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Abstract. Symmetric generalized Galois logics (i.e., symmetric gGls) are
distributive gGls that include weak distributivity laws between some oper-
ations such as fusion and fission. Motivations for considering distribution
between such operations include the provability of cut for binary conse-
quence relations, abstract algebraic considerations and modeling linguis-
tic phenomena in categorial grammars. We represent symmetric gGls by
models on topological relational structures. On the other hand, topologi-
cal relational structures are realized by structures of symmetric gGls. We
generalize the weak distributivity laws between fusion and fission to inter-
actions of certain monotone operations within distributive super gGls. We
are able to prove appropriate generalizations of the previously obtained
theorems—including a functorial duality result connecting classes of gGls
and classes of structures for them.
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0. Introduction

There are various ways to combine logics—for instance, various connectives,
axioms and rules may be placed side by side into one logic. Symmetric gGls may
be viewed as a combination of two algebras each containing a monotone binary
operation and its residuals on a semi-lattice. The semi-lattices are joined into a
lattice with distributivity added, and similarly, certain distributivity is added
to link the non-lattice operations. (We do not intend to provide some overall
fabric for combining logics in general, however, cf. Carnielli and Coniglio [8]
concerning pasting systems together.)

Alternatively, symmetric gGls may be viewed as an example of adding to
a distributive gGl a new group of operations comprising a monotone opera-
tion and its two residuals—none of which is definable in the gGl itself. Some-
times, the motivation to enrich the language of a logic with non-interdefinable
operations is an interest in their interaction, whereas some other times, the
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intention is to increase the expressive power of the logic. Well-known examples
of connectives that are not interdefinable include ♦ and � from positive modal
logics and relevant implication (or entailment) and negation from relevance
logics.

Logical connectives may interact in different ways, and the interactions
are usually more transparent in the models of the logic that in its proof sys-
tem. Gaggle theory—another name for the framework of generalized Galois
logics—makes precise the idea that abstract residuation allows connectives to
be grouped together into families, although residuation itself is not sufficient
to ensure the interdefinability of connectives.1

Another sort of interplay between connectives is captured by distribution
like axioms. The most common axiom of distributivity is that between conjunc-
tion and disjunction (e.g., in intuitionistic logic). The effect of this axiom is that
the Lindenbaum algebra of the logic is not only a lattice (perhaps, with some
further operations), but it is a lattice in which meet and join distribute over
each other. Of course, distribution like axioms may involve other connectives.
It is standard in relevance logic to consider “fusion” as a connective that gen-
eralizes conjunction, and “fission” as a connective that generalizes disjunction.
In the linear logic tradition this corresponds to “multiplicative” conjunction
and disjunction. Formulas that express “some distribution” between connec-
tives from the fusion and the fission families have been considered previously
by Dunn and Hardegree [15, Sect. 6.9], Grishin [18] and Moortgat [22]—for
very different reasons though. (The groups of operations that are called in the
terminology of gaggle theory “fusion family” and “fission family” are intro-
duced formally in Sect. 1. Note, in particular, the residuation clauses (re1)
and (re2).)

Dunn and Hardegree showed that so-called “hemi-distributivity” princi-
ples between fusion and fission are necessary for a binary consequence relation
to have the algebraic cut property. (In the case of the binary consequence rela-
tion, the premises and the conclusions are joined into formulas by two binary
operations that are like fusion and fission, respectively.) Grishin arrived at dis-
tribution like inequations based on abstract algebraic features of the operations
of a bi-Lambek algebra. Lastly, natural language phenomena prompted Moort-
gat and his colleagues to amend basic categorial grammar by adding rules that
provide for distribution like interactions between fusion and the residuals of
fission. As it turns out, intertwining fusion and fission (as well as their residu-
als) in a distributivity kind of pattern is neither trivial nor uninteresting from
the point of view of the semantics of the resulting logics.

In this paper, we investigate distribution like interactions between pairs
of operations in an increasingly abstract setting. We start with symmetric gag-
gles, and by the last section, we will have arrived at super gaggles, where those
properties of the operations that are not relevant to our main results have been

1Gaggle theory was invented by Dunn [12]; see also Dunn [13] and Dunn [14]. A fairly com-
prehensive development of gaggle theory (save symmetric and super gaggles) is Bimbó and
Dunn [7]. We follow the notation and the terminology used in our book.
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discarded. Thereby, super gaggles provide a universal logic type framework for
investigations of distribution like interactions.

First, we briefly overview the inequations that were introduced previously,
together with various relationships between them. Then we define relational
semantics for all the symmetric fusion–fission gaggles that are obtained by
adding some of the distribution like inequations. Further, we prove topological
duality theorems for them. In the last section, we give an inequation compris-
ing two terms that has all the previous inequations as its special instances.
This inequation captures a distribution like interaction between two opera-
tions that are monotone in some of their argument places (and possess some
other properties too). We define relational semantics for these super gaggles
too and prove duality theorems between the category of super gaggles and the
category of structures for them. The canonicity of the distribution like axioms
follows from the proofs.

1. Interactions Between Operations

A core observation behind gaggle theory is that operations in a partially
ordered algebra may interact in ways that are advantageous from the point
of view of their semantic modeling—even though the interaction falls short of
ensuring interdefinability. Some well-known relationships between operations
are residuation and Galois connections, and they are both special instances of
abstract residuation and colligation. (Multiplication and division of rationals,
conjunction and implication in intuitionistic logic, and fusion and implication
in relevance logics are all examples of pairs of abstractly residuated operations.)
Operations that are so connected (and additionally possess certain tonicity or
distributivity properties) are grouped into families.2

To start with, we consider the ordered algebra introduced by Grishin
[18].3 Ag = 〈A;≤,←, ◦,→,�,+,≺〉 is a poset with six binary operations that
are stipulated to satisfy the following eight quasi-inequations.

a ≤ b→ c ⇔ a ◦ b ≤ c ⇔ b ≤ c← a (re1)

a ≥ b ≺ c ⇔ a+ b ≥ c ⇔ b ≥ c � a (re2)

There are four other quasi-inequations that are immediate consequences of
those listed above and express colligation between → and ←, and ≺ and �,
respectively. They are easily seen to be implied here, hence we do not list
them separately. However, it would be important to make them explicit, if
◦ (fusion) and + (fission) were dropped from the families of operations. The
set of operations {←, ◦,→}—the fusion family—is the algebraic analogue of

2See [7], especially, definitions 1.3.12, 4.3.7 and 5.3.4. for the precise conditions that opera-
tions have to satisfy in order to be considered a family of operations.
3More precisely, we replace the pre-order, that was stipulated by Grishin, by a partial order
and we leave the rest of the algebra unchanged. We do not follow Grishin’s notation, and
we do not concern ourselves with the goal for which he introduced the algebra. But—out of
respect to him—we add a subscript g to the label of this algebra.
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the connectives in Lambek’s nonassociative sequent calculus.4 Indeed, in the
process of generalizing partially ordered groups and Heyting–Brouwer algebras
into a common algebra, Grishin overtly relied on the algebraic counterpart of
the nonassociative Lambek calculus that was foreshadowed by Ajdukiewicz.

Residuation between operations determines the tonicity of the operations
in the argument places with respect to which they are residuated. For example,
both ◦ and + are monotone in both argument places. ↑ and ↓ indicate that
an operation is monotone and antitone, respectively, in an argument place.
The tonicity types of the operations in the two complete families of operations
(i.e., in {←, ◦,→} and in the fission family {�,+,≺}) are as follows.

← : ↑, ↓ ◦ : ↑, ↑ → : ↓, ↑ � : ↑, ↓ +: ↑, ↑ ≺ : ↓, ↑
There are eight argument places in the six operations in which an ↑ occurs,
that is, where an operation is monotone. The six operations can be divided
into two groups based on the side of the inequation on which they appear in
(re1) and (re2) above. For instance, + and → are placed to the right from ≤.

For conjunction and disjunction (or for meet and join), distributivity can
be stated as

a ∧ (b ∨ c) ≤ (a ∧ b) ∨ c.
Both ∧ and ∨ are monotone in their arguments. However, ∧ and ∨ appear on
different sides of ≤ (when their residuals are included), and those sides coincide
with the sides on which they are the main operation of some terms in the above
inequation. This intertwining of ∧ and ∨ may be viewed as a pattern after
which distribution like inequations may be fashioned. In the above inequation,
the second argument place of ∧ and the first argument place of ∨ is selected—
from the four possible ways to express distributivity of ∧ and ∨ in short form
(without relying on the commutativity of ∧ and ∨).

There are 16 combinations when two operations are chosen similarly
from the fusion and fission families, and the following list contains all the
16 inequations that result. At the same time, their labels encode which opera-
tions are put together and in which argument place. (For example, the hemi-
distributivity law 21 is obtained by combining ◦ in its second argument place
with + in its first argument place.) These labels will also allow us to refer
easily to the inequations later on.

11. (a+ b) ◦ c ≤ (a ◦ c) + b 21. a ◦ (b+ c) ≤ (a ◦ b) + c
12. (a+ b) ◦ c ≤ a+ (b ◦ c) 22. a ◦ (b+ c) ≤ b+ (a ◦ c)
13. (a→ b) ◦ c ≤ a→ (b ◦ c) 23. a ◦ (b→ c) ≤ b→ (a ◦ c)
14. (b← a) ◦ c ≤ (b ◦ c)← a 24. a ◦ (c← b) ≤ (a ◦ c)← b
31. (a+ b) � c ≤ (a � c) + b 41. a ≺ (b+ c) ≤ (a ≺ b) + c
32. (a+ b) � c ≤ a+ (b � c) 42. a ≺ (b+ c) ≤ b+ (a ≺ c)
33. (a→ b) � c ≤ a→ (b � c) 43. a ≺ (b→ c) ≤ b→ (a ≺ c)
34. (b← a) � c ≤ (b � c)← a 44. a ≺ (c← b) ≤ (a ≺ c)← b

4See Lambek [19] for the associative Lambek calculus. Lambek [20] contains the nonassoci-
ative Lambek calculus with conjunction.
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In the case of a Boolean algebra, which tightly constrains its operations,
all (the Boolean variants of) the 16 inequations are equivalent and they are
all true. (E.g., 23 is a ∧ (b ⊃ c) ≤ b ⊃ (a ∧ c) in Booleanese, and then via
a ∧ (−b ∨ c) ≤ −b ∨ (a ∧ c) and a ∧ (c ∨ b) ≤ b ∨ (a ∧ c), we get the Boolean
version of 21, i.e., a∧ (c∨ b) ≤ b∨ (a∧ c).) The situation is different in Ag—as
the next lemma makes clear.

Lemma 1.1. None of the inequations is interderivable from any other in Ag.

Proof. There are various ways to prove the claim, one is by constructing con-
crete posets in which all but one of the inequations fail to hold. As sample
cases we mention that 13 can be seen to express some permutation in fused
terms, whereas 23 similarly expresses right associativity. A well-known fact
from combinatory logic about the absence of interdefinability of the regular
permutator C and of the associator B implies that algebras of combinatory
terms (partially ordered by the weak reduction relation) can be utilized to
show the independence of 13 and 23 over Ag.

The same algebras can prove the independence of 11 and 12 too, because
these two inequations do not become equivalent even if both + and ◦ are
interpreted as the application operation.

A completely different sort of proof may be constructed after we will
have defined a sound and complete relational semantics for the gaggles includ-
ing those that are obtained by adding only one of the 16 inequations (see
Sect. 2). �

We mentioned in the introduction that there were other motivations
that vindicated some of the inequations from among 11–44. Investigations
into desirable properties of binary consequence relations led to four hemi-
distributivity laws, which are 11, 12, 21 and 22. The eight inequations (denoted
as G1, G1′, . . . , G4, G4′ by Moortgat), which were proposed to handle linguis-
tic phenomena, seem not to appear among those listed. However, they turn
out to be provably equivalent—using residuation—to four of the inequations
that are listed. Namely, G1 and G1′ are equivalent to 33, G2 and G4′ are
equivalent to 34, G3 and G3′ are equivalent to 44, and lastly, G4 and G2′ are
equivalent to 43.

Some of the inequations (or their provably equivalent versions) have been
considered and motivated by reasons different from those we have listed so
far. The inequations that are true in all relation algebras—when we think of
◦ as relational composition and + as its Boolean dual—are 14, 23, 31 and 42,
as well as two of the hemi-distributive laws 12 and 21. The lack of the two
other hemi-distributive laws in relation algebras is explained by the absence
of commutativity, in general, between binary relations. In other words, those
inequations force a certain “permutation” or “switching” of some of the argu-
ments of the operations (with respect to their order in the left-hand side term
in the inequation).

We already mentioned the connection between 23 and the combinator B,
as well as that between 13 and C. A (binary) groupoid operation can be
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straightforwardly viewed as function application. The following four inequa-
tions are equivalent (by residuation) to the four inequations 13, 14, 23 and 24,
respectively.

13′. (a ◦ b) ◦ c ≤ (a ◦ c) ◦ b 14′. a ◦ (b ◦ c) ≤ b ◦ (a ◦ c)
23′. (a ◦ b) ◦ c ≤ a ◦ (b ◦ c) 24′. a ◦ (b ◦ c) ≤ (a ◦ b) ◦ c

The axioms for the combinators B, C, and the dual combinators b and c are
as follows (with the application operation denoted by juxtaposition).

C. ((Cx)y)z � (xz)y c. x(y(zc)) � y(zx)
B. ((Bx)y)z � x(yz) b. x(y(zb)) � (xy)z

The similarity between the inequations above and the combinatory axioms
(without the combinators) should be obvious now.

The inequations may be grouped together in various ways. For exam-
ple, clusters may consist of all the inequations expressing forms of hemi-
distributivity, all the inequations expressing associativity and certain
commutativity of + and all the inequations expressing associativity and certain
commutativity of ◦. All these inequations hold of addition and multiplication
of natural numbers, when the former is + and the latter is ◦. The remaining
four inequations are false under this interpretation. In other words, there are
12 “arithmetical” inequations and 4 “linguistic” inequations.

Another obvious division is to separate the inequations that involve oper-
ations that belong to the same family from those that connect the two fami-
lies—which yields an even split of the 16 inequations. (This division is apparent
in the conditions (f11–f44) in definition 2.4, where only two accessibility rela-
tions are used—one for the fusion family and another for the fission family.)
Of course, the eight inequations that concern only one family can be further
halved, since four of those inequations involve connectives from the fusion fam-
ily, whereas the other inequations concern the fission family. The other eight
inequations naturally fall into two groups—the hemi-distributive laws and the
inequations that are equivalents of the linguistic principles G1–G4.

“Symmetry” may mean a lot of things. For example, a function of two
variables f is called symmetric if its value is invariant under the permutation
of its arguments, that is, f(x, y) = f(y, x)—see Church [9, pp. 17–18]. Dis-
tance functions are, perhaps, the best-known examples of functions that are
symmetric in this sense. “Symmetry” in the title of this paper is derived from
a transformation on inequations that was introduced by Grishin. Ultimately,
his notion of symmetry is related to the notion of the converse of a relation,
and indirectly, to the notion of symmetry of (binary) functions.

Grishin in [18] introduced two notions of “duality,” and he called one of
them symmetry. We denote these dualities by δ and c, respectively. The two
transformations outlined by Grishin may be characterized by the following
algorithms, where (d0) and (c0) are applicable only if no other clause from
among (d1–d3) and (c1–c3), respectively, is applicable.
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Figure 1. Dualities between the 16 inequations

Definition 1.2. The transformation δ is defined by (d0–d3), whereas c is defined
by (c0–c3). (c2), (c3) and (d2), (d3) collect together three clauses each, those
that concern operations from the same family.
(d0) δa = a,
(d1) δ(a1 ≤ a2) = δa1 ≥ δa2,
(d2) δ(a1 ◦ a2) = δa1 + δa2, δ(a1 → a2) = δa1 ≺ δa2,

δ(a1 ← a2) = δa1 � δa2,
(d3) δ(a1 + a2) = δa1 ◦ δa2, δ(a1 ≺ a2) = δa1 → δa2,

δ(a1 � a2) = δa1 ← δa2.
(c0) ca = a,
(c1) c(a1 ≤ a2) = ca1 ≤ ca2,
(c2) c(a1 ◦ a2) = ca2 ◦ ca1, c(a1 → a2) = ca2 ← ca1,

c(a1 ← a2) = ca2 → ca1,
(c3) c(a1 + a2) = ca2 + ca1, c(a1 ≺ a2) = ca2 � ca1,

c(a1 � a2) = ca2 ≺ ca1.

Obviously, either transformation yields an inequation from any of the 16
inequations. Moreover, the set of the 16 inequations above is closed under δ
and c. From a logical point of view, it is interesting to find out if there is a
systematic relationship between δ, c and logical equivalence (denoted by ≡) or
its algebraic counterpart (i.e., equality in Ag). The picture that emerges is in
Fig. 1. The dotted lines indicate c, and the continuous lines show δ. It is easy
to verify that both functions are invertible and of period two, hence there are
no arrows on the lines in the diagram.

As the diagram shows, there are four fixed points for δ (11, 22, 34 and 43),
and on these points δncc (n ∈ N) is logical equivalence. On the pairs { 21, 12 }
and { 33, 44 } δ and c commute, that is, δc and cδ are both ≡. Lastly, on the
sets { 14, 23, 31, 42 } and { 13, 24, 32, 41 } the foursome compositions δcδc and
cδcδ are logical equivalence.

The 16 points do not constitute a connected graph, rather they span six
connected subgraphs. The four points on the left and on the right stand for ine-
quations that involve operations from both families. The eight middle points
are inequations with terms from just one family, however, δ switches from one
family to another. The horizontal dotted lines connect inequations that include
a certain amount of commutation (in the wide sense already mentioned above).
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For our purposes, it is useful to enlarge the signature of Ag. We denote
by Ae a partially ordered algebra that is like Ag with four constants (0, 1, e◦
and e+) added. In Ae the (in)equations in (bt) and (ee) are stipulated to hold.

0 ≤ a a ≤ 1 (bt)
e◦ ◦ a = a a = a+ e+ (ee)

The elements 0 and 1 function as bounds of the poset—0 is bottom and
1 is top. The addition of these constants is straightforward and the addition of
the two inequations does not produce new true inequations in the old signa-
ture. That is, if the terms in an inequation do not involve the constants, then
the inequation can be derived in Ae (or in the new quasi-variety containing the
constants), just in case it can be derived in Ag (or in the quasi-variety without
the constants).

The operations in the fusion and fission families preserve or reverse the
extremal elements as follows.

← : 1, 0 −→ 1 ◦ : 0, 0 −→ 0 → : 0, 1 −→ 1
� : 0, 1 −→ 0 +: 1, 1 −→ 1 ≺ : 1, 0 −→ 0

For example, ◦ is a normal operation, that is, if either argument place of ◦ is
filled with 0 (and the other argument is filled with any element of A), then
the whole term reduces to 0. That is, ◦ preserves 0 in both argument places.
On the other hand, � reverses 1 to 0 in its second argument place, that is,
a � 1 = 0. The inequations that are “summarized” by the above type-like
notation may be derived without much difficulty utilizing residuation in an
essential way.5

The addition of the two other constants, e◦ and e+, is less important
for our purposes. However, the inclusion of identity elements for ◦ and + can
be easily motivated. If Ae is viewed as arising as a generalization of ordered
groups then retaining identities is a must. If Ae is thought to emerge in con-
nection to nonclassical logics, e.g., relevance logics, then e◦ becomes especially
important from the point of view of proof theory (especially, consecution cal-
culi). Furthermore, e◦ is paramount in the algebraization of relevance logics.
The equations in (ee) above mean that the constants e◦ and e+ are left and
right identity elements for the two operations ◦ and +, respectively.

2. Fusion–Fission Gaggles

Gaggles were originally defined by Dunn [12] to inhabit on a distributive lat-
tice.6 Sometimes, we use the term ‘gaggles’ to refer to a whole range of alge-
braic structures that lie within the limits of gaggle theory. However, in this
and the next section, we more often use the same term to refer to algebras that

5We introduced this notation in [7, Ch. 6]—with more detailed explanations.
6‘Generalized Galois logics’ is abbreviated as ‘ggl’s’. In turn, the acronym ‘ggl’ is pronounced
as “gaggle.” (See also Dunn [12].)
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contain a family of operations on an underlying bounded distributive lattice.7

Distributive gaggles turned out to be the best-behaved kind of gaggles. This
suggests that we start our investigations with considering gGls that contain
the fusion and the fission families, as well as some of the inequations listed as
11–44.

The hemi-distributivity laws that hold for “multiplicative” conjunction
and disjunction in the Lindenbaum algebra of linear logic were modeled in
Allwein and Dunn [1]. (“Additive” conjunction and disjunction do not distrib-
ute over each other in linear logic, that is, the Lindenbaum algebra of linear
logic does not contain a distributive lattice reduct.) This leads to considerable
complications (and to new definitions for the operations on sets of situations)
in the relational semantics of linear logic.8 The inequations G1–G4 were con-
sidered by Moortgat and his colleagues within an algebra that we would call
a partial gaggle. The two inequations 13 and 23, that express a certain com-
mutativity and the right associativity of fusion, were often dealt with in the
literature on relevance logics. (See e.g., Meyer and Routley [21], Anderson,
Belnap and Dunn [2], Dunn and Restall [17].) The closely related combinatory
axioms were modeled in the setting of partial gaggles in Dunn and Meyer [16],
and in the setting of gGls and nondistributive gGls in Bimbó and Dunn [6] and
Bimbó [3], respectively.

Definition 2.1. A fusion–fission gaggle Ad is an algebra 〈A;∧,∨, 0, 1,←, ◦,→ ,
e◦,�,+,≺, e+〉 (of similarity type 〈2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0〉), where (dl) as
well as (re1), (re2), (bt) and (ee) (from Sect. 1) hold.
(dl) 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice.
The gaggles A11–A44 are defined by adding to Ad the identically labeled
inequation.

Of course, further gGls may be defined by adding to Ad more than one
of the distribution like inequations. We do not define all those gGls separately,
because they can be represented by adding the corresponding frame conditions
to the structure defined in 2.3 (below). However, we keep in mind that those
gaggles fall into the class of symmetric gaggles too. The partial order ≤ that
was present in Ag and Ae is retained in Ad, however, it no longer appears
explicitly in the previous definition, because ≤ is definable from either meet
or join, in the standard lattice-theoretical way. This means that Ad is rightly
seen as an extension of both Ag and Ae.

The next lemma shows that the lattice operations interact with the fusion
and fission families in a pleasant way. For example,→ distributes over ∨ in its
first argument place and over ∧ in its second argument place into ∧. That is,
(a∨ b)→ c = (a→ c)∧ (b→ c) and a→ (b∧ c) = (a→ b)∧ (a→ c). (See also
[7, pp. 28–30].)

7These algebras are nearly the same as the gaggles defined by Dunn in [12]. They are called
“distributive gaggles” in Bimbó and Dunn [7]—to distinguish them from other classes of

gaggles.
8Situations (sometimes called information states) are the analogues of the possible worlds,

that are the objects in the Kripke-style semantics of normal modal logics.
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Lemma 2.2. In Ad the binary operations from the fusion and fission families
have the same tonicity type as in Ag, and they preserve or reverse the bounds
as in Ae. Furthermore, in Ad the same operations possess distribution types,
which are given in (d◦) and (d+).

← : ∧,∨ −→ ∧ ◦ : ∨,∨ −→ ∨ → : ∨,∧ −→ ∧ (d◦)
� : ∨,∧ −→ ∨ +: ∧,∧ −→ ∧ ≺ : ∧,∨ −→ ∨ (d+)

We do not give a proof for the lemma, however, we remark that the proof
is quite straightforward.

The distribution types of the operations are interesting not only in them-
selves, but also for the choice of the modeling of the operations. To describe the
modeling of all the gaggles introduced in definition 2.1, we define a semantics
in two steps. First, we describe a structure for Ad, and then we list conditions
that correspond to the inequations 11–44 (on the background of Ad).

We extend to relations our use of ↑ and ↓ to show the tonicity of oper-
ations (from Sect. 1), putting ↑ and ↓ into the argument places of a relation
to show the tonicity (monotone or antitone, respectively) of the relation in
that argument place. R◦ and R+ are “accessibility relations,” and we follow
the customary convention of omitting the commas and parentheses around
their arguments. Priestley in [23] introduced ordered Stone spaces in order to
obtain a representation of bounded distributive lattices. (Her representation
is different from the representation given by Stone in [25].) We call a compact
and totally order disconnected topological space a Priestley space, which is
Priestley’s ordered Stone space. (Cf. also Davey and Priestley [10, Ch. 11].)
As a notation for a topological space, we give the base set of the topology
(e.g., U), and we denote the set of open sets by O. If the space includes fur-
ther components, such as relations, then we list those too. The set of clopen
sets (i.e., the set of those sets that are both open and closed in the topology)
is denoted by OC(O). We add the superscript ↑ to restrict the set to contain
upward closed subsets of U only (where the closure is understood with respect
to the partial order ≤). To simplify the statement of (f8–f10), we use the oper-
ations on sets of situations that are defined by (v1–v6) in definition 2.5. [For
instance, (f9) could be fully written out as R◦αβγ ⇒ ∃O1, O2 ∈ OC(O)↑. α ∈
O1 & β ∈ O2 & γ /∈ { δ : ∃α, β.R◦αβδ & α ∈ O1 & β ∈ O2 }.]
Definition 2.3. A structure for Ad is F = 〈U ;≤, R◦, R+, I◦, I+,O〉, where (f1)–
(f10) hold.

(f1) I◦, I+ ⊆ U , ≤ ⊆ U2, R◦, R+ ⊆ U3, O ⊆ ℘(U),
(f2) α ≤ α, α ≤ β & β ≤ γ.⇒ α ≤ γ, α ≤ β & β ≤ α.⇒ α = β,
(f3) R◦ ↓↓↑, R+ ↓↓↑,
(f4) 〈U,≤,O〉 is a Priestley space,
(f5) ∃ι ∈ I◦. R◦ιαβ ⇔ α ≤ β,
(f6) R+αβγ & β /∈ I+. ⇒ γ ≤ α, ∃β.R+αβα & β /∈ I+,
(f7) I◦ = I↑

◦ ∈ O, I◦ ∈ O, I+ = I↑
+ ∈ O, I+ ∈ O,

(f8) O1, O2 ∈ OC(O)↑ ⇒ O1 ∗O2 ∈ OC(O), where ∗ ∈ {←, ◦,→,�,+,≺},
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(f9) R◦αβγ ⇒ ∃O1, O2 ∈ OC(O)↑. α ∈ O1 & β ∈ O2 & γ /∈ O1 ◦O2,
(f10) R+αβγ ⇒ ∃O1, O2 ∈ OC(O)↑. α /∈ O1 & β /∈ O2 & γ ∈ O1 +O2.

The two accessibility relations are antitone in their first two argument
places and isotone in their third arguments. The stipulations in (f5) and (f6)
guarantee that I◦ and I+ will turn out to be identity elements for ◦ and +
[that are defined in (v2) and (v5)]. (f7) provides that these two subsets of U
are indeed elements of the algebra of clopen cones on the structure F.

The group of gaggles that includes Ad and one or more of A11–A44 may
be thought to be analogous to a certain extent to a group of normal modal
logics, for example, to K, KT , KB, S4 and S5. These logics differ from each
other in respect to which axioms from among T , 4 and B they include. In
order to be able to refer to all the gaggles defined in 2.1 or to any one of them,
we will use the notation A∗

d. In the case of normal modal logics, T , 4 and B
each has its own corresponding frame condition. For the inequations 11–44,
the corresponding conditions (in the context of Ad) are (f11–f44).

Definition 2.4. A structure for a gaggle Amn (from among A11–A44) is a struc-
ture for Ad together with the postulate (f mn) added.

(f11) R◦αβγ &R+δεγ. ⇒ ∃ϑ.R+ϑεα &R◦ϑβδ,
(f12) R◦αβγ &R+δεγ. ⇒ ∃ϑ.R+δϑα &R◦ϑβε,
(f13) R◦αβγ &R◦γδε. ⇒ ∃ϑ.R◦ϑβε &R◦αδϑ,
(f14) R◦αβγ &R◦δγε. ⇒ ∃ϑ.R◦ϑβε &R◦δαϑ,
(f21) R◦αβγ &R+δεγ. ⇒ ∃ϑ.R+ϑεβ &R◦αϑδ,
(f22) R◦αβγ &R+δεγ. ⇒ ∃ϑ.R+δϑβ &R◦αϑε,
(f23) R◦αβγ &R◦γδε. ⇒ ∃ϑ.R◦αϑε &R◦βδϑ,
(f24) R◦αβγ &R◦δγε. ⇒ ∃ϑ.R◦αϑε &R◦δβϑ,
(f31) R+αβγ &R+δγε. ⇒ ∃ϑ.R+ϑβε &R+δαϑ,
(f32) R+αβγ &R+δγε. ⇒ ∃ϑ.R+αϑε &R+δβϑ,
(f33) R◦αβγ &R+δαε. ⇒ ∃ϑ.R+δγϑ &R◦εβϑ,
(f34) R◦αβγ &R+δβε. ⇒ ∃ϑ.R+δγϑ &R◦αεϑ,
(f41) R+αβγ &R+γδε. ⇒ ∃ϑ.R+ϑβε &R+αδϑ,
(f42) R+αβγ &R+γδε. ⇒ ∃ϑ.R+αϑε &R+βδϑ,
(f43) R◦αβγ &R+αδε. ⇒ ∃ϑ.R+γδϑ &R◦εβϑ,
(f44) R◦αβγ &R+βδε. ⇒ ∃ϑ.R+γδϑ &R◦αεϑ.

The operations and the constants of the algebra of clopen cones on a
structure are defined in the same way in all these gaggles, that is, the next
definition can be applied to any of the above frames.

Definition 2.5. A model for an A∗
d gaggle is M = 〈F, v〉, where F is a structure

for the A∗
d gaggle, and v is a valuation function. v is of type v : A −→ OC(O)↑

and v satisfies (v1–v12).
(v1) v(c← a) = {β : ∀α, γ.R◦αβγ & α ∈ va.⇒ γ ∈ vc },
(v2) v(a ◦ b) = { γ : ∃α, β.R◦αβγ & α ∈ va & β ∈ vb },
(v3) v(b→ c) = {α : ∀β, γ.R◦αβγ & β ∈ vb.⇒ γ ∈ vc },
(v4) v(c � a) = {β : ∃α, γ.R+αβγ & α /∈ va & γ ∈ vc },



136 K. Bimbó and J. M. Dunn Log. Univers.

(v5) v(a+ b) = { γ : ∀α, β.R+αβγ ⇒ . α ∈ va v β ∈ vb },
(v6) v(b ≺ c) = {α : ∃β, γ.R+αβγ & β /∈ vb & γ ∈ vc },
(v7) v(a ∧ b) = {α : α ∈ va & α ∈ vb },
(v8) v(a ∨ b) = {α : α ∈ va v α ∈ vb },
(v9) ve◦ = {α : α ∈ I◦ },
(v10) ve+ = {α : α ∈ I+ },
(v11) v1 = {α : α ∈ U },
(v12) v0 = ∅.

We note two potential simplifications in the definitions of structures and
models that are applicable depending on whether the A∗

d gaggle is thought to
arise from a proof system for a logic or not. If there is set of generators B for
the gaggle such that B � A and B includes the constants 0, 1, e◦ and e+, then,
first, v may be restricted to B with (v9–v12) held fixed. Then (v1–v8) can be
viewed as defining an extension of v from B to A. If the A∗

d gaggles emerge
from a logic, then typically, the set of propositional variables (together with
the constants) serves as a set of generators, that is a proper subset of the set
of formulas. On the other hand, if there is no generator set readily available
(other than A itself), then (f7) and (f8) follow from the type assumption on
v together with clauses (v1–v6) and (v9–v10). Similarly, the tonicity condi-
tions for R◦ and R+, that is, (f3) may be dropped when the co-domain of v is
specified as above.

Having defined a relational semantics for the gaggles, we can develop
another comparison between some groups of inequations. We noted earlier
that some of the inequations involve “permutation” (in a wide sense). The
motivation behind the use of the term ‘permutation’ comes from the fact that
some of the inequations express permutation in the usual sense of the term.
Concretely, 13 is equivalent to the inequation (a ◦ b) ◦ c ≤ (a ◦ c) ◦ b, and 24
can be proven to be equivalent to a ◦ (b ◦ c) ≤ b ◦ (a ◦ c). Dual combinators
are less well-known than combinators, however, they are well-motivated by
algebraic and proof theoretic considerations, as well as by generalizations of
the Curry–Howard isomorphism. Combinators and dual combinators can be
straightforwardly associated to formulas and algebraic terms that contain ◦,
and we have shown above that the four inequations that include operations
only from the fusion family become analogues of combinatory axioms. There
seems to be no similar connection between + and some sort of constants that
have been investigated for independent reasons. However, 41 parallels 13 and
so does 32 24 within the fission family; 42 and 31 express the associativity of +.

An interesting property of the inequations without permutation (in the
wide sense) is that the corresponding relational conditions can be pictured by
simple square shaped diagrams, where the existentially quantified ϑ is almost
contained in the diagram of the antecedent. As illustrations, we give diagrams
for 14, 23 and 44. (We leave to the reader the discovery of the five other
inequations that can be so visualized.)

The arrows are composed as in serial commuting diagrams of binary rela-
tions. The ◦ or + at the corner of a triangle indicates the ternary relation that
induces the triangle. For example, R◦αβγ is pictured as the “south-east” (SE)
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Figure 2. Diagrams of frame conditions for 14, 23 and 44

triangle of the first two square diagrams in Fig. 2, whereas R+βδε gives rise
to the NW triangle of the third square diagram. In terms of binary relations,
α and β may be thought to compose into γ in the former case, and β and δ
compose into ε in the latter one. The dotted line—always a diagonal of the
square—is the line of the emergent arrow.

We note that the coincidence of easy picturing and the lack of permu-
tation is somewhat arbitrary when the inequation involves operations from
two families. The order in which the situations are linked by the accessibility
relation is—in a sense—arbitrary. More precisely, the order is (systematically)
derived from the residuation patterns within a family of operations, and so
it depends on the way the family has been standardized.9 However, families
of operations may be standardized independently from each other, which pro-
duces a certain arbitrariness.

The situation is not wholly arbitrary when the operations belong to the
same family. To illustrate how the notion of permutation may be conceptual-
ized based on residuation together with replacing terms, we give two examples
to show how certain manipulations of inequations that hold in Ag can yield 13
and 23. (b → c) ◦ b ≤ c and c ≤ a → (c ◦ a) are true in Ag. Then postulating
(b → c) ◦ b ≤ a → (c ◦ a) does not add anything new to Ag. Furthermore,
the terms in the inequation involve only two variables (rather that three, as in
11–44). This observation suggests that we move some subterms to the other
side of the inequation using residuation (which yielded the inequation itself).
We may obtain either b→ c ≤ b→ (a→ (c ◦ a)) or ((b→ c) ◦ b) ◦ a ≤ c ◦ a in
this way. However, either residuation step blocks the other one. But replacing
the left-hand side term in the latter inequation by ((b → c) ◦ a) ◦ b allows us
to move b to the right-hand side to get the inequation (b → c) ◦ a ≤ b →
(c ◦ a). The former inequation does not lead to a similarly “obvious” step,
although right associativity amounts to replacing the term b → (a → (c ◦ a))
by (b → (a ◦ c)) ← a. A more transparent manipulation leading to 23 starts
with another inequation that is true in Ag, namely, (b→ c) ◦ b ≤ (a ◦ c)← a.
Then a ◦ ((b → c) ◦ b) ≤ a ◦ c, and by rearranging the parentheses, we arrive
at (a ◦ (b → c)) ◦ b ≤ a ◦ c. One more step gives 23, that is, the inequa-
tion a ◦ (b → c) ≤ b → (a ◦ c). The examples clearly show the difference
between swapping two subterms such as a and b (while the whole structure

9The notion of standardization was introduced by Bimbó and Dunn in [7, Ch. 4]. The order
of the arguments of accessibility relations is also considered in Chapter 2.
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of the terms remains the same) and regrouping a term by moving a pair of
parentheses around.

We do not pursue further the problem of picturing relational conditions
here; rather we turn to our models.

Theorem 2.6. A model on a structure F for an A∗
d gaggle is a concrete A∗

d

gaggle, that is, an A∗
d gaggle consisting of clopen cones.

Proof. We sketch the proof of the theorem, including details of two steps. The
clopen cones of a Priestley space form a distributive lattice with ∅ and OC(O)↑

being the extremal elements. The residuation patterns between the operations
are immediate from their definitions in 2.5—once we note that OC(O)↑ is closed
under all the operations in the families. I◦ and I+ are easily seen to be identity
elements for ◦ and + due to the frame conditions stipulated in (f5–f6) and (f7).

In 1. and 2. we show that (f21) suffices for 21 to hold in the algebra of
clopen cones, and so does (f44) for 44.
1. A straightforward verification of v(a ◦ (b + c)) ⊆ v((a ◦ b) + c) (that is, of
21) using (f21) can be carried out as follows. The assumption γ ∈ v(a◦ (b+ c))
expands into ∃α, β.R◦αβγ&α ∈ va&β ∈ v(b+c). Having assumed R+ζϑγ, we
can detach R+ζϑγ&R◦αβγ from (f21), and then we obtain ∃δ.R+δϑβ&R◦αδζ.
From β ∈ v(b + c) then—together with Rδϑβ—δ ∈ vb or ε ∈ vc follows. If
δ ∈ vb, then ζ ∈ v(a ◦ b), and so ζ ∈ v(a ◦ b) or ϑ ∈ vc. If ϑ ∈ vc then it is
immediate that ζ ∈ v(a ◦ b) or ϑ ∈ vc. In sum, ζ ∈ v(a ◦ b) or ϑ ∈ vc. By
eliminating the second assumption, γ ∈ v((a ◦ b) + c) by the definition of +.
2. The other inequation that we selected is 44, and it may be proven to be
true in the gaggle of clopen cones on a frame for A44 as follows. Let us assume
that γ ∈ v(a◦ (b ≺ c)). Then we get ∃α, β.R◦αβγ&α ∈ va&β ∈ v(b ≺ c), and
further, from the last conjunct we obtain ∃δ, ε. R+βδε& δ /∈ vb& ε ∈ vc. After
existential instantiation and conjunction elimination, we can introduce & to get
R◦αβγ & R+βδε. By yet another instantiation and modus ponens, we obtain
∃ϑ.R◦αεϑ&R+γδϑ from (f44). After rearranging some conjuncts and reintro-
ducing the existential quantifiers, we arrive at the formula ∃α, ε.R◦αεϑ&α ∈
va& ε ∈ vc, which means that ϑ ∈ v(a ◦ c). Having added two more conjuncts
and quantifiers, we have ∃δ, ϑ.R+γδϑ&δ /∈ vb&ϑ ∈ v(a◦c), which is the same
as γ ∈ v(b ≺ (a ◦ c)), according to (v4). �

Definitions 2.3, 2.4 and 2.5 describe how to build a concrete gaggle
(that is, a gGl comprising sets of situations) from a frame and Theorem 2.6
shows that the definitions accomplish what they were intended to do. Now we
describe how to define a structure—the canonical frame—from an A∗

d gaggle.
(We denote by τ(B) the topology generated by the basis B.)

Definition 2.7. The canonical frame of an A∗
d gaggle is Fc = 〈Po,⊆, R◦, R+,

I◦, I+,O〉, where the elements of the tuple are as follows. (α, β, γ ∈ Po every-
where.)
(b1) B ∈ Po ⇔ . B ⊆ A &A �= B &B �= ∅ &

(∀a, b. a∧ b ∈ B ⇔ a ∈ B& b ∈ B)& (∀a, b.a∨ b ∈ B ⇔ . a ∈ B v b ∈ B),
(b2) ∀B,C ∈ Po. B ⊆ C ⇔ ∀a ∈ B. a ∈ C,
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(b3) R◦ = { 〈α, β, γ〉 : ∀a, b. a ∈ α & b ∈ β.⇒ a ◦ b ∈ γ },
(b4) R+ = { 〈α, β, γ〉 : ∃a, b. a /∈ α & b /∈ β & a+ b ∈ γ },
(b5) I◦ = {α : e◦ ∈ α },
(b6) I+ = {α : e+ ∈ α },
(b7) O = τ(B), where B = {C ∩D : C,D ∈ h[A] } and ha = {α : a ∈ α }.

The canonical frame of an A∗
d gaggle may be explained in words as follows.

The underlying set of elements of the frame is the set of proper nonempty prime
filters, which is denoted by Po. The elements of Po are denoted by α, β, γ, . . .,
that is, the situations are prime filters. The partial order of the structure is set
inclusion. The two ternary relations R◦ and R+, that are associated with the
fusion and the fission families, are defined in (b3) and (b4) from the two mono-
tone operations of the families. However, the same relations may be defined
using either of the two other operations of the families. The two distinguished
subsets of Po are related to the identity elements, and the form of the defining
conditions (i.e., “y ∈ Y ”) automatically ensures that the resulting subsets are
upward closed. Lastly, the set of open sets is defined from a basis for the set
of open sets. (A basis is closed under finite intersections, hence B only has
to be closed under arbitrary unions.) The definition of B utilizes the function
h [which is also given in (b7)]. The function h will play a further rôle in the
proof of theorem 2.10.

The next theorem parallels the previous one to the extent that it shows
that starting with an A∗

d gaggle, we can build a frame for that gaggle from the
gaggle itself.

Theorem 2.8. The canonical frame of A∗
d is a structure for A∗

d.

Proof. The proof may be divided into several parts. First, 〈Po,⊆,O〉 can be
shown to be a Priestley space without any concern about the other operations
and constants. It is obvious that the type of the other elements is as required
due to (b3–b6).

The tonicity of R◦ and R+ is nearly obvious, and it is easily verifiable.
This means that (f3) holds on the canonical frame. To show that R◦ and ⊆
interact as desired, let us assume that α ⊆ β (again, α, β ∈ Po). The filter
generated by e◦, that is, [e◦) satisfies the defining condition of R◦ (with α in
place of β and β in place of γ). Furthermore, [e◦) ∈ {F : ∀a, b. a ∈ F&b ∈ α.⇒
a ◦ b ∈ β } (where F ranges over the set of proper nonempty filters). A union
of a chain of nonempty filters is a filter, and belongs to the set we have just
defined whenever all the elements of the chain are elements of the same set.
By Zorn’s lemma, there is a maximal element—let us say ι—in this partially
ordered set of filters. Based on the maximality of ι and the distribution type
of fusion, ι may be shown to be a prime filter. (We omit the details.)

The conditions guaranteeing that the set of clopen cones is closed under
the operations can be proven once we observe that h is an isomorphism, and
it maps every element of the gaggle into a clopen cone. It is also true that
every clopen cone is of this form, that is, h is onto. (The proof of the latter
claim is part of the proof that O with ⊆ is a Priestley space.) Incidentally,
this implies that I◦ and I+ are clopen cones too, thereby, showing that all the
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conditions in (f7) hold on Fc. These steps suffice for a proof of completeness
theorem without a topology.

The inspection of all the details of the proof of theorem 2.6 reveals that
(f9) and (f10) have not been used in that proof at all. (f9) and (f10) are postu-
lated to ensure that the topological structures have other desirable properties
beyond giving rise to a concrete A∗

d gaggle. At the same time, these stipulations
are unproblematic in the present theorem, because the two conditions may be
proven to be true on Fc. One has to take into account that the co-domain
of h is OC(O)↑ and h is an isomorphism together with the definitions of the
accessibility relations. (We leave filling out the details to the reader.)

The proof that we outlined so far suffices to prove the claim of the theo-
rem for Ad. For the other A∗

d gaggles, their characteristic frame condition has
to be shown to hold on the canonical structure. We separate this step into the
next lemma. This proof is concluded by remarking that (f11–f44) hold on Fc

(when appropriate) by Lemma 2.9. �

Lemma 2.9. If an A∗
d gaggle satisfies an inequation from among 11–44, then

Fc, the canonical frame of the gaggle, satisfies the condition with the same
number from among (f11–f44).

Proof. The inequations fall into four groups from the point of view of the
proof of this lemma, and we illustrate proofs in three of those groups. Proofs
of the frame conditions from the fourth group may be found in the literature
on nonclassical logics.10

1. First we show that condition (f21) holds on the canonical frame of A21. The
consequent of (f21) is existentially quantified, therefore, we define a subset of
A that we then extend to a prime ideal. We also show that the complement of
the latter bears R◦ and R+ to certain prime filters, as required.

Let x be defined as { a : ∀b. b /∈ ϑ⇒ a+b /∈ β }. Because of the tonicity of
+, this definition yields a co-cone (a downward closed subset). Furthermore,
+ distributes over ∧ into ∧, and ϑ and β are prime filters, which together
mean that x is prime too. The complement of a prime co-cone is a filter. Let
R′

+ be defined as R+, except that some of the filters occupying the argument
places of R′

+ may not to be prime. The definition of x guarantees that R
′
+xϑβ

holds. We note that R+’s tonicity type is R+↓↓↑, whereas R+’s tonicity type
is R+↑↑↓.

If x were an ideal, then the proof could be concluded by showing that x
is in the R◦ relation as needed. Instead, we first show the latter, and then we
create a superset of x that is a prime filter. Let us assume that a ∈ α, b ∈ x,
but a ◦ b /∈ ε. Since b /∈ x, there is some c /∈ ϑ such that b + c ∈ β. However,
(a ◦ b) + c /∈ γ due to the second conjunct in the antecedent of (f21). By 21,
then a ◦ (b + c) /∈ γ, since γ is a cone. We are given that R◦αβγ and a ∈ α,
thus b+c cannot be an element of β. From the contradiction, we conclude that

10See e.g., Dunn [11, Sect. 4.7] for a proof of 13 and 23. A conceptually different proof of
the “squeeze lemma” is given in Bimbó [4, Sect. 3.8], on the basis of which associativity may
be proven.
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R′
◦αxε (where R′

◦ is like R◦ without a primeness requirement imposed upon
the arguments).

Next we note that R◦↓↓↑. The expansion of x to a prime filter may be
carried out via maximizing on a set of filters that include x and preserve the
relation R′

◦. A filter that is maximal with respect to the defining properties is
guaranteed to exist by Zorn’s lemma. We may denote such a maximal element
by δ. R′

◦αδε is immediate, and R
′
+δϑβ follows by the tonicity of R

′
+ that we

noted above. δ may be proven to be prime in the usual way using the distri-
bution type of fusion, the maximality of δ as well as the distributivity of meet
and join in the underlying lattice.11

2. Next we prove that (f44) is true on the canonical frame of A44. Again, there
is an interest in this proof, because of the way the appropriate prime filters
are constructed. We include some of the details here. Suppose the antecedent
of (f44). We set x = [α ◦ ε). We may observe that R′

◦αεx holds (where R′
◦

is like R◦ except that the requirement that the arguments are prime filters is
omitted). We claim that Q′

+γδx holds as well, where Q′
+ is the uniform acces-

sibility relation associated to R+.12 To show that Q′
+γδx holds, let us assume

that c /∈ γ, d /∈ δ and c + d ∈ x. By the definition of x, and using that + is
monotone, plus that α and ε are prime filters, it follows that a ◦ e ≤ c + d
for some a ∈ α, e ∈ ε. By residuation, d ≺ (a ◦ e) ≤ c, hence—a fortiori—
a ◦ (d ≺ e) ≤ c. Then a ◦ (d ≺ e) /∈ γ, since c /∈ γ. But then d ≺ e /∈ β,
because a ∈ α and R◦αβγ. The residuation between ≺ and + implies that
e ≤ (d ≺ e) + d (for any e and d). However, (d ≺ e) + d /∈ ε because R+βδε
and d /∈ δ, by the second assumption. Then e /∈ ε, which is a contradiction.

We note that Q′
+ is antitone in its last argument place, therefore, x can be

maximized to obtain a ϑ by defining a set of filters x′ such that x ⊆ x′&Q′
+γδx

′.
ϑ can be proven to be prime, hence R+γδϑ—due to the relationship between
R+ and Q′

+. The construction guarantees the truth of the other conjunct
R◦αεϑ in the consequent of (f44), since R◦ is monotone in its last argument
place, that is, from R◦αεx and x ⊆ ϑ, R◦αεϑ follows.
3. Lastly, as an illustration of proofs from the third group, we prove that
(f42) holds on the canonical frame of A42. Let us assume that R+αβγ as well
as R+γδε. Obviously, β and δ are (nonempty proper) prime ideals. We take
(β + δ ] for ζ, that is, ζ = { c : ∃b1, b2∈ β ∃d1, d2∈ δ. (b1 + d1) v (b2 + d2) ≥ c }.
We claim that ∀a /∈ α ∀c ∈ ζ. a+ c /∈ ε. To see that this is indeed the case, let
us assume a + c ∈ ε for some a and c that instantiate the quantifiers. Then
∃b ∈ β ∃d ∈ δ. b+d ≥ c. + is an isotone operation, hence a+(b+d) ≥ a+c. 42
is equivalent to half of associativity for +, namely, to a+(b+ d) ≤ (a+ b)+ d.
Therefore, from the assumption a+c ∈ ε, we may conclude that a+(b+d) ∈ ε
and (a+ b) + d ∈ ε too. By the definition of R+, a+ b ∈ γ or d ∈ δ. However,
d ∈ δ which means that a + b ∈ γ. This is a contradiction, because R+αβγ,
a ∈ α as well as b ∈ β are assumed to be true.

11A primeness lemma together with some of its variants may be found in [7]—see lemma
2.3.29 and the following remarks.
12The uniform accessibility relation here is used according to its definition 2.3.18 in [7].
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The set ζ, that we defined above, is an ideal, however, there is no reason
for ζ to be prime. To remedy this situation, first, we define E = { I : ζ ⊆
I & ∀a /∈ α ∀c ∈ I. a + c /∈ ε }. ζ is an element of E—due to the definitions
of ζ and E. It is easy to see that the other hypotheses for the applicability of
Zorn’s lemma (for posets) are also satisfied. The universally quantified formula
in the definition of E is in fact the formula that defines the uniform accessi-
bility relation Q′

+ (that is associated to R+), since a /∈ α is the same as a ∈ α.
The tonicity of Q′

+ harmonizes with the maximization of ζ, and the resulting
ideal ζ ′ may be shown to be prime relying on the distribution type of +. Then
R+αϑε, where ϑ = −ζ ′. The construction of ζ and the tonicity of R+ in its
third argument place implies that R+βδϑ is also true. �

The next theorem is the completeness theorem or—in other terms—the
embedding theorem for A∗

d gaggles.

Theorem 2.10. An A∗
d gaggle is isomorphic to a concrete gaggle defined on its

canonical frame.

Proof. The proof goes along lines similar to other completeness proofs—though
the details are, of course, different. The first portion of the proof is theorem
2.8. Afterward, it suffices to define a function that has the properties of v (from
definition 2.5). h(a) = {α : a ∈ α & α ∈ Po } is a suitable choice, moreover,
h is 1–1 between A and OC(O)↑. (We do not include the rest of the details
here.) �

Now we turn to a theorem that is rarely stated in connection to a rela-
tional semantics of a logic. Indeed, it often could not be stated, because it
would be simply false. Above, in Definition 2.3, we gave a tighter (than the
usual) characterization of the frames for the A∗

d gaggles. In a sense, we precisely
described the frames for the A∗

d gaggles—as may be seen from the following
theorem.

Theorem 2.11. A frame for an A∗
d gaggle is homeomorphic and relationally

isomorphic to the canonical frame of the concrete gaggle arising on the frame.

Proof. To prove the claim we have to find a function from a structure into the
canonical structure of its gaggle so that the function can be proven to be a
homeomorphism, which possesses the required isomorphism properties as well.
We define the function f for this purpose as follows.

fα = {O : O ∈ OC(O)↑ & α ∈ O }
The function is obviously well-defined and it has the right type. We omit the
details of showing that f is a homeomorphism, however, we demonstrate in
some detail that f is a relational isomorphism for the two ternary relations.
1. Let us assume that R◦αβγ holds. To prove that R◦fαfβfγ, we have to
show that ∀O1∈fα ∀O2∈fβ. O1 ◦O2∈fγ. The two antecedents of the impli-
cation yield—by the definition of f—that α ∈ O1 and β ∈ O2. Having applied
(v2), we get that γ ∈ O1 ◦O2, and then by the definition of f , O1 ◦O2 ∈ fγ.

To prove the converse, we start with the assumption that R◦αβγ obtains.
By (f9), there are clopen cones O1 and O2 such that α ∈ O1 and β ∈ O2 though
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γ /∈ O1 ◦ O2. From the definition of f , we get that O1 ∈ fα, O2 ∈ fβ and
O1 ◦O2 /∈ fγ. Using (b3) and the definition of R◦, we arrive at Rfαfβfγ, as
needed.
2. To prove relational isomorphism with respect to R+, first, we assume that
R+αβγ. Then by (f10), α /∈ O1, β /∈ O2 whereas γ ∈ O1 + O2 for some
clopen cones O1, O2. The definition of f ensures that O1 /∈ fα, O2 /∈ fγ but
O1 + O2 ∈ fγ. The definition of R+ is (b4), and it gives—together with the
previously established facts—that R+fαfβfγ.

The other direction of the equivalence is R+fαfβfγ implies R+αβγ.
This time we do not contrapose, but assume R+fαfβfγ. By (b4), this means
that ∃O1, O2. O1 /∈ fα & O2 /∈ fβ & O1 + O2 ∈ fγ. The definition of f means
that O1, O2 ∈ OC(O)↑, as well as that α /∈ O1, β /∈ O2 and γ ∈ O1 +O2. Then
by (v5), R+αβγ or α ∈ O1 or β ∈ O2 follows. The latter two disjuncts are
false, therefore, R+αβγ holds, as desired. �

Algebras are often considered together with homomorphisms, just as log-
ics are usually investigated together with their interpretations. This means
that it is straightforward to define categories for the A∗

d gaggles. Obviously,
the definition of each A∗

d gaggle induces a variety, and so for each of them
we can have a category of algebras and a category of structures. Accordingly,
Definitions 2.12 and 2.13 should be thought to be parametrized by a gaggle
from the class of the A∗

d gaggles.

Definition 2.12. The category of A∗
d gaggles contains the algebras that are A∗

d

gaggles (as objects) together with homomorphisms, which are functions that
preserve all the operations and the four constants (as maps).

Definition 2.13. The category of F frames for an A∗
d gaggle contains structures

for the A∗
d gaggle (as objects) together with frame morphisms (as maps).

Frame morphisms are defined for all the structures for the A∗
d gaggles in

the same way. In particular, frame morphisms are continuous order preserving
functions ψ, where ψ : F −→ F′ and the conditions (◦1–◦4) as well as (+1–+4)
are satisfied.
(◦1) R◦αβγ ⇒ R′

◦ψαψβψγ,
(◦2) R′

◦αβψγ ⇒ ∃δε.R◦δεγ & α ≤ ψδ & β ≤ ψε,
(◦3) R′

◦ψαβγ ⇒ ∃δε.R◦αδε & β ≤ ψδ & ψε ≤ γ,
(◦4) R′

◦αψβγ ⇒ ∃δε.R◦δβε & α ≤ ψδ & ψε ≤ γ,
(+1) R+αβγ ⇒ R

′
+ψαψβψγ,

(+2) R
′
+αβψγ ⇒ ∃δε.R+δεγ & ψδ ≤ α & ψε ≤ β,

(+3) R
′
+ψαβγ ⇒ ∃δε.R+αδε & ψδ ≤ β & γ ≤ ψε,

(+4) R
′
+αψβγ ⇒ ∃δε.R+δβε & ψδ ≤ α & γ ≤ ψε.

Now we assume the same definition of h and of f as above, and we use
the notation g−1 for the inverse image of g. The following lemma is paramount
to the duality between the categories of gaggles and structures.

Lemma 2.14. If A1 and A2 are both A∗
d gaggles (of the same kind), and

ϕ : A1 −→ A2 is a homomorphism, then hϕa = ϕ−1 −1ha.
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If F1 and F2 are structures for the same A∗
d gaggle, and ψ : U1 −→ U2 is a

frame morphism, then fψα = ψ−1 −1fα.

Proof. After Theorems 2.10 and 2.11 have been proven, the proof of this lemma
is straightforward. The proof steps rely on the definitions of h and f in an essen-
tial way, as well as on the fact that ϕ−1 and ψ−1 have the right co-domain.
(We do not include the rest of the details here.) �
Theorem 2.15. The pairs of categories defined above are duals of each other.

Proof. This theorem is the culmination of the results in this section. A proof
can be composed from the proofs of theorems 2.10 and 2.11, and Lemma 2.14
together with the observation that the categories are duals of each other.
The latter is a result of the inverse image construction that is apparent from
Lemma 2.14. �

The canonical construction leading from A∗
d gaggles to structures for gag-

gles, and the canonical construction leading from structures for an A∗
d gaggle

to a concrete A∗
d gaggle may be proven to be functors. The core of the proof

is given by Theorem 2.15. A few additional standard requirements concerning
identities and function composition are easily seen to be satisfied.

3. Multiplicative-Additive Interaction

The uniform approach provided by gaggle theory allows us to generalize the
16 inequations connecting operations from the fusion and fission families to
certain other operations of arbitrary finite arity. Moreover, with the concept
of the distribution type of an operation, we can clarify some of the less well-
motivated choices that were made by Grishin.13

Let �1 and �2 be two operations of arity z and z′ (where z, z′ ∈ Z
+).

Additionally, we suppose that they respect the bounds and are isotone in one
of their arguments, whereas they distribute into join and into meet, respec-
tively. (We use ∧∨ to denote ∧ or ∨, and 0I to denote 0 or 1. A bracket with a
subscript singles out an argument place, whereas −→ indicates that the other
argument places are filled in as well.)

Concisely, the distribution type of �1 and �2 is

�1 : −→∧∨ , [∨]i −→ ∨ and �2 : −→∧∨ , [∧]j −→ ∧. (dt)

The operations preserve or reverse the extremal elements as follows.

�1 :
−→
0I , [0]i −→ 0 and �2 :

−→
0I , [1]j −→ 1. (et)

To create an inequation, we compose the two operations in their ith and
jth argument places. Obviously, there are two terms that can result. We insert
≤ between the two terms so that the main operation of the term is on the
same side in this inequation as in the (quasi-)inequation that expresses the
residuation of the operation with respect to some operation (in the free family

13In [7] we introduced partial and extrapolated distribution types, that may replace distri-
bution types in algebras that do not contain a lattice.
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of operations). In other words, the term in which �1 is the main operation is
placed to the left from ≤, and the other term is put on the right-hand side of
≤.

The inequation (M), the “Master Distribution,” is what we obtain given
�1 and �2 with the previously assumed types.

�1(�a, [�2(�c, [b]j)]i) ≤ �2(�c, [�1(�a, [b]i)]j) (M)

Lemma 3.1. All the 16 inequations considered by Grishin are instances of (M)
with the operations chosen from the {←, ◦,→} and {�,+,≺} families. Given
these two families, the 16 inequations exhaust the range of possible instantia-
tions of (M).

The proof of this lemma is easy and we leave the proof (as an exercise)
to the reader.

Now we may consider a gaggle that contains two operations like �1 and
�2. We note that the operations may belong to one family (and then have the
same arity) or they may belong to different families (and then they may have
the same or different arities). In either case, the families are not assumed to
be complete. Now we define a super gGl and a relational topological structure
for that super gaggle. We use some of the same notation as in Definition 2.3.
Additionally, we use � and � to refer to ↑ or ↓, and to ∈ or /∈, respectively. The
actual shape of � and � depends on the distribution type of the operation that
has the same subscript as R has. The two operations that appear in (f6) may
be viewed as abbreviations at this point—they may be eliminated via (v3) and
(v4).

Definition 3.2. Let AM be a distributive bounded gaggle with 0–1 operations,
that is, AM = 〈A;∧,∨, 0, 1,�1,�2〉, where the operations have types as in (dt)
and (et) above, and let (M) be true.

A structure for AM is F = 〈U,≤, R1, R2,O〉, where (f1–f6) and (fm) are
true.

(f1) U �= ∅, R1 ⊆ Uz+1, R2 ⊆ Uz′+1, O ⊆ ℘(U),
(f2) 〈U,≤,O〉 is a Priestley space,
(f3) α ≤ α, α ≤ β & β ≤ γ.⇒ α ≤ γ, α ≤ β & β ≤ α.⇒ α = β,
(f4) R1�� [↓]i[↑]z+1, R2�� [↓]j [↑]z′+1,
(f5) �O ∈ OC(O)↑ ⇒ �1( �O) ∈ OC(O), �O ∈ OC(O)↑ ⇒ �2( �O) ∈ OC(O),
(f6) R1(�α, [β]i, [γ]z+1)⇒ ∃−→O,P.

∧−−−→
α � O & β ∈ P & γ /∈ �1( �O, [P ]i),

R2(�α, [β]j , [γ]z′+1)⇒ ∃−→O,P.
∧−−−→
α � O & β /∈ P & γ ∈ �2( �O, [P ]j).

(fm) R1(�α, [β]i, [γ]z+1) &R2(�η, [ε]j , [γ]z′+1). ⇒
∃ϑ.R2(�η, [ϑ]j , [β]z′+1) &R1(�α, [ϑ]i, [ε]z+1).

Based on any structure for AM we may construct a model by adding a
valuation function.

Definition 3.3. A model for AM is defined by adding a valuation function v
(v : A −→ OC(O)↑) such that it satisfies the following four clauses.
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(v1) v(a ∧ b) = v(a) ∩ v(b),
(v2) v(a ∨ b) = v(a) ∪ v(b),
(v3) v �1(�a, [b]i) = { γ : ∃�α, β.R1(�α, [β]i, [γ]z+1) &

∧−−−−→
α � va & β ∈ vb },

(v4) v �2(�a, [b]i) = { γ : ∀�α, β.R2(�α, [β]j , [γ]z′+1) &
∧−−−−→
α �� va.⇒ β ∈ vb }.

Lemma 3.4. Given a frame for AM, there is a concrete gaggle of sets of ele-
ments of the structure that form an AM gaggle, that is, (M) holds in an algebra
of clopen cones.

Proof. We outline only the step that shows that (M) is true in a model on
F. (We leave the reconstruction of the rest of the proof to the reader.) Let
γ ∈ v(�1(�a, [�2(�c, [b]j)]i)) but γ /∈ v(�2(�c, [�1(�a, [b]i)]j)). By (v3) and (v4)
we get that ∃�α, β.R1(�α, [β]i, [γ]z+1) such that α � va and β ∈ v(�2(�c, [b]j)),
and ∃�α, β.R2(�η , [ε]j , [γ]z′+1) such that η �� vc for each η and c, and ε /∈
v(�1(�a, [b]i)), respectively. Two of the conjuncts, which include β and ε, expand
into universally quantified formulas. By two detachments from (fm)—after the
universal quantifiers have been instantiated—we get both ϑ ∈ b and ϑ /∈ b,
which is a contradiction. �

Going in the other direction, we build a structure from a gGl. (We extend
the previous notation τ(T) to the case where T is a subbasis.)

Definition 3.5. The canonical frame of an AM gaggle is Fc = 〈Po,⊆, R1, R2,O〉,
where the elements of the quintuple are characterized as follows.
(a1) Po is the set of proper nonempty prime filters on A,
(a2) ⊆ is set inclusion,
(a3) R1(�α , [ϑ]i, [ε]z+1) ⇔ ∀�a, b. ∧−−−→

a � α & b ∈ ϑ.⇒ �1(�a, [b]i) ∈ ε,
(a4) R2(�η , [ϑ]j , [β]z′+1) ⇔ ∃�a, b. ∧−−−→

a �� η & b /∈ ϑ & �2(�a, [b]j) ∈ β,
(a5) O = τ(S) where S = {O : O = {α : a ∈ α & α ∈ Po } }.

This definition is successful in the sense that it is suitable for our purposes
as the next lemma shows.

Lemma 3.6. The canonical frame of an AM gaggle is a structure for the AM

gaggle, in particular, Fc satisfies (fm).

Proof. We omit most of the details here. However, we outline the step that
shows that (fm) is true on the canonical frame.
1.1 Let us assume that R1(�α, [β]i, [γ]z+1) and R2(�η, [ε]j , [γ]z′+1). The uniform
accessibility relation Q′

2 (that is a counterpart of R2) is defined as follows—
with the µ’s ranging over filters and ideals according to the (actual) distribu-
tion type of �2, and with ϑ and β being filters.

Q′
2(�µ , [ϑ]j , [β]z′+1) ⇔ ∀�a, b.

∧−−−→
a ∈ µ & b ∈ ϑ.⇒ �2(�a, [b]j) /∈ β.

1.2 To prove that (fm) holds, a suitable ϑ has to be found, or rather “con-
structed.” Let us define a set x as { b : ∀a. ∧−−−→

a ∈ µ⇒ �2(�a, [b]j) /∈ β }, where
each µ is an η or an η (from the second assumption) depending on whether
Q′

2 requires an ideal or filter in that argument place. The shape of the defini-
tion makes it clear that Q′′

2(�µ , [x]j , [β]z′+1), (where we use ′′ to indicate that
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we do not claim that x is an ideal). The set x is a co-cone. To see this, let
us assume that b ∈ x and c ≤ b. �2 is monotone in its jth argument place,
that is, �2(�a, [c]j) ≤ �2(�a, [b]j). Then using the definition of x, ∀a. ∧−−−→

a ∈ µ⇒
�2(�a, [c]j) /∈ β, hence c ∈ x.

Now let us assume that d1, d2 /∈ x. Then there are some c’s and e’s such
that c ∈ µ and e ∈ µ, for each c, e and µ as appropriate. Also, �2(�c, [d1]j) ∈ β as
well as �2(�e, [d2]j) ∈ β. Taking meets and joins of the c’s and e’s to get a’s when
the µ’s are filters and ideals (i.e., setting a = c∧∨ e), we get �2(�a, [d1]j) ∈ β
and �2(�a, [d2]j) ∈ β. β is a prime filter, and so �2(�a, [d1 ∧ d2]j) ∈ β, that is,
d1∧d2 /∈ x. This means that we have that R

′
2(�η , [x]j , [β]z′+1), where the prime

indicates that the arguments are filters though, perhaps, some of them are not
prime.
1.3 Next we show that x stands in the R′

1 relation with the α’s and ε. Let
us suppose that for some a’s, a � α and b ∈ x, but �1(�a, [b]i) /∈ ε. Using the
definition of x, we get that there are c’s such that c � η for the η’s, whereas
�2(�c, [b]j) ∈ β. Then—by the second assumption—�2(�c, [�1(�a, [b]i)]j) /∈ γ.
However, in AM the inequation (M) is true, which means that �1(�a, [�2(�c,
[b]j)]i) /∈ γ, since γ is upward closed. Then—by the first assumption—�2(�c,
[b]j) /∈ β, because the other possibilities in the disjunction are excluded by the
a � α’s. Having finished with the reduction, we have that R′

1(�α , [x]i, [ε]z+1).
1.4 We showed that x is prime (in step 1.2), however, we have not proven x
to be an ideal, which means that x is not known to be a prime filter. The
preceding step though provides us with a sufficient condition for a squeeze
lemma, once we will have observed that R1 (hence R′

1) is antitone in its ith
argument place. [Cf. (f4) in definition 3.2.] We start with the definition of a
set that we will call E.

E = {F : x ⊆ F ∧ ∀a.
∧−−−→
a � α & b ∈ F.⇒ �1(�a, [b]i) ∈ ε }.

E is clearly nonempty, because x ∈ E. Obviously, 〈E,⊆〉 is a poset, further-
more, chains of elements of E have an upper bound in E. By Zorn’s lemma,
there is a maximal element in E; let us say ϑ is such an element. Having the
definitions of R′

1 and E mingled, we obtain that R′
1(�α , [ϑ]i, [ε]z+1).

1.5 Let d1 ∨ d2 be an element of ϑ and let us assume for a reduction that nei-
ther d1 nor d2 is in ϑ. Then there have to be some c’s and e’s that are (or are
not) elements of the α’s (as appropriate), and there are f1, f2 ∈ ϑ such that
�1(�c, [d1 ∧ f1]i) /∈ ε and �1(�e, [d2 ∧ f2]i) /∈ ε. However, the membership in the
α’s (or the lack thereof) is in harmony with the tonicity of �1. For example, if
ck, ek /∈ αk, then �1 is antitone in its kth argument place, �1(�c, [ck∨ek]k, [d1∧
f1]i) /∈ ε and �1(�e, [ck ∨ ek]k, [d2 ∧ f2]i) /∈ ε, as well as ck ∨ ek /∈ αk due to αk’s
primeness. ϑ is a filter, hence f1 ∧ f2 = f ∈ ϑ. Then by �1 : �� , [↑]i, it follows
that �1(�c, [d1 ∧ f ]i) /∈ ε and �1(�e, [d2 ∧ f ]i) /∈ ε too. After we have melded
the c’s and the e’s, as well as the f ’s, we have that �1(

−−→
c∧∨ e, [d1 ∧ f ]i) /∈ ε and

�1(
−−→
c∧∨ e, [d2∧f ]i) /∈ ε. ε is prime, thus �1(

−−→
c∧∨ e, [d1∧f ]i)∨�1(

−−→
c∧∨ e, [d2∧f ]i) /∈ ε.

Two distributions lead to �1(
−−→
c∧∨ e, [(d1 ∨ d2) ∧ f ]i) /∈ ε. The apparent contra-

diction means that ϑ is a prime ideal, that is, R1(�α , [ϑ]i, [ε]z+1). Finally, we
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note that R2 is increasing in its jth argument place [cf. (f4) in Definition 3.2],
hence R2(�η , [ϑ]j , [β]z′+1) is immediate from step 1.2.

We note that Fc � (fm) may be thought to suffice for the claim that
the canonical structure of an AM gaggle is a frame for that gaggle, because
we already know that the canonical frame of a bounded distributive lattice
is a Priestley space, and we also know that the additional operations do not
interfere with the properties of the canonical frame of the bounded distribu-
tive lattice. In other words, the additional operations lead to “independent”
additions in the structure. �

Now we can prove the following completeness theorem.

Theorem 3.7. An AM gaggle is isomorphic to a concrete gaggle of sets defined
on the canonical frame of AM.

Proof. We omit most of the details. However, we prove that h (defined as
before) commutes with �1 (in AM) and with �1 (defined in the model on Fc).
1 Let α be an element of h(�1(�a, [b]i)), that is, �1(�a, [b]i) ∈ α by the definition
of h. In the argument places other than i (if there are any), �1 may be antitone
or monotone. If [↑]k, then we let εk to be [ak), otherwise, εk = (ak]. The defi-
nition of the uniform accessibility relation Q′

1 gives that Q′
1(�ε , [ [b) ]i, [α]z+1).

Let E, a set of sequences of filters and ideals be defined as

E =

⎧
⎨

⎩
〈�η, [β]i〉 :

z∧

1=k,i �=k

εk ⊆ ηk & [b) ⊆ β &Q′
1(�η , [β]i, [α]z+1)

⎫
⎬

⎭
.

Obviously, E �= ∅. E is partially ordered by pointwise inclusion, and the exis-
tence of an upper bound of a chain of elements of E is assured by pointwise
unions. The conditions for an application of Zorn’s lemma are met, thus we
may denote by 〈�η ′, [β′]i〉 a maximal element of E. The elements may be shown
to be prime similarly as we showed ϑ to be prime in the proof of lemma 3.6.
(We omit the details here.) That is, Q1(�η ′ , [β′]i, [α]z+1), and then due to
the relationship between the uniform accessibility relation and R1, we have
R1(�µ , [β′]i, [α]z+1), where µ’s are the η′’s if those are filters, otherwise, µ =
−η′. a � µ’s and b ∈ β′ yield µ � ha’s and β′ ∈ hb, by the definition of h.
The formula ∃�µ, β.R1(�µ , [β]i, [α]z+1) &

∧−−−−→
µ � ha & β ∈ hb gathers the pieces

together, which means that obviously, α ∈ �1(
−→
ha, [hb]i).

For the converse we start with assuming α ∈ �1(
−→
ha, [hb]i). From the

assumption, we get by (v3), µ � ha for each a, as well as β ∈ hb. After an
application of the definition of h, we have the antecedent of the implication
on the right-hand side in (a3); and so by detachment, �1(�a, [b]i) ∈ α. By an
application of the definition of h, α ∈ h(�1(�a, [b]i)), as desired. �

The next theorem mirrors the previous theorem in the class of structures.

Theorem 3.8. A structure for AM is homeomorphic and relationally isomor-
phic to a concrete structure for AM that is built out of sets.
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Proof. The idea of the proof is to take as situations sets of elements of the gag-
gle that comprise clopen cones on the frame. (We omit most of the details.)

We show though that f (as previously defined) is an order preserving
map. If α ≤ β, then fα ⊆ fβ, because γ ∈ O (where O ∈ OC(O)↑) iff O ∈ fγ.
That is, O ∈ fα implies α ∈ O, which implies β ∈ O, because O is a cone and
α ≤ β. Then O ∈ fβ.

The other direction of the equivalence may be shown to hold as follows.
If α � β, then there is a clopen cone O such that α ∈ O without β ∈ O—
because the structure’s topology is totally order disconnected. O ∈ fα and
O /∈ fβ suffices for fα � fβ. �

To further expand the correspondence between the super gaggles AM and
their structures, we delineate the sort of admissible maps between structures.

Definition 3.9. The category of AM gaggles comprises algebras that satisfy the
defining equations for these super gaggles (as objects) together with homomor-
phisms (as maps).

The category of structures for AM gaggles consists of frames as defined
in 3.2 (as objects) together with frame morphisms (as maps) which satisfy the
following conditions. (Let ψ be a function from F into F′.)
(m1) ψ is continuous,
(m2) α ≤ β implies ψα ≤ ψβ,
(m3) R1(�α , [β]i, [γ]z+1) ⇒ R′

1(
−→
ψα , [ψβ]i, [ψγ]z+1),

(m4) R2(�α , [β]j , [γ]z′+1) ⇒ R
′
2(
−→
ψα , [ψβ]j , [ψγ]z′+1),

(m5) R′
1(�α , [β]i, [ψγ]z+1) ⇒ ∃�ε, δ. R1(�ε , [δ]i, [γ]z+1) &

∧−−−−→
α ≥≤ ψε & β ≤ ψδ,

(m6) R
′
2(�α , [β]j , [ψγ]z′+1) ⇒ ∃�ε, δ. R2(�ε , [δ]j , [γ]z′+1) &

∧−−−−→
α ≥≤ ψε& β ≥ ψδ,

where ≥≤ is ≥ or ≤ depending on the tonicity type of the accessibility relation.

Lemma 3.10. Homomorphisms between AM gaggles commute with h (that is
an isomorphism by theorem 3.7). Frame morphisms between structures for AM

gaggles commute with f (that is a homeomorphism and an isomorphism by
theorem 2.11).

Proof. The steps of this proof are straightforward, therefore, we include here
only the proof of the first claim of the lemma.

Let α ∈ hϕa where α is a prime filter and ϕ is a homomorphism from an
AM gaggle into an AM gaggle. Due to the definition of h, this obtains exactly
when ϕa ∈ α. That is, a ∈ ϕ−1[α], by the definition of inverse image. However,
ϕ−1[α] may be shown to be a prime filter itself, hence by the definition of h,
ϕ−1[α] ∈ ha. The latter holds iff α ∈ ϕ−1−1[ha]. �

The quintessential result about the super gaggles we considered in this
paper is the content of the next theorem, that in turn, relies on the previous
lemmas and theorems proven in this section.

Theorem 3.11. The class AM of gaggles and the class of structures for AM

gaggles are dual categories, and the canonical constructions between them are
functors.
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Proof. The proof of this theorem is a combination of the previous theorems
and their proofs. Additionally, it should be noted that certain identity func-
tions exist and certain functions compose. The two categories turn out to be
each other’s duals, because given a ϕ and a ψ as above, ϕ−1 and ψ−1 are a
frame morphism and a homomorphism, respectively, between objects that are
obtained via the canonical constructions. �

4. Conclusions

In this paper, we have investigated symmetric gaggles, that are a special and
well-motivated subclass of super gaggles. We first looked at a residuated grou-
poid and its dual placed into the context of a distributive lattice. After prov-
ing a series of lemmas and theorems about symmetric gaggles that include a
certain interaction between the two families of operations expressed by dis-
tribution like inequations, we abstracted out the “essence” of the symmetric
fusion–fission gaggles into super gaggles in which certain multiplicative and
additive operations interact in a distribution like fashion. We hope to fur-
ther develop these ideas and results about super gaggles, that algebraize logics
comprising a variety of connectives.
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Department of Philosophy
University of Alberta
Edmonton
AB T6G 2E7
Canada
e-mail: bimbo@ualberta.ca
URL: www.ualberta.ca/∼bimbo

J. M. Dunn
School of Informatics
Indiana University
Bloomington
IN 47408–3912
USA
e-mail: dunn@indiana.edu

Received: 31 December 2008.

Accepted: 12 January 2009.


	0. Introduction
	1. Interactions Between Operations
	2. Fusion--Fission Gaggles
	3. Multiplicative-Additive Interaction
	4. Conclusions
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


