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Abstract We implement in Maple and Mathematica an algorithm for constructing multivariate Hermitian inter-
polation polynomials (HIPs) inside a d-dimensional hypercube as a product of d pieces of one-dimensional HIPs
of degree p′ in each variable, that are calculated analytically using the authors’ recurrence relations. The piecewise
polynomial functions constructed from the HIPs have continuous derivatives and are used in implementations of
the high-accuracy finite element method. The efficiency of our finite element schemes, algorithms and GCMFEM
program implemented in Maple and Mathematica are demonstrated by solving reference boundary value problems
(BVPs) for multidimensional harmonic and anharmonic oscillators used in the Geometric Collective Model (GCM)
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of atomic nuclei. The BVP for the GCM is reduced to the BVP for a system of ordinary differential equations,
which is solved by the KANTBP 5 M program implemented in Maple.

Keywords Multivariate Hermite interpolation polynomials · Multidimensional harmonic and anharmonic
oscillator · Finite element method · Geometric collective model of atomic nuclei

1 Introduction

The definition and properties of Hermitian interpolation polynomials (HIPs) or Birkhoff interpolants and their
application in the finite element method (FEM) are discussed in a number of papers, see, e.g., [1,2]. Piecewise
polynomial FEM functions constructed by matching HIPs have continuous derivatives up to a given order at the
finite element boundaries, in contrast to Lagrange interpolation polynomials (LIPs). Therefore, FEM with HIPs is
used in problems where continuity is required not only for the approximate solution, but also for its derivatives [3].
A constructive approach to the determination of multidimensional HIPs inside a d-dimensional hypercube in the
form of a polynomial of d variables of degree p′ with a set of (p′ + 1)d unknown coefficients, which are calculated
in integer arithmetic by solving a system of (p′ + 1)d inhomogeneous algebraic equations, was implemented as
a program for d = 3, p′ = 3 and (3 + 1)3 = 64 of Ref. [3]. With an increase in d and p′ and the dimension of
the system, its solution in integer arithmetic becomes too difficult, therefore, in the general case, it is necessary to
develop new algorithms free of this drawback.

In this work, we implement in Maple and Mathematica an algorithm for constructing multidimensional HIPs
inside a d-dimensional hypercube as a product of d pieces of one-dimensional HIPs of degree p′ in each variable, in
which there is no need to solve the above mentioned system of equations [3]. One-dimensional HIPs are calculated
analytically using the authors’ recurrence relations [5]. As a result, multidimensional HIPs are also calculated in
an analytical form and satisfy all the conditions for their definition and properties. In the particular case d = 3,
p′ = 3, as shown in [6], they coincide with the three-dimensional HIPs [3].

The efficiency of our finite element schemes, algorithms and GCMFEM program implemented in Maple and
Mathematica is demonstrated by solving reference BVPs for multidimensional harmonic and anharmonic oscillator
used in the Geometric Collective Model (GCM) of atomic nuclei [7]. The BVP for GCM is reduced to the BVP
for a system of ordinary differential equations, which is solved by the KANTBP 5 M program [8] implemented in
Maple. All calculations presented in this paper are preformed using Maple 2022 and Mathematica 12 on Intel(R)
Core(TM) i7-9700K CPU dual 3.60 GHz, RAM 32GB, Windows 10 Pro.

The structure of the paper is the following. In Sect. 2, the formulation of the problem is given. In Sect. 3, the
algorithm for constructing multivariate Hermitian finite elements is described. In Sect. 4, examples of solving
multidimensional BVPs are presented. In Sect. 5, a reduction of the system of 2D BVP to the system of 1D BVPs
is executed. A comparison of the CPU time in GCM benchmark calculations of 2D and 1D BVPs implemented in
Maple and Mathematica is given. In Conclusion we resume the results and outline the prospects. The GCMFEM
program implementations in Maple 2022 and Mathematica 12 are given in the supplementary material.

2 Formulation of the Problem

Consider a self-adjoint boundary value problem (BVP) for the elliptic differential equation

(D − E) �(x) ≡
⎛
⎝− 1

g0(x)

d∑
i, j=1

∂

∂xi
gi j (x)

∂

∂x j
+ V (x) − E

⎞
⎠�(x) = 0. (2.1)

Also we assume that g0(x) > 0, g ji (x) = gi j (x) and V (x) are real-valued functions, continuous together with
their generalized derivatives up to a given order in the bounded domain x = (x1, . . . , xd) ∈ �̄ = � ∪ ∂� ∈ Rd ,
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with the piecewise continuous boundary S = ∂�, which ensures the existence of nontrivial solutions �(x) obeying
the boundary conditions (BCs) of the first (I) or the second (II) kind [9]. For a discrete spectrum problem, the
functions �m(x) from the Sobolev space H2

2 (�̄), �m(x) ∈ H2
2 (�̄), corresponding to the real eigenvalues E :

E1 ≤ E2 ≤ · · · ≤ Em ≤ · · · , obey the orthonormalization conditions [9].
The polyhedral domain �̄ ⊂ Rd is decomposed �̄ = �̄h(x) = ⋃Q

q=1 �q in finite elements having the form of d

dimensional simplexes or hypercubes �q with HIPs or LIPs ϕ
κp′
rq (x), x ∈ Rd , where the multi-indexes κ and r are

specified below, calculated using the algorithms of Refs. [6,9]. The piecewise polynomial functions N κp′
l (x) ∈ Cκc

of order p′ with continuous derivatives up to order κc ≤ κmax − 1 are constructed by joining the polynomials,

ϕ
p′
lq (x) = ϕ

κp′
rq (x), where l is determined via κ , r and q, on the finite elements �q ∈ �̄h(x). The expansion of the

sought solution �h
m(x) from the Sobolev space Hs≥1

2 (�̄) in the basis of piecewise polynomial functions N κp′
l (x),

�h
m(x) =

L∑
l=1

N κp′
l (x)�h

lm, (2.2)

leads to the generalized algebraic eigenvalue problem

(A − BEh
m)�h

m = 0, (2.3)

which is solved using the standard method [10]. The elements of the symmetric matrices of stiffness A = (Aκκ ′ p′
ll ′ )

and mass B = (Bκκ ′ p′
ll ′ ) comprise the integrals,

Aκκ ′ p′
ll ′ =

∫
�

N κp′
l (x)N κ ′ p′

l ′ (x)U (x) g0(x)dx +
d∑

i, j=1

∫
�

∂N κp′
l (x)

∂xi

∂N κ ′ p′
l ′ (x)

∂x j
gi j (x)dx =

Q∑
q=1

aκκ ′ p′q
ll ′ ,

aκκ ′ p′q
ll ′ =

∫
�q

ϕ
κp′
lq (x)ϕκp′

l ′q (x)U (x) g0(x)dx +
d∑

i, j=1

∫
�q

∂ϕ
κp′
lq (x)

∂xi

∂ϕ
κp′
l ′q (x)

∂x j
gi j (x)dx, (2.4)

Bκκ ′ p′
ll ′ =

∫
�

N κp′
l (x)N κ ′ p′

l ′ (x)g0(x)dx =
Q∑

q=1

bκκ ′ p′q
ll ′ , bκκ ′ p′q

ll ′ =
∫

�q

ϕ
κp′
lq (x)ϕκ ′ p′

l ′q (x)g0(x)dx,

where dx = dx1 · · · dxd . These integrals are calculated on the elements �q in the domain �̄ = �̄h(x) = ⋃Q
q=1 �q ,

recalculated into the local coordinates on the element �. The deviation of the approximate solution Eh
m , �h

m(x) ∈
Hκc+1≥1

2 (�h) from the exact one Em , �m(x) ∈ H2
2 (�) is estimated in [10] as

∣∣∣Em − Eh
m

∣∣∣ ≤ c1h
2p′

,

∥∥∥�m(x) − �h
m(x)

∥∥∥
0

≤ c2h
p′+1, (2.5)

where h is the maximal size of the finite element �q , p′ is the order of the FEM scheme, c1 > 0 and c2 > 0 are
coefficients independent of h,

‖�m(x)‖2
0 =

∫
�

g0(x)�m(x)�m(x) dx . (2.6)

3 Algorithm for Constructing Multivariate Hermitian Finite Elements

The HIPs ϕ̂
κp′
rq (x) depending on d variables in an element of a d-dimensional parallelepiped

x = (x1, . . . , xd) ∈ [x1;min, x1;max] ⊗ · · · ⊗ [xd;min, xd;max] = �q ⊂ Rd (3.1)
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at nodes xr = (x1r1 , . . . , xdrd ), xiri = ((p − ri )xi;min + ri xi;max)/p; ri = 0, . . . , p, i = 1, . . . , d are determined
by the relations [1,2]

ϕ̂
κp′
rq (xr ′) = δr1r ′

1
· · · δrdr ′

d
δκ10 · · · δκd0, κ = κ1 · · · κd , r = r1 · · · rd , (3.2)

∂ |κ ′|

∂xκ ′ ϕ̂
κp′
rq (x)

∣∣∣∣∣
x=xr ′

= δr1r ′
1
· · · δrdr ′

d
δκ1κ

′
1
· · · δκdκ ′

d
,

∂ |κ ′|

∂xκ ′ = ∂κ1

∂xκ1
1

· · · ∂κd

∂xκd
d

.

These HIPs of the order p′ = ∏d
s=1 p′

s are calculated as a product of one-dimensional HIPs ϕ
κs p′
rsq (xs),

ϕ̂
κp′
rq (x) =

d∏
s=1

ϕ
κs p′
rsq (xs). (3.3)

The values of functions ϕ
κp′
rq (x) with their derivatives up to the order (κmax

r −1), i.e. κ = 0, . . . , κmax
r −1, where

κ = κs , r = rs , x = xs and κmax
r is referred to as the multiplicity of the node xr , are determined by the expressions

[1]

ϕ
κp′
rq (xr ′) = δrr ′δκ0,

dκ ′
ϕ

κp′
rq (x)

dxκ ′

∣∣∣∣
x=x

r ′
= δrr ′δκκ ′ . (3.4)

Particularly, the shape functions called the LIPs are determined only by their values on subgrid �
hq (x)
q and they

have the simple form

ϕ
κp′
rq (xr ′q) = δrr ′ , ϕ

κp′
rq (x) =

p∏
r ′=0,r ′ �=r

( x − xr ′q
xrq − xr ′q

)
(3.5)

with κ = 0, p′ = p.
To calculate the HIPs, the auxiliary weight function

wrq(x) =
p∏

r ′=0,r ′ �=r

( x − xr ′q
xrq − xr ′q

)κmax
r ′

, wrq(xrq) = 1 (3.6)

is used. The weight function derivatives can be presented as a product

dκwrq(x)

dxκ
= wrq(x)g

κ
rq(x), (3.7)

where the factor gκ
rq(x) is calculated by means of the recurrence relations

gκ
rq(x) = dgκ−1

rq (x)

dx
+ g1

rq(x)g
κ−1
rq (x), (3.8)

with the initial conditions

g0
rq(x) = 1, g1

rq(x) ≡ 1

wrq(x)

dwrq(x)

dx
=

p∑
r ′=0,r ′ �=r

κmax
r ′q

x − xr ′q
. (3.9)

We will seek for the HIPs ϕ
κp′
rq (x) in the following form:

ϕ
κp′
rq (x) = wrq(x)

κmax
r −1∑
κ ′=0

aκ,κ ′
rq (x − xrq)

κ ′
. (3.10)

Differentiating the function (3.10) by x at point xrq and using Eq. (3.6), we obtain
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Fig. 1 The piecewise 1D polynomial N κp′
l in the domain [−1, 1] equal to one at the origin, obtained by matching the third order LIP

ϕ03
3q−1(x) on [−1, 0] with the LIP ϕ03

0q (x) on [0, 1] and the corresponding piecewise 2D polynomial N κ1,κ2 p′
l of the set l = 1, . . . , 49,

in the domain [−1, 1] × [−1, 1]

dκ ′
ϕ

κp′
rq (x)

dxκ ′

∣∣∣∣
x=xrq

=
κ ′∑

κ ′′=0

κ ′!
κ ′′!(κ ′ − κ ′′)!g

κ ′−κ ′′
rq (xrq)a

κ,κ ′′
rq κ ′′!. (3.11)

Hence we arrive at the expression for the coefficients aκ,κ ′
r

aκ,κ ′
rq = 1

κ ′!

⎛
⎝dκ ′

ϕ
κp′
rq (x)

dxκ ′

∣∣∣∣
x=xrq

−
κ ′−1∑
κ ′′=0

κ ′!
(κ ′ − κ ′′)!g

κ ′−κ ′′
rq (xrq)a

κ,κ ′′
rq

⎞
⎠ . (3.12)

Taking Eq. (3.4) into account, we finally get:

aκ,κ ′
rq =

⎧⎪⎪⎨
⎪⎪⎩

0, κ ′ < κ,

1/κ ′!, κ ′ = κ,

−
κ ′−1∑
κ ′′=κ

1
(κ ′−κ ′′)!g

κ ′−κ ′′
rq (xrq)a

κ,κ ′′
rq , κ ′ > κ.

(3.13)

Note that all degrees of HIPs ϕ
κp′
rq (x) do not depend on κ and equal p′ = ∑p

r ′=0 κmax
r − 1. These HIPs form a basis

in the space of polynomials having the degree p′.
For κmax = 1, p′ = p, the 1D HIPs coincide with the 1D LIPs and take the form:

ϕ
0p
rq (x) =

p∏
r ′=0,r ′ �=r

(
x − xr ′
xr − xr ′

)
, (3.14)

For κmax = 2, p′ = 2p + 1, the 1D HIPs take the form:

ϕ
0p′
rq (x) =

⎛
⎝1 − (x − xr )

p∑
r ′=0,r ′ �=r

2

xr − x ′
r

⎞
⎠

p∏
r ′=0,r ′ �=r

(
x − xr ′
xr − xr ′

)2

, (3.15)

ϕ
1p′
rq (x) = (x − xr )

p∏
r ′=0,r ′ �=r

(
x−xr ′
xr − xr ′

)2

,

for polynomials ϕ
0p′
rq (x) or ϕ

1p′
rq (x), whose value or the value of the first derivative is 1, respectively.

Note, that for κmax = 1, the HIPs correspond to LIPs that do not have continuous derivatives at the boundaries
of finite elements. The recurrence relations make it possible to calculate the HIP on a d-dimensional hypercube in
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Fig. 2 The piecewise 1D polynomials N κp′
l in the domain [−1, 1] obtained by matching HIP ϕκ3

1q−1(x) on [−1, 0] with HIP ϕκ3
0q (x) on

[0, 1] and the corresponding piecewise 2D polynomials N κ1,κ2 p′
l of the set l = 1, . . . , 36, in the domain [−1, 1] × [−1, 1]

Fig. 3 The discrepancy δEm = Eh
m − Em , m = 0, 1, . . . (along the ordinate axis) between the computed eigenvalues Eh

m of the
oscillator problem (at Rd+) and the exact values Em : Em = 2[1], 6[2], 10[3], . . . for d = 2 (left panel) and Em = 3[1], 7[3], 11[6], . . .
for d = 3 (right panel), where the multiplicity of degeneracy is given in square brackets. (See the details in the text)

the form of product (3.3) of d pieces of 1D HIPs [6] without using the traditional method of constructing an HIP,
which is reduced to solving a system of a large number of algebraic equations, which restricts the HIP calculation
to the dimensions d = 3 and d = 4 [3,11].

In test examples of solving the multidimensional BVPs, we used third-order HIPs with p = 1 and κmax = 2 from
(3.15), known as Bogner-Fox-Schmidt functions [12,13] guaranteeing continuous and differentiable transitions at
the finite element boundaries [14],
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ϕ03
0q(x) = HIP(0,0):=(x − 1)2∗(1 + 2 ∗ x); (3.16)

ϕ13
0q(x) = HIP(0,1):=(x − 1)2∗x;

ϕ03
1q(x) = HIP(1,0):=x2∗(3 − 2 ∗ x);

ϕ13
1q(x) = HIP(1,1):=x2∗(x − 1);

and, for comparison, LIPs of the third order with p = 3 and κmax = 1 from (3.14)

ϕ03
0q(x) = LIP(0,0) :=−(9/2 ∗ (x − 1/3)) ∗ (x − 2/3) ∗ (x − 1); (3.17)

ϕ03
1q(x) = LIP(1,0) :=(27/2) ∗ x ∗ (x − 2/3) ∗ (x − 1);

ϕ03
2q(x) = LIP(2,0) :=−(27/2) ∗ x ∗ (x − 1/3) ∗ (x − 1);

ϕ03
3q(x) = LIP(3,0) :=(9/2) ∗ x ∗ (x − 1/3) ∗ (x − 2/3).

The third-order basis functions p′ = 3 with 1D and 2D Lagrangian elements (κmax, p) = (1, 3), and with Hermitian
elements (κmax, p) = (2, 1) for n = 2d finite elements are shown in Figs. 1 and 2.

4 Examples of Solving BVPs

4.1 2D and 3D Harmonic Oscillators

For a multidimensional harmonic oscillator, the BVP (2.1) with g0(x) = 1, g ji (x)= gi j (x) = δi j and oscillator
potential V (x) = x2

1 + · · · + x2
d has a degenerate pure discrete spectrum of eigenvalues E0

m ≡ Em ≡ Ek1···kd =∑d
i=1(2ki +1) with degeneracy D(Em) = (k1 +· · ·+kd)! /(k1!· · ·kd !) and the corresponding set of eigenfunctions

�0
m(x)≡�m(x),

�m(x)≡�k1···kd (x) =
d∏

i=1

φki (xi ), φki (xi ) = 1√√
π2ki ki !

Hki (xi ) exp(−x2
i ),

where φki (xi ) are the orthonormalized eigenfunctions of the 1D oscillator and Hki (xi ) are Hermite polynomials
[15]. The problem in Rd+, with the Neumann boundary conditions at the origin xi = 0, has the same spectrum but

with even ki and the normalization coefficient divided by
√

2
d
.

The 2D (d = 2) and 3D (d = 3) oscillator problems were solved in a square or cube [0, 7]d with Neumann
boundary conditions. The discrepancies δEm = Eh

m − Em , m = 0, 1, . . . between the numerical eigenvalues Eh
m of

this problem and the exact values Em are shown in Fig. 3. The results of the FEM for cubic elements are indicated
– a product (3.3) of one-dimensional LIPs (p = 3, κmax = 1) and HIPs (p = 1, κmax = 2) of the third order
p′ = 3 from (3.17) and (3.16), while the square or cube was divided into nd equal squares or cubes. The dimension
of the matrix of the algebraic problem (2.3) is L × L = 1156 × 1156 for d = 2, L × L = 4096 × 4096 and
L × L = 10648 × 10648 for d = 3. As is seen from the figure, the accuracy of the approximate FEM solution of
the algebraic eigenvalue problems with the same matrix dimension L , calculated using the HIPs, is higher than that
using the LIPs.

4.2 5D Anharmonic Oscillator

In [7,16], the GCM implemented as FORTRAN and Mathematica programs for solving the BVP for the 5-
dimensional anharmonic oscillator with a purely discrete degenerate spectrum of energy eigenvalues EL

n : EL
1 <

EL
2 < EL

3 < · · · , of rotational-vibrational bands of atomic nuclei, with spin I denoted here as an angular momentum
L of GCM, have been elaborated. The basis states were parameterized by the internal variables x1 = β2, x2 = γ and
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the Euler angles x3 = θ1, x4 = θ2, x5 = θ3 in the intrinsic frame (IF) associated within irreducible representations
of the U (5) ⊃ O(5) ⊃ O(3) chain of groups [17–20].

The collective variables αm at m = −2,−1, 0, 1, 2 for the 5-dimensional anharmonic oscillator in the laboratory
frame are expressed in terms of the variables am′ = am′(β, γ ) in the intrinsic frame as

αm =
∑
m′

D2∗
mm′(θi )am′ , a−2 = a2 = β

sin(γ )√
2

, a−1 = a1 = 0, a0 = β cos(γ ), (4.1)

where D2∗
mm′(θi ) is the Wigner function of irreducible representations of the O(3) group in the intrinsic frame [21]

(where ∗ denotes complex conjugation). The five-dimensional equation for the exact solvable Bohr-Mottelson (B-
M) collective model in the intrinsic frame β ∈ R1+ and γ, θi ∈ S4 with respect to � int

λNμLM ∈ L2(R1+
⊗

S4) with

measure dτ = β4 sin(3γ )dβdγ dθi reads as [16,18]

(HL − EL
N )�λNμLM = 0, HL = h̄2

2B ′
2

(
− 1

β4

∂

∂β
β4 ∂

∂β
+ �̂2

β2

)
+ C ′

2

2
β2. (4.2)

Here h̄ is Planck’s constant, C ′
2 and B ′

2 are the variable stiffness and mass parameters, EL
N = h̄ω′

2(N + 5/2)

are the eigenvalues of the five-dimensional harmonic oscillator, ω′
2 =

√
C ′

2/B
′
2 is the oscillator frequency. �̂2 is

the quadratic Casimir operator of O(5) in L2(S4(γ, θi )) at nonnegative integers N = 2nβ + λ, i.e., at even and
nonnegative integers N − λ, they are determined as

(�̂2 − λ(λ + 3))�λNμLM = 0, �̂2 = − 1

sin(3γ )

∂

∂γ
sin(3γ )

∂

∂γ
+

3∑
k=1

( ˆ̄Lk)
2

4 sin2(γ − 2
3kπ)

, (4.3)

where the nonnegative integer λ is the so-called seniority and ˆ̄Lk are the operators of the angular momentum

components of O(3) along the principal axes in the intrinsic frame with the commutator [ ˆ̄Li ,
ˆ̄L j ] = −ıεi jk

ˆ̄Lk .
The eigenfunctions � int

λNμLM of the five-dimensional oscillator have the form

� int
λNμLM (β, γ, θi ) =

∑
K even

�int
λNμLK (β, γ )D(L)∗

MK (θi ). (4.4)

Here �int
λNμLK (β, γ ) = FNλ(β)Cλμ

L φ̄
λμL
K (γ ) are the components in the IF,

D(L)∗
MK (θi ) =

√
2L + 1

8π2

D(L)∗
MK (θi ) + π(−1)L D(L)∗

M,−K (θi )√
2(1 + δK0)

are the orthonormal Wigner functions with measure dθi , π̂ = ±1 is the even and odd parity [22,23], π̂ = +1 for
quadrupole deformations (π̂ = ±1 for general deformations [24,25]), summation over K running over even values:

K = 0, 2, . . . , L for even integer L : 0 ≤ L ≤ Lmax, (4.5)

K = 2, . . . , L − 1 for odd integer L : 3 ≤ L ≤ Lmax.

The orthonormal components FNλ(β) ∈ L2(R1+) are determined as follows [7]:

FNλ(β) = CNλβ
λL

λ+ 3
2

(N−λ)/2

((
C ′

2

h̄ω′
2

)
β2
)

exp
(

−
(

C ′
2

h̄ω′
2

)
β2

2

)
, (4.6)

CNλ =
√√√√ 2( 1

2 (N − λ))!
�( 1

2 (N + λ + 5))

(
C ′

2

h̄ω′
2

) 5
2 + λ

2

,

where L
λ+ 3

2
(N−λ)/2(β

2) is the associated Laguerre polynomial with the number of nodes nβ = (N − λ)/2 [15].
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The overlap of the eigenfunctions (4.4), characterizing their original nonorthogonality with respect to the missing
label μ, reads as

〈� int
λNμLM |� int

λ′N ′μ′L ′M ′ 〉 =
∫

� int∗
λNμLM (β, γ, θi )�

int
λ′N ′μ′L ′M ′(β, γ, θi )dτ

= δNN ′δLL ′δMM ′ 〈φ̄λμL |φ̄λ′μ′L〉. (4.7)

Here 〈φ̄λμL |φ̄λ′μ′L〉 = δλλ′δμμ′ is the overlap of orthogonalized eigenfunctions φ
λμL
K (γ )

〈φ̄λμL |φ̄λμ′L〉 = Cλμ
L Cλμ′

L

∫ π

0
sin(3γ )

∑
K even

2φ
λμL
K (γ )φ

λμ′L
K (γ )

1 + δK0
dγ, (4.8)

which are normalized by factor Cλμ
L

φ̄
λμL
K (γ ) = Cλμ

L φ
λμL
K (γ ), (Cλμ

L )−2 =
∫ π

0
sin(3γ )

∑
K even

2(φ
λμL
K (γ ))2

1 + δK0
dγ. (4.9)

The orthogonalized eigenfunctions φ
λμL
K (γ ) were obtained using the Gram-Schmidt method from nonorthogonal

angular functions, φ̂
λμL
K (γ ), given in [16].

In the case of an anharmonic oscillator, this problem at any fixed L and M is reduced to a set of 2D BVPs, their
number being L/2 + 1 for even L and (L − 1)/2 for odd L , coupled by a three-diagonal matrix [14].

The equation for the GCM with respect to components �L
nK (β, γ ) and eigenvalue EL

n (in MeV) reads as

∑
K ′even

[(
T + T L

K + 2B̄2

h̄2 (V̂ − EL
n )

)
δKK ′ − T L

KK ′

]
�L

nK ′(β, γ ) = 0, (4.10)

T = T (β, γ ) = − 1

β4 sin(3γ )

(
∂

∂β
β4 sin(3γ )

∂

∂β
+ ∂

∂γ
β2 sin(3γ )

∂

∂γ

)
,

T L
K = T L

K (β, γ ) = +2B̄2

[
(L(L + 1) − K 2)

(
1

4J1
+ 1

4J2

)
+ K 2

2J3

]
, (4.11)

T L
KK ′ = T L

KK ′(β, γ ) = −2B̄2

(
1

8J1
− 1

8J2

)
CL
KK ′ ,

CL
KK ′ = δK ′K−2C

L
KK−2 + δK ′K+2C

L
KK+2,

CL
KK−2 = (1 + δK2)

1/2[(L + K )(L − K + 1)(L + K − 1)(L − K + 2)]1/2,

CL
KK+2 = (1 + δK0)

1/2[(L − K )(L + K + 1)(L − K − 1)(L + K + 2)]1/2,

where B̄2 = 2B2/
√

5 (in 10−42 MeV · sec2 ∼h̄2/MeV) is the mass parameter, the β (in fm), and h̄ = 6.58211828
(in 10−22 MeV · sec). Summation over K includes even values of K in the range (4.5) and the moments of the
inertia are denoted as Jk = 4B̄(k)β

2 sin2(γ − 2kπ/3), where k = 1, 2, 3 and B̄(k) = B̄2 is the mass parameter with
the potential function V̂ (β, γ ) of the GCM having the form [7]

V̂ ≡ V̂ (β, γ ) = C2
1√
5
β2 − C3

√
2

35
β3 cos(3γ ) + C4

1

5
β4

−C5

√
2

175
β5 cos(3γ ) + C6

2

35
β6 cos2(3γ ) + D6

1

5
√

5
β6. (4.12)

The bounded components �L
nK (β, γ ) are subjected to homogeneous Neumann or Dirichlet boundary conditions

at the boundary points of the interval γ ∈ [0, π/3] for zero or odd values of L (for details, see [14,27]), and the
orthonormalization conditions∫ βmax

β=0

∫ π/3

0
β4 sin(3γ )

∑
K even

�L
n′K (β, γ )�L

nK (β, γ )dγ dβ = δn′n . (4.13)
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Table 1 The values of parameters B2 (in 10−42 MeV·sec2), Ck , k = 2, . . . , 6, (in MeV/fmk ) and D6 (in MeV/fm6) for 186Os nucleus
[7] and for 188Os nucleus [26], and s = h̄2

√
5/(4B2) (in MeV)

s, 10−3 B2 C2 C3 C4 C5 C6 D6

186Os 2.1531 112.48 −564.76 733.01 13546.0 −8535.1 −41635.0 0
188Os 1.4632 165.514 −398.83 −380.74 18295.43 −17660.53 74725.61 −54507.20

Fig. 4 Potential energy surface V (x1, x2) for 186Os nucleus vs variables β (in fm) and angle γ , and a0 and a2 (in fm)

Table 2 Energy eigenvalues EL
n (B), and EL

n (F), and EL
n (5 M)

(in MeV) of the 186Os nucleus states with parity π̂ = +1, calcu-
lated by expanding the solutions over the basis functions (4.4),
and by GCMFEM program for 2D BVP (4.10–4.13), and by the
KANTBP 5 M program for 1D BVP (5.4–5.6), respectively. NK

is the number of components for K (the number of 2D equa-
tions in (4.10)), jmax is the number of Eq. (5.4). TW, TM and
T5M are the CPU times (in seconds) of the GCMFEM program
implemented in Mathemtica and Maple, and the KANTBP 5 M
program in Maple, respectively

L n EL
n (B) EL

n (F) TW TM EL
n (5M) T5M NK jmax

0 1 −5.491 −5.493 52 49 −5.492 7 1 7

2 1 −5.378 −5.381 177 203 −5.379 33 2 14

2 2 −4.411 −4.414 −4.412

3 1 −4.221 −4.222 44 48 −4.221 5 1 6

4 1 −5.139 −5.157 358 469 −5.139 71 3 19

4 2 −4.092 −4.109 −4.092

4 3 −3.439 −3.453 −3.439

5 1 −3.837 −3.857 154 193 −3.837 22 2 12

The BVP (4.10)–(4.13) was solved by the GCMFEM program implemented in Maple 2022 and Mathematica
12 given in the Supplementary material. As an example, we calculate the energy spectrum EL

n of the nuclei 186Os
and 188Os with mass B̄2 and potential V̂ (β, γ ) from (4.12) for the values of parameters given in Table 1 for 186Os
nucleus [7] and for 188Os nucleus [26].

The potential energy surface V (x1, x2) for 186Os nucleus vs variables β (in fm) and angle γ , and a0 and a2 (in
fm) for the parameters from Table 1 is displayed in Fig. 4.

In Tables 2 and 3, we compare our FEM results for the lower part of energy spectrum with the eigenvalues EL
n (in

MeV) of the 186Os nucleus and �E ≡ EL
n − E0

0 (in MeV) relative to the ground state energy E0
0 = −1.54657335

MeV of the 188Os nucleus calculated using HIPs with those calculated by expanding the desired solution over the
basis functions (4.4) at Nmax = 30, implemented in the GCM FORTRAN program [7] at the values of parameters
B ′

2 = 90 · 10−42 MeV·sec2, C ′
2 = 100 MeV and P3 = 0. The results obtained by GCMFEM program with HIPs

p = 1, κmax = 2, p′ = 3 for 2D BVP (4.10–4.13) were calculated on the grid [β = 0.0, 0.035, . . . , 0.35] ⊗ [γ =
0, π/30, . . . , π/3] for 186Os nucleus and [β = 0.0, 0.045, . . . , 0.45]⊗ [γ = 0, π/30, . . . , π/3] for 188Os nucleus.
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Table 3 Energy eigenvalues �E ≡ EL
n − E0

0 (in MeV) relative to the ground state energy E0
0 of the 188Os nucleus states with parity

π̂ = +1. The values of model parameters (see Table 1) and the Exp experimental data taken from [26]

L n NK jmax T5M TM TW �E(5M) �E(F) �E([26]) Band Exp

0 1 1 7 8.1 46.9 45.0 1.035567 1.035608 1.0356 β 0+ 1.0864

2 0 2 14 36.5 198.6 183.5 0.206272 0.206276 0.2063 gs 2+ 0.1550

2 1 0.787082 0.787092 0.7871 γ 2+ 0.6330

2 2 1.486565 1.486638 1.4866 β 2+ 1.2791

3 0 1 6 5.4 46.7 45.2 1.136058 1.136074 1.1361 γ 3+ 0.7900

4 0 3 19 77.6 450.0 355.2 0.527858 0.527867 0.5279 gs 4+ 0.4779

4 1 1.222843 1.222861 1.2229 γ 4+ 0.9957

4 2 1.750161 1.750189 1.7502 β 4+

5 0 2 12 26.3 187.3 152.7 1.610053 1.610077 1.6101 γ 5+ 1.1809

6 0 4 23 130.0 817.8 564.5 0.940143 0.940262 0.9403 gs 6+ 0.9403

6 1 1.709721 1.709693 1.7097 γ 6+ 1.4248

6 2 2.338843 2.338508 2.3385 β 6+

7 0 3 16 51.7 426.8 286.9 2.147898 2.147930 2.1479 γ 7+ 1.6355

8 0 5 27 194.9 1362 815.7 1.427054 1.427060 1.4271 gs 8+ 1.5140

8 1 2.255876 2.255990 2.2560 γ 8+

8 2 2.963449 2.963827 2.9638 β 8+

9 0 4 19 82.4 782.3 455.9 2.740534 2.743132 2.7431 γ 9+

10 0 6 29 242.9 2058 1046 1.977370 1.977306 1.9773 gs 10+ 2.1690

10 1 2.858335 2.858121 2.8581 γ 10+

10 2 3.631582 3.631134 3.6311 β 10+

There is a good agreement between the results obtained by GCMFEM program with HIPs and the expansion
in the basis functions. However, the GCMFEM program has a significant advantage over the program with the
expansion of the desired solution via the basis functions (4.4), since it has no variational parameters B ′

2 and C ′
2 of

basis functions (4.6) and is applicable to solving a wider class of BVPs (2.1), as it has been pointed out in Ref. [26].
One can see that the execution time TW of the GCMFEM program in Mathematica is spending less time TM than
on Maple, but in both cases it increases with an increase in the number of components �L

nK (β, γ ), i.e., a number
of the two-dimensional equations to be solved.

5 Reduction of a 2D BVP to a System of 1D BVPs

We seek the components �L
nK (β, γ ) of 2D BVP (4.10)–(4.13) in the form of an expansion

�L
nK (β, γ ) =

jmax∑
j=1

φL
jK (γ )χ L

jn(β). (5.1)

The eigenfunctions φL
iK (γ ) ≈ φ

λμL
K (γ ) and the corresponding eigenvalues EL

i ≈ λ(λ + 3) are solutions of the
BPV that has been solved using KANTBP 5 M program [8] implemented in Maple on a grid �(γ ) = {0(10)π/3},
where (x) is a number of the finite element, with HIPs of the fifth order∑
K ′even

[(
T + T L

K − EL
i

)
δKK ′ − T L

KK ′
]
φL
iK ′(γ ) = 0, (5.2)

T = T (γ ) = − 1

sin(3γ )

∂

∂γ
sin(3γ )

∂

∂γ
.
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Fig. 5 Diagonal effective potentials V (β) = V̂ L
ii (β) for 186Os nucleus vs the variable β (in fm) for L = 0 (solid lines, the first six

potentials are labeled from ‘a’ to ‘f’) and for L = 3 (dashed lines, the first five potentials are labeled from ‘b’ to ‘f’)

Here the summation over K includes even values of K in the range (4.5), T L
K and T L

KK ′ are given in (4.11) at β = 1
and B̄2 = 1. The orthogonal angular functions φL

iK (γ ) are determined together with the scalar product

〈φL
i |φL

j 〉 =
∫ π/3

0
sin(3γ )

∑
K even

φL
iK (γ )φL

jK (γ )dγ = δi j . (5.3)

The numerical E (L)NUM
i calculated by KANTBP 5 M program [8] and analytical eigenvalues E (L)AN

i = λ(λ + 3)

are compared with 8–5 significant digits.
Substituting expansion (5.1) in 2D BVP (4.10)–(4.13) and averaging over φ

λμL
K (γ ) yields a system of 1D BVPs

jmax∑
j=1

[
−δi j

1

β4

∂

∂β
β4 ∂

∂β
+ V̂ (L)

i j (β) − 2B̄2

h̄2 EL
n δi j

]
χ L
jn(β) = 0, (5.4)

where the matrix elements V̄ (L)
i j (β) are given by the integrals (for example, see Fig. 5)

V̂ (L)
i j (β) = E (L)NUM

i

β2 δi j + 2B̄2

h̄2

∫ π/3

0
sin(3γ )

∑
K≥0,even

φL
iK (γ )V̂ (β, γ )φL

jK (γ )dγ, (5.5)

The eigenfunctions χ L
jn(β) = χ L

λμ;n(β) have to satisfy the Neumann boundary conditions, obtained by averaging

(4.10–4.13) over the orthonormalized angular functions φ
λμL
K (γ ) and the orthonormalization conditions

∫ βmax

0

jmax∑
j=1

β4χ L
jn(β)χ L

jn′(β)dβ = δnn′ . (5.6)

The BVP (5.4–5.6) using the parameters for the nuclei 186Os and 188Os, listed in Table 1 has been solved using
the KANTBP 5 M program [8] implemented in Maple on a grid �(β) = {0(10)0.45} with the fifth order HIPs
p = 1, κmax = 3, p′ = 5 from Eq. (3.10). The calculated eigenvalues EL

n of the 186Os nucleus and �E = E − E0
0

of the 188Os nucleus are presented in the Tables 2 and 3. They are in a good agreement with the results calculated by
expansion over a complete basis [7] and by GCMFEM program implemented 2D FEM with HIPs. Figure 6 displays
the first three eigenfunctions χ L

jn(β), n = 1, 2, 3 for L = 0 and for L = 3, respectively. Decreasing the magnitudes
of the leading components with increasing their number j gives estimations for the convergence rate of expansion
(5.1) of the 2D components �L

nK (β, γ ), n = 1, 2, 3 for L = 0 and for L = 3 displayed in Fig. 7. One can see that
the execution time TW of the GCMFEM program in Mathematica does spent less time TM than in Maple, but in
both cases the time T5M for solving the ODE system (5.4) by FEM and using the expansion of the desired solution
in terms of the basis is less than the times for solving two-dimensional problems. However, as mentioned above,
the expansion in terms of the basis has a limited application.
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Fig. 6 The first three eigenfunctions χ L
jn(β), n = 1, 2, 3 for L = 0 (solid lines) and for L = 3 (dashed lines) of the 186Os nucleus. The

leading components are labeled by their number j

Fig. 7 The first three eigenfunctions �L
nK (β, γ ), n = 1, 2, 3, for L = 0 (upper panels) and for L = 3 (lower panels) of the 186Os

nucleus

6 Conclusions

We have developed a symbolic-numerical method implemented in the GCMFEM program based on high-accuracy
FEM schemes with multivariate HIPs, which preserve the continuity of derivatives at the boundary of finite elements
in Maple and Wolfram Mathematica. As an example, we computed the energy spectrum in GCM of atomic nuclei.
The efficiency of the elaborated procedures and the program is shown by benchmark calculations of the spectra
of 186Os and 188Os nuclei, which demonstrate quick performance even on a laptop. The 2D BVP for GCM is
also reduced to the 1D BVP for a system of ordinary differential equations that is solved by the KANTBP 5 M
program implemented in Maple. The results are in good agreement with the calculations of the algebraic version
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of the GCM [7]. The developed approach and programs can be applied in various generalizations of GCM [28] and
microscopic-macroscopic six-dimensional model of atomic nuclei [24,25]. The GCM program can be applied to
study the properties of superheavy nuclei using the approach proposed in Refs. [26,29].
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7 Appendix A. The GCMFEM Program

The GCMFEM program is intended to solve a self-adjoint BVP for the system of elliptic differential equations
(4.10) with Neumann BC decribing collective nuclear model.

• On INPUT

• L is the angular momentum
• b2 is the mass B̄2 in (4.10)
• c2,c3,c4,c5,c6,d6 are coefficients C2, C3, C4, C5, C6, D6 of potentials (4.12)
• zmesh is the mesh in the form of nested list [[],[]], where values of nodes are given in angstroms;
• EmaxMeV is the maximum energy of printed eigenvalues (in MeV)
• filename is the part of names of working files (see OUTPUT)

• On OUTPUT

• EIGV; is the set of eigenvalues below EmaxMeV (in MeV)
• EIGF; is the set of corresponding eigenfunctions of the algebraic eigenvalue problem
• The set of global Gaussian nodes and weights is written to file filename.dat
• The set of the eigenvalues is written to file filenameL*.dat, where asterisk means the value of L
• The set of the eigenfunctions in the global Gaussian nodes is written to file filenameL*K*n*.dat, where

asterisks means the value of L , K and n
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calculations in geometric collective model of atomic nuclei. Comput. Sci. 13366, 103–123 (2022)
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