterpart of this definition is also
studied in [52].

Due to the brittleness of its conclusions, analogical reasoning is not
amenable to a formal logic framework in a straightforward manner. Never-
theless, a logical view, quite different from the propositional modeling of ana-
logical proportions discussed here, has been proposed in [15] using a first order
logic setting. Considering two particular terms s and t that share a common
property P (i.e P (s) and P (t) hold), where moreover s satisfies an additional
property Q (i.e. Q(s) holds), then by an “analogical jump” t should satisfy Q
(i.e. Q(t) should hold). The legitimacy of this conclusion cannot be insured
without some external background knowledge. But, this background knowl-
edge alone should not be sufficient to entail the property Q(t) of the target
(without the use of P (s) and Q(s)). A considerable amount of works has
been done to identify the weakest external conditions of this kind making the
inference scheme valid. It appears that such external conditions are extremely
strong, since they are not far from expressing a functional relation. The reader
is referred to [15] for details.
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A rather different approach has been developed by [29,30,72]. Still logic-
based, both higher-order features and anti-unification [59] are added to the
classical first order framework, leading to what is known as the Heuristic-
Driven Theory Projection (HDTP) framework. In these works, all the items
are represented as first order terms, but the definition of analogical proportion
is stated in another manner. More precisely, a : b :: c : d holds iff we can
find two patterns (i.e. terms) P and Q such that Pσ1 = a, Pσ2 = c (i.e. σ1

and σ2 denote substitutions and P generalizes a and c), and Qσ1 = b and
Qσ2 = d (i.e. Q generalizes b and d). In other words, the pair P,Q allows to
transform a into b and c into d which makes the proportion to hold. P and
Q denote properties, which have to be found, thus the need for higher order
logic. Instead of using the basic logical equivalence ≡, an equational theory E
can be added to deal with more general pattern via equality modulo E. This
suggests an equation-solving process where d is unknown and computed (when
such a d exists) via an anti-unification process extracting P and Q from a, b, c.
Another approach that refers to unification is the one proposed by [14] whose
starting point is a general theory of pattern perception. As can be seen, this
kind of approaches, as the one of the previous paragraph, does not encode the
analogical reasoning mechanism at the same level as with the propositional
modeling of analogical proportions.

6.3. Other Computational Approaches

From a more practical viewpoint, analogical reasoning, considered a powerful
heuristic device, has been investigated in artificial intelligence for a long time.
Evans’ Analogy program [22] is the first attempt at implementing an analogy-
solving program in a setting of a knowledge representation language. It was
designed for solving a class of IQ puzzles of the form A is to B as C is to
which of D1, or D2 or . . .Dn? involving simple geometric figures. The program,
starting from a representation of A and B, first looks for transformation rules
starting from A and leading to B, and from C to each Di. Then it selects
the Di associated with the set of rules that are the most similar to the ones
linking A and B. The work of [40] follows the same philosophy, but applies it
to an analogy-based first-order theorem prover where A is stated as a theorem
whose a known proof is B (represented as an ordered set of clauses) and C is
a new theorem to be proved. As previously, the system heavily relies on the
representation language and more importantly, of the database of available
theorems and lemma. Such a use of analogy has been pursued for several
researchers; see [49].

In the same spirit, [82] builds up an analogical engine able to estab-
lish links between a current situation and previously seen ones, in terms of
logical rules. Following this line of thought, the Structure Mapping Theory
(SMT) [26], also based on psychological and cognitive concerns [27], is prob-
ably the first framework abstracting from first order logic and naturally lead-
ing to higher order logic where an analogy is characterized by the mapping
of relations between objects, rather than attributes of objects. Despite its
abstraction, the model led to what is known as the Structure Mapping Engine
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(SME) [23] exploring SMT, and providing an effective (in the sense where
most of the steps are polynomial) “tool kit” for constructing matching algo-
rithms consistent with SMT. For instance, more recently, SME has been used
for analogical comparison of sketches [24], allowing to solve analogies from
geometrical sketches, or even Raven’s tests as in [48]. It is important to note
that the SMT-based engines are generally not constructive in the sense they
cannot solve an analogical equation from scratch. They are more designed to
choose a solution among a set of candidate solutions, as it was already the
case for Evans’s program. The Vivomind engine of Sowa [74], implemented
on top of a conceptual graphs representation, is also SMT-based, but adds
some low-level processes representative of the human brain behavior. [54] com-
bines SMT with an attribute matching process to solve geometric analogy
problems.

The above approaches deal with symbolic representations. Others [25],
influenced by connectionism, are more numerically-oriented (which may have
some merits by allowing for graded view of similarity). A well-known example
of this trend is the Copycat project [33], which focuses on analogical proportions
whose experimental domain deals with incomplete analogical proportions of
the form abc is to abd as ijk is to? The program can lead to several options,
using parallel search and weighting the diverse answers, thus relaxing the rigid
framework of SMT. Another more recent example of the use of numerical
similarity evaluation as a basis for selecting a candidate solution can be found
in [41], On a more theoretical side, [12] established a link between analogical
reasoning and Kolmogorov complexity used for evaluating the changes from A
to B, or from C to Di. The author advocates a kind of “simplicity principle” to
serve as a starting point for modeling analogical proportion via Kolmogorov
theory. This approach is in complete line with the works of [11] in which
“choose the pattern that provides the briefest representation of the available
information” is acknowledged as the rational basis of a wide range of cognitive
processes, including analogical reasoning. Besides, a Kolmogorov theory-based
quantitative definition of analogical proportions has been proposed in [2].

Obviously, there are still many other kinds of works related to analogy.
For instance, it is worth to mention that analogical proportion is not only an
amazing object, but also a crucial concept having various instances in nat-
ural language leading to extensive investigations, and providing encouraging
results for automatic translation as in [9,42,45,46,81] or in text comprehension
[78,79], or even in recommendation systems [71].

In this section, we have focused on those works that provide, at least
at the algorithmic level, some formal view of the analogical process, generally
in relation with the idea of analogical proportions. With respect to all these
works, the approach reported here enjoys at least three distinctive features:
i) its simplicity, due to an easy-to-understand propositional representa-
tion; ii) its coverage, since the analogical proportion is a noticeable ele-
ment among a large set of logical proportions obeying the same type of
similarity/dissimilarity-based pattern; iii) its inference ability, thanks to the
equation-solving property.
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7. Conclusion

Our initial works on this topic [60,61] were centered on the three proportions
A,R, P , then expanded to the 15 proportions satisfying full identity [64]. It
has appeared [62] that many other options are available for defining further
proportions: we have called these proportions, defined via a pair of equiva-
lences, logical proportions. These equivalences relate the basic similarity and
dissimilarity indicators that can be considered when comparing two states of
fact. A first inventory of the 120 existing logical proportions was provided
both through a syntactic typology, and through the study of some meaningful
semantical properties. A more dedicated study has recently focused on the four
homogeneous proportions A,R, P, I [65].

The intended purpose of this paper is to provide a systematic discussion
of the idea of logical proportions, and a rigorous study of their relationships
and noticeable properties. In that respect, the present paper is not just the
structured union of the results that can be found in the previously-cited papers,
but includes many new results as well as new perspectives. Nevertheless, logical
proportions, which apparently have never been considered before in spite of
their conceptual simplicity, have to be further investigated.

In fact, thanks to a software implementation [66], a number of new notice-
able, or even in some cases amazing properties have been computationally
checked through enumerations. These results, for which we have not yet direct
proofs, may be regarded as conjectures. A selection of them can be found
in Appendix C. Let us mention only here the existence of four remarkable
semi-hybrid proportions such that each satisfies three of the four following
properties T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) (note that satis-
fying all of them corresponds to the negation of Klein’s operator in hexagon
of Fig. 8 which is true for eight valuation patterns). These proportions are
closely related with the idea of spotting the odd one out, or if we prefer of
picking the one that does not fit among four items [69]. It is worth noticing
that the setting of logical proportions both includes symmetrical proportions
that compare pairs on a par in a homogeneous way (as with analogy), and non
symmetrical ones that correspond to a different cognitive process.

Another worth investigating issue, is the extension of the study of Boolean
logical proportions to multiple-valued settings. Even, if some proposal has been
made for defining A,R, P , in the case of a 3-valued, and a [0, 1]-valued set-
ting [63,68] with the idea of modeling a graded proportion (e.g., defining an
approximate analogy), other extensions should be considered for accommodat-
ing unknown values, or non-applicable attributes [68].

For those proportions that satisfy the equation solving property, they
may be used to complete an existing pattern, taking into account some reg-
ularities with respect to an existing set of data, then paving the way to a
machine learning technique, similar in nature to the well known k-nearest
neighbor technique, but offering many more options and better results. From
a practical viewpoint, it has been shown for Boolean features in [3,50], that this
equation solving process, using only the analogical proportion, can be the basis
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of a new classification technique. In that case, the missing information for the
fourth item d is only its class: d is then classified according to analogical pat-
terns extracted from the data at hand by solving the corresponding analogical
equation. This technique has been successfully extended to numerical features
[70], thanks to a multi-valued logic extension of A and P . Moreover, a similar
approach has been shown to be able to solve Raven Progressive Matrices tests
[13].

Appendix A: Truth Tables

We do not repeat here the truth tables of homogeneous proportions which have
been largely investigated through this paper. Moreover, in order to reduce the
size of the tables, we omit the ∧ symbol and we separate the two equalities
defining a proportion by a simple vertical bar | (or sometimes even a blank
space).

However in the ‘Notation’ columns of Table 9 the vertical bar | keeps its
usual conditioning meaning.

• We start with Table 9 showing the 16 conditional proportions.
• Then we have 20 hybrids proportions given in Table 10.
• We have 32 semi-hybrids given in Table 11.
• We end the series with Table 12 showing degenerated proportions, i.e.,

the proportions where two indicators among four are identical. They are
easy to build up and we only show three of them. All the remaining ones
are easily deducible.

Table 9. 16 conditional proportions

Formula Notation
ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c

Formula Notation
ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd a|b :: c|d
ab ≡ cd|ab ≡ cd a|b :: d|c
ab ≡ cd|ab ≡ cd b|a :: c|d
ab ≡ cd|ab ≡ cd b|a :: d|c

Table 10. 20 hybrid proportions

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd
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Table 11. 32 semi-hybrid proportions

S ≡ S′|S ≡ D S ≡ S′|S ≡ D

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

S ≡ S′|D ≡ S S ≡ S′|D ≡ S

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd
D ≡ D′|S ≡ D D ≡ D′|S ≡ D

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

D ≡ D′ | D ≡ S D ≡ D′ | D ≡ S

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 12. Degenerated proportions (a sample among 48)

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 13. The 15 proportions satisfying full identity property

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

Table 14. The four conditional (1st line) and four hybrid
proportions satisfying symmetry

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd ab ≡ cd | ab ≡ cd

• Table 13 shows the 15 proportions satisfying the full identity property
(∧ are omitted). A, R, P are on the first line, while degenerated ones are
the last 4.

• We exhibit the four conditional and the four hybrid proportions satisfy-
ing the symmetry property in Table 14. When adding the homogeneous
proportions A,R, P, I, we get a total number of 12 proportions.

Appendix B: Proofs

The proofs are mainly obtained by a rigorous examination of the way the
proportions are built up. Since they are made up with a pair of equivalences
between indicators, let us investigate first these diverse equivalences. We have
the following property:
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Table 15. The 10 valid literal valuations for an equivalence
between indicators

Literal 1 Literal 2 Literal 3 Literal 4 Pattern
1 1 1 1 1 = 1
0 1 0 1 0 = 0
0 1 1 0 0 = 0
0 1 0 0 0 = 0
1 0 0 1 0 = 0
1 0 1 0 0 = 0
1 0 0 0 0 = 0
0 0 0 1 0 = 0
0 0 1 0 0 = 0
0 0 0 0 0 = 0

Lemma 1. An equivalence between indicators has exactly 10 valid valuations.

Proof. Such an equivalence eq � Ia,b ≡ Ic,d is satisfied only when it matches
one of the two patterns 1 = 1 or 0 = 0: due to the fact that 0 is an absorbing
value for ∧, these patterns correspond to the 10 values shown in Table 15
for the literals involved in the indicators (with obvious notation). Any other
valuation does not match anyone of the two previous patterns and will lead to
the truth value 0 for the equivalence eq. �

Lemma 2. Two equivalences between indicators have the same truth table iff
they are identical.

Proof. It is sufficient to show that if two equalities eq1 and eq2 have the same
truth table, then they are syntactically identical. In other terms, we have to
prove that eq1 ≡ eq2 implies eq1 =Id eq2. We can assume for instance without
loss of generality that eq1 contains a but eq2 contains a. Let us consider the
unique valuation v such that v(eq1) = 1 with the pattern 1 = 1. This valuation
v is such that v(a) = 1. By hypothesis, v(eq2) = 1 but in that case with
the pattern 0 = 0 since v(a) = 0. Let us now modify v into v′ such that
v′(a) = 0, v′(c) = v(c), v′(d) = v(d) and v′(b) = v(b). Obviously v′ does not
validate eq1 but still validates eq2 which contradicts the hypothesis. Then the
expected result. �

Lemma 3. When an equivalence involves a similarity indicator and a dissimi-
larity indicator, then it cannot be satisfied for both valuations 0000 and 1111.

Proof. First of all, we observe that any of the two valuations 0000 or 1111
will assign the value 0 to any dissimilarity indicator. On the opposite, one of
the two previous valuations will assign the value 1 to any similarity indicator.
Let us suppose we have an equivalence Sa,b ≡ Dc,d, the two previous remarks
show that at least one of the two valuations will assign the value 0 to the
equivalence. �
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Lemma 4. An equivalence involving only dissimilarity indicators is satisfied by
both 1111 and 0000.

Proof. This comes from the fact that these two valuations allocate the value
0 to any dissimilarity indicator. �

Now, we have a lemma showing that certain classes of valuation cannot be
satisfied by an equivalence between indicators, and then certainly not by a
logical proportion which is built up with two such equivalences.

Lemma 5. A logical proportion cannot satisfies the classes of valuation
{0111, 1011, 1101, 1110} or the classe {1000, 0100, 0010, 0001}.
Proof. It is enough to show that this is the case for an equivalence between
indicators. So let us consider such an equivalence l1 ∧ l2 ≡ l3 ∧ l4. If this
equivalence is valid for {0111, 1011}, it means that its truth value does not
change when we switch the truth value of the two first literals from 0 to 1:
there are only two indicators for a and b satisfying this requirement: a∧ b and
a∧ b. On top of that, if this equivalence is still valid for {1101, 1110}, it means
that its truth value does not change when we switch the truth value of the two
last literals from 0 to 1: there are only two indicators for c and d satisfying
this requirement: c ∧ d and c ∧ d. Then the equivalence l1 ∧ l2 ≡ l3 ∧ l4 is just
a∧b ≡ c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d or a∧b ≡ c∧d. None of these equivalences
satisfies the whole class {0111, 1011, 1101, 1110}. The same reasoning applies
for the other class. �

Before starting with the proofs of the main properties, let us summarize
in a final lemma some straightforward properties of the indicators:

Lemma 6. Given a pair (a, b) with S(a,b) and S′
(a,b) (resp. D(a,b) and D′

(a,b))
the two similarity (resp. dissimilarity) indicators, and a valuation σ:

• σ(a) 
= σ(b) iff σ(S(a,b)) = σ(S′
(a,b)) = 0 (or equivalently if σ(S(a,b)) = 1

or σ(S′
(a,b)) = 1 then σ(a) = σ(b))

• σ(a) = σ(b) iff σ(D(a,b)) = σ(D′
(a,b)) = 0 (or equivalently if σ(D(a,b)) = 1

or σ(D′
(a,b)) = 1 then σ(a) 
= σ(b))

• σ(S(a,b)) and σ(S′
(a,b)) (resp. σ(D(a,b)) and σ(D′

(a,b))) cannot be equal to
1 simultaneously.

This lemma justifies once again the name similarity (resp. dissimilarity)
for the respective indicators: for instance, we observe the identity of two objects
σ(a) and σ(b) when at least one similarity indicator is equal to 1 (and the other
one is equal to 0) or equivalently, when their two dissimilarity indicators are
equal to 0.

Proposition 1. The truth table of a logical proportion has six and only six lines
with truth value 1.

Proof. Since a logical proportion T is the conjunction eq1∧eq2 of two equalities
between indicators, with eq1 
= eq2, it appears from Lemma 1 that T has a
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maximum of 10 valid valuations and a minimum of 4 valid valuations. Let us
start from eq1, having 10 valid valuations which are candidate to validate T .
Obviously, adding eq2 to eq1 will reduce the number of valid valuations for T .
Let us assume eq2 differs from eq1 with only one literal (or negation operator).
This is then a degenerated proportion. Without loss of generality, we can
consider that the difference between eq1 and eq2 occurs on the first literal
meaning eq1 is a∧ l2 ≡ l3 ∧ l4 and eq2 is a∧ l2 ≡ l3 ∧ l4 or vice versa. It is then
quite clear that the first valuation 1111 valid for eq1 is not valid any more
for T . It remains nine candidates valuations. Finally any valuation starting
with 01 is not valid any more and we have three such valuations. All the six
remaining valuations are still valid for T . Which ends the proof when the two
equalities differ from one negation (i.e. one literal).
Now when they differ from two literals, two cases have to be considered:

• either the two literals where eq1 differs from eq2 are on the same side of
an equivalence i.e. eq2 is l′1 ∧ l′2 ≡ l3 ∧ l4 (degenerated proportion)

• or they are on different side i.e. eq2 is l′1 ∧ l2 ≡ l′3 ∧ l4.
In the first case, the valuations 1111,0010,0001 and 0000 are not valid any
more, but all other ones remain valid. In the second case, the valuations
0100,0110,1001 and 0001 are not valid anymore, but all the other ones remain
valid. We are done for the case of two differences. When they differ from
three literals, let us suppose l4 appears in both equivalence, the valuations
1001,0101,0010 and 0000 are not valid anymore and we stick with the six
remaining ones. In the case where all the literals are different, obviously the
four valuations containing only one occurrence of 1 are not valid anymore
because they lead to an invalid pattern 0=1 or 1=0 for eq2. And we have exactly
four such valuations. It remains six valid valuations. Which ends the proof. �

Proposition 2. The truth tables of the 120 proportions are all distinct.

Proof. We shall show that, when two proportions T � eq1 ∧ eq2 and T ′ �
eq′

1 ∧ eq′
2 have the same truth table, they are syntactically identical (up to a

permutation of the two equalities). In other words T ≡ T ′ implies T =Id T
′.

Starting from T ≡ T ′ (i.e. T and T ′ coincide on any valuation σ), if eq1 is
syntactically different from eq′

1, we show that eq1 is syntactically equal to eq2.
This will complete the proof as a similar reasoning will show that eq2 is, in
the same context, syntactically equal to eq′

1.
In fact, if eq1 is syntactically different from eq′

1, we can assume for
instance without loss of generality that eq1 contains a but eq′

1 contains a. Let
us consider the unique valuation σ, validating T and T ′, such that σ(eq1) = 1
with the pattern 1 = 1. Necessarily, this valuation σ is such that σ(a) = 1.
By hypothesis, σ(eq′

1) = 1 but in that case with the pattern 0 = 0 since
σ(a) = 0. Let us now consider the new valuation σ′ such that σ′(a) = 0, σ′(c) =
σ(c), σ′(d) = σ(d) and σ′(b) = σ(b). Obviously σ′(T ) = σ′(eq1) = 0 but
still σ′(eq′

1) = 1 following the pattern 0 = 0. The only option for having
σ′(T ) = σ′(T ′) = 0 is thus to have σ′(eq′

2) = 0 which means a belongs to eq′
2.
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Continuing the same reasoning, we show that eq1 =Id eq′
2 and we conclude

that if eq1 
= eq′
1, necessarily eq1 =Id eq2. Which is the expected result. �

Proposition 3. There are only 15 proportions satisfying full identity: 3 of them
are homogeneous (they are A, R, and P), 8 of them are conditional proportions
and the four remaining ones are degenerated.

Proof. Lemma 3 shows that none of the hybrid or semi-hybrid proportions can
satisfy full identity since by definition such a proportion includes an equiva-
lence between a similarity indicator and a dissimilarity indicator. Concerning
the conditional ones, it is clear that the equivalence involving only dissimi-
larity indicators will be satisfied whatever the valuations (Lemma 4), but the
remaining equivalence involving similarity indicators will be satisfied iff it is of
the form a∧ b ≡ c∧ d or a∧ b ≡ c∧ d which leads to exactly eight conditional
proportions. Finally, the same reasoning applies to degenerated proportions:
only remain the proportions which do not involve an equivalence between a
similarity indicator and a dissimilarity indicator. But now, if we remember
that an indicator appears twice in a given degenerated proportion, the pro-
portions involving only similarity indicators cannot lead to one for the two
previous valuations since such a valuation can satisfy only one equivalence.
It remains only the degenerated proportions involving only equalities between
dissimilarity indicators. And we have exactly four such proportions: we fix for
instance the first dissimilarity indicator (2 possibilities) as the left hand side of
the two equalities and we build only one proportion with the right hand side
indicators. We repeat the process but fixing now the right hand side of the
equalities. And we are done with the four degenerated proportions. An imme-
diate check allows to conclude for homogeneous proportions. This achieves the
whole proof. �

Proposition 4. There are 30 proportions validated with 1111 but not validated
with 0000. Dually, there are also 30 proportions validated with 0000 but not
with 1111.

Proof. Due to the complete symmetry in the notation, it is sufficient to show
the first part of the proposition. Lemma 4 tells us that any equivalence involv-
ing two dissimilarity indicators D(a,b) ≡ D(c,d) is validated with both 1111
and 0000. On the opposite, an equivalence involving only similarity indicator
S(a,b) ≡ S(c,d) is validated by both of them (a ∧ b ≡ c ∧ c and a ∧ b ≡ c ∧ d)
or by none of them (a ∧ b ≡ c ∧ d and a ∧ b ≡ c ∧ d). This excludes the
four homogeneous and the 16 conditional proportions as suitable candidates.
Concerning the hybrid proportions, they obey three possible distinct patterns
characterized by equivalences between similarity and dissimilarity indicators
in their definitions. They are of the form:

S(a,b) ≡ D(c,d) ∧ S′
(a,b) ≡ D′

(c,d)

or

D(a,b) ≡ S(c,d) ∧D′
(a,b) ≡ S′

(c,d)
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or

S(a,b) ≡ D(c,d) ∧D(a,b) ≡ S(c,d)

The first pattern, involving a similarity indicator on the left hand side of
the two equalities, cannot lead to suitable proportions since the right hand
side is a dissimilarity indicator having value 0 for the two valuations: this
implies that at least one of the two equalities will not be satisfied whatever
the valuation. The same reasoning applies with the second pattern where the
similarity indicators appear on the right hand side of the equalities. It remains
only the hybrid proportions where a similarity indicator appears as the left
hand side of the first equivalence and as the right hand side of the second
equivalence or vice-versa. If we consider only the valuation 1111, the only
suitable similarity indicators are a ∧ b and c ∧ d: and we have four choices for
the remaining dissimilarity indicators leading to exactly four suitable hybrid
proportions. A similar reasoning leads to 12 semi-hybrids and 14 degenerated
(degenerated proportions are simpler to investigate since they make use of only
three distinct indicators). �

Proposition 5.

• There is no proportion simultaneously satisfying the three facts T (a, a, b, b),
T (a, b, a, b) and T (a, b, b, a).

• A is the only proportion to satisfy T (a, a, b, b) and T (a, b, a, b).
• R is the only proportion to satisfy T (a, a, b, b) and T (a, b, b, a).
• P is the only proportion to satisfy T (a, b, a, b) and T (a, b, b, a).
• Six proportions satisfying T (a, b, a, b) including A and P but not R and I.
• Six proportions satisfying T (a, b, b, a) including P and R but not A and I.
• Six proportions satisfying T (a, a, b, b) including A and R but not P and I.

Proof. The two last statements remain to be proved. See the main text for the
other ones. Given a logical proportion T (a, b, c, d) of the form (I1

(a,b) ≡ I2
(c,d))∧

(I3
(a,b) ≡ I4

(c,d)), reverse reflexivity enforces the two equivalences I1
(a,b) ≡ I2

(b,a)

and I3
(a,b) ≡ I4

(b,a). Thus, the only choices for the equivalences are a ∧ b ≡
c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d, a∧b ≡ c∧d among the 16 possibilities. Since a
logical proportion is defined from two distinct, non-ordered equivalences, there
are 4× 3/2 = 6 proportions satisfying T (a, b, b, a). They are given in Table 16.
We recognize the proportions R, P , and the four conditional proportions a|b ::
d|c, b|a :: c|d, a|b :: d|c, and b|a :: c|d.

Concerning sameness property, a similar reasoning applies leading to the
fact that I1

(a,a) ≡ I2
(b,b) and I3

(a,a) ≡ I4
(b,b) where equivalence appears between

Table 16. The six proportions satisfying reverse reflexivity T (a, b, b, a)

ab ≡ cd ab ≡ cd (R) ab ≡ cd ab ≡ cd (P )

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd
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Table 17. The six proportions satisfying sameness T (a, a, b, b)

ab ≡ cd ab ≡ cd (A) ab ≡ cd ab ≡ cd (R)

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

conjunctions which do not share variables. This is only possible when I1
(a,a) ≡

I2
(b,b) ≡ ⊥ and I3

(a,a) ≡ I4
(b,b) ≡ ⊥ leading to the pattern a ∧ a. Thus we still

have six candidates given in Table 17 where we recognize A and R, and four
degenerated proportions. Which completes the proof. �

Proposition 6. There are only 12 proportions satisfying symmetry property.
Apart from P,A, I,R (homogeneous proportions), there are 4 conditional pro-
portions and 4 hybrid proportions.(These proportions are shown in Table 14 in
Appendix A).

Proof. The symmetry property implies that

T (a, b, c, d) ≡ T (c, d, a, b)

and since both are logical proportions, Proposition 2 tells us that these two
proportions should be identical up to a permutation of the two equalities. Let
us denote σ the permutation such that σ(a) = c, σ(b) = d, σ(c) = a, σ(d) = b.
Back to our initial notation where T (a, b, c, d) � I(a,b) ≡ I(c,d)∧I ′

(a,b) ≡ I ′
(c,d), σ

transforms an indicator for (a, b) into an indicator for (c, d) and vice-versa, the
only options are:

• σ(I(a,b)) =Id I(c,d) and σ(I(c,d)) =Id I(a,b) (and similar for I ′): this means
that the two sides of the equations are indicators of the same type i.e. eq1
can only be a∧ b ≡ c∧d, a∧ b ≡ c∧d, a∧ b ≡ c∧d or a∧ b ≡ c∧d. Since
we have four choices for eq1, it remains three choices for eq2 which should
be different from eq1 to build up a proportion. Taking into account the
fact that the order of the equations is not relevant, we get 4 × 3/2 = 6
such proportions

• σ(I(a,b)) =Id I
′
(c,d) and σ(I(c,d)) =Id I

′
(a,b) (and similar by switching I and

I ′). The previous reasoning applies telling us that I(a,b) and I ′
(c,d) should

be of the same type leading to four possibilities. Then I ′
(a,b) and I(c,d)

should be of the same type leading to only three remaining possibilities.
Then again 4 × 3/2 = 6 such proportions which achieves the proof. �

Proposition 7. There are 16 proportions satisfying the central permutation
property.

Proof. It is sufficient to adapt the previous reasoning (Proposition 6) to this
type of permutation. These proportions are given in Table 18. �
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Table 18. The 16 proportions stable for central permutation

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab≡cd(I)
ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd(A) ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd ab ≡ cd

Proposition 9.

• A and I are the only logical proportions satisfying symmetry and being
stable for permutation p23, i.e. the permutation of the means. The same
result holds replacing p23 by p14 (permutation of extremes).

• P and I are the only logical proportions satisfying symmetry and being
stable for permutation p12. The same result holds replacing p12 by p34.

• There are 10 proportions including only 2 homogeneous,11 namely R and
I, satisfying symmetry and being stable for permutation p24. The same
result holds replacing p13 by p24.

Proof. Regarding the first statement, it is sufficient for instance to compare
Table 14 in Appendix A, showing the proportions satisfying symmetry with
Table 18 showing the proportions stable for central permutation: this gives us
the result. Regarding the 2 other statements, checking the truth tables of the
12 proportions satisfying symmetry (shown in Table 14) gives the result. �
Proposition 11. There are exactly eight proportions satisfying the code inde-
pendency property. Apart from the homogeneous proportions P,A, I,R, there
are four hybrid proportions.

Proof. In fact, the code-independency property implies that:

T (a, b, c, d) ≡ T (a, b, c, d)

Since both T (a, b, c, d) and T (a, b, c, d) are logical proportions, Proposition 2
tells us that the two proportions should be identical up to a permutation of
the two equalities. This exactly means that the second equivalence is obtained
from the first one by negating all the variables. Since we have 4 × 4 equalities
between indicators, we can build exactly 16/2 = 8 proportions satisfying code
independency property: each time we choose an equivalence, we use it and its
negated form to build up a suitable proportion. Since A,R, P, I are built this
way, they satisfy code independency. These proportions are shown in Table 4.

�
Proposition 13. There are 54 transitive proportions: 2 homogeneous A and P ,
four conditional proportions, namely (ab ≡ cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡
cd); (ab ≡ cd) ∧ (ab ≡ cd); (ab ≡ cd) ∧ (ab ≡ cd), and the 48 degenerated
proportions.

11 This corrects an erroneous statement in a previous paper [65], where we suggested that
the two homogeneous proportions R and I were the only ones to satisfy these properties.
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Proof. Let us consider first the degenerated proportions. They are built up
with three distinct indicators only. Without loss of generality, we can con-
sider a degenerated proportion of the form T (a, b, c, d) � (I1(a, b) ≡ I(c, d)) ∧
(I2(a, b) = I(c, d)) where I1(a, b) distinct from I2(a, b). It appears that a
degenerated proportion states the equivalence between two distinct indica-
tors of the same pair (in that case I1(a, b) and I2(a, b)). Thus, a valuation
σ validating such an equivalence between two distinct indicators of the same
pair necessarily satisfies: σ(I(c, d)) = σ(I1(a, b)) = σ(I2(a, b)) = 0 i.e. allo-
cating 0 as truth value for all the indicators. Then a valuation σ validat-
ing T (a, b, c, d) ∧ T (c, d, e, f) satisfies σ(I(c, d)) = σ(I1(a, b)) = σ(I2(a, b)) =
σ(I(e, f)) = σ(I1(c, d)) = σ(I2(c, d)) = 0. As a consequence, σ validates
T (a, b, e, f) since σ(I(e, f)) = σ(I1(a, b)) = σ(I2(a, b)) = 0. And we are done
for the degenerated proportions.

Thanks to Lemma 6, we can exclude the hybrid and semi-hybrid propor-
tions from being transitive. Let us consider for instance the case of a hybrid
proportion of the form: T (a, b, c, d) � S(a,b) ≡ D(c,d) ∧ S′

(a,b) ≡ D′
(c,d). Let us

consider σ a valuation validating T (a, b, c, d)∧T (c, d, e, f). We have two cases:
• either σ(S(a,b)) = 1: then σ(D(c,d)) = 1 and thanks to Lemma 6, σ(c) 
=

σ(d). Again with Lemma 6, σ(S(c,d)) = 0 which implies σ(D(e,f)) = 0:
then σ(S(a,b)) 
= σ(D(e,f)) meaning that T (a, b, e, f) does not hold.

• or σ(S(a,b)) = 0. If σ(S′
(a,b)) = 1, we are back to the previous case.

If σ(S′
(a,b)) = 0, then both σ(D(c,d)) = 0 and σ(D′

(c,d)) = 0. Thanks
to Lemma 6, σ(c) = σ(d) then at least one term between σ(S(c,d))
or σ(S′

(c,d)) is equal to 1, thus preventing σ(S(a,b)) or σ(S′
(a,b)) to be

equal to the corresponding term σ(D(e,f)) or σ(D′
(e,f)): this means that

T (a, b, e, f) does not hold.
A similar reasoning does the job for semi-hybrid proportions. Regarding the
four homogeneous proportions, a simple observation of the truth table shows
that only A and P are transitive.

Finally, as the 16 conditional proportions express semantic equivalence
(which is transitive) between conditional objects, it is clear that the 4 pro-
portions a|b :: c|d, b|a :: d|c, a|b :: c|d, b|a :: d|c are transitive (for instance
a|b :: c|d ∧ c|d :: e|f implies a|b :: e|f due to the transitivity of the equivalence
between conditional objects) but none of the remaining conditional propor-
tions is transitive: for instance from a|b :: d|c ∧ c|d :: f |e, we cannot infer
a|b :: f |e. Which achieves the proof. �

Proposition 15. Among the 120 logical proportions, only 6 (among which the
homogeneous R and I) satisfy semi-mirroring, only 6 (among which the
homogeneous P and I) satisfy negation-compatibility, and only 6 (among
which the homogeneous A and I) satisfy exchange-mirroring.

Proof. Let us consider the substitution σ such that σ(c) = a and σ(d) = b.
For semi-mirroring property to hold, the right hand side of the two equations
should become equal to their left hand side when σ is applied. And we have
only four options which are a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d, a ∧ b ≡ c ∧ d and
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a ∧ b ≡ c ∧ d. Since we need two of these equalities to build up a proportion,
we have six choices only (among which we obviously have I by combining the
two first equalities and R by combining the two last ones). The same reasoning
applies to negation-compatibility and exchange-mirroring. �

Proposition 17. There are 64 proportions for which the solution is always
unique when it exists, and 56 proportions for which the equation T (a, b, c, x) =
1 may have 2 solutions for some entries. These 56 proportions divide into 8
conditional ones, 8 hybrid ones, 8 semi-hybrid ones, and 32 degenerated ones.

Proof. In that case, a simple (but fastidious) examination of the truth tables
leads to the result. �

Proposition 24. I is the unique Boolean formula (up to equivalence) satisfying
these two sets of postulates.

Proof. Let us consider for instance the first set of postulates. For a logical
proportion T to satisfy non reflexivity, means that one valuation of the class
{1111, 0000, 1010, 0101} is not valid. If this valuation is 1010 (or 0101), then
central permutation and symmetry imply that 1100, 0011 and 0101 are not
valid for T . Since T has exactly six valid valuations, it means that among
the remaining candidate valuations at least one has an odd number of 0. Let
us assume 0111 (any other option would lead to the same result as a fact of
symmetry) is valid: again symmetry and central permutation insure that the
whole class {0111, 1011, 1110, 1101} is valid for T . And thanks to Lemma 5,
this cannot be valid for a logical proportion.

Then, we have to consider that 1010,0101 are valid for T . Using central
permutation, we get 1100 and 0011 are still valid for T . Since we have nei-
ther {0111, 1011, 1110, 1101} nor {1000, 0100, 0010, 0001}, it remains to choose
two valuations among {1111, 0000, 0110, 1001} excluding at least one among
{1111, 0000} to complete the truth table of T . If we introduce 0110, we have
to introduce 1001 to be consistent with symmetry and we get the truth table
of I. If we remove one of the valuation 0110 or 1001, then we have to remove
the other and the only remaining option for T is to be valid for the valu-
ations 1111,0000,1010,0101,1100,0011. Which contradicts the initial assump-
tion about T (non reflexivity). Therefore, I is the unique option. A similar
reasoning does the job for the second set of postulates. �

Appendix C: Conjectures

Using a software described in [66], it becomes easier to investigate the universe
of logical proportions. In particular, one can check the previous results, but
we may also discover new properties, which may be more difficult to prove for
some of them (otherwise than by tedious enumerations), and which may be
even unexpected. In the following, we only mention conjectures discovered in
this way that deal with the distribution of valuations among logical propor-
tions, the study of properties similar to T (a, a, a, a), but where some a may be
negated (e.g., T (a, a, a, a), or also T (a, a, a, a)), and finally the study of the 20
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hybrid proportions. But one may find many other results, such as for instance:
given a permutation, there are 16 proportions satisfying such a permutation
except for P1,2 and P3,4 where there are 32 proportions.

Distribution of valuations among logical proportions
A first series of conjectures pertains to the way the valuations that make

logical proportions true (we have 16 distinct quaternary valuations, e.g. (0100))
are distributed among them:

– given any valuation v, there are exactly 45 proportions valid for v.
– given any pair of valuations (v1, v2), there are exactly 15 proportions

valid for v1 and v2.
– when we go for three randomly chosen valuations (v1, v2, v3), we can

get three proportions or six proportions valid for these valuations. It
means that whatever the triple of valuations, at least we have three valid
proportions.

– on top of that, given three consecutive valuations, there are exactly three
proportions valid for these valuations.

– when we go for four randomly chosen valuations, we can get zero or six
proportions.

– on top of that, given four consecutive valuations, there is no proportion
valid for these valuations.

– when we go for five or six randomly chosen valuations, either we get one
proportion or no proportion at all (obviously, there is no need to go for
seven, since there is no proportion having seven valid valuations).

– given any pair of valuations (v1, v2), there are exactly 30 proportions
valid for v1 and not valid for v2.
Homogeneity properties
We have seen that the 15 proportions satisfying full identity, i.e.,

T (a, a, a, a), are A, R, P , together with 8 conditional proportions, and 4 degen-
erated ones. See Proposition 3. But, we have not studied

– the 15 proportions satisfying T (a, a, a, a);
– the 15 proportions satisfying T (a, a, a, a);
– the 15 proportions satisfying T (a, a, a, a).

Indeed,
– there are 15 proportions satisfying T (a, a, a, a); they are A, R, I, 8 con-

ditional proportions, and four degenerated ones. Moreover, these four
degenerated ones are the same as the ones for T (a, a, a, a) (to reduce the
size of the expressions, we omit the ∧ symbol in the writing of the indica-
tors, e.g., a∧ b is abbreviated in ab): ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡
cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd; the 8 conditional proportions
associated with T (a, a, a, a) together with the 8 conditional ones asso-
ciated with T (a, a, a, a) make a partition of the 16 existing conditional
proportions.

– there are 15 proportions satisfying T (a, a, a, a); they are A, P, I, 8 con-
ditional proportions, and four degenerated ones.
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– there are 15 proportions satisfying T (a, a, a, a); they are R, P, I, 8 con-
ditional proportions, and four degenerated ones.

Moreover, it can be noticed that the four degenerated ones are the same
for T (a, a, a, a) and for T (a, a, a, a): ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd,
ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd; the 8 conditional proportions
associated with T (a, a, a, a) together with the eight conditional ones associated
with T (a, a, a, a) make a partition of the 16 existing conditional proportions.

Besides, there are six proportions that satisfy:

– T (a, a, a, a) and T (a, a, a, a): A, R, and four degenerated ones (already
given)

– T (a, a, a, a) and T (a, a, a, a): A, P , and four conditional ones: ab ≡
cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

– T (a, a, a, a) and T (a, a, a, a): P, R, and four conditional ones: ab ≡
cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd

– T (a, a, a, a) and T (a, a, a, a): A, I, and four conditional ones: ab ≡
cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

– T (a, a, a, a) and T (a, a, a, a): R, I and four conditional ones: ab ≡
cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd, ab ≡ cd ∧ ab ≡ cd;

– T (a, a, a, a) and T (a, a, a, a): P, I, and four degenerated ones (already
given).

As can be seen, the 16 conditional proportions are partitioned into 4
groups of 4 proportions by the 4 conjunctions of two properties as indicated
above. All these results provide counterparts to Proposition 3, and show reg-
ularities among logical proportions of the same kind.

If now we require that three among the four conditions hold

– T (a, a, a, a)
– T (a, a, a, a)
– T (a, a, a, a)
– T (a, a, a, a)

then it provides a unique characterization of each of the four proportions
homogeneous proportions A, R, P, I, as it is obvious from their truth tables.

Intruder properties
But, one may also consider requirements, where the number of negations

is odd rather than even as previously. Note that T (a, a, a, a) is the same as
T (a, a, a, a). We call these requirements intruder properties, since it expresses
that one of the four items differ from the three others that are identical. They
clearly contrast with the four homogeneity properties studied above, where the
number of negations is even.

– T (a, a, a, a)
– T (a, a, a, a)
– T (a, a, a, a)
– T (a, a, a, a)
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Requiring three of them together defines a quaternary operator that is
true for the six corresponding valuation patterns. But is it a logical proportion?
The answer is yes. Here are the details:

– the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is ab ≡
cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true,
or false, alone) and which is not a”; this proportion satisfies the permu-
tation properties p23, p24, and p34;

– the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is ab ≡
cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true,
or false, alone) and which is not b”; this proportion satisfies the permu-
tation properties p13, p14, and p34;

– the one that satisfies T (a, aaa), T (a, a, a, a), and T (a, a, a, a) is ab ≡
cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true,
or false, alone) and which is not c”; this proportion satisfies the permu-
tation properties p12, p14, and p24;

– the one that satisfies T (a, a, a, a), T (a, a, a, a), and T (a, a, a, a) is ab ≡
cd ∧ ab ≡ cd

and means “among a, b, c, d, there is an intruder (i.e., which is true,
or false, alone) and which is not d”; this proportion satisfies the permu-
tation properties p12, p13, and p23.

These four logical proportions are precisely the four non symmetrical
hybrid proportions that satisfy code independency (see Proposition 12). They
also have noticeable permutation properties; as can be seen, each permutation
is satisfied by two proportions among the four.

As follows from their truth tables, these four logical proportions are true
for valuation patterns that altogether gather the eight patterns that make
Klein’s operator false, see Fig. 8. Thus, these four logical proportions are in
some sense, “opposed” to A, R, P , and I, which altogether gather the either
other possible valuation patterns in their truth tables (restricted to those pat-
terns that make them true). This is confirmed by the following properties.
Among the whole set of logical proportions,

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a)

each of T (a, a, a, a), T (a, a, a, a), T (a, a, a, a), T (a, a, a, a) is incompatible
with T (a, a, a, a).

The 20 hybrid proportions: symmetry and permutations properties
While there are only 12 logical proportions that are symmetrical, there

are 88 proportions that satisfy at least one permutation.
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– the four hybrid proportions that are symmetrical (not to be confused
with the four hybrid proportions satisfying code independency described
above) have truth tables obeying the following specifications

– T (a, a, a, a), T (a, a, a, a), and (1 0 1 0 and 1 1 1 1) : ab ≡ cd ∧ ab ≡ cd
– T (a, a, a, a), T (a, a, a, a), and (0 1 0 1 and 0 0 0 0) : ab ≡ cd ∧ ab ≡ cd
– T (a, a, a, a), T (a, a, a, a), and (0 1 0 1 and 1 1 1 1) : ab ≡ cd ∧ ab ≡ cd
– T (a, a, a, a), T (a, a, a, a), and (1 0 1 0 and 0 0 0 0) : ab ≡ cd ∧ ab ≡ cd

They satisfy permutations p13 and p24.
– Regarding the 12 remaining hybrid proportions that do not satisfy neither

symmetry nor code independency their truth tables obey to (with after
‘-’, the permutation(s) that they satisfy):

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 1 0 0 and 1 0 1 0) – p23

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 0 1 1 and 0 1 0 1) – p23

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 1 1 0 and 1 1 1 1) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 0 0 1 and 0 0 0 0) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 1 1 0 and 1 1 0 0) – p13

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 0 0 1 and 0 0 1 1) – p13

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 0 0 1 and 1 1 1 1) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 1 1 0 and 0 0 0 0) – p23, p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 0 0 1 and 1 1 0 0) – p24

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 1 1 0 and 0 0 1 1) – p24

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(0 1 0 1 and 1 1 0 0) – p14

* ab ≡ cd ∧ ab ≡ cd: T (a, a, a, a), T (a, a, a, a), and the valuation patterns
(1 0 1 0 and 0 0 1 1) – p14
None of these 12 proportions satisfy permutations p12 or p34.
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