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Abstract Toric codes are examples of evaluation codes. They are produced by evaluating homogeous polynomials
of a fixed degree at the Fq -rational points of a subset Y of a toric variety X . These codes reveal how algebraic
geometry and coding theory are interrelated. The minimum distance of a code is the minimum number of nonzero
entries in the codewords of the code. Let I (Y ) be the ideal generated by all homogeneous polynomials vanishing at
all the points of Y , which is also known as the vanishing ideal of Y . We give three algebraic algorithms computing
the minimum distance by using commutative algebraic tools such as the multigraded Hilbert polynomials of ideals
obtained from I (Y ) and zero divisors f of I (Y ), and primary decomposition of I (Y ), for finding a homogeneous
polynomial f among all homogeneous polynomials of the same degree which has the maximum number of roots
on Y .
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1 Introduction

A toric variety can be constructed from a nice combinatorial object called fan. Every cone σ in a fan corresponds to
an affine toric variety Uσ and intersection of two cones σ1, σ2 corresponds to the affine toric variety Uσ1∩σ2 lying in
both Uσ1 and Uσ2 . All the affine toric varieties Uσ1 and Uσ2 are glued together along the affine toric variety Uσ1∩σ2

to obtain the abstract normal toric variety of the fan. If all the cones in the fan are generated by linearly independent
vectors, the fan is called simplicial.
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Let � ⊆ R
n be a complete simplicial fan with rays ρ1, . . . , ρr and X := X� be the corresponding n dimensional

smooth projective toric variety with Picard group isomorphic to Z
d over the algebraic closure K = Fq of a finite

field Fq , where the rank d = r − n > 0.
Let v1, . . . , vr be the generators of the rays of the cones in the fan � and φ be the matrix whose rows are these

generators of the rays. We get the matrix β in the following exact sequence by applying the Smith Normal Form
Algorithm (see [2] and references therein) to φ:

B : 0−→Z
n φ−→ Z

r β−→ A−→0.

Here the group A ∼= Z
r/φ(Zn) is isomorphic to the Picard group of X . Applying Hom(−,K∗) functor to the

sequence B gives the following short exact sequence:

B∗ : 1−→G
i−→ (K∗)r π−→ TX−→1

with π : (ξ1, ..., ξr ) → (ξu1, ..., ξun ) where u1, ..., un are the columns of φ.
Let S = Fq [x1, ..., xr ] = ⊕

α∈A Sα be the multigraded polynomial ring which is also known as the Cox ring
of X graded using the columns of the matrix β, i.e. degA(x j ) = β j is the j-th column of β, for j = 1, ..., r . The
irrelevant ideal of S is the monomial ideal

B = 〈x σ̂ : σ ∈ �〉, where x σ̂ =
∏

ρi /∈σ

xi .

The main feature of X we use here is that we can represent points on our toric variety X using homogeneous
coordinates thanks to the Geometric Invariant Theory quotient representation

X ∼= K
r \ V (B))/G, where G = Ker(π) and K = Fq ,

due to Cox, see [6]. Therefore, every point of X is identified with an orbit of the following type:

[P] = G · P = [p1 : · · · : pr ] for P ∈ K
r \ V (B).

When the point is an Fq -rational point, one can choose a representative P ∈ F
r
q . Traditionally, the set of Fq -rational

points of X is denoted by X (Fq). Since we focus only on a subset Y of the Fq -rational points, we abuse the notation
and simply use Y ⊆ X instead of Y ⊆ X (Fq) for the sake of the notation, throughout the paper.

For a fixed degree α in the semigroupNβ which is generated by β1, ..., βr , and a subset Y = {[P1], ..., [PN ]} ⊆ X
with cardinality N , the evaluation map is defined as follows:

evY : Sα 
→ F
N
q , F 
→ (F(P1), . . . , F(PN )).

The image of Sα under evY is called a (generalized) toric code which is denoted by Cα,Y , see [19] for a survey.
By definition, the size of Y is the length of the code and the dimension dimFq Cα,Y of the code is the dimension of
Cα,Y as a vector space over Fq . The number of nonzero entries in a codeword is called its weight and the minimum
distance δ is obtained by calculating the smallest weight among all nonzero codewords.

It is clear that the kernel of the linear map evY is the degree α part Iα(Y ) of the β-graded or homogeneous
vanishing ideal I (Y ) of Y , which is defined to be the ideal generated by homogeneous polynomials vanishing at all
the points of Y . Due to this relation, the dimension dimFqCα,Y equals the value HI (Y )(α) := dim Sα − dim Iα(Y )

of the multigraded Hilbert function HI (Y ) of I (Y ). It is known that for sufficiently large values of α, the function
HI (Y ) agrees with a polynomial PI (Y ) known as the multigraded Hilbert polynomial of I (Y ). If I is the B-saturated
ideal corresponding to the set of � points on a smooth projective toric variety, then the Hilbert polynomial of I is
just the constant PI (t) = � (see Example 4.12 in [12]). Therefore, the length of the code Cα,Y is PI (Y )(t) = N .

Toric codes attracted attentions of mathematicians nearly about two decades due to their rich combinatorial
nature showcasing some linear codes with best parameters, see [14] for a very recent paper and the references
therein for more details. They have also applications in information theory, for example Hansen [8] created a secret
sharing scheme with strong multiplication by using toric codes on toric surfaces and used toric codes which are
obtained from a special toric variety called Hirzebruch surface to construct new quantum codes [9]. There are lots of
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champion toric codes having the largest minimum distance among all known linear codes with equal block length
and dimension, see [4,5,11]. Toric codes are indeed generalizations of (generalized) Reed-Solomon codes which
can be obtained by choosing X = P

1,Y ⊆ X (Fq) and α < q, which are MDS codes [9,10].
An algebraic algorithm using the vanishing ideal I (Y ) has been given by Martinez-Bernal, Pitones and Villarreal

in [13] to compute the minimum distance of a toric code defined on a projective space X = P
n . They pointed out

that the algorithm is more interesting theoretically rather than computationally as other existing algorithms relying
on the generating matrix of the code perform better. The motivation for the present article is to discuss possible
generalizations of their algorithm to a more general smooth projective toric variety. We offer 3 algorithms in Sect. 2
for this purpose and share Macaulay 2 procedures to implement them in Sect. 3. In Sect. 4, we present experimental
results obtained using these algorithms and discuss their performance.

2 Theoretical Results and Algorithms

In this section we give our main results leading to algebraic algorithms for computing the minimum distance of the
code.

Let X be a toric variety over the finite fieldFq andY ⊆ X be a subset of theFq -rational points. For a homogeneous
polynomial f ∈ Sα , VX,Y ( f ) denotes the subset of Y which consists of the roots of f , i.e.

VX,Y ( f ) = {[P] ∈ Y : f (P) = 0}.
In the first step, we make the following simple observation whose proof is included for the sake of the reader,

and was already given in [13] for the case where X is a projective space:

Lemma 1 Let Y ⊆ X. Then, the minimum distance of the corresponding code is

δ(Cα,Y ) = N − max{∣∣VX,Y ( f )
∣
∣ : f ∈ Sα \ Iα(Y )}.

Proof By definition, the weight of the codeword evY ( f ) is the number of non-zero components, which is nothing
but N − ∣

∣VX,Y ( f )
∣
∣. A codeword evY ( f ) is zero if and only if f ∈ Iα(Y ). Thus, a non-zero codeword with the

minimum weight corresponds to a polynomial in Sα \ Iα(Y ) with the maximum number of zeroes. ��
We recall basic notions and definitions of commutative algebra such as minimal prime, associated prime, primary

decomposition etc.

Definition 1 (Definition 5 in [3]) A primary decomposition of an ideal a ⊂ S is a decomposition

a =
k⋂

i=1

qi

into primary ideals qi ⊂ S. The decomposition is called minimal if the corresponding prime ideals pi = rad(qi) are
pairwise different and the decomposition is unshortenable; the latter means that ∩i �= jqi �⊂ qj for all j = 1, . . . , k.

By Theorem 8 in [3], the prime ideals pi = rad(qi) are uniquely determined when the primary decomposition
above is minimal. These are of the form rad((a : f )) for some f ∈ S and deserve a special name as we see below:

Definition 2 (Definition and Proposition 9 in [3]) Let a ⊂ S be an ideal. The set of all prime ideals in S that are of
type rad((a : f )) for some f ∈ S is denoted by Ass(a); its members are called the prime ideals associated to a.

Definition 3 (Definition 11 in [3]) Given any ideal a ⊂ S, the subset of all prime ideals that are minimal in Ass(a)
is denoted by Ass′(a) and its members are called the isolated prime ideals associated to a. All other elements of
Ass(a) are said to be embedded prime ideals.
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Definition 4 (Page 63 in [3]) For an arbitrary ideal a ⊂ S,

Z(a) =
⋃

f ∈S\a
(a : f ) = {z ∈ S : z f ∈ a for some f ∈ S \ a}

is called the set of zero divisors modulo a in S. Indeed, an element z ∈ S belongs to Z(a) if and only if its residue
class z̄ ∈ S/a is a zero divisor. Furthermore, if a power zn of some element z ∈ S belongs to Z(a), then z itself
must belong to Z(a) and therefore

Z(a) =
⋃

f ∈S\a
rad((a : f )).

With these in mind it is now easy to prove the following useful fact as in [18, Theorem 5.1(iii)].

Lemma 2 Let Y ⊆ X be a finite subset. Then, the minimal primary decomposition of I (Y ) is

I (Y ) =
⋂

[P]∈Y
I ([P]).

Furthermore, we have

Z(I (Y )) =
⋃

f ∈S\I (Y )

rad((I (Y ) : f )) =
⋃

[P]∈Y
I ([P]).

By using Lemmas 1 and 2 above we obtain the following result.

Theorem 1 Let Y ⊆ X. Then, the minimum distance of the corresponding code is

δ(Cα,Y ) = N − max{|{p ∈ Ass(I (Y )) : f ∈ p}| : f ∈ Z(I (Y ))},
= PI (Y ) − max{|{p ∈ Ass(I (Y )) : f ∈ p}| : f ∈ Z(I (Y ))},

where PI (Y ) is the Hilbert Polynomial of the ideal I (Y ).

Proof By Lemma 1, we have the formula:

δ(Cα,Y ) = N − max{∣∣VX,Y ( f )
∣
∣ : f ∈ Sα \ Iα(Y )}.

[P] ∈ VX,Y ( f ) if and only if f (P) = 0 and [P] ∈ Y if and only if f ∈ I (P) and [P] ∈ Y . Thus, the number of
zeroes [P] of f is exactly the number of associated primes I (P) in the minimal primary decomposition of I (Y )

containing f . It follows from Lemma 2 that Ass(I (Y )) = Ass′(I (Y )) = {I (P) : [P] ∈ Y }. Hence, we have
∣
∣VX,Y ( f )

∣
∣= |{p ∈ Ass(I (Y )) : f ∈ p}| .

In particular,
∣
∣VX,Y ( f )

∣
∣ > 0 implies that f ∈ Z(I (Y )), completing the proof. ��

As a consequence, we obtain the following algorithm which calculates the minimum distance of a code obtained
from a smooth projective toric variety:

Algorithm 1 Calculating the minimum distance of a toric code.
Input A prime power q, a toric variety X over the field Fq , a degree α together with the vanishing ideal I (Y ) of Y .
Output The minimum distance δ(Cα,Y ).

1: Find a basis Bα of the vector space Mα = Sα/Iα(Y ).
2: Form the set Mα by taking Fq -linear combinations of the elements of Bα .
3: Determine zero-divisors f ∈ Mα by checking if I (Y ) : f �= I (Y ).
4: Find the primary decomposition of I (Y ).
5: Return δ(Cα,Y ) = PI (Y ) − max{|{p ∈ Ass(I (Y )) : f ∈ p}| : f ∈ Z(I (Y ))}.

Next, we give the second result leading to an alternative algorithm for computing the minimum distance.
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Theorem 2 Let Y ⊆ X. Then, the minimum distance of the corresponding code is

δ(Cα,Y ) = N − max{PI (VX,Y ( f )) : f ∈ Sα \ Iα(Y ) is a zero-divisor},
where PI (VX,Y ( f )) is the Hilbert Polynomial of the ideal I (VX,Y ( f )), which can be obtained as follows:

I (VX,Y ( f )) =
⋂

p∈Ass(I (Y )) and f ∈p
p.

Proof By Lemma 1, we have the formula:

δ(Cα,Y ) = N − max{∣∣VX,Y ( f )
∣
∣ : f ∈ Sα \ Iα(Y )}.

Since I (VX,Y ( f )) is the B-saturated ideal corresponding to the set of
∣
∣VX,Y ( f )

∣
∣ points on a smooth projective toric

variety X , it follows that the Hilbert polynomial of I (VX,Y ( f )) is just the constant PI (VX,Y ( f ))(t) = ∣
∣VX,Y ( f )

∣
∣ as

indicated in Example 4.12 of [12]. When f is not a zero-divisor, then f /∈ I (P) by Lemma 2. So it has no zeroes
and thus the weight of the corresponding codeword will be N , the maximum possible.

Finally, by Lemma 2, we have

I (VX,Y ( f )) =
⋂

[P]∈VX,Y ( f )

I (P) and I (Y ) =
⋂

[P]∈Y
I (P) =

⋂

p∈Ass(I (Y ))

p.

As [P] ∈ VX,Y ( f ) if and only if p ∈ Ass(I (Y )) and f ∈ p, the proof follows. ��

Algorithm 2 Calculating the minimum distance of a toric code.
Input A prime power q, a toric variety X over the field Fq , a degree α together with the vanishing ideal I (Y ) of Y .
Output The minimum distance δ(Cα,Y ).

1: Find a basis Bα of the vector space Mα = Sα/Iα(Y ).
2: Form the set Mα by taking Fq -linear combinations of the elements in Bα .
3: Determine zero-divisors f ∈ Mα by checking if I (Y ) : f �= I (Y ).
4: Find the primary decomposition of I (Y ).
5: Find the ideals I (VX,Y ( f )) for zero-divisors f ∈ Mα .
6: Return δ(Cα,Y ) = PI (Y ) − max{PI (VX,Y ( f )) : f is a zero-divisor }.

There is a third algorithm suggested by the paper [13] which was the starting point of this research. The toric
variety in that paper is the special case of the projective space X = P

n and our aim was to understand if we can
generalize it. The connection with the second and third algorithm to be given below is the difference in their last
steps. One of them uses the Hilbert polynomial PI (VX,Y ( f )) of the ideal I (VX,Y ( f )) whereas the other uses the
Hilbert polynomial PI (Y )+( f ) of the ideal I (Y ) + ( f ). Notice that the notion of the degree of the ideal I (Y ) + ( f )
in their paper coincides with the Hilbert polynomial PI (Y )+( f ) by [13, Corollary 4.3] and [12, Example 4.12]. Until
now, we were not able to get a generalization of [13, Corollary 4.3] valid for any toric variety X . Therefore, the
correctness of the third algorithm is guaranteed only for the case where X is a projective space.

Algorithm 3 Calculating the minimum distance of a toric code.
Input A prime power q, a toric variety X over the field Fq , a degree α together with the vanishing ideal I (Y ) of Y .
Output The minimum distance δ(Cα,Y ).

1: Find a basis of the vector space Mα = Sα/Iα for M = S/I (Y ).
2: Form the set Mα by taking Fq -linear combinations of the basis elements of Mα .
3: Determine zero-divisors f ∈ Mα by checking if I (Y ) : f �= I (Y ).
4: Return δY (α) = PI (Y ) − max{PI (Y )+( f ) : f is a zero-divisor }.
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Remark 1 It is worth briefly describing an idea used in [14,15] adapted to our notation which is relevant to the
ideals considered in Algorithm 2 and 3, see the proof of [14, Lemma 5.5]. Recall that the set reg(Y ) consists of
the elements α for which HI (Y )(α) = N . Thus, for an element α̃ ∈ reg(Y ), the linear map evα̃,Y : Sα̃ 
→ F

N
q is

surjective. We also have the natural projection F
N
q 
→ F

N f
q onto Y f := VX,Y ( f ), for any f ∈ Sα\Iα(Y ), thus we

have the following surjective map by composing them:

evα̃,Y f : Sα̃ 
→ F
N f
q

where N f = ∣
∣Y f

∣
∣. Therefore, N f = HI (Y f )(α̃) and α̃ ∈ reg(Y f ). This means that the Hilbert polynomial N f of

I (Y f ) is attained at α̃.
Clearly, the ideal I (Y, f ) := I (Y ) + ( f ) ⊆ I (Y f ) and hence we have

Iα̃(Y, f ) = Iα̃(Y ) + Sα̃−α · ( f ) ⊆ Iα̃(Y f ).

Thus, an upper bound for N f is given by

Ñ f (α̃) = HI (Y )+( f )(α̃) ≥ N f = HI (Y f )(α̃).

Letting Ñ f be the Hilbert polynomial of the ideal I (Y, f ), we see that Ñ f ≥ N f and hence, it follows that we have

N f = Ñ f ⇐⇒ I (Y f ) = (I (Y, f ) : B∞),

since Hilbert polynomial of an ideal and that of its saturation with respect to B are the same. This leads to the
following claim which is proved in [13, Corollary 4.3] when X is a projective space.

Conjecture 1 For a smooth projective toric variety, we have I (Y f ) = (I (Y, f ) : B∞).

Remark 2 Available algorithms in computer algebra programs such as GAP, Magma or Sage require a generating
matrix for the code and in order to determine that matrix one needs to give the members of the set Y . But the
elements are not always given explicitly. Sometimes they are given implicitly as in

YQ = {[tq1 : · · · : tqr ]|t ∈ (F∗
q)

s}
which is parameterized by the columns of a matrix Q = [q1q2 · · · qr ]. In this case our algorithms can be used
alternatively as the vanishing ideal needed for them can be found as described in [1].

In some cases it is even possible to expedite our first two algorithms by omitting the 4−th step by the virtue
of the minimal primary decomposition in Lemma 2. For instance, in the proof of [17, Theorem 4.1], where X =
P(1, w1, . . . , wn) is a weighted projective space over the field Fq , the elements of the subgroup

YQ = {[t0 : tw1
1 : . . . : twn

n ] | ti ∈ F
∗
q , for all i = 0, . . . , n}

is given explicitly so the minimal primary decomposition of I (YQ) is the intersection of I (P) for all P ∈ YQ . More
precisely, the set YQ is found to be the union of the points [1 : η

i1
1 : · · · : η

in
n ] for 1 ≤ i1 ≤ d1, . . . , 1 ≤ in ≤ dn ,

where F
∗
q = 〈η〉 so that the order of the generator η is q − 1 and the order of ηi := ηwi is

di = q − 1

gcd(q − 1, wi )
i = 1, . . . , n.

Since the generators of the vanishing ideal is given by [17, Proposition 3.3], and the ideals I ([1 : η
i1
1 : · · · : η

in
n ]) =

〈x2−η
i1
1 xw1

1 , . . . , xn−η
in
n x

wn
n 〉 are found using [16], the Algorithms 1 and 2 can be applied to compute the minimum

distance more quickly.
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3 Macaulay2 Procedures

In this section, we share some procedures needed to implement the algorithms in the previous section in
Macaulay2. One may reach all of these codes from the link https://github.com/fdmozkan/Macaulay2-Codes/
releases/tag/v1.0.0

Procedure 1 Calculating the minimum distance of a toric code with Macaulay2 [7].

i4: Balpha=basis(alpha,S/IY);
i5: N=flatten applyTable({apply(toList (set(0..q-1))ˆ**

(hilbertFunction(alpha,S/IY))- (set{0})ˆ**
(hilbertFunction(alpha,S/IY)),i-> toList i)},

i-> deepSplice i);
P= apply(#N, j-> vector flatten N_{j});
D= for i from 0 to #P-1 list Balpha* flatten P_{i};
A= flatten for i from 0 to #D-1 list entries

(flatten D_{i})#0;
Malpha= apply(A, i->substitute(i,S));

i6: Z=select(Malpha, f-> not quotient(IY,ideal f)==IY);

Let us now explain each step of the codes in i5-i6 in detail. In step N, we obtain a list of K-tuples by choosing
entries fromFq and removing the origin, where K is the dimension of Sα/Iα(Y ) or the cardinality of the set Balpha.
In step P, we transform each of these K-tuples into a vector in F

K
q . In step D, by using the basis of Sα/Iα(Y ), which

are given as vectors in Balpha we make a list of polynomials representing elements in Sα/Iα(Y ) by taking their
dot products with the coefficients stored as vectors in step P. In step A, we remove all parenthesis from each member
of the list D. In step Malpha, we substitute each polynomial obtained in the previous step to the ring S. In step Z,
we determine all the zero-divisors of Sα/Iα(Y ). One may possibly expedite this process by finding a direct way to
form elements of Malpha.

For Algorithm 1 we continue with the following:

i7: PrIY=primaryDecomposition IY;

i8: delta=hilbertPolynomial(X,IY)
-max apply(Z, f->#select(PrIY, i-> f%i==0))

The command primaryDecomposition used in step i7 is part of a package designed for providing com-
ponents of ideals and modules, including associated primes and primary decompositions, see [21].

As pointed out in Remark 2, one may accelerate Algorithm 1 by replacing the usage of the general purpose
primaryDecomposition package by using Lemma 2 and by finding a set of representatives for the set Y in
question.

The hilbertPolynomial command used in step i8 is part of another package which computes with normal
toric varieties, see [20]. But, we need to modify the content of that package as we work with a coordinate ring S
over a finite field Fq . Therefore, one has to run the command in i2 after loading the package as in the command
in i1.

i1: needsPackage ‘‘NormalToricVarieties’’;
i2: ring NormalToricVariety := PolynomialRing =>

(cacheValue symbol ring)
( X -> (

if isDegenerate X then

https://github.com/fdmozkan/Macaulay2-Codes/releases/tag/v1.0.0
https://github.com/fdmozkan/Macaulay2-Codes/releases/tag/v1.0.0
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error ‘‘-- not yet implemented
for degenerate varieties’’;

if not isFreeModule classGroup X then
error ‘‘-- gradings by torsion groups

not yet implemented’’;
-- constructing ring
K := X.cache.CoefficientRing;
x := X.cache.Variable;
r := #rays X;
deg := entries transpose fromWDivToCl X;
S := K (monoid [x_1..x_r, Degrees => deg]);
S.variety = X;
S ) );

For Algorithm 2 we replace the previous commands with the following:

i7: PrIY=primaryDecomposition IY;
i8: IVXYf=(PrIY,f,S) -> (int := ideal (1_S) ;

scan(PrIY, i -> if f%i==0 then
int=intersect(int,i)) ; int);

Ideals=apply(Z,f->IVXYf(PrIY,f,S));
i9: delta = hilbertPolynomial(X,IY)

- max apply(Ideals, I-> hilbertPolynomial (X,I))

For Algorithm 3 we use the following command instead:

i7: deltaTilde=hilbertPolynomial(X,IY)
-max apply(Z, f-> hilbertPolynomial(X,IY+ideal (f)))

4 Experimental Results

In this section, we present an example illustrating the speed of our algorithms implemented and run in Macaulay 2.

Example 1 Let X be the Hirzebruch Surface H2 over K = F7. The first exact sequence above becomes

P : 0 −→ Z
2 φ−→ Z

4 β−→ Z
2 −→ 0

where

φ =
[

1 0 −1 0
0 1 2 −1

]T

and β =
[

1 −2 1 0
0 1 0 1

]

.

Thus, the Cox ring S = K [x1, x2, x3, x4] of X is graded via

degA(x1) = degA(x3) = (1, 0), degA(x2) = (−2, 1), degA(x4) = (0, 1).

Consider the subset Y ⊂ X with I (Y ) = (x2
3 − x2

1 , x3
4 − x6

3 x
3
2).

Our inputs for the example are as follows:
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Table 1 Comparison of 3 algorithms.

q α δ δ̃ T1 T2 T3

5 (0, 1) 2 2 1.59 1.84 1.7

(0, 2) 1 1 6.96 9.37 8.6

(0, 3) 1 1 7.13 9.55 9.28

(1, 0) 2 2 0.61 0.50 0.46

(1, 1) 1 1 6.88 9.28 8.82

(1, 2) 1 1 6.92 9.34 9.06

(1, 3) 1 1 6.98 9.38 9.19

(2, 0) 2 2 0.61 0.50 0.48

(2, 1) 1 1 7.06 9.49 9.19

(2, 2) 1 1 7.07 9.49 8.76

(2, 3) 1 1 7.04 9.41 9.21

7 (0, 1) 2 2 3.48 4.19 4.01

(0, 2) 1 1 28.48 36.01 34.31

(0, 3) 1 1 29.22 36.86 36.65

(1, 0) 2 2 0.82 0.75 0.67

(1, 1) 1 1 28.44 36.07 35.19

(1, 2) 1 1 37.88 36.31 36.23

(1, 3) 1 1 29.01 36.63 36.66

(2, 0) 2 2 0.79 0.72 0.67

(2, 1) 1 1 28.66 36.23 36.13

(2, 2) 1 1 28.97 36.66 35.24

(2, 3) 1 1 29.05 36.62 36.76

11 (0, 1) 2 2 13.07 15.72 15.17

(0, 2) 1 1 169.36 200.94 199.00

(0, 3) 1 1 169.90 202.16 205.76

(1, 0) 2 2 1.35 1.34 1.22

(1, 1) 1 1 165.72 198.50 198.90

(1, 2) 1 1 168.26 200.98 205.41

(1, 3) 1 1 170.23 203.26 208.31

(2, 0) 2 2 1.37 1.36 1.27

(2, 1) 1 1 166.75 199.71 204.3

(2, 2) 1 1 168.38 201.17 198.45

(2, 3) 1 1 169.33 202.11 206.96

i3: q=7; alpha={0,1};
X=hirzebruchSurface(2, CoefficientRing =>

GF(q,Variable=>t) );
S=ring X;
IY=ideal ((x_3)ˆ(2)-(x_1)ˆ(2),

(x_4)ˆ(3)-(x_3)ˆ(2*(3))*x_2ˆ(3));

Using Procedure 1, we compute the minimum distance of Cα,Y to be 3 for all the three algorithms.
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Fig. 1 Comparison of the algorithms
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Before we conclude the paper, we will give a table and a figure to compare the performance of the three algorithms
on this example for various values of α.

In Table 1, δ is the minimum distance found using the first two algorithms and δ̃ is the minimum distance found
using the third algorithm. Moreover, Ti stands for the time used by the Algorithm i , for each i = 1, 2, 3. The
smallest CPU time is given in boldface type.

See Fig. 1 for the graphical comparison of the three algorithms according to their CPU time. In the graph xi
corresponds to the i-th value of α in Table 1 and yi corresponds to the CPU time used by the relevant algorithm.
It seems that the first algorithm is almost always faster than the others. This is not surprising when it comes to a
comparison with the second algorithm, because of the differences of the algorithms in Procedure 1. The first one
avoids computations of the ideals I (VX,Y ( f )) in step i8 of Procedure 1 for Algorithm 2, for all f , and replaces
the computations of the hilbertPolynomials for all these ideals in step i9 by a rather basic command in i8
of Procedure 1 for Algorithm 1.

5 Conclusion

In the literature, there is an algorithm for computing the minimum distance of an evaluation code obtained from
a projective space which heavily makes use of computational commutative algebra. Until now, there is no direct
generalization to a more general smooth toric variety. We offered two alternatives that work correctly for a general
smooth toric variety and illustrate it via an example. We also share a table showing the computation time for these
three algorithms in order to give a clue as to their complexity.

All the algorithms suffer from listing all the zero divisors f and computing with them even if they have just 1
root, which is clearly unnecessary. This is overcome in certain cases by providing an upper bound on the number
of roots and demonstrating a concrete polynomial meeting that upper bound, see e.g. [1,15]. One may possibly
improve these algorithms by proving a result which helps eliminate zero divisors with less zeroes.
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