
Logica universalis 1 (2007), 377–416
1661-8297/020377-40, DOI 10.1007/s11787-007-0019-6
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Recovering a Logic from Its Fragments by
Meta-Fibring

Marcelo Esteban Coniglio

Abstract. In this paper we address the question of recovering a logic system
by combining two or more fragments of it. We show that, in general, by fibring
two or more fragments of a given logic the resulting logic is weaker than the
original one, because some meta-properties of the connectives are lost after
the combination process. In order to overcome this problem, the categories
Mcon and Seq of multiple-conclusion consequence relations and sequent cal-
culi, respectively, are introduced. The main feature of these categories is the
preservation, by morphisms, of meta-properties of the consequence relations,
which allows, in several cases, to recover a logic by fibring of its fragments. The
fibring in this categories is called meta-fibring. Several examples of well-known
logics which can be recovered by meta-fibring its fragments (in opposition to
fibring in the usual categories) are given. Finally, a general semantics for ob-
jects in Seq (and, in particular, for objects in Mcon) is proposed, obtaining
a category of logic systems called Log. A general theorem of preservation of
completeness by fibring in Log is also obtained.
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1. Introduction: Collapse vs. anti-collapse

The development of relevant techniques for combining logic systems stirred up
interest of many logicians in recent years. Among the different methods for com-
bining logics, fibring has been revealed as a very valuable tool for combining
logic systems, and it was successfully applied in different contexts (see, for in-
stance, [6,10,14,16,18,22]). One of the most outstanding features of fibring is the
obtainment, under certain conditions, of preservation of meta-properties of the
given logic systems through fibring; in particular, the preservation of complete-
ness by fibring (when possible) is considered as one of the main achievements of
the method.
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A natural question when combining logics is the following: is it possible to
recover a logic system by combining two or more fragments of it? For instance,
is classical propositional logic over ¬,⇒ the result of fibring the logic of classical
negation with the logic of classical implication? In this paper we show that, in
general, the answer is ‘no’, unless a stronger notion of morphism (which preserves
meta-properties) is adopted.

Surprisingly enough, the question of recovering a logic by fibring its fragments
is related to a well-known problem associated to fibring: the so-called collapsing
problem, which was identified in [12]. The collapsing problem can be stated as
follows: if classical propositional logic and intuitionistic propositional logic are
combined by unconstrained fibring (that is, no logic symbol is shared) then the
result collapses to classical logic (or, equivalently, to two disjoint copies of classical
logic). Specifically, both implications coincide, and then intuitionistic implication
became classic. This collapse happens exclusively at the semantical level (in the
category of Hilbert calculi such a collapse does not happen, cf. [5]). Another ex-
amples of collapse are given in [19], as well as a solution to this problem by means
of a controlled notion of fibring called modulated fibring. Another (and apparently
simpler) solution to the collapsing problem is found in [5], using a relaxed fibring
technique called cryptofibring.

A related form of the collapsing problem was also observed in [2] (see also [3])
where it is shown that, if we join up the usual sequent rules for (classical) con-
junction with the rules for (classical) disjunction, the resulting sequent calculus
will prove the distributivity between conjunction and disjunction (see Example 11
below). The same result holds if we join up the (two-valued) valuation clauses for
(classical) conjunction with the valuation clauses for (classical) disjunction. This
situation is arguably undesirable, because the arising of new interaction rules be-
tween the given connectives contradicts the basic desideratum of fibring: “Given
logic systems L1 and L2, then the combination L1 ∗L2 is the smallest logic system
for the combined language which is a conservative extension of both L1 and L2”.1

The collapsing problem could be summarized as follows:

Logics obtained by fibring prove too many things in the new combined
language, and they must be weakened.

But this is just one perspective.
An opposite view of this problem is the following: suppose that we want

to obtain a logic system from the combination of its basic components (that is,
two fragments of it). Returning to the last example, suppose that we want to
recover the logic of classical conjunction and classical disjunction from its basic
logical component (that its, the rules for conjunction, on the one side, and the
rules for disjunction, on the other). In this case, the fibring of the correspond-
ing consequence systems cannot recover the intended distributivity between both
connectives, as it was proved in Theorem 3 of [3] (see also Example 11 below).

1Adapted from [16].
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Consider now another example in the same vein: take the rules for classical
negation, on the one side, and the rules for classical disjunction. Suppose that,
based on the intuition given by the classical matrices for these connectives, as
well as by the usual sequent rules, we intend to recover classical logic from these
ingredients. Using the usual notion of fibring, the resulting logic will be a weaker
system, in which ϕ ∨ ¬ϕ is not valid (see Example 8 below). The phenomenon
observed in this example as well as in the last example is what we call the anti-
collapsing problem of fibring: the impossibility of obtaining, in the logics obtained
by fibring, intended interaction rules which are justified, for instance, by well-
known models or sequent rules.

One more example: by fibring the logic system just containing the rules for
classical implication with the logic system just containing the rules for classical
negation, the formula ϕ ⇒ (¬ϕ ⇒ ψ) does not hold in the resulting logic system
(see Example 10 below). Moreover, the deduction meta-theorem is no longer valid
in the resulting logic (because, for instance, ψ is derivable from {ϕ,¬ϕ}). That is,
certain (positive) meta-properties of the given logics are missing by fibring.2 This
is another example of anti-collapse.

In contrast to the collapsing problem, the anti-collapsing problem could be
summarized as follows:

Logics obtained by fibring sometimes prove too few things in the new
combined language, and they must be strengthened.

This is the perspective we adopt in this paper.
Note that if, in order to avoid the collapse, the prescription about combination

of logics mentioned above (that is, to define the minimum conservative extension of
the given logics) is taken seriously into account, then there exists the risk to obtain
a too weak logic system, in which the only valid inferences are the original ones, and
any other inference involving formulas in the new combined language is not valid.
This means that, in the limit case, the consequence relation � of the combined
logic L = L1 ∗ L2 could be simply the union of �1 and �2, where �1 and �2 are
the consequence relations of L1 and L2, respectively. Such a logic could hardly
be considered as being the combination of L1 and L2 in the combined language
of L1 and L2, if we try to recover a logic from the combination of its fragments.
Under the perspective of recovering logics by combinations, new theorems (in
the new combined language), resulting from interactions, are to be expected in
the resulting logic. In other words, some natural interactions between the rules
or axioms defining the connectives of the given logics are to be expected in the
combined logic. Any process of combination presupposes some kind of interaction

2By positive meta-properties of a logic we mean assertions involving derivability (i.e., “some
formulas are derived from certain premises”) as, for instance, the deduction meta-theorem; on
the other hand, a negative meta-property is an assertion about non-derivability (i.e., “some

formulas are not derived from certain premises”). Of course negative meta-properties should not
be preserved when embedding a logic system into a larger one.
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between the factors, and not the mere adjunction of them (chemical reactions
constitute a good analogy here).

The anti-collapsing problem arises mainly because the only attribute of the
logics that is preserved by fibring is the consequence relation: namely, from the
validity of Γ �L1 ϕ in the given logic L1 then Γ �L ϕ must hold in the logic L
obtained by fibring. It could be said that Γ �L1 ϕ is a meta-property of L1: a basic
one. But, for instance, a meta-property such as the deduction meta-theorem

Γ, ϕ �L1 ψ iff Γ �L1 ϕ⇒ ψ

is a more complex meta-property of L1, that would be also preserved by fibring.
But it is not true in most cases.

This phenomenon is explained because the usual notion of morphism between
logics is based on the following idea: if h : L→ L′ is a morphism and Γ �L ϕ then
h(Γ) �L′ h(ϕ).

The proposal of this paper is to define categories of deduction systems in
which a morphism h : L → L′ must preserve meta-properties of the logics of the
form

IfΓ1 �L ϕ1 and . . . and Γn �L ϕn then Γ �L ϕ .

That is: from the meta-property of L

If Γ1 �L ϕ1 and . . . and Γn �L ϕn then Γ �L ϕ

the following meta-property of L′ must be inferred:

If h(Γ1) �L′ h(ϕ1) and . . . and h(Γn) �L′ h(ϕn) then h(Γ) �L′ h(ϕ) .

(by the sake of simplicity, some technical details are omitted here; see Theorem 3.4
below for a precise formulation of this claim). In such categories, when a logic sys-
tem is embedded by fibring in a larger one then any meta-property is preserved (by
the canonical injection). This is why we will call meta-fibring the fibring performed
in this kind of categories. It should be obvious that, with respect to the collapsing
problem of classical and intuitionistic logics above mentioned, meta-fibring makes
the things even worse: the collapse will happen even at the proof-theoretical level
(see Example 12 below). But this is more than expected since, in general, logics
obtained by meta-fibring are stronger than those obtained by fibring.

The organization of this paper is as follows: in Sections 2 and 3 the cate-
gory Mcon of Multiple-conclusion deductive systems with morphisms preserving
meta-properties is defined. In Section 4 it is proved that there exist unconstrained
fibrings in Mcon, that is, coproducts, representing fibrings in which no logic sym-
bols are shared. The advantages of the present approach for our purposes are shown
in Section 5, in which some examples of anti-collapse of usual fibring are circum-
vented. In other words, several well-known logics can be recovered by meta-fibring
of its fragments, in opposition to fibring in the usual categories. In Section 6 it is
shown that in Mcon there exist also constrained fibrings by sharing symbols. In
order to cope with substructural logics, in Section 7 the category Seq of sequent
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calculi is introduced, as a generalization of Mcon. The novelty here is that se-
quents in Seq are formed by (pairs of) sequences of formulas instead of (pairs of)
multisets. It is proved that Seq also has both forms of fibring. Section 8 is devoted
to define a general semantics for sequent calculi (which, in particular, can also
be applied to Mcon). In Section 9 it is obtained a general theorem stating that
the completeness of logic systems satisfying certain conditions (namely, fullness) is
preserved by both forms of fibring. Finally, in Section 10 it is given a brief account
of what was achieved and what lays ahead.

2. Multiple-conclusion consequence relations

In this section the notion of assertion calculus is introduced. These calculi essen-
tially describe multiple-conclusion consequence relations. Finally, an appropriate
notion of meta-property is proposed.

From now on, we will keep fixed a denumerable set X = {Xi : i ∈ N} of
symbols called set variables (or simply variables), and a denumerable set Ξ = {ξi :
i ∈ N} of symbols called schema variables such that X ∩ Ξ = ∅.
Definition 2.1. A propositional signature (or simply a signature) is a denumerable
set C = {Ci : i ∈ N} of sets where (X ∪ Ξ) ∩ Ci = Ci ∩Cj = ∅ for every i, j ∈ N

such that i �= j. The support of C is the set |C| := ∪C. Elements of Cn are called
n-ary connectives of C. Elements in C0 are called constants of C. The algebra of
type C freely generated by Ξ is denoted by L(C). Elements of L(C) are called
formulas.

Since we will only deal with structural logics, the schema variables will play
the role usually assigned to the propositional variables, that is, as generators of the
language. It should be noted that, when considering logic systems in which propo-
sitional variables represent “concrete” information (as, for instance, in knowledge
representation applications), new symbols for the propositional variables should
be included in the signature as constants, and then formulas without schema vari-
ables would correspond to the “concrete” formulas (see Example 12 below). On
the other hand, the set variables Xi are included in the present framework in order
to represent (arbitrary) sets of formulas within the formal language for sequent
calculi to be defined above.

Definition 2.2. Let C be a propositional signature. A general assertion over C is
an expression 〈A; Γ|Δ;B〉 where Γ,Δ are finite subsets of L(C) and A,B are finite
sets of variables such that Γ ∪ Δ ∪ A ∪ B �= ∅. An assertion over C is a general
assertion such that the sets A and B of variables are empty. An assertion will be
denoted simply by 〈Γ|Δ〉. Sometimes we will write Γ � Δ and A; Γ � Δ;B instead
of 〈Γ|Δ〉 and 〈A; Γ|Δ;B〉, respectively. Let GenA(C) and Asse(C) be the sets of
general assertions and of assertions over C, respectively.

As usual, we will frequently write Γ,Γ′ and Γ, ϕ instead of Γ∪Γ′ and Γ∪{ϕ}
inside assertions and general assertions. Moreover, we will write X instead of {X},
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and so X,Y will stand for {X,Y }, for variables X and Y . Thus, for instance,
〈Γ,Γ′|Δ, ϕ〉 will denote the assertion 〈∅; Γ ∪ Γ′|Δ ∪ {ϕ}; ∅〉 and

〈X,Y, Z; Γ, ϕ|Δ, ψ,Δ′;Z〉
or even X,Y, Z; Γ, ϕ � Δ, ψ,Δ′;Z will denote the general assertion

〈{X,Y, Z}; Γ∪ {ϕ}|Δ ∪Δ′ ∪ {ψ}; {Z}〉 .
Definition 2.3. Let C be a signature. An assertion rule over C is a pair r =
〈Υ, 〈A; Γ|Δ;B〉〉 such that Υ ∪ {〈A; Γ|Δ;B〉} is a finite subset of GenA(C). If
Υ = ∅ then r is called an axiom. A rule r will frequently be written as r =
〈prem(r), conc(r)〉, where prem(r) and conc(r) are the premises and the conclusion
of the rule r, respectively.

An assertion calculus (over C) is a pair A = 〈C,R〉 such that C is a signature
and R is a set of assertion rules over C.

For simplicity, an assertion rule of the form
〈{〈A1; Γ1|Δ1;B1〉, . . . , 〈An; Γn|Δn;Bn〉

}
, 〈A; Γ|Δ;B〉

〉

will be denoted by

A1; Γ1 � Δ1;B1 . . . An; Γn � Δn;Bn

A; Γ � Δ;B
,

and an axiom 〈∅, 〈A; Γ|Δ;B〉〉 will be denoted by

A; Γ � Δ;B
.

Given a signature C, a substitution over C is a map σ : Ξ → L(C). We
denote by σ̂ : L(C)→ L(C) the unique homomorphic extension of σ to L(C). An
instantiation over C is a map � : X → ℘F (L(C)∪X ), where ℘F (L(C)∪X ) denotes
the set of finite subsets of L(C)∪X . If �(X) ∈ ℘F (L(C)) for every X ∈ X then � is
a basic instantiation over C. Given a substitution σ and an instantiation �, a map
(σ, �) : GenA(C)→ GenA(C) is defined as follows: given 〈A; Γ|Δ;B〉 consider the
sets below.

A′ =
{
Y ∈ X : Y ∈ �(X) for some X ∈ A}

;

Γ′ =
{
ϕ ∈ L(C) : ϕ ∈ �(X) for some X ∈ A}

;

Δ′ =
{
ϕ ∈ L(C) : ϕ ∈ �(X) for some X ∈ B}

;

B′ =
{
Y ∈ X : Y ∈ �(X) for some X ∈ B}

.

Then

(σ, �)
(〈A; Γ|Δ;B〉) =

〈
A′; σ̂(Γ ∪ Γ′)|σ̂(Δ ∪Δ′);B′〉 .

With these definitions, the notion of derivation in an assertion calculus can be
introduced.
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Definition 2.4. Let A = 〈C,R〉 be an assertion calculus, and let A; Γ � Δ;B be a
general assertion over C. We say that A; Γ � Δ;B is derivable in A, denoted by
A; Γ �A Δ;B, if there is a finite sequence

〈A1; Γ1|Δ1;B1〉 . . . 〈An; Γn|Δn;Bn〉
in GenA(C) such that 〈An; Γn|Δn;Bn〉 = 〈A; Γ|Δ;B〉 and, for every 1 ≤ i ≤ n,
there is a rule r in R, a substitution σ and an instantiation � over C such that:
• (σ, �)(prem(r)) ⊆ {〈A1; Γ1|Δ1;B1〉, . . . , 〈Ai−1; Γi−1|Δi−1;Bi−1〉}; and
• 〈Ai; Γi|Δi;Bi〉 = (σ, �)(conc(r)).

Given an assertion calculus A, a multiple-conclusion consequence relation �A
over C is obtained by using the notion of derivation of Definition 2.4: Γ �A Δ iff
Γ � Δ is derivable in A.

Of course, the notion of derivation in an assertion calculus can be easily
extended by using assertions as premises.

Definition 2.5. Given a set Ω = {〈A1; Γ1|Δ1;B1〉, . . . , 〈An; Γn|Δn;Bn〉} of general
assertions, we say that a general assertion A; Γ � Δ;B is derivable in A from Ω,
denoted by

A1; Γ1 � Δ1;B1 . . . An; Γn � Δn;Bn

A; Γ � Δ;B
if there is a finite sequence of general assertions

〈
A1; Γ1|Δ1;B1

〉
. . .

〈
Am; Γm|Δm;Bm

〉

such that 〈Am; Γm|Δm;Bm〉 = 〈A; Γ|Δ;B〉 and, for every 1 ≤ i ≤ m, either
〈Ai; Γi|Δi;Bi〉 ∈ Ω, or there is a rule r inR, a substitution σ and an instantiation �
over C such that:
• (σ, �)(prem(r)) ⊆ {〈A1; Γ1|Δ1;B1〉, . . . , 〈Ai−1; Γi−1|Δi−1;Bi−1〉}; and
• 〈Ai; Γi|Δi;Bi〉 = (σ, �)(conc(r)).

If A; Γ � Δ;B is derivable in A from Ω we say that �A has the meta-property:

for all Γ′
i,Δ

′
i,Γ

′,Δ′ :

if Γ′
1,Γ1 �A Δ1,Δ′

1, . . . , Γ′
n,Γn �A Δn,Δ′

n

then Γ′,Γ �A Δ,Δ′ .

We also say that
A1; Γ1 � Δ1;B1 . . . An; Γn � Δn;Bn

A; Γ � Δ;B
is a derived rule of A.

Clearly A; Γ � Δ;B is derivable in A iff it is derivable in A from the empty
set, that is,

A; Γ � Δ;B
.

Given substitutions σ, σ′ over C and instantiations �, �′ over C, the (set-
theoretic) composite (σ, �) ◦ (σ′, �′) := (σ · σ′, � · �′) is given as follows: σ · σ′ is the
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substitution over C such that σ · σ′(ξ) = σ̂(σ′(ξ)) for ξ ∈ Ξ. On the other hand,
� · �′ is the instantiation over C such that

� · �′(X) =
⋃

s∈�′(X)

�(s)

where, for s ∈ L(C) ∪ X ,

�(s) =
{
�(s) if s ∈ X
{s} if s ∈ L(C) .

Then (σ·σ′, �·�′)(〈A; Γ|Δ;B〉) = (σ, �)((σ′, �′)(〈A; Γ|Δ;B〉)) for every general
assertion 〈A; Γ|Δ;B〉. Using this, it can be easily proved the following results,
stating the structurality of derivations in assertion calculi:

Proposition 2.6. Let A be an assertion calculus and let Ω ∪ {〈A; Γ|Δ;B〉} be a
finite subset of GenA(C) such that 〈A; Γ|Δ;B〉 is derivable in A from Ω. Then
(σ, �)(〈A; Γ|Δ;B〉) is derivable in A from (σ, �)(Ω), for every substitution σ over C
and every instantiation � over C.

Corollary 2.7. Let Γ � Δ be an assertion over C, and let A be an assertion calculus
over C. Then, Γ �A Δ implies that σ̂(Γ) �A σ̂(Δ), for every substitution σ over C.

Using Proposition 2.6 it follows that, given a calculus A with a meta-property
of the form

for all Γ′
i,Δ

′
i,Γ

′,Δ′ :

if Γ′
1,Γ1 �A Δ1,Δ′

1, . . . , Γ′
n,Γn �A Δn,Δ′

n

then Γ′,Γ �A Δ,Δ′

then, for every finite sets of formulas Γ′
i,Δ

′
i,Γ

′,Δ′, it holds in A:

Γ′
1,Γ1 � Δ1,Δ′

1 . . . Γ′
n,Γn � Δn,Δ′

n

Γ′,Γ � Δ,Δ′ .

Example 1. Multiple-conclusion consequence relations satisfy in general the fol-
lowing meta-property of weakening:

for all Γ′,Δ′ :

if Γ �A Δ then Γ′,Γ �A Δ,Δ′

for every assertion Γ � Δ. As a consequence of weakening,

if Γ �A Δ then Γ′,Γ �A Δ,Δ′

for every finite Γ,Γ′,Δ,Δ′.
In order to guarantee that �A satisfies weakening it is enough to require the

following rules (as primitives or as derived rules) in A:

X � Y
X,Z � Y

X � Y
X � Y, Z
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Example 2. Consider a signature C such that⇒ ∈ C2. The usual rules for classical
implication can be described by the following assertion rules over C:

X1 � ξ1;X2 X1; ξ2 � X2

X1; (ξ1 ⇒ ξ2) � X2

X1; ξ1 � ξ2;X2

X1 � (ξ1 ⇒ ξ2);X2
.

On the other hand, the Cut rule can be represented (in any signature) as the
following assertion rule:

(Cut)
X1 � ξ1;X2 X3; ξ1 � X4

X1, X3 � X2, X4
.

The reader should note that the use of variables and schema variables for sets of
formulas and for formulas, respectively, is a formalization of the usual description
of rules in sequent calculi. Thus, the equivalent of the assertion rules above in a
sequent calculus are the following schema-rules:

Γ � ϕ,Δ Γ, ψ � Δ
Γ, (ϕ⇒ ψ) � Δ

Γ, ϕ � ψ,Δ
Γ � (ϕ⇒ ψ),Δ

Γ � ϕ,Δ Γ′, ϕ � Δ′

Γ,Γ′ � Δ,Δ′

where Γ,Γ′,Δ and Δ′ stand for arbitrary finite sets of formulas, and ϕ, ψ stand
for arbitrary formulas. This is a consequence of Proposition 2.6.

3. The category of multiple-conclusion consequence relations

This section is devoted to define the adequate categories we will work out. In par-
ticular, the fundamental notion of morphism between multiple-conclusion relations
will be introduced in Definition 3.3.

Definition 3.1. The category Sig of (propositional) signatures is defined as fol-
lows: its objects are propositional signatures and, given signatures C1 and C2, a
morphism h : C1 → C2 in Sig is a function h : |C1| → L(C2) such that h(ξ) = ξ
for ξ ∈ Ξ and h(c) is a formula which depends at most on schema variables
ξ1, . . . , ξn whenever c ∈ C1

n. In particular, h(c) ∈ C2
0 if c ∈ C1

0 . The composition
f ◦ g : C1 → C3 of g : C1 → C2 and f : C2 → C3 in Sig is the morphism obtained
by the function f̂ ◦ g : |C1| → L(C3), where the function f̂ : L(C2) → L(C3) is
obtained from f in the natural way:

• f̂(ξ) = ξ for ξ ∈ Ξ; f̂(c) = f(c) for c ∈ C2
0 ;

• f̂(c(ϕ1, . . . , ϕn)) = f(c)(f̂(ϕ1), . . . , f̂(ϕn)) for c ∈ C2
n.

The identity morphism idC : C → C for a signature C is the function idC : |C| →
L(C) such that idC(c) = c(ξ1, . . . , ξn) if c ∈ Cn. In particular, idC(c) = c if c ∈ C0.

Definition 3.2. If 〈A; Γ|Δ;B〉 is a general assertion over C1 and h : C1 → C2

is a signature morphism then ĥ(〈A; Γ|Δ;B〉) is defined as the general assertion
〈A; ĥ(Γ)|ĥ(Δ);B〉 over C2. And given an assertion rule r over C1 then ĥ(r) is the
assertion rule 〈ĥ(prem(r)), ĥ(conc(r))〉 over C2.
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Note that in the definition above it is tacitly assumed that ĥ(X) = X for
every X ∈ X . This fact will be used in the sequel (for instance, in the proof of
Theorem 3.4 above).

Definition 3.3. The category Mcon of (propositional) multiple-conclusion con-
sequence relations is defined as follows: its objects are assertion calculi of the
form A = 〈C,R〉 such that C is a propositional signature. Given assertion cal-
culi Ai = 〈Ci,Ri〉 (i = 1, 2), a morphism h : A1 → A2 in Mcon is a morphism
h : C1 → C2 in Sig such that, for every rule r ∈ R1, the general assertion
ĥ(conc(r)) is derivable in A2 from the set ĥ(prem(r)) of general assertions. The
composition of morphisms and the identity maps in Mcon are defined as in Sig.

The basic feature of morphisms in Mcon is that rules of the source calculus
are preserved in the target calculus as much as possible. This justifies the fact
that, by the very definition, ĥ(ξ) = h(ξ) = ξ for ξ ∈ Ξ and ĥ(X) = X for X ∈ X :
the symbols denoting variable components within the rules (that is, variables of
sets of formulas and schema variables) are keep fixed through morphisms. This
ensures that the meaning of the rule is transferred from the source calculus into
the target calculus as much as possible: every variable component of a rule r can
be freely substituted for ‘concrete’ instances within the language of r, therefore
this variable components should appear in ĥ(r) in the same form, in order to be
freely substituted by ‘concrete’ instances within the target language.

The following proposition shows that, indeed, the notion of morphism in
Mcon ensures the preservation of meta-properties:

Theorem 3.4. Let h : A1 → A2 be a morphism in Mcon. Suppose that
A1; Γ1 � Δ1;B1 . . . An; Γn � Δn;Bn

A; Γ � Δ;B
holds in A1. Then

A1; ĥ(Γ1) � ĥ(Δ1);B1 . . . An; ĥ(Γn) � ĥ(Δn);Bn

A; ĥ(Γ) � ĥ(Δ);B

holds in A2.

Proof. Let Ω = {〈A1; Γ1|Δ1;B1〉, . . . , 〈An; Γn|Δn;Bn〉}. By induction on the
length l of a derivation of A; Γ � Δ;B in A1 from Ω it will be proved that

A; ĥ(Γ) � ĥ(Δ);B

is derived in A2 from

ĥ(Ω) =
{〈
A1; ĥ(Γ1)|ĥ(Δ1);B1

〉
, . . . ,

〈
An; ĥ(Γn)|ĥ(Δn);Bn

〉}
.

If l = 1 then there are two cases to be considered:
Case 1: 〈A; Γ|Δ;B〉 = (σ, �)〈A′; Γ′|Δ′;B′〉 for some axiom 〈∅, 〈A′; Γ′|Δ′;B′〉〉

of R1, some substitution σ and some instantiation � over C1. Consider the sub-
stitution σ′ : Ξ→ L(C2) and the instantiation �′ : X → ℘F (L(C2)∪X ) such that
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σ′(ξ) := ĥ(σ(ξ)) and �′(X) := ĥ(�(X)) (recalling that, by definition, ĥ(X) = X

for every variable X). Then ĥ(σ̂(ϕ)) = σ̂′(ĥ(ϕ)) for every ϕ ∈ L(C1) and so
〈
A; ĥ(Γ)|ĥ(Δ);B

〉
= ĥ

(
(σ, �)

(〈A′; Γ′|Δ′;B′〉)
)

= (σ′, �′)
(
ĥ
(〈A′; Γ′|Δ′;B′〉)

)
.

Since h is a morphism and 〈A′; Γ′|Δ′;B′〉 is an axiom in R1 it follows that
ĥ(〈A′; Γ′|Δ′;B′〉) is derivable from the empty set in A2. Hence, by Proposition 2.6,
(σ′, �′)(ĥ(〈A′; Γ′|Δ′;B′〉)) is derivable from the empty set in A2, that is,

〈
A; ĥ(Γ)|ĥ(Δ);B

〉

is derivable from the empty set in A2. Thus 〈A; ĥ(Γ)|ĥ(Δ);B〉 is derivable from
ĥ(Ω) in A2.

Case 2: 〈A; Γ|Δ;B〉 = 〈Ai; Γi|Δi;Bi〉 for some 1 ≤ i ≤ n. The proof is
obvious.

Assume the result is true for m ≤ l, and take a derivation

〈Θ1|Λ1〉 . . . 〈Θn|Λl+1〉
of A; Γ � Δ;B in A1 from Ω with length l + 1. There are three cases to analyze:
Case 1 and Case 2 as above: the proof is identical.

Case 3: 〈A; Γ|Δ;B〉 = (σ, �)〈A′; Γ′′|Δ′′;B′〉 for some rule

r =
〈{〈A′

1; Γ
′′
1 |Δ′′

1 ;B′
1〉, . . . , 〈A′

k; Γ′′
k |Δ′′

k;B′
k〉

}
, 〈A′; Γ′′|Δ′′;B′〉

〉

of A1, some substitution σ and some instantiation � such that

(σ, �)
({〈A′

1; Γ
′′
1 |Δ′′

1 ;B′
1〉, . . . , 〈A′

k; Γ′′
k|Δ′′

k;B′
k〉

})
⊆ {〈Θ1|Λ1〉, . . . , 〈Θn|Λl〉

}
.

Since (σ, �)(〈A′
i; Γ

′′
i |Δ′′

i ;B′
i〉) is derivable in A1 from Ω in at most l steps then, by

induction hypothesis, ĥ((σ, �)(〈A′
i; Γ

′′
i |Δ′′

i ;B′
i〉)) is derivable in A2 from ĥ(Ω) (for

1 ≤ i ≤ k). Now, consider the substitution σ′ : Ξ → L(C2) and the instantiation
�′ : X → ℘F (L(C2) ∪ X ) such that σ′(ξ) := ĥ(σ(ξ)) and �′(X) := ĥ(�(X)). Then

ĥ
(
(σ, �)

(〈A; Γ|Δ;B〉)
)

= (σ′, �′)
(
ĥ
(〈A; Γ|Δ;B〉)

)

for every general assertion 〈A; Γ|Δ;B〉. In particular,
〈
A; ĥ(Γ)|ĥ(Δ);B

〉
= (σ′, �′)

(
ĥ
(〈A′; Γ′′|Δ′′;B′〉)

)
.

Since h : A1 → A2 is a morphism and r is a rule of A1 then the general assertion
(σ′, �′)(ĥ(〈A′; Γ′′|Δ′′;B′〉)) is derivable from

{
(σ′, �′)

(
ĥ
(〈A′

i; Γ
′′
i |Δ′′

i ;B′
i〉

))
: 1 ≤ i ≤ k

}

in A2, by Proposition 2.6. That is, 〈A; ĥ(Γ)|ĥ(Δ);B〉 is derivable from
{
ĥ
(
(σ, �)

(〈A′
i; Γ

′′
i |Δ′′

i ;B′
i〉

))
: 1 ≤ i ≤ k

}

in A2. Therefore 〈A; ĥ(Γ)|ĥ(Δ);B〉 is derivable from ĥ(Ω) in A2. �
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The last theorem guarantees that a morphism between consequence relations
preserves intrinsic characteristics of the source system. In particular, if we consider
the inclusion morphism (the canonical injection) from a deduction system into an
extension of it, not only the consequence relation will be preserved by the inclusion
morphism, but also some other relevant characteristic of the given logic. This
feature has a deep impact on the strength of the combination process of fibring: as
we shall see in Section 5 through several representative examples, the preservation
of meta-properties will allow to reconstruct a logic by (meta)fibring two or more
fragments of it. In particular, the existence of a morphism between two assertion
calculi requires that the source and target logics must be compatible in some
sense. In more precise terms: define an assertion rule r over a signature C as being
structural if there are no occurrences of connectives in r. For instance, (Cut) (recall
Example 2) and the weakening rules stated in Example 1 are structural assertion
rules. By the very definition, structural rules do not depend on the signature
in which they are defined. Thus, for instance, (Cut) can be considered in any
calculus defined over any signature, because it does not depends on connectives.
As a consequence of the definitions, ĥ(r) = r for every structure rule r and every
signature morphism. Thus, if h : A1 → A2 is a Mcon-morphism then A2 must
be capable of deriving every structural rule of A1. This is a basic requirement in
order to define a morphism between two assertion calculi: as much as structural
rules are concerned, the target calculus must be stronger than the source.

Example 3. Consider the following signatures for classical logic:
• C1 such that C1

0 = {⊥}; C1
2 = {⇒}; C1

n = ∅ in any other case.
• C2 such that C2

0 = {�}; C2
1 = {¬}; C2

2 = {∨}; C2
n = ∅ in any other

case.
We can define the assertion calculus A1 = 〈C1,R1〉 for propositional classical logic
over C1, where R1 consists of the following rules (here X,Y, Z,W denote variables
and ξ, ξ′ denote schema variables):

X ; ξ � ξ;Y
X � Y
X,Z � Y

X � Y
X � Y, Z

X ; ξ � Y Z � ξ;W
X,Z � Y,W

X ;⊥ � Y
X � ξ;Y X ; ξ′ � Y

X ; (ξ ⇒ ξ′) � Y
X ; ξ � ξ′;Y

X � (ξ ⇒ ξ′);Y
.

Note that the first four rules are structural.
Consider now the following assertion calculus over C2, called A2: add to the

first four rules of A1 the rules
X � ξ;Y
X ;¬ξ � Y

X ; ξ � Y
X � ¬ξ;Y

X ; ξ � Y X ; ξ′ � Y
X ; ξ ∨ ξ′ � Y

X � ξ, ξ′;Y
X � ξ ∨ ξ′;Y .

Clearly, A2, is adequate for classical logic over C2. Consider now the following
morphisms in Sig:
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• h : C1 → C2 such that h(⊥) = ¬� and h(⇒) = (¬ξ1 ∨ ξ2);
• h′ : C2 → C1 such that h′(�) = (⊥ ⇒ ⊥); h(ξ) = ξ (for ξ ∈ V); h′(¬) =

(ξ1 ⇒ ⊥), and h′(∨) = ((ξ1 ⇒ ⊥)⇒ ξ2).
It is easy to see that both morphisms in Sig are indeed morphisms h : A1 → A2

and h′ : A2 → A1 in Mcon. In fact: the following derivations in A2

X � �;Y
X ;¬� � Y

X � ξ;Y (Hyp.)
X ;¬ξ � Y X ; ξ′ � Y (Hyp.)

X ;¬ξ ∨ ξ′ � Y

X ; ξ � ξ′;Y (Hyp.)
X � ¬ξ, ξ′;Y
X � ¬ξ ∨ ξ′;Y

show that h : A1 → A2 is a morphism in Mcon. On the other hand, the derivations
in A1

X ;⊥ � ⊥;Y
X � ⊥ ⇒ ⊥;Y

X � ξ;Y (Hyp.) X ;⊥ � Y
X ; ξ ⇒ ⊥ � Y

X ; ξ � Y (Hyp.)
X ; ξ � ⊥;Y
X � ξ ⇒ ⊥;Y

X ; ξ � Y (Hyp.)
X ; ξ � ⊥;Y
X � ξ ⇒ ⊥;Y

X ; ξ′ � Y (Hyp.)

X ; (ξ ⇒ ⊥)⇒ ξ′ � Y

X � ξ, ξ′;Y (Hyp.) X ;⊥ � ξ′;Y
X ; ξ ⇒ ⊥ � ξ′;Y

X � (ξ ⇒ ⊥)⇒ ξ′;Y

show that h′ : A2 → A1 is also a morphism in Mcon.

4. Fibring multiple-conclusion relations

In this section the concept of (categorial) fibring multiple-conclusion relations is
introduced. As usual, this construction can be characterized as a coproduct.

From [13] the following result is known:

Proposition 4.1. The category Sig has finite coproducts.

Given signatures C1 and C2, the coproduct of C1 and C2 will be denoted by
C1 ⊕ C2, with canonical injections i1 : C1 → C1 ⊕ C2 and i2 : C1 → C1 ⊕ C2.
It is worth noting that C1 ⊕ C2 is simply obtained as the disjoint union of C1

and C2 at all levels, that is: (C1 ⊕ C2)k is the disjoint union of C1
k and C2

k , for
every k ∈ N.

Definition 4.2. Let Aj = 〈Cj ,Rj〉 be two assertion calculi (j = 1, 2). The (cate-
gorial) fibring of A1 and A2 is the assertion calculus A1 ⊕A2 = 〈C,R〉 defined as
follows:
• C = C1 ⊕ C2;
• R = {î1(r1) : r1 ∈ R1} ∪ {î2(r2) : r2 ∈ R2}.

Here i1 and i2 are the canonical injections of the coproduct C1⊕C2 of C1 and C2,
and îj(rj) is defined as in Definition 3.2 for j = 1, 2.

As expected, it is obtained the following result:
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Proposition 4.3. Let Aj = 〈Cj ,Rj〉 be two assertion calculi (j = 1, 2). Then
A1⊕A2 is the coproduct in Mcon of A1 and A2 with canonical injections induced
by the injections i1 and i2 from Sig.

Proof. Let A1 ⊕ A2 = 〈C,R〉 as in Definition 4.2. We begin by proving that
ij : Cj → C1 ⊕ C2 induces a morphism ij : Aj → A1 ⊕A2 in Mcon for j = 1, 2.
Let rj be an assertion rule of Rj ; then îj(rj) ∈ R and so it is a derived rule of
A1 ⊕A2. Therefore ij : Aj :→ A1 ⊕A2 is a morphism in Mcon for j = 1, 2.

LetA′ = 〈C′,R′〉 be an assertion calculus and let hj : Aj → A′ be morphisms
in Mcon (j = 1, 2). Then there is an unique morphism h : C1 ⊕ C2 → C′ such
that

C1

i1

����������������

h1

���
��

��
��

��
��

��
��

��
��

��
��

� C2

i2

����������������

h2

����
��

��
��

��
��

��
��

��
��

��
��

C1 ⊕ C2

h

��
C′

commutes in Sig. It is enough to prove that h induces a morphism h : A1⊕A2 → A′

in Mcon. So, let r ∈ R. Then r = îj(rj) for some j ∈ {1, 2} and some rj ∈ Rj .
Therefore,

ĥ(r) = ĥ
(̂
ij(rj)

)
= ĥj(rj)

is a derived rule in A′, since hj : Aj → A′ is a morphism in Mcon and rj is a rule
of Aj (for j = 1, 2). This shows that h is a morphism h : A1 ⊕A2 → A′ such that

A1

i1

����������������

h1

���
��

��
��

��
��

��
��

��
��

��
��

� A2

i2

����������������

h2

��		
		

		
		

		
		

		
		

		
		

		
		

A1 ⊕A2

h

��
A′

commutes in Mcon. The uniqueness of h in Mcon follows from the uniqueness
of h in Sig. �
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5. Some examples

Assume the point of view of trying to recover a logic from its fragments. In this
section some examples will show the convenience of our approach with respect to
the traditional presentation of deduction systems and their morphisms. It is im-
portant to notice that all the examples considered in this section describe multiple-
conclusion consequence relations � in which the right-hand side of � consists in
a set with at most one formula. This is deliberate: we are comparing the results
of fibring deduction systems using our proposal, with those obtained by fibring in
the usual categories of deduction systems. In order to compare the results we are
looking to the usual (single-conclusion) consequence relations. This is why we use
this particular case of assertion calculi in the examples below. The reader should
note that it is possible to obtain the same results by considering assertion calculi
which define (genuine) multiple-conclusion consequence relations.

The first three examples will serve as a basis for the others given in this
section.

Example 4 (Intuitionistic and classical negation). Let C¬ be a signature just con-
taining a negation symbol ¬ ∈ C¬

1 . Consider the assertion calculus Ai¬ = 〈C¬,Ri¬〉
given by the following rules (here X,Y denote variables and ξ, ξ′ denote schema
variables):

X ; ξ � ξ
X � ξ
X, Y � ξ

X �
X,Y �

X �
X � ξ

X � ξ Y ; ξ � ξ′
X,Y � ξ′

X � ξ Y ; ξ �
X,Y �

X ; ξ �
X � ¬ξ

X � ξ Y � ¬ξ
X, Y � .

Clearly, Ai
¬ is an adequate assertion calculus for the intuitionistic negation. Note

that

(l¬) X � ξ
X ;¬ξ �

is a derived rule of Ai
¬, as the following derivation shows:

X � ξ (Hyp.) ¬ξ � ¬ξ
X ;¬ξ � .

Note that the right-hand side of every demonstrable assertion in both Ai
¬ has at

most one formula.
As expected, it is enough to extend Ai

¬ by adding appropriate rules in order
to obtain an assertion calculus for classical negation.

Thus, consider the assertion calculus A¬ = 〈C¬,R¬〉 such that R¬ is ob-
tained from Ri

¬ by adding the following rule:

X ;¬ξ �
X � ξ .
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It is easy to see that the assertion calculusA¬ is adequate for the classical negation.
Now we will analyze some basic features of A¬ , which will be used later on.

Firstly, note that, just as in Ai¬, the right-hand side of every demonstrable
assertion in A¬ has at most one formula. Assume the following notation: ¬nϕ
denotes the formula of L(C¬) obtained by applying n negations to the formula
ϕ (and so ¬0ϕ is ϕ itself). It is clear that there are no theorems in �A¬ , that is:
there is no formula ϕ such that �A¬ ϕ. Moreover, Γ �A¬ Δ iff one of the following
situations happens:
• Δ has at most one formula and there is some formula ψ and some k, n such

that n− k is odd and both ¬kψ, ¬nψ belongs to Γ; or
• Δ = {ϕ} such that ¬2kϕ ∈ Γ for some k ≥ 0; or
• Δ = {ϕ} such that ϕ = ¬2kψ for some ψ ∈ Γ and some k ≥ 0.

In A¬ the following rule can be derived:

(EM)
X ; ξ � ξ′ Y ;¬ξ � ξ′

X,Y � ξ′ .

In order to prove this, and using the rule (l¬) above (which, of course, is also
a derived rule of A¬), it is enough to consider the following derivation in A¬ :

X ; ξ � ξ′ (Hyp.)
X ; ξ,¬ξ′ �
X ;¬ξ′ � ¬ξ

Y ;¬ξ � ξ′ (Hyp.)
Y ;¬ξ,¬ξ′ �
Y ;¬ξ′ � ξ

X, Y ;¬ξ′ �
X,Y � ξ′

.

The derived rule (EM) of A¬ plays an important role when combing the logic of
classical negation with other fragments of classical logics, as we shall see below.

Example 5 (Classical disjunction and conjunction). Let C∨ be a signature just
containing a symbol ∨ ∈ C∨

2 for disjunction. The properties of classical disjunc-
tion ∨ can be captured by the following assertion calculus over C∨, called A∨ (here
X,Y, Z denote variables and ξ, ξ′, ξ′′ denote schema variables):

Take the first six rules of the assertion calculus Ai¬ of Example 4 and add
the following:

X � ξ
X � ξ ∨ ξ′

X � ξ′
X � ξ ∨ ξ′

X � ξ ∨ ξ′ Y ; ξ � ξ′′ Z; ξ′ � ξ′′
X,Y, Z � ξ′′

X � ξ ∨ ξ′ Y ; ξ � Z; ξ′ �
X,Y, Z � .

Note that, as in the calculi of Example 4, the right-hand side of every demon-
strable assertion in A∨ has at most one formula. It is easy to see that the following
rules (to be used in Example 11) are derivable in A∨:

(l∨1)
X ; ξ � ξ′′ Y ; ξ′ � ξ′′

X,Y ; ξ ∨ ξ′ � ξ′′ (l∨2)
X ; ξ � Y ; ξ′ �
X,Y ; ξ ∨ ξ′ � .
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Let Var(ϕ) be the set of schema variables occurring in the formula ϕ of L(C∨).
Clearly, Γ �A∨ ϕ iff there is some formula γ in Γ such that Var(γ) ⊆ Var(ϕ). Then,
there are no theorems in �A∨ , that is: there is no formula ϕ such that �A∨ ϕ.
Additionally, for no Γ it is the case that Γ �A∨ .

If C∧ is a signature just containing a symbol ∧ ∈ C∧
2 for conjunction, then

it is easy to define an assertion calculus A∧ over C∧ representing the logic of
classical conjunction. In fact, it is enough to take again the first six rules of Ai

¬
(see Example 4) and add the following:

X ; ξ, ξ′ � ξ′′
X ; ξ ∧ ξ′ � ξ′′

X ; ξ, ξ′ �
X ; ξ ∧ ξ′ �

X � ξ Y � ξ′
X,Y � ξ ∧ ξ′ .

It is easy to prove that, for instance, the following rule (to be used in Exam-
ple 11) is derivable in A∧:

(A)
X ; ξ ∧ ξ′, ξ′ � ξ′′
X ; ξ ∧ ξ′ � ξ′′

In fact, consider the following derivation in A∧:

X ; ξ, ξ′ � ξ′
X ; ξ ∧ ξ′ � ξ′ X ; ξ ∧ ξ′, ξ′ � ξ′′ (Hyp.)

X ; ξ ∧ ξ′ � ξ′′
Example 6 (Intuitionistic and classical implication). Let C⇒ be a signature just
containing a symbol ⇒∈ C⇒

2 for implication. The following assertion calculus
over C⇒, called Ai

⇒, is adequate for describing the properties of intuitionistic
implication ⇒ (here X,Y denote variables and ξ, ξ′ denote schema variables):

Consider the first six rules of the assertion calculus Ai
¬ of Example 4 and

add the following rules:

X ; ξ � ξ′
X � ξ ⇒ ξ′

X � ξ ⇒ ξ′ Y � ξ
X, Y � ξ′ .

As in the examples above, the right-hand side of every demonstrable assertion in
Ai

⇒ has at most one formula. On the other hand, adding to Ai
⇒ the assertion rule

(Peirce’s rule)

(PR)
X � (ξ ⇒ ξ′)⇒ ξ

X � ξ
produces an assertion calculus called A⇒, which is adequate for the implicational
fragment of classical logic.

Example 7 (Recovering classical logic by meta-fibring of its fragments: case I).
Consider the fibring A¬∨ := A¬ ⊕A∨ of the calculi defined in Examples 4 and 5.
ThenA¬∨ recovers propositional classical logic over the signatureC¬∨ := C¬⊕ C∨

such that |C¬∨| = {¬,∨}. That is, A¬∨ can be seen as a sequent-calculus presen-
tation of propositional classical logic over ∨,¬. Moreover, the derived rule (EM)
of A¬ (see Example 4) hold in A¬∨, because of Theorem 3.4 and the fact that
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the signature canonical injection is, in this case, the inclusion map. Therefore
�A¬∨ (ξ ∨ ¬ξ) holds, as the following derivation shows:

ξ � ξ
ξ � (ξ ∨ ¬ξ)

¬ξ � ¬ξ
¬ξ � (ξ ∨ ¬ξ)

� (ξ ∨ ¬ξ) .

Example 8 (Classical logic cannot be recovered by fibring of its fragments: the
consequence relations case). By considering the category of standard consequence
relations (see [4, 11, 13]) then (ξ ∨ ¬ξ) is not a valid formula of the fibring L =
〈C¬∨,�〉 of the consequence systems corresponding to classical negation L¬ =
〈C¬,�1〉 and classical disjunction L∨ = 〈C∨,�2〉. In order to see this, consider the
following matrices:

∨ T F1 F
T T T T
F1 T F F
F T F F

¬
T F
F1 F1
F T

where T is the only distinguished value. The matrices above are sound for L¬∨:
this is obvious by considering the characterization of the (single-conclusion) con-
sequence relation of classical negation and of classical disjunction given in Exam-
ples 4 and 5. Thus, if |= denotes the (semantical) consequence relation associated
to the matrices above then:

• Γ �1 ϕ implies that Γ |= ϕ, for every Γ ∪ {ϕ} ⊆ L(C¬); and
• Γ �2 ϕ implies that Γ |= ϕ, for every Γ ∪ {ϕ} ⊆ L(C∨).

Since, in the category of standard consequence relations, the consequence relation
� of the fibring L is the least upper bound of {�1,�2} in the (complete) lattice of
standard consequence relations over signature C¬ ⊕ C∨ then: Γ � ϕ implies that
Γ |= ϕ, for every Γ ∪ {ϕ} ⊆ L(C¬ ⊕ C∨). On the other hand, �|= (ξ ∨ ¬ξ): it is
enough to take a valuation v such that v(ξ) = F1. Therefore, �� (ξ ∨ ¬ξ).

One reason for this situation is that the meta-property

Γ, ϕ �1 ψ Δ,¬ϕ �1 ψ

Γ,Δ �1 ψ

of the consequence relation �1 associated to classical negation (which is represented
by the derived rule (EM), recall Example 4) is not preserved by fibring in the
category of consequence relations. It should be noticed that the same result holds
in the category of Hilbert calculi, that is: classical logic over {¬,∨} cannot be
recovered by fibring of its fragments in the category of Hilbert calculi. As long as
we are interested in recovering a logic from its fragments, this result is a strong
evidence in favor of considering a category of deduction systems with morphisms
preserving meta-properties, instead of a category with morphisms just preserving
inferences.
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Example 9 (Recovering classical logic by meta-fibring of its fragments: case II).
Consider now the (meta)fibring A¬⇒ := A¬⊕Ai

⇒ of the calculi defined in Exam-
ples 4 and 6. Then A¬⇒ recovers propositional classical logic over the signature
just containing the connectives {¬,⇒}. In fact, the formula ((ϕ⇒ ψ)⇒ ϕ) ⇒ ϕ
(Peirce’s law), which is satisfied by classical implication but not for intuitionistic
implication, can be derived in A¬⇒ as follows: firstly, consider the following meta-
properties of A¬⇒ (the second one is already valid in Ai

⇒ and then it is transferred
to A¬⇒ by Theorem 3.4):

X ;¬(ξ ⇒ ξ′) � ξ and
X ; (ξ ⇒ ξ′), ξ � ξ′ .

The following derivations prove these meta-properties:
X ; ξ,¬ξ′ � ξ
X ; ξ,¬ξ′,¬ξ �
X ; ξ,¬ξ � ξ′

X ;¬ξ � (ξ ⇒ ξ′)
X ;¬ξ,¬(ξ ⇒ ξ′) �
X ;¬(ξ ⇒ ξ′) � ξ

X ; (ξ ⇒ ξ′) � (ξ ⇒ ξ′) ξ � ξ
X ; (ξ ⇒ ξ′), ξ � ξ′ .

Then, the following derivation in A¬⇒ shows that ⇒ satisfies Peirce’s law:

¬(ξ ⇒ ξ′) � ξ (
(ξ ⇒ ξ′)⇒ ξ

)
, (ξ ⇒ ξ′) � ξ

(
(ξ ⇒ ξ′)⇒ ξ

) � ξ
� (

(ξ ⇒ ξ′)⇒ ξ
)⇒ ξ

.

Using Peirce’s law, it is proved that the assertion rule (PR) (which, in Example 6,
was added to Ai⇒ in order to obtain A⇒) is derived in A¬⇒:

X � (ξ ⇒ ξ′)⇒ ξ (Hyp.) � (
(ξ ⇒ ξ′)⇒ ξ

)⇒ ξ

X � ξ .

This explains why, in order to get classical logic from ¬ and ⇒, it is enough
to consider classical negation combined with intuitionistic implication, instead of
classical implication.

It should be noticed that Ai¬⇒ := Ai¬⊕Ai⇒ (see Examples 4 and 6) produces
the {⇒,¬}-fragment of intuitionistic logic.

Example 10 (Classical logic cannot be recovered by fibring of its fragments: the
Hilbert calculi case). By considering the category Hil of Hilbert propositional
calculi (see for instance [4,11,13,18,22]) which is frequently used to define fibring,
then the result of Example 9 cannot be obtained. That is, if we compute the
fibring of the Hilbert calculi corresponding to classical implication and to classical
negation, respectively, we cannot recover classical logic. Specifically, consider the
Hilbert calculus H⇒ over the signature C⇒ of Example 6 defined by the following
axioms and inference rules (here, ξ, ξ′ and ξ′′ are schema variables):
• � ξ ⇒ (ξ′ ⇒ ξ)
• � (ξ ⇒ (ξ′ ⇒ ξ′′))⇒ ((ξ ⇒ ξ′)⇒ (ξ ⇒ ξ′′))
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• � ((ξ ⇒ ξ′)⇒ ξ)⇒ ξ (Peirce’s law)

• ξ ⇒ ξ′ ξ

ξ′
.

Now consider the Hilbert calculus H¬ over the signature C¬ of Example 4 defined
by the following inference rules (again, ξ, and ξ′ are schema variables):

• ¬¬ξ
ξ

• ξ

¬¬ξ
• ξ ¬ξ

ξ′
.

Let H¬⇒ be the fibring in Hil of H¬ and H⇒ (which consists simply on putting
together all the axioms and inference rules of both systems).

Consider now the following matrices introduced by Urbas (cf. [20, Theo-
rem 8]):

→ 1 6/7
5/7

4/7
3/7

2/7
1/7 0

1 1 6/7
5/7

4/7
3/7

2/7
1/7 0

6/7 1 1 5/7
4/7

5/7
4/7

1/7
1/7

5/7 1 6/7 1 4/7
6/7

2/7
4/7

2/7
4/7 1 6/7

5/7 1 3/7
6/7

5/7
3/7

3/7 1 1 1 4/7 1 4/7
4/7

4/7
2/7 1 1 5/7 1 5/7 1 5/7

5/7
1/7 1 6/7 1 1 6/7

6/7 1 6/7

0 1 1 1 1 1 1 1 1

¬
1 0

6/7
5/7

5/7
2/7

4/7
3/7

3/7
4/7

2/7
5/7

1/7 1
0 1

where 1 is the only distinguished value. Then, the matrices above constitute a
matrix semantics sound for H¬⇒, as the reader can easily check: it is enough to
check the validity of every axiom inH¬⇒ as well as the preservation of validity with
respect to every inference rule. Moreover, it is not hard to see that ξ ⇒ (¬ξ ⇒ ξ′)
is not a tautology for the matrices above (taking, for instance, a valuation v such
that v(ξ) = 6/7 and v(ξ′) = 4/7). Therefore this formula is not derivable in H¬⇒
and thenH¬⇒ is a system strictly contained in classical propositional logic over the
signature {¬,⇒}. Note that the semantical consequence relation |= associated to
the matrices above satisfies the following meta-property: ϕ,¬ϕ |= ψ for every ϕ, ψ
(since this logic extends H¬⇒, which enjoy such a meta-property). This shows that
this semantical consequence relation does not satisfy the deduction meta-theorem.
By the same argument, H¬⇒ does not satisfy the deduction meta-theorem.

It should be noticed that the matrices above are sound for every Hilbert cal-
culi adequate for classical implication and classical negation. Thus, the fact that
classical logic over {⇒,¬} cannot be recovered from the fibring in Hil of its frag-
ments does not depend on any specific axiomatization. Moreover, this phenomenon
also happens if we consider fibring in the usual category of consequence systems.
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Again, it can be seen that the deduction systems of the usual categories (Hil,
in this example), in which the morphisms just preserve inferences, loss important
meta-properties when embedded in larger deduction systems. As a consequence of
this, the deduction systems obtained by fibring in these categories are weaker than
could be expected, if we have in mind the recovering of a logic from its fragments.
This example suggest that the category Mcon of deduction systems seems more
appropriate for attaining this goal.

Example 11 (Combining conjunction and disjunction). LetA∧∨ := A∧⊕A∨ (recall
Example 5). By using the derived meta-properties of A∧ and A∨ mentioned in
Example 5, which are transferred to A∧∨ because of Theorem 3.4, it can be proved
that

ξ ∧ (ξ′ ∨ ξ′′) �A∧∨ (ξ ∧ ξ′) ∨ ξ′′ .
In fact, consider the following derivation, adapted from [3] (note the use of rules
(l∨1) and (A), cf. Example 5):

ξ � ξ ξ′ � ξ′
ξ, ξ′ � ξ ∧ ξ′

ξ, ξ′ ∨ ξ′′, ξ′ � ξ ∧ ξ′
ξ ∧ (ξ′ ∨ ξ′′), ξ′ � ξ ∧ ξ′

ξ ∧ (ξ′ ∨ ξ′′), ξ′ � (ξ ∧ ξ′) ∨ ξ′′

ξ′′ � ξ′′
ξ′′ � (ξ ∧ ξ′) ∨ ξ′′

ξ ∧ (ξ′ ∨ ξ′′), ξ′ ∨ ξ′′ � (ξ ∧ ξ′) ∨ ξ′′
ξ ∧ (ξ′ ∨ ξ′′) � (ξ ∧ ξ′) ∨ ξ′′

.

But it is known that the above property is equivalent to the distributivity
between ∨ and ∧. That is, the logic of classical conjunction and classical disjunction
can be recovered by fibring in Mcon the respective fragments. On the other hand,
as was proved in [3], the fibring of the logic of classical conjunction with the logic of
classical disjunction (in the usual categories of logic systems such as Hil) produces
a logic which cannot prove the distributivity law between ∨ and ∧. If one wants
to recover the classical logic of conjunction and disjunction from its fragments,
then the use of stronger morphisms between logics (as in Mcon) which preserves
meta-properties is, again, more appropriate.

Example 12 (The collapsing problem). Recall the collapsing problem of classical
and intuitionistic logic mentioned in Section 1. As expected, the use of meta-fibring
instead of fibring produces the collapse even at the proof-theoretical level. To see
that, consider the assertion calculi Ai

⇒ and A⇒ of Example 6. As it was done
in [5] with the fibring of the Hilbert calculi of classical and intuitionistic logics,
the respective signatures must me enriched by adding, as constants, denumerable
sets of propositional variables {pi

n : n ∈ N} to Ai
⇒ and {pc

n : n ∈ N} to A⇒.
Since both implications satisfy the deduction meta-theorem in Ai⇒⊕A⇒, it follows
by Gabbay’s argument (cf. [15]) that both implications collapse in Ai

⇒ ⊕A⇒. In
fact, if⇒i and⇒c denote the intuitionistic and classical implications of Ai⇒⊕A⇒,
respectively, then ϕ⇒i ψ � ϕ⇒i ψ implies that ϕ⇒i ψ, ϕ � ψ (by the deduction
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meta-theorem for ⇒i) implies that ϕ ⇒i ψ � ϕ ⇒c ψ (by the deduction meta-
theorem for ⇒c). The derivation ϕ⇒c ψ � ϕ⇒i ψ is proved analogously.

Example 13 (Modal logic K). The same phenomenon pointed out in Example 10
occurs when we try to recover modal logic K from two fragments by means of
fibring in Hil: the {⇒,�}-fragment HK

⇒�, and the {¬}-fragment H¬ of classical
logic defined in Example 10. Note thatK is described in the signature with support
{¬,⇒,�}.

Clearly, HK
⇒� can be defined in Hil as follows:

• � ξ ⇒ (ξ′ ⇒ ξ)
• � (ξ ⇒ (ξ′ ⇒ ξ′′))⇒ ((ξ ⇒ ξ′)⇒ (ξ ⇒ ξ′′))
• � ((ξ ⇒ ξ′)⇒ ξ)⇒ ξ
• � �(ξ ⇒ ξ′)⇒ (�ξ ⇒ �ξ′)

• ξ ⇒ ξ′ ξ

ξ′

• � ξ
� �ξ (NEC).

Here, (NEC) is a global rule, that is, it only applies to theorems. If HK
¬⇒�,

the fibring in Hil of HK
⇒� and H¬ is obtained, then K it is not recovered, be-

cause ξ ⇒ (¬ξ ⇒ ξ′) is not a theorem of HK
¬⇒�. To prove this, the matrices

of Example 10 can be taken again and it can be defined �(x) := x for every
x ∈ {1, 6/7, 5/7, 4/7, 3/7, 2/7, 1/7, 0}.

On the other hand, it can be considered the assertion calculus AK
⇒� obtained

from A⇒ (see the end of Example 6) by adding the following assertion rules:

X � �(ξ ⇒ ξ′) Y � �ξ
X, Y � �ξ′

� ξ
� �ξ .

Clearly, this assertion calculus represents the {⇒,�}-fragment of K. Then the
fibring AK

¬⇒� := AK
⇒� ⊕ A¬ (see Example 4) in Mcon produces an assertion

calculus for modal logic K.

Example 14 (Modal logic T ). Consider modal logic T over the signature consisting
of connectives ¬,⇒,�,♦. The positive fragment of T can be described by adding
to the assertion calculus AK

⇒� (see Example 13) the following assertion rule:

X � ξ
X � ♦ξ .

Let AT
⇒� be the resulting assertion calculus. Then modal logic T (in the given

signature) can be recovered through the fibring AT
¬⇒� := AT

⇒� ⊕ A¬, plus the
following interaction rules:

X � ♦ξ
X � ¬�¬ξ

X � ¬�¬ξ
X � ♦ξ .

In the last example, the fibring in Mcon was not enough to recover a given
logic (modal logic T ) from two fragments of it. This is a different situation than
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the ones described in other examples above, in which a given logic was recovered
by the meta-fibring of its fragments. In the present case, what is missing is a
definitional axiom ♦ϕ ⇔ ¬�¬ϕ. This kind of axioms hardly could be obtained
by fibring, even by meta-fibring: note that there is no information about ♦ in the
modal positive fragment of T allowing to infer the definability of ♦ in terms of �
and ¬ when classical negation is added.

6. Constrained fibring in Mcon

In [18], together with the notion of (categorial) fibring as a coproduct, a more
sophisticated form of categorial fibring called constrained fibring was introduced,
which generalizes the latter. The idea is that some connectives in the given logics
can be shared during the process of fibring. This is a very frequent situation, in
which it can be combined, for instance, certain modal classical logic with some
paraconsistent logic. In this case, it should be reasonable to share the implica-
tion ⇒, the disjunction ∨ and the conjunction ∧, since these connectives usually
have classical properties in paraconsistent logics.

In this section, we show that it is possible to define constrained fibring within
the category Mcon and then the notion of fibring introduced in Section 4 will
appear as a particular case. The construction follows exactly the same steps as
that of [18].

Firstly, the forgetful functor N : Mcon→ Sig is introduced, which is defined
in the obvious manner: N(〈C,R〉) = C and N(h) = h if h : A → A′. We recall
now the following notion from category theory:

Definition 6.1. Given a functor F : C → D, a cocartesian lifting of a morphism
f : F (c)→ d in D is a morphism f∗ : c→ c′ in C such that F (f∗) = f and satisfies
the following universal property: for every morphism g : c → c′′ in C, and every
morphism h : d→ F (c′′) in D verifying h ◦ f = F (g), there is a unique morphism
h∗ : c′ → c′′ in C with F (h∗) = h and h∗ ◦ f∗ = g. The functor F is said to be a
cofibration if every morphism f : F (c)→ d in D admits a cocartesian lifting.

Proposition 6.2. The forgetful functor N is a cofibration, that is: every morphism
h : N(A)→ C′ in Sig admits a cocartesian lifting.

Proof. Let A = 〈C,R〉 be a assertion calculus and let h : C → C′ be a signature
morphism. The assertion calculus A′ = 〈C′,R′〉 such that

R′ := ĥ(R) =
{
ĥ(r) : r ∈ R}

(recall Definition 3.2) is the codomain of the cocartesian lifting h : A → A′ of h
through N . The details are left to the reader. �

Given a signature morphism h : C → C′ and a assertion calculus A = 〈C,R〉
defined over the signature C, we denote by hN (A) the codomain of the cocartesian
lifting of h through N . That is, hN(A) = 〈C′,R′〉, where R′ is as in the proof of
Proposition 6.2.
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A signature morphism h : C → C′ is called literal if, for every n ∈ N and
every c ∈ Cn, there exists c′ ∈ C′

n such that h(c) = c′(ξ1, . . . , ξn). Literal signature
morphisms correspond to the usual signature morphisms in categorial fibring, that
is, to morphisms in the slice category Set/N (see, for instance, [18]). It is easy to
see that a literal signature morphism h : C → C′ is a monomorphism iff the
restriction of h to Cn is an injective function, for every n ∈ N.

Definition 6.3. Let C′ and C′′ two signatures. A sharing constraint over C′ and C′′

is a source diagram G in Sig of the form

C′ h′←− Č h′′−→ C′′

for some signature Č and signature monomorphisms h′ and h′′, such that both h′

and h′′ are literal. The pushout of the diagram G (if it exists) it will denoted by

C′ G⊕ C′′.

From category theory it is known that a pushout can be obtained as a co-
product followed by a coequalizer, provided that these constructions exist in the
given category.

Then, given a sharing constraint G in Sig, consider the diagram

Č��
h′

��












��

h′′

�����
����

���

C′ � �

i′ ����������� C′′
� �

i′′��

C′ ⊕ C′′

q

��

C′ G⊕ C′′

where i′ and i′′ are the canonical injections of the coproduct C′⊕C′′, and C′ G⊕ C′′

is the codomain of the coequalizer q of i′ ◦ h′ and i′′ ◦ h′′ (provided it exists).
Therefore, 〈

C′ G⊕ C′′, {q ◦ i′, q ◦ i′′}
〉

is the pushout of G in Sig. The following result, whose proof is left to the reader,
states that in fact there exists the desired coequalizers in Sig:

Proposition 6.4.

(1) Let C′ h′←− Č h′′−→ C′′ be a sharing constraint in Sig and let 〈C′⊕C′′, {i′, i′′}〉
be the coproduct of C′, C′′ in Sig. Then i′ ◦ h′ and i′′ ◦ h′′ are both literal.
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(2) Let h, h′ : C → C′ be literal morphisms in Sig. Then there exists the coequal-

izer 〈C′′, {C′h′′→C′′}〉 of C
h 		

h′
		 C′ in Sig.

Using this, the constrained fibring in Mcon is defined as follows:

Definition 6.5. With notation as above, let A′ = 〈C′,R′〉 and A′′ = 〈C′′,R′′〉 be
two assertion calculi and let G be a sharing constraint over C′ and C′′. Then, their
G-constrained fibring by sharing symbols is the assertion calculus

A′ G⊕ A′′ := qN (A′ ⊕A′′) ,

where q is the coequalizer in Sig of i′ ◦ h′ and i′′ ◦ h′′.
Note that Definition 6.5 makes sense because of Proposition 6.4 and because

N(A′ ⊕A′′) = C′ ⊕ C′′. As usual, the unconstrained fibring can be obtained as a
special case of the constrained fibring by taking an appropriate sharing constraint:
it is enough to take Č as the initial signature C0 such that C0

n = ∅ for every n ∈ N;
h′ : C0 → C′ and h′′ : C0 → C′′ are the obvious (unique) morphisms.

Example 15. Let A1 and A2 be assertion calculi for two modal logics extend-
ing propositional classical logic, defined over signatures C1 and C2 with support
{¬1,⇒1,�1} and {¬2,⇒2,�2}, respectively. Assume that we want to compute
the fibring of A1 with A2 in Mcon. Since both negations and both implications
are assumed to be classical, it make sense to share these connectives. Thus, let G
be the sharing constraint C1 h1←− Č h2−→ C2 in Sig such that Č1 = {¬}, Č2 = {⇒}
and Čn = ∅ in any other case; hj(¬) = ¬jξ1 and hj(⇒) = (ξ1 ⇒j ξ2) for j = 1, 2.

This ensures that the G-constrained fibring by sharing symbols A1

G⊕ A2 is a bi-
modal logic defined over a signature with support {¬,⇒,�1,�2} in which ¬ and
⇒ are classical.

7. Propositional sequent calculi

Note that, since assertions are formed by sets, an assertion calculus A satisfies
automatically the meta-property of exchanging:

A; Γ, ϕ, ψ � Δ;B
A; Γ, ψ, ϕ � Δ;B

A,X, Y ; Γ � Δ;B
A, Y,X ; Γ � Δ;B

as well as the same properties to the right-hand side of the assertions.
However, this feature sometimes is not desirable in a sequent calculus. More-

over, in substructural logics (such as linear logic) sequents are formed by multisets
or even finite sequences of formulas more than finite sets of formulas. Thus, in
order to describe sequent calculi in general, it is necessary to change the notion of
general assertion.
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Definition 7.1. A general sequent over C is an expression 〈Σ|Ψ〉 where Σ and Ψ
are two (not simultaneously empty) finite sequences in L(C) ∪ X . A sequent over
C is a expression 〈Σ|Ψ〉 where Σ and Ψ are two (not simultaneously empty) finite
sequences in L(C). As done above, sometimes we will write Σ � Ψ instead of 〈Σ|Ψ〉.
Let GenS(C) and Seq(C) be the sets of general sequents and of sequents over C,
respectively.

From now on, we will use commas to indicate the concatenation of finite
sequences. Thus, we can write, for instance the following general sequent:

Σ, ϕ, ψ,X � ψ,Ψ,Σ′, Y, Z

(where ϕ, ψ ∈ L(C); X,Y, Z ∈ X and Σ,Ψ,Σ′ are finite sequences in L(C) ∪ X )
with the obvious meaning.

Definition 7.2. Let C be a signature. A sequent rule over C is a pair r = 〈Υ, 〈Σ|Ψ〉〉
such that Υ ∪ {〈Σ|Ψ〉} is a finite subset of GenS(C). If Υ = ∅ then r is called an
axiom. A rule r can be written as r = 〈prem(r), conc(r)〉, where prem(r) and
conc(r) are the premises and the conclusion of the rule r, respectively. A sequent
calculus (over C) is a pair S = 〈C,R〉 such that C is a signature and R is a set of
sequent rules over C.

Now it is necessary to redefine the notion of instantiation. A sequent instan-
tiation over C is a map � : X → (L(C) ∪ X )∗, where (L(C) ∪ X )∗ denotes the
set of finite sequences in L(C) ∪ X . If �(X) ∈ L(C)∗ for every X ∈ X (that is, if
no variables occur in �(X)) then � is called a basic sequent instantiation over C.
Given a substitution σ and an instantiation �, a map (σ, �) : GenS(C)→ GenS(C)
is defined as follows: for s ∈ L(C) ∪ X let

σ(s) =
{
σ̂(s) if s ∈ L(C)
s if s ∈ X .

Now, for s ∈ L(C) ∪ X , suppose that �(s) = s1 . . . sk. Then (σ, �)(s) =
σ(s1) . . . σ(sk). Finally,

(σ, �)
(〈s1, . . . , sn|s′1, . . . , s′m〉

)
=

〈
(σ, �)(s1), . . . , (σ, �)(sn)|

(σ, �)(s′1), . . . , (σ, �)(s
′
m)

〉
.

From these definitions, it is easy to introduce the notion of derivation in a
sequent calculus. This notion is similar to the concept of derivation in an assertion
calculus introduced in Definition 2.4, but now using pairs (σ, �) applied to the
rules, where σ is a substitution and � is a sequent instantiation. The notion of
derivation from sets of premises is defined as expected:

Definition 7.3. Let S = 〈C,R〉 be a sequent calculus, and let Υ ∪ {Σ � Ψ} be
a finite set of general sequents over C. We say that Σ � Ψ is derivable in S
from Υ if there is a finite sequence 〈Σ1|Ψ1〉 . . . 〈Σn|Ψn〉 in GenS(C) such that
〈Σn|Ψn〉 = 〈Σ|Ψ〉 and, for every 1 ≤ i ≤ n, either 〈Σi|Ψi〉 ∈ Υ or there is a rule r
in R, a substitution σ and an instantiation � over C such that:
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• (σ, �)(prem(r)) ⊆ {〈Σ1|Ψ1〉, . . . , 〈Σi−1|Ψi−1〉}; and
• 〈Σi|Ψi〉 = (σ, �)(conc(r)).

We also say that S has the derived rule:

if Σ1 =⇒S Ψ1, . . . , Σn =⇒S Ψn then Σ =⇒S Ψ

if Σ � Ψ is derivable in S from the set {Σ1 � Ψ1, . . . ,Σn � Ψn} of general
sequents.

If a general sequent Σ � Ψ is derivable in a sequent calculus S we will write
Σ =⇒S Ψ. And if Σ � Ψ is derived in S from a set {〈Σ1|Ψ1〉, . . . , 〈Σn|Ψn〉} of
general sequents we will write

Σ1 � Ψ1 . . . Σn � Ψn

Σ � Ψ
.

Remark 7.4. As in the case for general assertions, given substitutions σ, σ′ over C
and sequent instantiations �, �′ over C, it is possible to characterize the (set-
theoretic) composite (σ, �)◦(σ′, �′) := (σ·σ′, �·�′) as follows: σ·σ′ is the substitution
over C such that σ · σ′(ξ) = σ̂(σ′(ξ)) for ξ ∈ Ξ. On the other hand, � · �′ is the
instantiation over C such that, if �′(X) = s1 . . . sk then � ·�′(X) = �(s1), . . . , �(sk)
where, for s ∈ L(C) ∪ X ,

�(s) =
{
�(s) if s ∈ X
s if s ∈ L(C) .

Then (σ·σ′, �·�′)(〈Σ|Ψ〉) = (σ, �)((σ′, �′)(〈Σ|Ψ〉)) for every 〈Σ|Ψ〉 ∈ GenS(C).

The following result of structurality of sequent calculi (analogous to Propo-
sition 2.6 concerning assertion calculi) follows easily using the characterization of
composition introduced in Remark 7.4:

Proposition 7.5. Let {〈Σ1|Ψ1〉, . . . , 〈Σn|Ψn〉, 〈Σ|Ψ〉} be a finite set of general se-
quent over C, and let S be a sequent calculus over C. It holds: if 〈Σ|Ψ〉 is de-
rived in S from {〈Σ1|Ψ1〉, . . . , 〈Σn|Ψn〉} then (σ, �)〈Σ|Ψ〉 is derived in S from
{(σ, �)(〈Σ1|Ψ1〉), . . . , (σ, �)(〈Σn|Ψn〉)}, for every substitution σ and every sequent
instantiation � over C.

Let 〈s1, . . . , sn|s′1, . . . , s′m〉 be a general sequent over a signature C, and let
h : C → C′ be a signature morphism. Then we define

ĥ
(〈s1, . . . , sn|s′1, . . . , s′m〉

)
:=

〈
ĥ(s1), . . . , ĥ(sn)|ĥ(s′1), . . . , ĥ(s′m)

〉

such that ĥ(X) := X if X ∈ X . Thus, given a sequent rule r over C then ĥ(r)
is the sequent rule 〈ĥ(prem(r)), ĥ(conc(r))〉 over C′. Using this, it is possible to
adapt Definition 3.3 and define a morphism h : S → S′ between sequent calculi as
being a signature morphism h : C → C′ such that

ĥ
(
prem(r)

)

ĥ
(
conc(r)

)
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is a derived rule of S′ for every rule r of S. This defines a category of sequent
calculi called Seq.

Obviously, an analogous of Theorem 3.4 can be obtained in Seq:

Theorem 7.6. Let h : S1 → S2 be a morphism in Seq. Then h preserves every
derived rule of S1, that is: if

Σ1 � Ψ1 . . . Σn � Ψn

Σ � Ψ
is a derived rule of S1 then

ĥ(Σ1 � Ψ1) . . . ĥ(Σn � Ψn)

ĥ(Σ � Ψ)
is a derived rule of S2.

Of course, the results about fibring assertion calculi obtained in the sections
above can be adapted adequately: the constrained fibring in Seq is defined using
the forgetful functor F : Seq → Sig such that F (〈C,R〉) = C and F (h) = h if
h : A → A′. In fact, as in Proposition 6.2, it is easy to prove that the functor F
is a cofibration: given S = 〈C,R〉 and a morphism h : F (S) → C′ in Sig then
hF (S) := 〈C′, ĥ(R)〉 is the codomain of the cocartesian lifting h : S → hF (S)
of h through F . The unconstrained fibring is defined analogously to the case of
assertion calculi. Thus, we arrive to the following result:

Proposition 7.7. There exist both forms of fibring in Seq: if S′ and S′′ are two
sequent calculi then their unconstrained fibring S′ ⊕ S′′ is the coproduct in Seq
of S′ and S′′, which is defined analogously to the construction of Definition 4.2.
And given a sharing diagram G in Sig then the G-constrained fibring by sharing
symbols of S′ and S′′ is the sequent calculus

S′ G⊕ S′′ := qF (S′ ⊕ S′′)
defined analogously to the construction of Definition 6.5.

8. Semantics

In this section we address the definition of a semantics for general sequents. As a
particular case, a semantics for general assertions will follow.

Definition 8.1. Let C be a signature. A C-structure (or a structure over C) is a
tuple

M =
〈
D, [[·]]M ,R,⊗,�,�,⊥〉

such that:
• D is set such that �,⊥ ∈ D;
• [[·]]M : L(C)→ D is a function;
• R ⊆ D ×D is a relation;
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• ⊗ : D ×D → D is a function such that 〈D,⊗,�〉 is a monoid;
• � : D ×D → D is a function such that 〈D,�,⊥〉 is a monoid.

The class of C-structures will be denoted by Str(C).

Definition 8.2. Let M be a C-structure. Let σ and � be a
substitution and a basic sequent instantiation over C, respectively.

(a) The maps [[·]](σ,�)L

M : L(C)∪X → D and [[·]](σ,�)R

M : L(C)∪X → D are defined
as follows:
• if ϕ ∈ L(C) then [[ϕ]](σ,�)L

M = [[ϕ]](σ,�)R

M = [[σ̂(ϕ)]]M ;
• if X ∈ X and �(X) = ϕ1 . . . ϕn then

[[X ]](σ,�)L

M = [[σ̂(ϕ1)]]M ⊗ · · · ⊗ [[σ̂(ϕn)]]M and
[[X ]](σ,�)R

M = [[σ̂(ϕ1)]]M � · · · � [[σ̂(ϕn)]]M .
(b) We say that M satisfies a general sequent 〈s1, . . . , sn|s′1, . . . , s′m〉 at (σ, �),

denoted by M |=σ,� 〈s1, . . . , sn|s′1, . . . , s′m〉, if
(
[[s1]]

(σ,�)L

M ⊗ · · · ⊗ [[sn]](σ,�)L

M

)
R

(
[[s′1]]

(σ,�)R

M � · · · � [[s′m]](σ,�)R

M

)
.

And we say thatM satisfies a general sequent 〈Σ|Ψ〉, denoted byM |= 〈Σ|Ψ〉,
if M |=σ,� 〈Σ|Ψ〉 for every (σ, �).

(c) Let r be a sequent rule. We say that M satisfies r at (σ, �), denoted by
M |=σ,� r, if the following holds:

ifM |=σ,� 〈Σ|Ψ〉for every〈Σ|Ψ〉 ∈ prem(r)thenM |=σ,� conc(r) .

(d) Let S = 〈C,R〉 be a sequent calculus over C. We say that M is a model of S,
denoted by M |= S, if M |=σ,� r for every r ∈ R and every (σ, �). The class
of models of S will be denoted by Mod(S). Note that Mod(S) ⊆ Str(C).

The definition of C-structure is very ample, and allows to take into consider-
ation diverse interpretations of the rules. Note that, in particular, no restrictions
are imposed to R. In principle, it would seem that R should be a pre-order. This is
related to the fact that the sequent calculi should satisfy reflexivity and cut rule,
but it is not always the case.

By virtue of its generality, the notion of C-structure allows to represent well-
known adequate semantics for several logic systems, as the following examples
show.

Example 16.

(1) Consider a signature C such that C0 = {�,⊥}; C1 = {¬}; C2 = {⇒,∨,∧}
and Cn = ∅ in any other case. The class of standard C-structures for propo-
sitional classical logic is the classMCL of C-structures of the form

M = 〈B, [[·]]M ,≤,∧,∨,�,⊥〉
such that 〈B,≤,∧,∨,�,⊥〉 is a Boolean algebra and [[·]]M : L(C) → B is a
homomorphism of C-algebras.
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(2) Consider the signature C of item (1). The class of standard C-structures for
propositional intuitionistic logic is the classMIL of C-structures of the form

M = 〈H, [[·]]M ,≤,∧,∨,�,⊥〉
such that 〈H,≤,∧,∨,�,⊥〉 is a Heyting algebra and [[·]]M : L(C) → H is a
homomorphism of C-algebras.

(3) Consider a signature C such that C0 = {1,⊥,�,0}; C1 = {(·)⊥, !, ?}; C2 =
{−◦,⊕,&,⊗,�} and Cn = ∅ in any other case. The class of standard C-
structures for propositional classical linear logic is the class MCLL of C-
structures of the form (see [9, 21]):

Mμ = 〈Q, [[·]]Mµ ,≤,⊗,�,1,⊥〉
such that
• 〈Q,≤,∧,∨,⊗,⊥,�,0〉 is a Girard quantale with cyclic dualizing ele-

ment ⊥, supremum ∨, infimum ∧, top element � and bottom element 0;
• x⊥ := (x−◦⊥) (where x−◦ · is the right adjoint of the endomorphism
x⊗ · : Q→ Q), 1 := ⊥⊥ and x � y := (x⊥ ⊗ y⊥)⊥ for every x, y ∈ Q;
• μ : Q→ Q is an open modality in Q;
• [[·]]Mµ : L(C)→ Q is a homomorphism of C-algebras such that

· [[ϕ⊕ ψ]]Mµ = [[ϕ]]Mµ ∨ [[ψ]]Mµ and [[ϕ&ψ]]Mµ = [[ϕ]]Mµ ∧ [[ψ]]Mµ ;
· [[!ϕ]]Mµ = μ([[ϕ]]Mµ ) and [[?ϕ]]Mµ = (μ([[ϕ]]⊥Mµ

))⊥.
(4) Consider a signature C such that C1 = {¬,�}; C2 = {⇒} and Cn = ∅ in

any other case. The class of standard C-structures for propositional modal
logic S4 is the classMS4 of C-structures of the form

MR = 〈℘(W ), [[·]]MR ,⊆,∩,∪,W, ∅〉
such thatW is a nonempty set, ℘(W ) is the power set ofW , 〈W,R〉 is a reflex-
ive, transitive Kripke frame and [[·]]MR : L(C) → ℘(W ) is a homomorphism
of C-algebras such that
• [[¬ϕ]]MR = W \ [[ϕ]]MR ;
• [[ϕ⇒ ψ]]MR = (W \ [[ϕ]]MR) ∪ [[ψ]]MR ;
• [[�ϕ]]MR = {w ∈W : w′ ∈ [[ϕ]]MR for every w ∈ W such that wRw′}.

Using the semantical notions introduced above, it is possible to define the
concept of semantical consequence in a sequent calculus.

Definition 8.3. Let M be a class of C-structures.
(a) Let Υ∪ {Σ � Ψ} be finite set of general sequents over C. We say that 〈Σ|Ψ〉

is a consequence of Υ in M, denoted by Υ |=M 〈Σ|Ψ〉, if M |=σ,� 〈Υ, 〈Σ|Ψ〉〉
for every M ∈M and every (σ, �) over C.

(b) We say that a general sequent 〈Σ,Ψ〉 over C is valid in M, denoted by |=M

〈Σ,Ψ〉, if M |= 〈Σ,Ψ〉 for every M ∈ M. That is, if 〈Σ,Ψ〉 is a consequence
of ∅ inM.

Definition 8.4. Let S be a sequent calculus over C and M⊆ Str(C).
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(a) S is said to be sound forM if, for every finite subset Υ∪{〈Σ|Ψ〉} of Seq(C):
if Σ � Ψ is derivable in S from Υ then Υ |=M 〈Σ|Ψ〉.

(b) S is said to be complete for M if, for every finite subset Υ ∪ {〈Σ|Ψ〉} of
Seq(C): if Υ |=M 〈Σ|Ψ〉 then Σ � Ψ is derivable in S from Υ.

(c) S is said to be adequate forM if it is sound and complete forM.

The next result justifies the definition of soundness stated above:

Proposition 8.5. S is sound for M iff M⊆Mod(S).

Proof. In order to prove the ‘only if’ part, let r be a rule of S, let σ be a sub-
stitution, let M ∈ M and let � be a basic sequent instantiation over C such
that M |=σ,� prem(r). Since (σ, �)(conc(r)) ∈ Seq(C) is derivable in S from
(σ, �)(prem(r)) then (σ, �)(prem(r)) |=M (σ, �)(conc(r)), by soundness of S. In
particular, taking σ′(ξ) = ξ for every ξ ∈ Ξ and �′(X) = ξ1 for every X ∈ X
it follows that M |=σ′,�′ (σ, �)(conc(r)), because M ∈ M is such that M |=σ′,�′

(σ, �)(prem(r)). Therefore M |=σ,� conc(r). This shows that M⊆Mod(S).
Suppose now that M ⊆ Mod(S) and let Υ ∪ {〈Σ|Ψ〉} be a finite subset of

Seq(C) such that Σ � Ψ is derivable in S from Υ. Let (σ, �) and M ∈M such that
M |=σ,� 〈Σ′|Ψ′〉 for every 〈Σ′|Ψ′〉 ∈ Υ. By induction on the length l of a derivation
in S of Σ � Ψ from Υ it will be proved that M |=σ,� 〈Σ|Ψ〉. If l = 1 then there
are two cases: either 〈Σ|Ψ〉 = (σ′, �′)(〈Σ′|Ψ′〉) (for some axiom 〈∅, 〈Σ′|Ψ′〉〉 of S
and some (σ′, �′)) or 〈Σ|Ψ〉 ∈ Υ. Clearly M |=σ,� 〈Σ|Ψ〉 in both cases. Suppose
now that the result is true for every sequent derived in S from Υ in l steps, and
assume that 〈Σ|Ψ〉 is derived in S from Υ in l+ 1 steps. If 〈Σ|Ψ〉 is obtained from
an axiom of S or if it is an element of Υ the result is obviously true. Suppose that
〈Σ|Ψ〉 is obtained from a rule r of S such that 〈Σ|Ψ〉 = (σ′, �′)(conc(r)) for some
(σ′, �′). Then M |=σ,� (σ′, �′)(〈Σ′′|Ψ′′〉) for every 〈Σ′′|Ψ′′〉 ∈ prem(r), by induction
hypothesis. That is, M |=σ·σ′,�·�′ 〈Σ′′|Ψ′′〉 for every 〈Σ′′|Ψ′′〉 ∈ prem(r) (recall the
characterization of composition given in Remark 7.4). Since M |=σ·σ′,�·�′ r (by
hypothesis) it follows that M |=σ·σ′,�·�′ conc(r). That is, M |=σ,� 〈Σ|Ψ〉. �
Example 17. Recall Example 16. Then, if we consider the usual sequent calculi
for each logic therein, then they are sound and complete for the corresponding
class of C-structures. In the case of propositional classical linear logic, it must be
considered a two-sided sequent calculus (see [9, 21]).

9. Completeness preservation by fibring

In this section a natural notion of logic system is introduced, and a general theorem
of completeness preservation by fibring is obtained. The steps to be followed are in
line with standard proofs of completeness preservation by categorial fibring (see,
for instance, [10, 22]).

Definition 9.1. Let C be a signature. A logic system (over C) is a tuple L =
〈C,M,R〉 such that 〈C,R〉 is a sequent calculus over C andM⊆ Str(C). A logic
system L is said to be:
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• sound ifM⊆ Mod(〈C,R〉) (that is, if 〈C,R〉 is sound forM);
• full ifM = Mod(〈C,R〉);
• complete if 〈C,R〉 is complete forM;
• adequate if 〈C,R〉 is adequate for M.

The following result, which states a sufficient condition for obtaining com-
pleteness, will be useful:

Theorem 9.2. If a logic system L is full then it is complete.

Proof. Assume that L = 〈C,M,R〉 is full, that is, M = Mod(S), where S =
〈C,R〉. Let Υ ∪ {Σ � Ψ} be a finite subset of Seq(C) such that Σ � Ψ is not
derivable in S from Υ. Consider the C-structure

Mc =
〈
L(C)∗, [[·]]Mc ,R, 	, 	, ε, ε

〉

such that:

• L(C)∗ is the set of finite sequences in L(C);
• ε is the empty sequence in L(C);
• [[·]]Mc : L(C)→ L(C)∗ is given by [[ϕ]]Mc = ϕ (considered as a finite sequence

formed exactly by the formula ϕ);
• R ⊆ L(C)∗ × L(C)∗ is the following relation: ΣR Ψ iff 〈Σ|Ψ〉 is derivable in
S from Υ;
• 	 : L(C)∗ × L(C)∗ → L(C)∗ is the concatenation function.

Clearly, Mc is a C-structure because 〈L(C)∗, 	, ε〉 is a monoid. Moreover,
Mc ∈ Mod(S) and then Mc ∈ M. Now, take the identity substitution σ such
that σ(ξ) = ξ (for every ξ ∈ Ξ) and take the basic sequent instantiation � such
that �(X) = ξ1 (for every X ∈ X ). Then Mc |=σ,� Υ but it is not the case that
Mc |=σ,� 〈Σ|Ψ〉, because 〈Σ|Ψ〉 is not derivable in S from Υ. Therefore 〈Σ|Ψ〉 is
not a consequence of Υ in M. �

In order to define the notion of morphism between logic systems, it is neces-
sary to introduce the following concept.

Definition 9.3. Let M ′ = 〈D, [[·]]M ′ ,R,⊗,�,�,⊥〉 be a structure in Str(C′) and let
h : C → C′ be a morphism in Sig. The reduct of M ′ along h, denoted by M ′|h,
is the C-structure M ′|h = 〈D, [[·]]M ′|h ,R,⊗,�,�,⊥〉 such that [[·]]M ′|h = [[·]]M ′ ◦ ĥ.
That is, [[ϕ]]M ′|h = [[ĥ(ϕ)]]M ′ for every ϕ ∈ L(C).

Lemma 9.4. Let M ′ ∈ Str(C′) and h : C → C′ in Sig.

(1) Given a substitution σ and a basic sequent instantiation � over C let σ′

and �′ be the substitution and the basic sequent instantiation over C′ de-
fined, respectively, as follows: σ′(ξ) = ĥ(σ(ξ)), for every ξ ∈ Ξ, and �′(X) =
ĥ(ϕ1) . . . ĥ(ϕk) if �(X) = ϕ1 . . . ϕk, for every X ∈ X . Then [[s]](σ,�)L

M ′|h =

[[ĥ(s)]](σ
′,�′)L

M ′ and [[s]](σ,�)R

M ′|h = [[ĥ(s)]](σ
′,�′)R

M ′ for every s ∈ L(C) ∪ X .
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(2) Let 〈Σ|Ψ〉 ∈ GenS(C). Given a substitution σ and a basic sequent instan-
tiation � over C let σ′ and �′ as in item (1). Then M ′|h |=σ,� 〈Σ|Ψ〉 iff
M ′ |=σ′,�′ ĥ(〈Σ|Ψ〉).

(3) Let r be a sequent rule over C. Then M ′ ∈ Mod(ĥ(r)) implies that M ′|h ∈
Mod(r).

Proof.
(1) Since σ̂′(ĥ(ϕ)) = ĥ(σ̂(ϕ)) for every ϕ ∈ L(C) the result follows easily from

the definitions.
(2) Immediate from the definitions, using item (1).
(3) Suppose that M ′ ∈ Mod(ĥ(r)) for a given sequent rule r over C. Let (σ, �)

such that M ′|h |=σ,� prem(r). Consider σ′ and �′ as in item (1). Then
M ′ |=σ′,�′ ĥ(prem(r)), by item (2) and then M ′ |=σ′,�′ ĥ(conc(r)), by hy-
pothesis. Using again item (2) it follows that M ′|h |=σ,� conc(r). �

Corollary 9.5. Let M ′ ∈ Str(C′) and h : C → C′ in Sig. Let 〈C,R〉 be a sequent
calculus over C. Then: M ′ ∈ Mod(〈C′, ĥ(R)〉) implies that M ′|h ∈Mod(〈C,R〉).

Inspired by [10] it is defined the following:

Definition 9.6. Let L = 〈C,M,R〉 and L′ = 〈C′,M′,R′〉 be two logic systems. A
logic system morphism h : L → L′ is a signature morphism h : C → C′ such that:

1. h : 〈C,R〉 → 〈C′,R′〉 is a morphism in Seq;
2. for every M ′ ∈ Str(C′): M ′ ∈ M′ implies M ′|h ∈ M;
3. for every M ′ ∈ M′: M ′|h ∈ Mod(〈C,R〉) implies M ′ ∈ Mod(〈C′, ĥ(R)〉).

Definition 9.7. The category Log of logic systems is defined as follows: its ob-
jects are logic systems (cf. Definition 9.1), and its morphisms are logic systems
morphisms (cf. Definition 9.6). Composition of morphisms and identity maps are
defined as in Sig.

Now (unconstrained) fibring of logic systems will be defined, showing that
they coincide with coproducts in Log. Again, the following notion is adapted
from [10].

Definition 9.8. Let L′ = 〈C′,M′,R′〉 and L′′ = 〈C′′,M′′,R′′〉 be two logic sys-
tems. The unconstrained fibring of L′ and L′′ is the logic system L = 〈C,M,R〉
such that:
• C = C′ ⊕ C′′ is the coproduct in Sig of C′ and C′′ with canonical injections
i′ : C′ → C and i′′ : C′′ → C;
• R = î′(R′) ∪ î′′(R′′) is the set of sequent rules of the coproduct 〈C′,R′〉 ⊕
〈C′′,R′′〉 in Seq;
• M = {M ∈ Str(C) : M |i′ ∈M′ and M |i′′ ∈M′′ and

M |i′ ∈ Mod(〈C′,R′〉) implies M ∈Mod(〈C, î′(R′)〉) and
M |i′′ ∈ Mod(〈C′′,R′′〉) implies M ∈Mod(〈C, î′′(R′′)〉)}.

The unconstrained fibring of L′ and L′′ will be denoted by L′ ⊕ L′′.
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Proposition 9.9. With notation as in Definition 9.8, L = L′ ⊕L′′ is the coproduct
in Log of L′ and L′′ with canonical injections obtained from i′ : C′ → C and
i′′ : C′′ → C.

Proof. By Definition 9.8, the canonical injections are morphisms i′ : L′ → L and
i′′ : L′′ → L in Log. Let Ľ = 〈Č,M̌, Ř〉 be a logic system and let j′ : L′ → Ľ
and j′′ : L′′ → Ľ be morphisms in Log. Then, there is a (unique) morphism
h : C → Č such that h ◦ i′ = j′ and h ◦ i′′ = j′′. It is necessary to prove that h
is a morphism in Log. By definition of fibring in Seq the morphism h is a mor-
phism in Seq, then condition (1) of Definition 9.6 is satisfied. Let M̌ ∈ M̌ and let
M = M̌ |h. Then M |i′ = M̌ |j′ ∈M′, because j′ is a morphism in Log. Analogously
it is proved that M |i′′ = M̌ |j′′ ∈ M′′. Suppose now that M |i′ ∈ Mod(〈C′,R′〉).
Since h ◦ i′ = j′ is a morphism in Log then M̌ ∈ Mod(〈Č, ĥ(̂i′(R′))〉) and so
M ∈ Mod(〈C, î′(R′)〉), by Corollary 9.5. Analogously, if M |i′′ ∈ Mod(〈C′′,R′′〉)
then M ∈ Mod(〈C, î′′(R′′)〉). Thus M ∈M and so h satisfies condition (2) of Defi-
nition 9.6. Now, suppose that M̌ ∈ M̌ such that M̌ |h ∈Mod(〈C,R〉). Then M̌ |h ∈
Mod(〈C, î′(R′)〉) and so M̌ |j′ ∈ Mod(〈C′,R′〉), by Corollary 9.5 and because
h◦i′ = j′. Since j′ is a morphism in Log it follows that M̌ ∈Mod(〈Č, ĵ′(R′)〉). That
is, M̌ ∈ Mod(〈Č, ĥ(̂i′(R′))〉). Analogously, since M̌ |h ∈ Mod(〈C, î′′(R′′)〉), it can
be proved that M̌ ∈ Mod(〈Č, ĥ(̂i′′(R′′))〉). This means that M̌ ∈ Mod(〈Č, ĥ(R)〉)
and then h satisfies condition (3) of Definition 9.6. That is, h : L → Ľ is a mor-
phism in Log such that h ◦ i′ = j′ and h ◦ i′′ = j′′ in Log. The uniqueness of h in
Log follows from the uniqueness of h in Sig. �

With respect to constrained fibring, it is obtained the following:

Proposition 9.10. Let G : Log → Sig be the forgetful functor (defined in the
obvious way). Then G is a cofibration.

Proof. Given a logic system L = 〈C,M,R〉 and a morphism h : G(L) → C′ in
Sig, consider the logic system hG(L) := 〈C′,M′,R′〉 such that R′ = ĥ(R) and

M′ =
{
M ′ ∈ Str(C′) : M ′|h ∈ M, and

M ′|h ∈ Mod
(〈C,R〉) implies M ′ ∈Mod

(〈
C′, ĥ(R)

〉)
}
.

Clearly h : L → hG(L) is a morphism in Log. Let Ľ = 〈Č,M̌, Ř〉 be a logic system,
g : L → Ľ be a morphism in Log and f : C′ → Č be a morphism in Sig such that
f ◦ h = g in Sig. It is enough to prove that f : hG(L) → Ľ is a morphism in Log.
The first requirement of Definition 9.6 is clearly satisfied by f . The rest of the
proof is very similar to the proof of Proposition 9.9. �

From this, the following result is obtained:
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Corollary 9.11. There exists constrained fibring in Log: if L′ and L′′ are two logic
systems and G is a sharing diagram in Sig then the G-constrained fibring of L′
and L′′ by sharing symbols is the logic system

L′ G⊕ L′′ := qG(L′ ⊕ L′′)
defined analogously to the construction of Definition 6.5.

Theorem 9.12 (Soundness and completeness preservation I). Let L′=〈C′,M′,R′〉
and L′′ = 〈C′′,M′′,R′′〉 be two logic systems, and let L = 〈C,M,R〉 be the
unconstrained fibring of L′ and L′′. Then:
(1) If both L′ and L′′ are sound then L is sound.
(2) If both L′ and L′′ are full (and then complete) then L is full, and then com-

plete.

Proof.
(1) Suppose that M′ ⊆ Mod(〈C′,R′〉) and M′′ ⊆ Mod(〈C′′,R′′〉), and let

M ∈ M. Then, by Definition 9.8, M |i′ ∈ M′, that is, M |i′ ∈ Mod(〈C′,R′〉)
and so M ∈ Mod(〈C, î′(R′)〉). Analogously it is proved that
M ∈Mod(〈C, î′′(R′′)〉). Then M ∈ Mod(〈C,R〉) and so L is sound.

(2) Suppose that M′ = Mod(〈C′,R′〉) and M′′ = Mod(〈C′′,R′′〉). Then, by
Definition 9.8,

M =
{
M ∈ Str(C) : M |i′ ∈M′ and M |i′′ ∈ M′′ and ;

M |i′ ∈Mod
(〈C′,R′〉) implies M ∈Mod

(〈
C, î′(R′)

〉)
and ;

M |i′′ ∈Mod
(〈C′′,R′′〉) implies M ∈Mod

(〈
C, î′′(R′′)

〉)
}
.

Thus, by hypothesis,

M =
{
M ∈ Str(C) : M |i′ ∈Mod

(〈C′,R′〉) and M |i′′ ∈Mod
(〈C′′,R′′〉) and ;

M |i′ ∈Mod
(〈C′,R′〉) implies M ∈ Mod

(〈
C, î′(R′)

〉)
and ;

M |i′′ ∈ Mod
(〈C′′,R′′〉) implies M ∈Mod

(〈
C, î′′(R′′)

〉)
}
.

Therefore,

M =
{
M ∈ Str(C) : M |i′ ∈ Mod

(〈C′,R′〉) and M |i′′ ∈Mod
(〈C′′,R′′〉) and ;

M ∈ Mod
(〈
C, î′(R′)

〉)
and M ∈Mod

(〈
C, î′′(R′′)

〉)
}
,

that is, M = Mod(〈C,R〉), by Corollary 9.5. Then L is full and so it is
complete. �
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Lemma 9.13. Let L = 〈C,M,R〉 be a logic system, and let h : C → C′ be a
morphism in Sig. Then:
(1) If L is sound then hG(L) is sound.
(2) If L is full (and then complete) then hG(L) is full, and then complete.

Proof. Analogous to the proof of Theorem 9.12, but now using the definition ofM
given in the proof of Proposition 9.10. �

Theorem 9.14 (Soundness and completeness preservation II). Let L′=〈C′,M′,R′〉
and L′′ = 〈C′′,M′′,R′′〉 be two logic systems, let G be a sharing diagram in Sig
and let L be the G-constrained fibring of L′ and L′′ by sharing symbols. Then:
(1) If both L′ and L′′ are sound then L is sound.
(2) If both L′ and L′′ are full (and then complete) then L is full, and then com-

plete.

Proof. Immediate, from Lemma 9.13. �

From the results above, it can be seen that both forms of fibring always
preserve soundness. On the other hand, if the logic systems are complete because
they are full, then both forms of fibring preserve fullness and then completeness.

10. Concluding remarks

In this paper the problem of recovering a logic by fibring of its fragments was
addressed. To this end, the usual notion of logic morphism (i.e., a translation
which preserves deductions) was substituted for a stronger one, ensuring that
meta-properties of the form

IfΓ1 � ϕ1 and . . . and Γn � ϕn then Γ � ϕ
are preserved, provided that the variable symbols (for formulas and sets of formu-
las) occurring in the meta-property are kept fixed (cf. Theorem 3.4). The impor-
tance of this kind of meta-properties in the analysis of logics from the point of
view of Universal Logic was already studied in [1]. The problem of preservation of
general meta-properties of a logic system by morphisms was also addressed in [8],
under a different perspective.

The basic framework underlying our analysis was a formal meta-language
of rules appropriated for describing sequent calculi, together with two categories
associated to it: Mcon, in which the formulas are grouped through sets (encom-
passing a large class of sequent calculi), and Seq, in which the formulas are grouped
through finite sequences and, in particular, multisets (if suitable structural rules
are added). The latter category is appropriate for substructural sequent calculi,
and it is a generalization of the former, which basically define multiple-conclusion
consequence relations.

It was proved that there exist both forms of fibring in these categories: uncon-
strained (that is, no symbols are shared) and constrained (by sharing symbols).
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Both kind of fibrings are called meta-fibrings, because meta-properties are pre-
served. It is worth noting that the concept of (categorial) fibring used in Mcon
and Seq is the same as in [18]: the unique difference is the notion of morphism
between calculi we adopt, which allows to preserve meta-properties.

By introducing a general semantics for sequent calculi, the category Log of
logic systems was defined and, by using natural notions of soundness and com-
pleteness, it was proved that both forms of fibring preserve completeness (provided
that the logic systems are full). On the other hand, it was proved that soundness
is always preserved by both forms of fibring.

It should be noted that, in general, semantical aspects of a given logic system
are mainly useful for finding counter-examples (i.e., impossibility of certain deriva-
tions): is under this perspective that the rather general semantical structures for
sequent calculi should be considered.

Together with the technical development concerning the conceptual frame-
work mentioned above, some interesting examples of recovering logics from its
fragments were offered, in conformity with our objectives. The choice of meta-
fibring instead of fibring was shown to be essential for attaining this goal.

A possible explanation for this phenomenon is that sequent calculi or natural
deduction calculi are defined in a modular way, by describing the features of each
connective independently of the others. Thus, it is possible to define separately the
logic of each connective (possibly with the adding of structural rules that do not
depend on any connective), and then recover the whole logic simply by putting
together all the rules. This is basically what was done in the examples given above.
On the other hand, Hilbert calculi, by its nature, are defined from mixed axioms.
Take as an illustrative example the well-known Hilbert calculi for classical propo-
sitional logic over {¬,⇒} due to Hilbert and Bernays, and popularized by [17].
This systems is formed by the first two axioms given in Example 10 above to-
gether with the mixed axiom (¬ξ ⇒ ¬ξ′)⇒ ((¬ξ ⇒ ξ′)⇒ ξ) and Modus Ponens.
The presence of a mixed axiom (that is, a formula involving both connectives) is
unavoidable in order to obtain classical propositional logic over this signature, as
shown in Example 10.

However, it should be noted that some logics cannot be recovered from single-
connective logics: modal logics, for instance, must be defined by rules describing the
behavior of the modalities in terms of their interactions with the other connectives.
That is, rules involving more than one connective (mixed rules) are necessary.
Moreover, in some cases the meta-fibring of the fragments is not enough to recover
a modal logic, as was shown in Example 14.

This paper should be considered as a first attempt to solve the problem of
recovering a logic from its fragments, from the point of view of fibring. As it can
be observed, several important question remain open. In the first place, it is no
clear how a mixed formula (an interaction between connectives) could be generated
from the different fragments in a controlled way. On the other hand, Example 14
shows that it is not always possible to obtain a mixed formula from the logics of
their connectives. A detailed study of this issue will contribute to determine the
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scope and the limitations of meta-fibring as a tool for recovering a logic from its
fragments.

In a different line of research, it would be interesting to study the case for
first-order sequent calculi, in which rules have provisos. In order to do this, the
notion of proviso (and its management) given in [10] could be adapted.

Acknowledgements

This paper is an improved version of the preprint [7]. We would like to thank the
anonymous referees for their criticism and valuable remarks and suggestions which
helped to improve this text. We also thank Walter Carnielli for careful reading
and useful comments. This research was supported by The State of São Paulo
Research Foundation (FAPESP), Brazil, Thematic Project number 2004/14107-2
(“ConsRel”), and by an individual research grant from The National Council for
Scientific and Technological Development (CNPq), Brazil. We also acknowledge
partial support from FCT and UE FEDER POCI via SQIG at IT, Portugal.

References
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tugal), 2000.

[5] C. Caleiro and J. Ramos. From fibring to cryptofibring. A solution to the collapsing
problem. Logica universalis, 1(1):71–92, 2007.

[6] W. A. Carnielli, M.E. Coniglio, D. Gabbay, P. Gouveia, and C. Sernadas. Analysis
and synthesis of logics. Applied Logic Series. Kluwer, 2007. In print.

[7] M. E. Coniglio. The meta-fibring environment: Preservation of meta-properties by
fibring. CLE e-Prints, 5(4), 2005. Available at
URL = http://www.cle.unicamp.br/e-prints/vol 5,n 4,2005.html.

[8] M. E. Coniglio and W.A. Carnielli. Transfers between logics and their applications.
Studia logica, 72(3):367–400, 2002.

[9] M. E. Coniglio and F. Miraglia. Equality in linear logic. Logique et analyse, 39(153–
154):113–151, 1996.

[10] M. E. Coniglio, A. Sernadas, and C. Sernadas. Fibring logics with topos semantics.
Journal of logic and computation, 13(4):595–624, 2003.



Vol. 1 (2007) Recovering a Logic 415

[11] L. Cruz-Filipe, A. Sernadas, and C. Sernadas. Heterogeneous fibring of deductive
systems via abstract proof systems. Submitted for publication, 2005.
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