
Logica universalis 1 (2007), 295–310
1661-8297/020295-16, DOI 10.1007/s11787-007-0015-x
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On Preserving
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Abstract. This paper examines the underpinnings of the preservationist ap-
proach to characterizing inference relations. Starting with a critique of the
‘truth-preservation’ semantic paradigm, we discuss the merits of characteriz-
ing an inference relation in terms of preserving consistency. Finally we turn
our attention to the generalization of consistency introduced in the early work
of Jennings and Schotch, namely the concept of level.
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1. Introduction

The (classical) semantic paradigm for correct inference is often given the name
‘truth-preservation.’ This is typically spelled out to the awe-struck students in
some such way as:

An inference from a set of premises, Γ, to a conclusion, α, is correct,
say valid, if and only if whenever all the members of Γ are true, then so
is α.

This understanding of the slogan may be tried, but is it actually true? There is a
problem: the way that ‘truth’ is used in connection with the premises is distinct
from the way that it is used with the conclusion. In other words, this could be no
better than a quick and dirty gloss. The chief virtue of the formulation is that of
seeming correct to the naive and untutored.

But what of the sophisticates? They might well ask for the precise sense in
which truth is supposed to be preserved in this way of unpacking. On the right
hand side of the ‘whenever’ we are talking about the truth of a single formula
while on the left hand side we are talking about the truth of a bunch of single
formulas. Is it the truth of the whole gang which is ‘preserved?’
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Of course it is open to the dyed-in-the-wool classicalist to reply scornfully that
we need only replace the set on the left with the conjunction of its members. In
this way truth is preserved from single formula to single formula as homogenously
as anyone could wish.

It is open, but not particularly inviting. In the first place, this strategy forces
us to restrict the underlying language to one which has conjunction and conditional
connectives – which must operate in something like the usual (which is to say
classical) way. There are enough who would chafe under this restriction, that a
sensitive theorist would hesitate to impose it.

We are inclined to think of this business of coding up the valid inferences in
terms of their ‘corresponding conditionals’1 as an accident of the classical way of
thinking and that it is no part of the definition of a correct account of inference.
We also notice that on the proposal, we are restricted to finite sets.

However, it is possible, as is done in quantum logic, to forgo the conditional
and restrict discussion to conjunctions on the left. In doing so the definition of
‘follows from’ for sets is defined via sentence-sentence relations.2 One could pre-
sumably, then, say Γ �X α when there was a particular conjunction to ‘do the
work’. Apart from the requirement of conjunction, this suggestion removes some
intuitive distinctions that will be explained in the sequel. Namely, the idea that
one may break up a collection of sentences. Further, could one really claim that a
logic, so defined, be monotonic? Infinite sets seem to be ruled out. Although our
discussion is restricted to compact logics, much generality would be sacrificed if
one’s goal is to describe a uniform notion of ‘follows from.’

Setting aside this unpalatable proposal then, we ask how is this notion of
truth-preservation supposed to work? Since there is no gang on the right we seem
to be talking about a different kind of truth, individual truth maybe, from the
kind we are talking about on the left – mass truth perhaps. Looked at in that
somewhat jaundiced way, there isn’t any preserving going on at all, but rather a
sort of transmuting.

The classical paradigm really ought to be given by the slogan ‘truth trans-
mutation.’ In passing from the gaggle of premises to the conclusion, gaggle-truth
is transmuted into single formula truth. It may be more correct to say that, but
it makes the whole paradigm somewhat less forceful or even less appealing.

What we need in order to rescue the very idea of preservationism is to talk
entirely about sets. So we shall have to replace the arbitrary conclusion α with the
entire set of conclusions which might correctly be drawn from Γ. We even have an
attractive name for that set – the theory generated by Γ or the deductive closure
of Γ. In formal terms this is the theory generated by Γ or the X-closure of Γ

CX(Γ) = {α|Γ �X α}

1We think this usage was coined first by Quine.
2The authors thank the anonymous referee for this suggestion.
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Now that we have sets,3 can we say what it is that gets preserved – can
we characterize classical inference, for instance, as that relation between sets of
formulas and their closures such that the property Φ is preserved?

We can see that gaggle-truth would seem to work here in the sense that
whenever Γ is gaggle-true so must be C�(Γ), for � the classical notion of inference
at least. We are unable to rid ourselves, however, of the notion that gaggle-truth
is somewhat lacking from an intuitive perspective. Put simply, our notion of truth
is carried by a predicate which applies to sentences, or formulas if we are in that
mood. These are objects which might indeed belong to sets, but they aren’t them-
selves sets. So however we construe the idea of a true set of sentences (or formulas)
that construal will involve a stipulation, or more charitably, a new definition.

Generations of logic students may have been browbeaten into accepting:
‘A set of sentences is true if and only if each member of the set is true.’ But,
it is a stipulation, and is no part of the definition of ‘true.’ It doesn’t take very
much imagination to think that somebody might actually balk at the stipulation.
Somebody who is attracted to the idea of coherence for instance, might well want
to say that truth must be defined for (certain kinds of) sets first, and that the
sentential notion is derived from the set notion and not conversely. All of which
is simply to say that a stipulation as to how we should understand the phrase
‘true set of sentences’ is unlikely to be beyond the bounds of controversy.4 It may
gladden our hearts to hear then, that there is another property, perhaps a more
natural one, which will do what we want. That alternative property is consistency.

2. Making a few things precise

By a logic X , over a language L we understand the set of pairs 〈Γ, α〉 such that Γ is
a set of formulas from the language L and α is a formula from that same language,
and Γ �X α. In the sequel we frequently avoid mention of the language which
underlies a given logic, when no confusion will thereby be engendered.

This set of pairs is also referred to as the provability or inference relation
of X . In saying this we expose our extensional viewpoint according to which there
is nothing to a logic over and above its inference relation. This has the immediate
consequence that we shall take two logics X and Y which have the same inference
relation, to be the same logic.

3This approach is different from the sequent version of Set-Set consequence as seen in [2]. Dis-
cussion of that can be found, for the current notions in [6].
4It may be helpful here to consider an analogy between sentences and numbers, taken to be
urelementen. We can define the idea of a prime number easily enough but be puzzled about how
to define a prime set of numbers. Somebody might be moved to offer: “Why not simply define a
prime set of numbers to be a set of prime numbers?” The answer is likely to be: “Why bother?”
indeed the whole idea of a prime set of numbers seems bizarre and unhelpful. We can easily

imagine circumstances in which we would require a set of prime numbers but the reverse is true
when it comes to a prime set.
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When X is a logic, we refer to the X-deductive closure of the set Γ by means
of ‘CX(Γ)’.

Unless the contrary is specified, every logic mentioned below will be compact,
which is say that whenever proves α(Γ � α) it follows that there must be some
finite subset, say Δ, of Γ, which proves α.

In mentioning consistency, we have in mind some previously given notion of
inference, say �X . Each inference relation spawns a notion of consistency according
to the formula

Γ is consistent, in or relative to a logic X (alternatively, Γ is X-consis-
tent) if and only if there is at least one formula α such that Γ �X α.
To say this in terms of provability rather than non-provability we might issue

the definition:
Γ is inconsistent in a logic X if and only if CX(Γ) = S, where S is
the set of all formulas of the underlying language of X , i.e., Γ proves
everything.
Where X is a logic, the associated consistency predicate (of sets of
formulas) for X , is indicated by conX .
We were interested in how an inference relation might be characterized in

terms of preserving some property of sets. We have singled out consistency as a
natural property of sets, and having done that we can see that preservation of
consistency comes very naturally indeed. The time has come to say a little more
exactly what we mean by ‘characterized.’ In order to do this we shall be making
reference to the following three structural rules of inference.

• Reflexivity: α ∈ Γ =⇒ Γ � α, referred to by [R].
• Transitivity: Γ, α � β and Γ � α =⇒ Γ � β, referred to by [Cut].
• Monotonicity Γ � α =⇒ Γ ∪ Δ � α (Δ an arbitrary set of formulas), referred

to by [Mon].
Unless there is a specific disavowal every inference relation we consider will be

assumed to admit these three rules. It should be noted that on account of [Mon],
if the empty set ∅ is inconsistent in X , then the inference relation for that logic
contains every pair 〈Γ, α〉. In such a case we say that X is the trivial logic over
its underlying language. We shall take the logics we mention from now on to be
non-trivial, barring a disclaimer to the contrary.

Let us say that an inference relation, say ‘�X ’, preserves consistency if and
only if:

If Γ is X-consistent (in the sense of the previous definition), then so is
CX(Γ).
It is easy to see that every inference relation with [Cut] and [Mon] must

preserve consistency since if the closure of a set, Γ proves some formula, α, then
by compactness some finite sequence of [Cut] operations will lead to the conclusion
that Γ proves α. It may be that we end up showing that some subset of Γ proves
α, which is why we require [Mon] in this case.
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We say that X preserves consistency in the strong sense when the condition
given above as necessary, is also sufficient.

It is similarly easy to see that since every set is contained in its deductive
closure by [R], and since inconsistency is preserved by supersets, given [Mon], every
inference relation satisfying the three structural rules preserves consistency in the
strong sense.

This is all very well, but we haven’t really gotten to anything that would single
out an inference relation from the throng which preserve consistency. In order to
do that it will be necessary to talk about a logic X preserving the consistency
predicate of a logic Y , in the strong sense.

A moment’s thought will show us that when the preservation is mutual –
X and Y preserve each other’s consistency predicates, (which implies that they
share a common underlying language) then they must agree on which sets are con-
sistent and which are inconsistent. For consider, if conX(Γ) and Y preserves the X
consistency predicate then conX(CY (Γ)). Suppose that Γ is not Y -consistent, then
CY (Γ) = S. By [R] CX(CY (Γ)) = CX(S) = S which is to say that CY (Γ) is not
X-consistent, a contradiction. Similarly for the argument that Γ is consistent in Y
and X preserves the Y consistency predicate.5

When two logics agree in this way, i.e., agree on the consistent and inconsis-
tent sets, we shall say that they are at evens. Another moment’s thought reveals
that two logics which are at evens will preserve each other’s consistency predi-
cates. Assume X and Y are at evens and conX(Γ), but conX(CY (Γ)) where the
overline indicates predicate negation. Then conY (CY (Γ)) because X and Y agree
on inconsistent sets. Whence by idempotentcy of ‘CY ’ Γ is not consistent in Y , a
contradiction. Thus we have,

Proposition 2.1. Any two logics X and Y over a language L are at evens if and
only if X and Y preserve each other’s consistency predicates.

This is nearly enough to guarantee that X and Y are the same logic. All we
need is a kind of generalized negation principle:

Definition 2.2. A logic X is said to have denial provided that for every formula α,
there is some formula β such that conX({α, β}).
5The anonymous referee suggested: “The definition of consistency preservation can (at least
often) be strengthened. We can demand that every X-consistency-preserving extension of Γ also
be a consistency-preserving extension of CX(Γ).” We assume the referee means something like the
following – say for intuitionistic logic (IL). Let Γ = {A} then Γ ��IL B∨¬B, but conIL(Γ′) where
Γ′ = {A, B ∨ ¬B}. In this case CIL(Γ′) will be a consistent extension CIL(Γ), and so also of Γ.
The referee continues: “That is, when we close Γ under a consistency-preserving consequence
relation, we not only preserve the consistency of Γ, we also beg no questions, that is, we do
not rule out as inconsistent extensions of CX(Γ) that are consistent extensions of Γ.” It is not
our intention to rule out such consistent extensions, and the definition does not rule out such
extensions. It is because of that possibility that the relation of ‘at evens’ is not equality of logics;

a logic requires more structure to show that ‘at evens’ implies equality. Again we thank the
referee for the comment.
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In such a case we shall say that α and β deny each other (in X , which
qualification we normally omit when it is clear from the context). We will assume
that any logic we mention has denial.

Clearly if a logic has classical-like negation rules then it has denial since
the negation of a formula will always be inconsistent with the formula. Of course
classically, there are countably many other formulas which are inconsistent with
any given formula, e.g., all those which are self-inconsistent and conjunctions which
include ¬α. The generalized notion doesn’t require that there be distinct6 denials
for each formula, only that there be some or other formula which is not consistent
with the given formula.

Evidently, if two logics are at evens, then if one has denial, so does the other.
In fact something stronger holds, namely:

Proposition 2.3. If two logics X and Y are at evens, and X has denial then,
for every formula α there is some formula β for which both conX({α, β}) and
conY ({α, β}).

A further distinction to be made is that of a ‘contingent’ formula. Contingent
formulas are those that are neither absurdities nor theorems. An absurd formula is
one which is self-inconsistent. A theorem is a consequence of everything. Suppose
that ϕ is a contingent formula, and there is another contingent formula ψ such
that the pair set is inconsistent. These formulas will be called ‘contingent denials’.
The next definition is more complex.

Definition 2.4. Let α be a contingent formula of a logic X and β be a denial of α.
β is a negation-denial of α (ND) if and only if,

1. β is contingent,
2. conX(α, β) and,
3. if conX(α, δ) then δ �X β.

These negation-denials are so called because they ‘act like’ negations in the
way Koslow characterizes negations in [3]. Notice that ND is not a symmetric rela-
tionship. For instance the negation of intuitionistic logic satisfies this formulation,
but A is not an ND of ¬A in IL. That is because in intuitionistic logic A � ¬¬A,
but the implication does not go in the other direction.

In the sequel the logics will obey the following. Suppose that conX(Γ, β).
Then there is a denial δ of β such that Γ �X δ. If one further assumes that
ND is a symmetric relationship then the logic X will have the following property
called [Den].

[Den] ∀Γ, α, β
[
βNDα =⇒ (

Γ �X α ⇐⇒ conX(Γ, β)
)]

Note that ND represents the relation of negation-denial.

Proposition 2.5. Given that a logic X has the following properties:

6Distinct up to logical equivalence, it goes without saying.
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1. If conX(Γ, β) then there is δ such that conX(δ, β) and Γ �X δ.
2. X has symmetric ND’s.

Then the logic satisfies [Den].

Proof. Suppose that ND is symmetric for X , and the other assumptions 1 and 2
hold ofX . Then assume βNDα. Suppose that Γ �X α. Then, of course, conX(Γ, β)
since β is a denial of α. Now suppose that conX(Γ, β). Then there is some denial
of β, γ, such that Γ �X γ by assumption. Since ND is symmetric, αNDβ, so by
definition of an ND it follows that γ �X α and by [Cut] Γ �X α. �

It is worth mentioning that if two logics are at evens, and one satisfies [Den]
then it is not always the case that the other will. This is the situation between
classical and intuitionistic logic respectively. The lesson is that [Den] may only hold
for some formulas in a logic, but not all. It is a stronger assumption to assume that
[Den] holds for all contingent formulas. Still, there are many logics which satisfy
[Den]. It is clear from the context below that the denials used are of the kind just
described.

Now we are ready to state our result:

Theorem 2.6 (Generalized Consistency Theorem). Let X and Y have symmetric
negation denials. X and Y are at evens if and only if, X and Y are the same logic.

Proof. For this argument we split the equivalence into its necessary and sufficient
halves.

(=⇒) Assume CX(Γ) = CY (Γ) for every set Γ – which is to say that X = Y . To
say that conX(Γ) is to say that the X-closure of Γ is S. But then so must
be the Y -closure of Γ. Similarly, to say that conX(Γ) is to say that there
is some α which is not in the X-closure of Γ, but then neither can α be in
the Y -closure of Γ, hence conY (Γ). So X and Y are at evens.

(⇐=) Suppose then that X and Y are at evens. Let Γ be a consistent set, which
means by the assumption, that it is consistent in both logics. Assume for
reductio that Γ �X α and Γ �Y α, and let β deny α. Thus, by [Den]
conX(Γ ∪ {β}) and conY (Γ ∪ {β}), a contradiction. �

3. What’s wrong with this picture?

To answer the question in the section heading, there really isn’t anything wrong
with an approach which characterizes inference in terms of preserving consistency.
It’s consistency itself, or at least many accounts of it, which casts a shadow over
our everyday logical doings.

The way we have set things up, a set Γ of formulas is either consistent in a
logic X , or it isn’t. But it doesn’t take much thought to see that such an all-or-
nothing approach tramples some intuitive distinctions. In particular, we may find
the reason for the inconsistency to be of interest.



302 G. Payette and P.K. Schotch Logica universalis

In the logic X , for example, there may be a single formula δ which is, so
to speak, inconsistent by itself. In other words conX({δ}). Formulas of this dire
sort are described above as being self-inconsistent (in X) or absurd in X . By
[Mon] any set of formulas which contains a self-inconsistent formula is bound to
be inconsistent.

We are now struck by the contrast between X-inconsistent sets which contain
X-absurdities and those which do not. Isn’t there an important distinction between
these two cases? If we think of consistency as a desirable property which we are
willing to trouble ourselves to achieve, then the trouble will be light indeed if all
we need do is reject absurdities. On the other hand, an entire lifetime of angst
may await those who wish to render consistent their beliefs or their obligations.7

There is a great deal more that one could say on this topic and some of the current
authors have said much of it. For now, we shall take it that the need for a distinction
has been established, and our job is to construct an account of consistency which
allows it.

We have in mind building upon what we have already discovered instead of
pursuing a slash-and-burn policy. This means, among other things, that the pre-
decessor account should appear as a special (or limiting) case of the new proposal.
The intuitive distinction bruited above, is clearly a distinction between different
kinds of inconsistency, or perhaps different degrees. We might think of one kind
being worse than the other, which leads to a rather natural way of classifying
inconsistency.

4. Speak of the level

The account of inconsistency which we propose is a generalization of the one first
suggested in the 20th Century, in the work of Jennings and Schotch8, namely the
idea of a level (of incoherence, or inconsistency). The basic idea is that we can
provide an intuitive measure of how inconsistent a set is by seeing how finely it must
be divided before all of the divisions are consistent. What, in the earlier account is
stated in terms of classical provability, we now state in terms of arbitrary inference
relations which satisfy the minimal conditions given in the earlier section.

It all begins with the notion of a certain kind of indexed collection of sets
being a logical cover for a set Γ of formulas, in the logic X . First we need a special
kind of indexed family of sets (of formulas).

Definition 4.1. A(Δ) = {a0, a1, . . . , aξ} is an indexed set starting with Δ, provided
a0 = Δ and all the indices 0 . . . ξ are drawn from some index set I.

Definition 4.2. Let F be an indexed set starting with ∅. F is said to be a logical
cover of the set Σ, relative to the logic X , indicated by covX(F,Σ), provided:

7In saying this, we assume that nobody is obliged to bring about anything impossible and that

whatever is self-inconsistent cannot truly be a belief.
8See especially [5, 6].
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• For every element a of the indexed family, conX(a) and
• Σ ⊆ ⋃

i∈I

CX(ai) .

So an X-logical cover for Γ is an indexed family of sets starting with the
empty set, such that there are enough logical resources in the cover to prove, in
the logic X , each member of Γ. Evidently, given the rule [R], {∅,Γ} will always
be a logical cover of Γ if the latter set is X-consistent, though it won’t, in general,
be the least.

If FΣ is a logical cover for the set Σ, the cardinality |I| − 1 where I is the
index set for FΣ, is referred to as the width of the cover, indicated by w(FΣ).

In the special circumstance that all the members of a logical cover of Σ are
disjoint, the cover is said to partition Σ.9

And finally we introduce the notion at which we have hinted since the start
of this section.

Definition 4.3. The level (relative to the logic X) of the set Γ of formulas of the
underlying language of X , indicated by 	X(Γ) is defined:

	X(Γ) =

⎧
⎨
⎩

min
w(F)

[covX(F,Γ)] if this limit exists

∞ otherwise

In other words: the X-level (of incoherence or inconsistency) of a set Σ in a
logic X is the width of the narrowest X-logical cover of Σ, if there is such a thing,
and if there isn’t, the level is set to the symbol ∞.

One might think that there will fail to be a narrowest logical cover when
there is more than one – when several are tied with the least width, but this is a
misreading of the definition. There might indeed be several distinct logical covers,
but there can only be one least width (which they all share). The uniqueness
referred to in the definition attaches to the width, not to the cover, so to speak.

The only circumstance in which there might fail to be a narrowest logical
cover, is one in which Σ has no logical covers at all. In this circumstance Σ must
contain what we earlier called an absurd formula.

This notion satisfies both the requirement that it distinguishes between in-
consistent sets which contain absurd formulas, and those which don’t, and the
requirement that the predecessor notion of consistency relative to X appears as
a special case. For it is clear that if Γ is an X-consistent set of formulas then a
narrowest logical cover of Γ is {∅, a1} where Γ ⊆ CX(a1) and conX(a1). So at
least part of the earlier notion of conX(Γ) is captured by 	X(Γ) = 1.

There is even an interesting insight which comes out of this new idea. For
there are two levels of X-consistency, 0 and 1. In our earlier naive approach, we
thought of consistency as an entirely monolithic affair, but once we give the matter

9This should be contrasted with a covering family being a partition. We can recover the latter

notion from this one by intersecting the covered set with each of the disjoint sets in the logical
cover.
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some thought we see that the empty set does indeed occupy a unique position in
the panoply of X-consistent sets. If we know only that Γ and Σ are both X-
consistent, nothing at all follows about the X-consistency of Γ ∪ Σ. But we may
rest assured that both Σ ∪ ∅ and Γ ∪ ∅ are X-consistent. And the same goes
for the X-consequences of the empty set, namely X-theorems. By our definition,
	X(Δ) = 0 if Δ is empty or any set of X-theorems, and of course such sets are
consistent with any X-consistent set of formulas. It is tempting to call these level 0
sets, hyperconsistent.

5. Level preservation

So now that we have the concept of an X-level, should we be concerned about
preserving such a thing? Perhaps there is no need for such concern, since it is at
least possible that the logic X preserves its own level, isn’t it? Well, in a word, no.
It is not in general true that X preserves level beyond, of course the levels 0 and 1
of X-consistency. All the logics we consider not only do that, but are characterized
by doing that.

Suppose the set Γ contains not only the contingent formula α but also a
denial β of α although it does not contain any X-absurdities. Now, by definition
of denial the pair set is inconsistent, and so CX(Γ) = S. If there are X-absurdities
then the X-level of the closure of Γ is ∞, i.e., 	X(CX(Γ)) = ∞.10 This amounts
to a massive failure to preserve level.

The obvious question to raise is this: given that 	X is a generalization of
conX , is it the case that level characterizes logics in the same way that preserving
consistency (in the strong sense) does? If not, then it seems that the generalization
is not perhaps as central a notion as the root idea upon which it generalizes.
Fortunately, for supporters of the general notion, we may prove the following
generalization of the Generalized Consistency Theorem.

Theorem 5.1 (Level Characterization Theorem). Suppose that X and Y are in-
ference relations as in the Generalized Consistency Theorem over the same lan-
guage L, and let 	X and 	Y be the level functions associated with the respective
inference relations. Then

[
	X(Γ) = 	Y (Γ) for every set Γ of formulas of L] ⇐⇒ X = Y .

Proof. The proof depends upon the Generalized Consistency Theorem.

(=⇒) Assume that 	X(Γ) = 	Y (Γ) for every set Γ of formulas of L. Then by
definition the two agree on which sets have level 1 and level 0. But this
is to say that X and Y agree on which sets are consistent. But by the
Generalized Consistency Theorem, any two such logics (logics which we
say are at evens) must be identical.

10The authors would like to thank the the anonymous referee for noticing this general argument.
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(⇐=) Assume that X = Y and Suppose that for some arbitrary set Γ of formulas
of L 	X(Γ) = ξ, ξ some cardinal. Then, by the definition, there is a narrow-
est X-logical cover FΓ such that w(FΓ) = ξ. Since X = Y , it must be the
case by the Generalized Consistency Theorem that the two logics agree on
consistency (in the strong sense). Further, by definition each ai ∈ FΓ is such
that conX(ai). But then, since X and Y are at evens, conY (ai). Thus,
FΓ must be a Y -logical cover of Γ of width ξ. Moreover, this must be the
narrowest such logical cover or else by parity of reasoning, there would be
an X-logical cover of cardinality less than ξ contrary to hypothesis. Since Γ
was arbitrary it follows that 	X and 	Y must agree on all sets of formulas
of the language L. �

This suggests that level is worth preserving, that it is a sort of natural logical
kind, but doesn’t show how the preservation may be carried out. It is time to
repair that lack.

Perhaps the most straightforward route to preserving X-level is to define a
new inference relation based on X . Evidently, the definition in question must also
connect somehow with the notion of X-level and thus ultimately to conX (from
now on we shall mostly drop reference to the background logic, like X , when no
confusion will result). The process might have been informed by the ancient joke:
Question: How do you get down from an elephant?
Answer : You don’t get down from an elephant, you get down from a duck.

except in our case the question and answer would go:
Question: How do you reason from inconsistent sets?
Answer : You don’t reason from inconsistent sets, since every formula follows

in that case, you reason from consistent subsets.
In other words, an inconsistent set is one for which the distinction between

what follows and what doesn’t has collapsed. This lack of meaningful contrast
means that it no longer makes sense to talk about inferring conclusions from such
a set. In order to regain the distinction we are going to have to drop back to the
level of consistency and the only way to do that, is to look at consistent subsets
of the original set.

Absent the notion of level, there are different ways to do this. The one sug-
gested in [4] to deal with inconsistent sets of beliefs, involves two stages: At the
first stage we discover the smallest subset of the inconsistent set which still exhibits
the inconsistency. At the second stage we discard the member of the inconsistent
subset with the least evidence, and repeat as necessary until the set is consis-
tent. Having thus cleansed the belief set, we may now draw conclusions as we did
before.11

We don’t say that this process can’t work. We do say that it doesn’t seem
to work in every case. There is a clear difficulty here when the two conditions

11This procedure was intended to apply to classical inference, but the method obviously gener-
alizes to cover cases in which the base inference is X.
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on rational belief: consistency (which we might call the external condition) and
evidential support (the internal condition), pull us in different directions.

In the lottery paradox, for instance, we seem to have good evidence for each
one of the lottery beliefs (ticket 1 won’t win, ticket 2 won’t win,. . . , ticket n won’t
win.) and we can make the evidence as strong as we like by making the lottery ever
larger. Now conjoin the beliefs and we get ‘No ticket will win.’ which contradicts
fairness. We could get consistency by throwing out the belief that the lottery is
fair, but that would be cheating. The problem is that each of the lottery beliefs has
exactly the same support as the others. They stand or fall as one, it would seem.
If we let them all fall, then the rationality of buying a lottery ticket would seem
to follow or at least the non-irrationality. But isn’t it true that it isn’t rational,
according to the accepted canons at least, to buy a lottery ticket?12

Leaving aside the possibly controversial issue of the lottery paradox, take any
situation in which we are unable to find a rationale for discarding one member of
an inconsistent subset rather than another. Quine seems to suggest that in this
situation, the counsel of prudence is to wait until we do find some way to distinguish
among the problematic beliefs. Those with less patience seem to regard random
discarding until at last we get to consistency, to be the path of wisdom.13 We are
inclined to reply to Quine that patience, for all that it is a virtue, is sometimes
also a luxury we cannot afford or even a self-indulgence that we do well to deny
ourselves.

To the others we say, consistency is not a virtue which trumps everything
else. Suppose we might achieve consistency by throwing away one of α or β though
we have no reason to prefer one over the other. Flipping a coin is a method for
determining which goes to the wall, but we have no way of knowing if we have
determined the correct one. We have left ourselves open to having rejected a truth
or accepted a falsehood. ‘Yes, but at least we now have consistency!’ won’t com-
fort us much if the consequences of picking the wrong thing to throw away are
unpleasant enough.

Let us take up level once more.14 In saying the level of the set Σ is k, we are
saying two things. First that there is a way to divide the logical resources of Σ
into k distinct subsets each of which is consistent. From now on we shall refer to
these consistent subsets as cells. Second, that any way of thus dividing Σ must
have at least k cells. Here we have got to the level of consistency, but we’ve got
there k times. Not only might we wonder which of the k-cells is the ‘real’ one, the
one which best represents ‘the way things really are,’ but there may be lots and
lots of distinct ways to form the k cells. Which of the possibly many ways should
we privilege?

12Not for nothing have lotteries long been known as ‘a tax on fools.’
13This seems to be the route advocated some of those in computing science who have devised
so-called truth-maintenance systems.
14We realize that the Quinean suggestion is not the only one, though it might be the most well-

known, to deal with inconsistent sets of formulas. We do not, however, intend this essay as a
survey of all of so-called paraconsistent logic.
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At this point, we cannot answer these questions, which means that we must
treat the cells on an equal footing along with the various ways of producing them.15

In saying this, we say that we shall count as a consequence of Σ in the reconstructed
inference relation, whatever formula follows (in the ‘underlying’ logic, say X) from
at least one cell in every way of dividing Σ into k cells.

When the underlying logic is X , the derived inference relation is called X-
level forcing, which relation is indicated by

[
�X . We can give the precise definition

as:

Definition 5.2. Γ
[
�X α if and only if, for every division of Γ into 	X(Γ) cells, for

at least one of the cells Δ,Δ �X α

It is easy to see that:

Proposition 5.3. If Γ
[
�X α then 	X(Γ) = 	X(Γ ∪ {α})

Proof. Suppose the condition obtains and let 	X(Γ) = k. It follows from the defini-
tion that every division of Γ into k cells, results in at least one cell that X-proves α.
But then we could add α to the cell in question without losing the cell property
since X is a logic which preserves consistency. In such a case, after adding α we
would have a division of Γ∪{α} into k cells. Moreover there couldn’t be a division
of Γ∪{α} into fewer than k cells without there being a similar division of Γ which
would contradict the hypothesis. �

It obviously follows directly from this that:

Corollary 5.4.
[
�X preserves X-level, in the sense that 	X(Γ) = 	X(C[�X

(Γ))

6. Yes, but is it inference?

To be perfectly honest, or at least honest enough for practical purposes, all we have
shown is that X-level forcing is a relation that preserves X-level. There is a gulf
between this, and the assertion that

[
�X is an inference relation which preserves

X-level. The obvious problem for anybody wishing to assert such a thing resides
in the fact that we haven’t, for all our efforts at precision, actually said which
relations count as inference relations. What we have said, is that we assume that
the inference relations we mention admit certain rules. Shall we take the collection
of these rules to be constituitive of inference?

We shall not because some, at least, of the rules which the underlying logic
admits, simply don’t make sense for the derived relation. This should not come as
a surprise. It is our palpable annoyance with the underlying logic which leads us
to propose

[
�X . How silly then to require that the derived logic inherit everything

from the underlying logic since that would make the derived logic another source
of irritation rather than the balm for which we hope.

15Which is not to say that there is no way. Elsewhere one might find suggestions which narrow

the range of ways of dividing up our initial set. In this connection see the discussion of A-forcing
in [6].
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Although it is easy to check that
[
�X inherits from its underlying inference

relation X both [R] and [Cut], we can see that it fails to admit the rule [Mon] of
monotonicity, which we would do better to label the rule of unrestricted mono-
tonicity from now on. But this is one of those cases in which the rule ought not
to apply to the derived relation. If we are allowed to dilute premise sets in an
arbitrary way, there is nothing to prevent us from raising the X-level of such sets.
But raising the level gives us, in general, smaller cells in each logical cover. What
used to X-follow from at least one cell of every such cover might no longer do so,
as we are cut off from vital logical resources by the finer division.16

This is not to say that no form of monotonicity makes sense for the derived
relation. Quite the contrary in fact, what most emphatically does make sense is that
X-level forcing consequence must survive any dilution which preserves the level of
the premise set. Such a restricted version of monotonicity manifestly is such a rule
for X-level forcing as is trivial to verify. Along with level-preserving dilution, there
are certain consequences which must survive any dilution at all, whether or not
the X-level of the premise set increases. These are the consequences which dilution
cannot affect, and we can say precisely which they are: the X-consequences of the
empty set and of any unit set will remain X-consequences of at least one cell of
every logical cover of any set which contains any of these privileged sets. In earlier
work these sets were called singular.

The other properties which we have been mentioning for the underlying logics
are non-triviality and having denial. It should be clear that when the underlying
logic is non-trivial so will be its derived forcing relation. In fact, keeping to our
original definition of consistency, in passing from an underlying logic X to its de-
rived

[
�X , many of the sets which are X-inconsistent fail to be

[
�X -inconsistent,

which is after all, the whole point of the derived relation.
Which brings us to denial. If the underlying logic has denial, nothing follows

about the derived forcing relation, which is not necessarily a bad thing. This is
because in the underlying logic, inconsistent sets are (typically) relatively easy to
come by, but in the derived logic, the only inconsistent sets have inconsistent unit
subsets, or what we called X-absurd formulas. Having denial doesn’t imply having
absurdities. So the derived logic will have denial only if the underlying logic has
absurd formulas, but in no case will the derived logic have contingent denial.

And since β denies α in the derived logic if and only if one or both of the two
are absurd in the underlying logic, the principle [Den] must hold of the derived
relation but it is much less interesting there, than it is in the underlying logic.

So for the derived relation, we would seem to be on solid ground when we
require [R], [Cut], and the restricted version of monotonicity. Those we might well
regard as the hallmarks of inference, or at least of derived inference. And let us
not forget that the derived relation agrees exactly with the underlying relation X

16Here is a concrete example where the underlying logic is classical. The premise set {α, α ⊃ β}
has the classical-level forcing consequence β since it has level 1. If we add the formula ¬β the
resulting set has level 2, and now there is a logical cover: {∅, {α,¬β} , {α ⊃ β}} no cell of which
classically proves β. Thus β is not a classical-level forcing consequence of the diluted set.
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on the consequences of the X-consistent sets. So for this reason alone, we ought
to admit the forcing relation into the fold.

Perhaps we should put it this way: Anybody who thinks that X is fine and
dandy except for its failure to be properly sensitive to the varieties of inconsistent
sets, must think that X-level forcing is an adequate account of inference. This is
because, when premise sets are X-consistent X-level forcing just is X . And while
it surely isn’t X for (some) X-inconsistent sets, in those cases X isn’t an inference
relation. X has abdicated, throwing up its hands and retiring from the inferential
struggle offering the hopeful reasoner nothing beyond a contemptuous ‘Whatever!’

7. Forcing in comparison with other level-preserving relations

Finally, we consider the place of the X-level forcing relation compared with other
possible relations which preserve X-level. We cannot claim uniqueness here, for
there may be plenty of relations, even inference relations which preserve X-level.
What we can claim however, is inclusiveness, in a sense to be made precise.

That precision will require another property17 of the underlying logic X .

Definition 7.1. A logic X will be said to be productival if and only if for every
finite set Γ there is some formula π such that

• π �X γ for every γ ∈ Γ, and
• Γ �X π

Evidently being productival is another of those properties more honored at
the level of underlying logics. If a productival logic X has denial, then X-level
forcing will certainly not be productival. But of course at the underlying level,
products are useful. For instance:

Theorem 7.2. If X is productival then for any pair Γ, α with Γ a finite set of
formulas and α a formula:
If Y preserves X-level, admits level-preserving monotonicity [R] and [Cut], then
Γ �Y α =⇒ Γ

[
�X α

Proof. We shall content ourselves with a sketch only – a fuller treatment can be
found in [1]. Assume for indirect proof that Γ �Y α and that Γ fails to X-level
force α. From the latter we know that Γ has finite level, say k, and that there is
a logical cover of Γ of width k such that none of the k cells X-proves α. Where β
(non-trivially) denies α add β to each cell and then form each of the k products of
the cells. The set of these products when adjoined to the set Γ must have X-level
k, but the Y closure of the set must have X-level k+1. So Y fails to preserve
X-level contrary to hypothesis. �

17If we regard deductive systems as categories, then to call a logic productival is simply to

say that the category (logic) X has products. The first condition amounts to the assertion of
canonical projections while the second amounts to the universal mapping property of products.
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The restriction to finite premise sets will chafe us only until we see its removal
in the more general result referenced above.

So while there may be many inference relations which preserve X-level,
X-level forcing is the largest of them.
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