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Abstract We present a number of new piecewise-polynomial kernels for image interpolation. The kernels are
constructed by optimizing a measure of interpolation quality based on the magnitude of anisotropic artifacts. The
kernel design process is performed symbolically using the Mathematica computer algebra system. An experimental
evaluation involving 14 image quality assessment methods demonstrates that our results compare favorably with
the existing linear interpolators.
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1 Introduction

The problem of image interpolation consists of reconstructing a function u(x, y), x, y ∈ R that agrees with the
known samples on a uniform square grid s(m, n), x, y ∈ Z. One of the basic operations in image processing and
computer graphics, interpolation is required when the sampling points do not match the original pixel grid, image
upscaling and texture sampling being two prime examples. Implementations of various interpolation algorithms can
be found both in software (image processing applications and libraries) and hardware (graphics processing units).
The computer graphics industry demonstrates significant interest in high-quality, high-performance interpolation
methods [18].

Linear interpolation is an important class of methods that reconstruct u(x, y) by convolving the image s(m, n)

with an interpolation kernel ψ(x, y):

u(x, y) =
+∞∑

m=−∞

+∞∑

n=−∞
s(m, n)ψ(x − m, y − n).

The kernel can be constructed as a product of two one-dimensional kernels: ψ(x, y) = ψ(x)ψ(y). Such separable
kernels are often preferred by virtue of their computational convenience since in this case interpolation can be
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performed in two one-dimensional steps along each axis. Many established methods such as bicubic [15] and
B-spline interpolation [4] belong to this class. Non-separable kernels have also been studied in [26].

Typical criteria employed for the design of interpolation kernels include smoothness, an exact representation
of Taylor expansion terms, similarity to the ideal low-pass filter in Fourier space, or performance for a particular
model of the Fourier spectrum [23]. However, these properties only indirectly correlate with the perceived image
quality. We explore another avenue by trying to directly quantify the perceived artifacts.

Linear interpolation methods produce several types of undesirable effects, the most notable of which are the
following.

• Blurriness. Overly smooth transitions in areas where the sharp transitions were present in the original image,
usually around object edges. This artifact type is especially noticeable for linear interpolation (ψ(x) = 1 −
|x |, |x | ≤ 1).

• Ringing. Oscillating kernels produce noticeable halos around hard edges.
• Staircasing or blocking. The square pixel lattice coupled with the kernel separation process introduces anisotropic

effects. For example, the isolevel contours of diagonal edges on the interpolated image form meandering,
staircase-like curves instead of straight lines.

Blurriness and ringing artifacts are inevitable within the framework of linear interpolation. Reducing blurriness
typically increases ringing as the kernel becomes more oscillating in order to increase edge acuity. We focus on
the third type of artifact, staircasing or blocking. The importance of contours in visual perception is universally
acknowledged in the field of human vision [2,24]. Image quality assessment methods also make heavy use of edge
information in the form of gradients [17,32] or phase congruency [37]. Minimizing the distortions of edge contours
is therefore very important for high-quality image interpolation.

A number of edge-directed interpolation techniques have been proposed [5,10,12,16,31,36,39] in order to
supress the artifacts arising near sharp edges. While effective to varying degrees, these techniques are more complex
and computationally expensive than linear interpolation as they include special steps in order to take edge directions
into account. Four edge-directed interpolation methods benchmarked in [33] were slower than bicubic interpolation
by factors ranging from 119 to 932.

The main contribution of this work is demonstrating that the staircase effect can be greatly reduced while
staying within the linear interpolation framework. This goal is achieved by optimizing the kernel with respect
to an appropriately defined quality metric. Most calculations are performed symbolically using the Mathematica
computer algebra system [29].

2 Proposed Approach

We start by postulating a set of conditions that a good kernel should satisfy.

• Interpolation: in order to agree with the existing samples, ψ(x) must be zero at any integer x except at x = 0
where ψ(0) = 1.

• Continuity.
• Partition of unity:

∑+∞
k=−∞ ψ(x − k) = 1.

• Exact representation of the linear signal term:
∑+∞

k=−∞ kψ(x − k) = x .

These conditions can be further strengthened by requiring the continuity of derivatives or the exact representation
of higher-order terms of the Taylor expansion of the underlying continuous signal. While these additional properties
are considered desirable from a theoretical perspective, it will be shown in Sect. 3 that they do not necessarily translate
to improved image quality in practice. We include the continuity of the first derivative as an optional constraint.

We have chosen a separable piecewise-polynomial kernel form for simplicity and computational efficiency. The
kernels come in even and odd variants corresponding to integer and half-integer interval endpoints respectively:

ψ(x) =
p∑

j=0

ci, j (|x | − i) j , i = �|x | + ��,
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Table 1 The number of free variables for different kernels. 0 corresponds to a unique solution and dash denotes an overconstrained
system

Non-smooth Smooth

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

r = 1 0 0 0 – – –

r = 3/2 0 0 1 – – 0

r = 2 1 2 3 – 0 1

r = 5/2 1 2 4 – 0 2

r = 3 2 4 6 – 1 3

where � is zero for even and 1/2 for odd kernels. The kernels are defined on the interval (−r, r) and are zero
elsewhere. We shall denote our kernels with given r and p by K(r,p) and those satisfying the additional smoothness
constraint (C1-continuity) by K(r,p)S .

The first two constraints translate to the following equations.

• Interpolation: ci,0 = �i = 0�, where �P� is the Iverson bracket taking the value 1 if the statement P is true and
zero otherwise. Since ci,0 are identical for all kernels satisfying the interpolation constraint, we shall omit their
values when presenting ci, j matrices.

• Continuity:
∑p

j=0 ci, j = 0 for any i .

The equations for the last two constraints are obtained by evaluating
r∑

k=1−r

ψ(x − k) and
r∑

k=1−r

kψ(x − k)

for x ∈ [0, 1) or x ∈ [0, 1/2) depending on the kernel type using the Simplify command and collecting the
coefficients for each polynomial term. A general solution of the linear system incorporating all constraints can then
be found by Solve. The number of free variables for different general solutions is reported in Table 1. The case
r = 1 has a unique solution corresponding to linear interpolation (ψ(x) = 1 − |x |) for any p (this follows from
the linear term condition alone). The unique solution K(2,3)S corresponds to Keys’ cubic kernel [15], and K(3/2,2)

to Dodgson’s kernel [8].
The general solutions for various values of r and p without the smoothness constraint are:

K(2,2) : K(3/2,2) :
⎡

⎣
c0,2

c1,1

c1,2

⎤

⎦ =
⎡

⎣
−1 −1
−1 −1

1 1

⎤

⎦
[

1
c0,1

]
,

⎡

⎢⎢⎣

c0,1

c0,2

c1,1

c1,2

⎤

⎥⎥⎦ = 1

2

⎡

⎢⎢⎣

0
−4
−1

2

⎤

⎥⎥⎦ ,

K(2,3) : K(3/2,4) :

⎡

⎢⎢⎣

c0,3

c1,1

c1,2

c1,3

⎤

⎥⎥⎦ = 1

3

⎡

⎢⎢⎣

−3 −3 −3
−4 −4 −1

3 3 0
1 1 1

⎤

⎥⎥⎦

⎡

⎣
1

c0,1

c0,2

⎤

⎦ ,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,3

c0,4

c1,1

c1,2

c1,3

c1,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

−16 −8
−1 0

0 −1
0 0
8 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
1

c0,2

]
,
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K(2,4) : K(5/2,2) :
⎡

⎢⎢⎢⎢⎣

c0,4

c1,1

c1,2

c1,3

c1,4

⎤

⎥⎥⎥⎥⎦
= 1

3

⎡

⎢⎢⎢⎢⎣

−3 −3 −3 −3
−5 −5 −2 −1

6 6 3 3
−4 −4 −4 −5

3 3 3 3

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

1
c0,1

c0,2

c0,3

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎢⎢⎣

c0,1

c1,1

c1,2

c2,1

c2,2

⎤

⎥⎥⎥⎥⎦
= 1

4

⎡

⎢⎢⎢⎢⎣

0 0
−6 −2

4 0
2 1

−4 −2

⎤

⎥⎥⎥⎥⎦

[
1

c0,1

]
,

K(3,2) : K(5/2,3) :

⎡

⎢⎢⎣

c0,2

c1,2

c2,1

c2,2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−1 −1 0
0 0 −1

−1 −1 −1
1 1 1

⎤

⎥⎥⎦

⎡

⎣
1

c0,1

c1,1

⎤

⎦ ,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,3

c1,2

c1,3

c2,1

c2,2

c2,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
4 0 0

−24 −8 −16
−1 0 −2
−4 −2 0
12 4 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
1

c0,2

c1,1

⎤

⎦ ,

K(3,3) :
⎡

⎢⎢⎢⎢⎣

c0,3

c1,3

c2,1

c2,2

c2,3

⎤

⎥⎥⎥⎥⎦
= 1

5

⎡

⎢⎢⎣

−5 −5 −5 0 0
0 0 0 −5 −5

−7 −7 −2 −6 −1
1 1 1 3 3

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
c0,1

c0,2

c1,1

c1,2

⎤

⎥⎥⎥⎥⎦
,

K(5/2,4) :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,3

c0,3

c1,3

c1,4

c2,1

c2,2

c2,3

c2,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0

−24 −8 −2 −16 0
16 0 0 0 −16
−1 0 0 −2 0

0 −2 0 0 −4
12 4 1 8 0

−16 0 −2 0 16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
c0,2

c0,4

c1,1

c1,2

⎤

⎥⎥⎥⎥⎦
.

The general solutions with the smoothness constraint are:

K(2,3)S : K(2,4)S :
⎡

⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,2

c0,3

c1,1

c1,2

c1,3

⎤

⎥⎥⎥⎥⎥⎥⎦
= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎣

0
−5

3
−1

2
−1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,3

c0,4

c1,1

c1,2

c1,3

c1,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−7 −4

5 2
−1 0
−3 −2

9 4
−5 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
1

c0,2

]
,
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K(3,3)S : K(3,4)S :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,3

c1,1

c1,2

c1,3

c2,1

c2,2

c2,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
−4 −4

−12 −4
19 6

−7 −2
5 2

−10 −4
5 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
1

c0,2

]
,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,4

c1,1

c1,3

c1,4

c2,1

c2,2

c2,3

c2,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

4

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−16 −8 −4 0

41 20 10 −8
−25 −12 −6 4

7 4 2 0
15 8 6 −4

−51 −28 −18 0
29 16 10 −4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

1
c0,2

c0,3

c1,2

⎤

⎥⎥⎦ ,

K(3/2,4)S : K(5/2,3)S :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,2

c0,3

c0,4

c1,1

c1,2

c1,3

c1,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−6

0
8

−1
3
0

−4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,2

c0,3

c1,1

c1,2

c1,3

c2,1

c2,2

c2,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

32

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−56

0
−18

32
−8

1
−4

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K(5/2,4)S :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,3

c1,1

c1,2

c1,3

c1,4

c2,1

c2,2

c2,3

c2,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

48

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0

−208 −88 −26
208 64 32
256 160 56

−448 −256 −128
80 44 13

−208 −112 −32
−128 −80 −28

448 256 80

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎣
1

c0,2

c0,4

⎤

⎦ .

The next step of our approach is optimizing the independent kernel coefficients with respect to an objective
function measuring the severity of the staircasing effect. In order to define this function, we consider a sharp edge
with a 45◦ orientation separating two half-spaces with values 0 and 1 (see Fig. 1). The pixel at location (i, j) in the
corresponding rasterized image has one of the four different values that depend on the position of the grid:

d(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 i − j < −1,

θ2/2 i − j = −1,

1 − (1 − θ)2/2 i − j = 0,

1 i − j > 0.
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Fig. 1 Rasterization of a
diagonal edge

The resulting interpolant is

u(x, y) =
+∞∑

i=−∞

+∞∑

j=−∞
d(i, j)ψ(x − i, y − j).

A perfect staircasing-free interpolation should have straight isolines. A measure of staircasing penalizing isoline
distortions was therefore introduced:

E2
g(θ) :=

∫ ∫
(∇u(x, y) · (1, 1))2dxdy

For a staircasing-free interpolation Eg = 0 since ∇u(x, y) is always orthogonal to edge direction. The integration is
performed over unit squares with a nonzero gradient. The boundaries of the square regions correspond to piecewise
intervals, i.e. integers for even kernels and half-integers for odd kernels:

[k − �, k + 1 − �] × [0 − k − �, 1 − k − �] ∪ [k + 1 − �, k + 2 − �] × [0 − k − �, 1 − k − �],
where k is the integer region index and � = 0 for even kernels and � = 1/2 for odd ones. The compound region
thus defined covers a single period of u(x, y). The integration is performed separately for each square region after
simplifying the piecewise interpolant into a polynomial. The degree of E2

g polynomials is at most 4.
We have considered two options for the choice of θ :

• θ = 1/2, corresponding to the worst case scenario. This choice produces the sharpest edge and the maximal
value of Eg(θ) for all kernels tested.

• Averaging across all values of θ : 〈Eg〉2 := ∫ 1
0 E2

g(θ)dθ .

In all our experiments, the kernels obtained with Eg(1/2) and 〈Eg〉 quality metrics are nearly identical, with
the maximal absolute deviation between the two variants never exceeding 0.006. Therefore we chose the Eg(1/2)

metric, as it leads to less complex algebraic manipulations.
It is worth noting that the normalized sinc kernel sinc(x) = sin(πx)/(πx) has Eg(θ) = 0. This can be seen by

performing the summation along a single diagonal:
+∞∑

k=−∞
sinc(x − k) sinc(y − k) = sinc(x − y).

Despite the absence of staircasing and theoretical optimality for band-limited signals, the sinc kernel is a poor
choice for image interpolation. It is computationally inconvenient because of infinite support, and its prominent and
slowly fading oscillations produce severe ringing artifacts.

We have also experimented with a simpler measure of staircasing, the squared deviation of the interpolant from
1/2 integrated along the edge:

Ed(θ) =
∫ 1

0
(u(t, θ + t) − 1/2)2dt.

A staircasing-free interpolation implies Ed = 0 since the central isoline always has the value 1/2. However, the
converse is not true – the interpolant may have wavy isolines at values other than 1/2. This measure thus performed
poorly, often producing pathologically oscillating kernels.
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The kernel coefficients are then optimized with respect to Eg(1/2). We start by analytically differentiating
E2
g(1/2) with respect to free kernel coefficients in order to obtain the zero partial derivative conditions. The

resulting systems of polynomial equations are solved with the Solve command. Internally, Solve employs
cylindrical algebraic decomposition for dealing with such systems [30]. All the real critical points found by Solve
are then checked using a second partial derivative test to find the local minima. The Hessian of the objective function
is calculated and the PositiveDefiniteMatrixQ command is employed to verify its positive-definiteness.
In all cases, a single real critical point that is also a local minimum has been found.

We have applied our optimization procedure to kernels with r ranging from 3/2 to 3 and p from 2 to 4. The
complexity of the stationary point equations increases with the number of free coefficients v. The maximal number
of terms of a Eg polynomial is given by multinomial coefficient (v, 4)!, and the maximal number of terms in each
of the corresponding equations is (v, 4)! − (v − 1, 4)!. These upper bounds are usually reached. The largest system
we were able to solve symbolicaly corresponds to K(3,3) and consists of 4 equations with 35 terms each. We were
unable to obtain a symbolic solution for kernel K(3,4) (6 equations, 84 terms each) in a reasonable time (8 h on a
Xeon 6146-based workstation) and only report the numeric results for this instance. The obtained kernels are plotted
in Fig. 2. Below we provide four examplar polynomials along with the equations whose real roots correspond to
the minima:nnnn

K(2,2) : E2
g(1/2) = (752 + 2611c0,1 + 3192c2

0,1 + 1334c3
0,1 + 196c4

0,1)/1440,

2611 + 6384c0,1 + 4002c2
0,1 + 784c3

0,1 = 0;
K(2,4)S : E2

g(1/2) = (9318135 + 7949688c0,2 + 3041872c2
0,2 + 323456c3

0,2 + 12544c4
0,2)/33868800,

993711 + 760468c0,2 + 121296c2
0,2 + 6272c3

0,2 = 0;
K(3,2) : E2

g(1/2) = (4373 + 760c4
0,1 + 5c3

0,1(1051 + 276c1,1) + 3c2
0,1(4381 + 6c1,1(405 + 62c1,1))

+ 3c1,1(2146 + c1,1(1099 + 4c1,1(53 + 13c1,1))) + c0,1(12826 + 3c1,1(4176

+ c1,1(1299 + 152c1,1))))/1440,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

12826 + 3040c3
0,1 + 15c2

0,1(1051 + 276c1,1) + 6c0,1(4381 + 6c1,1(405 + 62c1,1))+
3c1,1(4176 + c1,1(1299 + 152c1,1)) = 0,

1073 + 230c3
0,1 + 3c2

0,1(405 + 124c1,1) + c1,1(1099 + 2c1,1(159 + 52c1,1))+
3c0,1(696 + c1,1(433 + 76c1,1)) = 0;

K(3,3)S : E2
g(1/2) = (92669325 + 117493344c0,2 + 52220952c2

0,2 + 9325760c3
0,2 + 598096c4

0,2)/25804800,

7343334 + 6527619c0,2 + 1748580c2
0,2 + 149524c3

0,2 = 0.

Since many other polynomials and their stationary points in the symbolic form are too cumbersome to reproduce
here, we only list the selected numeric kernel coefficients. The coefficients of K(2,4)S admit a simple rational
approximation resulting in a nearly identical kernel (maximal deviation 1.2 · 10−4).

K(2,2) :
[−0.621913 −0.378087
−0.378087 0.378087

]
,

K(2,4)S :
[

0 −1.751899 0.003798 0.748101
−0.5 0.251899 0.996202 −0.748101

]
≈ 1

4

[
0 −7 0 3

−2 1 4−3

]
,

K(5/2,3) :
⎡

⎣
0 −1.581352 0

−0.825153 1 0.463315
0.162576 −0.209324 −0.231657

⎤

⎦ ,
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K(3,3) :
⎡

⎣
−0.435330 −0.753337 0.188667
−0.548062 0.379468 0.168595

0.092578 0.046312 −0.138890

⎤

⎦ ,

K(3,3)S :
⎡

⎣
0 −2.067867 1.067867

−0.932133 1.648200 −0.716067
0.216067 −0.432133 0.216067

⎤

⎦ ,

K(3,4)S :
⎡

⎣
0 −1.851913 0.542139 0.309774

−0.838313 0.693843 0.958096 −0.813626
0.169156 0.165539 −0.838547 0.503852

⎤

⎦ .

Some of the obtained kernels are nearly identical, namely

|ψ(2,3)(x) − ψ(2,2)(x)| < 2.7 × 10−4,

|ψ(2,4)(x) − ψ(2,2)(x)| < 1.4 × 10−3,

|ψ(3,4)(x) − ψ(3,3)(x)| < 6.7 × 10−4,

|ψ(5/2,4)(x) − ψ(5/2,4)S (x)| < 3.2 × 10−3.

3 Kernel Evaluation

In addition to our optimized kernels, we have also tested several interpolators proposed in the literature. Apart from
the widely used cubic kernel K(2,3)S , Keys also derived a unique C1-smooth piecewise-polynomial interpolator
Ks(3,3) with higher interpolation order. Its ci, j coefficients are

1

12

⎡

⎣
0 −28 16

−8 15 −7
1 −2 1

⎤

⎦ .

The Lanczos kernel is the most popular member of the windowed sinc family of interpolators:

Lsr (x) = sinc(x) sinc(x/r)�|x | < r�

According to Turkowski [27], it provides the best compromise between sharpness and ringing among several tested
windowed sinc filters. We have tested the commonly employed values r = 2 and r = 3. The Lanczos kernel does
not satisfy the partition of unity condition. This resulting ripple is noticeable for r = 2 (maximal deviation from
unity 0.019) but is tolerable for r = 3 (maximal deviation 0.0057). In the case of 2D kernel Lsr (x)Lsr (y), the
deviation increases by a factor of nearly two.

Lagrange interpolation is a classical method that interpolates the given data with a polynomial of the lowest
possible degree. When applied globally, it is susceptible to large oscillations. However, it can be applied locally
to 2r points around the current x . For uniformly-spaced data, this technique is equivalent to convolution with a
piecewise-polynomial kernel. In the case of integer r , the kernel can be found by noting that a subpolynomial on
the interval [i, i + 1) must evaluate to δ(x) for integer x , i − r + 1 ≤ x ≤ i + r . The coefficients for r = 2 and
r = 3 are

Lg(2,3)(x) : ci, j = 1

6

[−3 −6 3
−2 3 −1

]
,

Lg(3,5)(x) : ci, j = 1

120

⎡

⎣
−40−150 50 30 −10
−60 80 −5 −20 5

6 −5 −5 5 1

⎤

⎦ .
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(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 2 Plots of interpolation kernels
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Lagrange kernels are C0-smooth in case of an integer r and discontinuous in case of a half-integer r (the latter
thus being excluded from the tests). They converge to sinc(x) as r → +∞ (see [19] for the proof), optimal in the
low frequency region of the spectrum [23] and have the minimal support for a given interpolation order among the
functions satisfying the interpolation constraints [3].

Schaum studied the performance of interpolators for different models of power spectrum | f (ν)|2 [23]. For
| f (ν)|2 ∼ 1/ν4, the optimal interpolator supported on [−2, 2] is a piecewise-polynomial kernel

Sc(2,3)(x) = 1

15

⎧
⎪⎨

⎪⎩

3(1 − |x |)(5 + 4|x | − 5|x |2) 0 ≤ |x | < 1,

(2 − |x |)(1 − |x |)(12 − 5|x |) 1 ≤ |x | < 2,

0 |x | ≥ 2.

Sc(2,3)(x) satisfies the partition of unity and linear term representation constraints and is C0-smooth.
B-splines are piecewise-polynomial functions defined recursively as

β0(x) =

⎧
⎪⎨

⎪⎩

1 |x | < 1/2

1/2 |x | = 1/2

0 |x | > 1/2

, βp+1 = βp ∗ β0,

where ∗ denotes the convolution operator. For p > 1, βp are non-interpolating, so an additional prefiltering step is
required to satisfy the interpolation condition (see [4,9] for details). The prefilter can be combined with βp to get
the actual interpolation kernel β∗

p. In particular, it can be shown (see [6]) that

β∗
2 (x) =

+∞∑

k=−∞

√
2(2

√
2 − 3)|k|β2(x − k),

β∗
3 (x) =

+∞∑

k=−∞

√
3(

√
3 − 2)|k|β3(x − k).

As the spline order increases, β∗
p(x) converges to sinc(x). B-spline interpolation is generally considered to be

one of the highest quality linear methods, but the fact that the kernel is not compactly supported complicates the
implementation.

The Mitchell–Netravali kernel introduced in [20] is given by

MN(2,3)(x) = 1

18

⎧
⎪⎨

⎪⎩

16 − 36|x |2 + 21|x |3 0 ≤ |x | < 1,

32 − 60|x | + 36|x |2 − 7|x |3 1 ≤ |x | < 2,

0 |x | ≥ 2.

It is a linear combination of β3(x) and K(2,3)S with weights 1/3 and 2/3 respectively. Unlike all other kernels in
our tests, MN(2,3)(x) is non-interpolating. This property makes it a poor choice if the target sample rate is close to
that of the original image. Nonetheless, we have included it in the comparison, as it was identified in [20] as the
optimal C1-smooth cubic kernel supported on [−2, 2] interval in terms of perceived image quality.

To evaluate the performance of the optimized kernels on image features of various sizes and orientations we
employed a zone plate function given by

I (x, y) = (1 + cos(2πF(x2 + y2)))/2, F = 6.

I (x, y) was sampled in the region [0, 1] × [0, 1] with sampling interval �x = �y = 1/30 and then resampled
with �x = �y = 1/360 using various kernels. The resulting images are reproduced in Appendix 5. Table 2 lists
the interpolation errors and the staircasing metrics of the new and existing kernels. Our results compare favorably
with those of the existing kernels for r ≥ 2. The optimized interpolators outperform the popular Keys’ kernels with
the same r in terms of both the staircasing magnitude and RMSE even at lower polynomial orders. The reduction
of anisotropy is also apparent in the plots of the gradients of interpolant u(x, y) (Figs. 3 and 4). Odd kernels are
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Fig. 3 Gradients of u(x, y) for even kernels. Isolines of u(x, y) at levels 0, 1/4, 1/2, 3/4, 1 are shown in gray
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Table 2 Staircasing metrics Eg(1/2) and zone plate root mean square interpolation errors of various kernels

Kernel Eg(1/2) RMSE Kernel Eg(1/2) RMSE

Linear 0.368 1.26 ×10−1 K(5/2,3) 0.300 4.48 ×10−2

K(3/2,2) 0.480 1.04 ×10−1 K(5/2,3)S 0.378 7.68 ×10−2

K(3/2,4) 0.428 1.14 ×10−1 K(5/2,4) 0.262 5.16 ×10−2

K(3/2,4)S 0.429 1.12 ×10−1 K(5/2,4)S 0.263 5.12 ×10−2

K(2,2) 0.222 5.98 ×10−2 K(3,2) 0.185 3.33 ×10−2

K(2,3) 0.222 5.98 ×10−2 K(3,3) 0.172 2.82 ×10−2

Lg(2,3) 0.265 7.84 ×10−2 K(3,3)S 0.240 3.18 ×10−2

Sc(2,3) 0.278 6.86 ×10−2 Ks(3,3) 0.285 5.76 ×10−2

K(2,3)S 0.339 7.72 ×10−2 K(3,4) 0.172 2.83 ×10−2

MN(2,3) 0.209 1.09 ×10−1 K(3,4)S 0.223 2.35 ×10−2

K(2,4) 0.222 6.00 ×10−2 Lg(3,5) 0.233 5.62 ×10−2

K(2,4)S 0.303 5.33 ×10−2 Ls3 0.254 3.58 ×10−2

Ls2 0.368 7.29 ×10−2 β∗
2 0.313 5.43 ×10−2

K(5/2,2) 0.316 5.04 ×10−2 β∗
3 0.236 3.70 ×10−2

Values improving upon the results of kernels with smaller r or identical r and smaller p are shown in bold

(A) (B) (C)

(D) (E) (F)

Fig. 4 Gradients of u(x, y) for odd kernels. Isolines of u(x, y) at levels 0, 1/4, 1/2, 3/4, 1 are shown in gray
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less effective at reducing staircasing even when compared to even kernels with smaller support. The Eg data offers
some justification for the Mitchell–Netravali kernel, as it has the lowest staircasing among the kernels of its size.
However, K(2,2) has only 6% higher Eg while being interpolating.

We have also performed resampling tests on twelve benchmark images from the collection [1] (“apples”, “billiard
balls a”, “cards a”, “coins”, “ducks”, “flowers”, “keyboard a”, “lion”, “garden table”, “tomatoes b”, “tools b”, “wood
game”). The reduced 300 × 300 images provided as a part of the image set were resampled to their original size
(2400 × 2400) and compared with the ground truth. Since the root mean square error (RMSE) is not a reliable
indicator of perceived image quality, we employed 12 additional full-reference image quality assessment (IQA)
methods implemented in the PIQ library [14]: SSIM [40], MS-SSIM [28], VIFp [25], FSIM [37], GMSD [32],
VSI [35], HaarPSI [22], MDSI [41], MS-GMSD [34], LPIPS [38], PieAPP [21], DISTS [7]. In order to specifically
assess the reconstruction of gradients, we have added gradient cosine similarity (GCS) to the set of IQA methods.
The gradients were calculated using the maximally isotropic Scharr operator [11]:

gx = 1

2(2 + √
12)

⎡

⎣
−1 0 1

−√
12 0

√
12

−1 0 1

⎤

⎦ , gy = gᵀ
x

The gradient cosine similarity was then calculated as

GCS =
∑

i
∑

j Gi, j · G ′
i, j√∑

i
∑

j G
2
i, j

√∑
i
∑

j G
′2
i, j

,

where Gi, j and G ′
i, j are the per-pixel gradients of the original and the iterpolated images.

Since different IQA methods have different scales, the results of each method were rescaled into the [0, 100]
range with 0 corresponding to the worst interpolation kernel and 100 to the ground truth image. The resulting
standardized quality scores averaged across all images are listed in Table 3.

The kernels ranked best by various IQA methods are K(3,4)S (MS-SSIM, GMSD, MS-GMSD, HaarPSI, GCS),
K(3,3)S (RMSE, FSIM, MDSI), β3 (SSIM, LPIPS), β2 (VIF), K(2,4)S (VSI), Ls3 (DISTS), Ls2 (PieAPP). The
only case where our optimized kernels demonstrate no improvement is r = 3/2. For larger values of r , the new
kernels K(2,4)S , K(3,3)S and K(3,4)S outperform the existing interpolators with identical support according to the vast
majority of IQA methods. The kernel K(5/2,3) compares favorably even with the larger Keys, Lagrange, and Lanczos
interpolators. Remarkably, the kernels K(5/2,3), K(3,3)S and K(3,4)S outperform the significantly more costly cubic
B-spline interpolation according to the majority of quality metrics (9, 10 and 10 metrics respectively). Increasing the
support size and polynomial degree gives diminishing returns, so the potential improvements arising from kernels
with r > 3 or p > 4 are likely marginal.

As Fig. 5 demonstrates, the new kernels with small Eg provide a noticeable reduction of staircasing around
diagonal edges when compared to the popular Keys’ interpolators. However, for a given support size the kernels
with the smallest Eg are usually not the ones preferred by IQA methods (the mean correlation between Eg and
IQA scores is −0.54). There are two reasons for this inconsistency. First, optimization of Eg alone does not take
into account image sharpness. Even though K(3/2,2) has the worst Eg among the tested kernels, it ranks above the
linear interpolation according to all but one IQA method by virtue of producing sharper images. Second, the IQA
methods themselves are imperfect and usually are not specifically designed for the distortion types introduced by
interpolation.

4 Conclusion

We have constructed several new high-quality separable piecewise-polynomial interpolation kernels for image
resampling. The kernel coefficients were obtained by minimizing a specifically defined measure of the magnitude
of staircasing artifacts around diagonal edges. By using the Mathematica computer algebra system we were able to
evaluate the resulting polynomials in symbolic form. This is an important prerequisite for the optimization process,
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Table 3 Averaged standardized quality scores for various kernels and IQA methods

NN Lin. K(3/2,2) K(3/2,4) K(3/2,4)S K(2,2) Lg(2,3) Sc(2,3) K(2,3)S

RMSE 0.00 22.58 29.60 26.30 26.94 35.04 32.53 34.67 33.84

SSIM 0.00 45.62 49.27 47.27 47.72 50.79 50.77 51.81 51.78

MS-SSIM 0.00 27.10 39.13 33.56 34.67 42.26 40.44 43.53 43.31

FSIM 34.79 0.00 36.72 20.40 23.53 65.54 52.87 61.22 56.55

GMSD 0.00 45.11 48.84 47.18 47.51 50.71 49.95 51.18 51.01

MS-GMSD 0.00 43.35 48.80 46.35 46.84 50.93 49.88 51.54 51.35

VIF 0.00 35.17 35.06 34.66 34.81 35.37 36.68 36.59 36.66

VSI 29.11 0.00 29.51 15.54 18.37 57.59 46.77 53.45 48.50

HaarPSI 0.00 56.87 59.21 57.88 58.17 62.41 61.70 62.49 61.97

MDSI 9.11 0.00 10.15 5.27 6.15 21.09 15.74 19.26 17.31

LPIPS 0.00 38.95 40.70 40.06 40.26 41.79 41.93 42.50 42.52

PieAPP 4.02 32.07 45.13 40.60 41.17 37.60 35.67 39.46 42.50

DISTS 0.00 56.49 59.93 58.84 58.96 62.89 61.03 62.19 61.74

GCS 0.00 55.04 57.32 55.61 56.09 59.83 59.79 60.64 60.34

MN(2,3) K(2,4)S Ls2 K(5/2,2) K(5/2,3) K(5/2,3)S K(5/2,4)S K(3,2) K(3,3)

RMSE 25.91 37.58 25.02 37.73 38.02 34.36 36.73 35.94 36.87

SSIM 47.79 52.38 35.25 52.84 52.84 52.05 52.00 51.32 51.57

MS-SSIM 31.28 46.97 31.41 47.69 47.75 44.55 45.26 44.01 45.05

FSIM 19.37 71.58 54.85 71.36 72.37 58.25 69.36 67.70 71.62

GMSD 46.41 52.67 50.76 53.06 53.31 51.33 52.34 52.06 52.51

MS-GMSD 45.18 53.56 51.53 54.09 54.37 51.88 52.98 52.76 53.36

VIF 36.75 35.53 18.87 36.12 36.05 36.51 35.82 35.85 35.44

VSI 16.36 62.02 24.18 58.89 58.99 48.70 57.74 48.35 51.57

HaarPSI 58.83 63.26 59.07 63.67 63.95 62.04 63.42 63.59 63.78

MDSI 4.85 24.27 16.09 24.27 24.85 18.05 23.15 22.52 24.53

LPIPS 39.77 43.08 24.94 43.32 43.27 42.64 42.81 42.40 42.34

PieAPP 27.37 46.80 49.75 46.93 46.51 45.99 42.96 41.57 42.84

DISTS 57.47 64.84 57.93 64.68 65.00 62.22 64.33 64.20 64.63

GCS 58.09 61.15 51.72 61.63 61.78 60.34 60.87 60.57 60.86

K(3,3)S K s(3,3) K(3,4)S Lg(3,5) Ls3 β∗
2 β∗

3

RMSE 38.20 35.86 38.12 35.22 34.05 36.45 37.21

SSIM 52.91 52.71 52.70 52.03 51.25 53.14 53.20

MS-SSIM 47.67 45.66 47.81 44.06 46.28 46.96 47.15

FSIM 73.49 64.31 71.15 63.70 71.94 65.22 67.88

GMSD 53.55 52.27 54.09 51.58 53.55 52.74 53.23

MS-GMSD 54.64 52.96 55.34 52.06 54.62 53.64 54.19

VIF 36.22 37.15 36.02 36.93 33.22 37.26 37.21

VSI 56.14 50.74 50.45 50.38 39.71 51.90 53.40

HaarPSI 64.39 63.38 64.72 63.11 64.00 63.63 64.29
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Table 3 continued

K(3,3)S K s(3,3) K(3,4)S Lg(3,5) Ls3 β∗
2 β∗

3

MDSI 25.59 20.77 24.52 20.42 24.93 21.26 22.62

LPIPS 43.32 43.16 43.30 42.68 39.27 43.48 43.58

PieAPP 46.09 41.91 48.15 38.35 46.08 45.18 42.99

DISTS 64.97 63.03 65.88 62.69 66.93 63.60 64.14

GCS 61.91 61.46 62.07 60.97 61.00 61.69 62.04

Near-duplicate kernels have been excluded. The best results among the kernels with support size r or less are shown in bold for each
r > 1

(A) (B)

(C) (D)

Fig. 5 A test image interpolated with Keys’ (a, b) and minimal Eg (c, d) kernels

since the gradient of the objective function can be easily calculated. In most cases, we were able to find the stationary
points and obtain the optimal kernel coefficients also in symbolic form. Although the optimization could have been
performed numerically using Newton’s method, a symbolic approach had the advantage of proving the solution’s
uniqueness.

The reduction of staircasing comes at a cost of increased kernel oscillations. Nonetheless, when compared to
other popular interpolating kernels our results provide a noticeable improvement of subjective image quality in
areas around sharp transitions. Depending on the desired computational cost and subjective preferences between
sharpness and blocking, we recommend selecting a kernel from the following set: K(2,2), K(2,4)S , K(5/2,3), K(3,3),
K(3,3)S , and K(3,4)S .
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We note the discrepancy between theory and practice. By the standards of interpolation theory, our kernels are
inferior to many other piecewise-polynomial interpolators proposed in the literature as they have low interpolation
order and are not necessarily continuously differentiable. Nonetheless, they demonstrate superior performance
both subjectively and according to various image quality assessment methods. We conclude that the theoretical
considerations pertaining to one-dimensional interpolation are insufficient for the design of high-quality image
resampling kernels. The often neglected anisotropic artifacts arising from the kernel separation process are a major
factor determining the subjective image quality.

Optimization with respect to a single type of artifact is a limitation of the present work. A more complex objective
function incorporating other artifact types could further improve the subjective image quality. The use of separable
kernels is another limitation. With nonseparable kernels, the staircasing error metrics could be reduced further, but
we decided not to pursue this direction for two reasons. First, it would greatly increase the number of coefficients and
would lead to reduced speed and higher complexity. Second, the approach would introduce further complications
since the vertical and horizontal edges would no longer be staircasing-free.

Since our artifact reduction technique stays within the linear interpolation framework, it retains the simplicity
and computational efficiency of the linear methods. High-quality texture filtering on modern graphical processors
is therefore a possible application. The use of the proposed kernels as a basis of more complex nonlinear methods
is a promising direction for future work.

All Mathematica code used for kernel construction can be found on the author’s GitHub page [13].

Acknowledgements We would like to thank Timur Sadykov for helpful suggestions made during the preparation of this manuscript.

5 Interpolated Zone Plate Images

Figs. 6 and 7 demonstrate the function I (x, y) interpolated with various kernels.
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(A) Nearest neighbor (B) Linear (C) K(3/2,2)

(D) K(3/2,4) (E) K(3/2,4)S (F) K(2,2)

(G) Lg(2,3) (H) Sc(2,3) (I) MN(2,3)

(J) K(2,3)S (K) K(2,4)S (L) Ls2

Fig. 6 Interpolated zone plate image, r = 1..2
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K(5/2,2) K(5/2,3) K(5/2,3)S

K(5/2,4)S K(3,2) K(3,3)

K(3,3)S Ks(3,3) K(3,4)S

Lg(3,5) Ls3 Ground truth

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

Fig. 7 Interpolated zone plate image, r = 5/2..3
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