
Math.Comput.Sci. (2022) 16:13
https://doi.org/10.1007/s11786-022-00531-w Mathematics in Computer Science

Faster Beta Weil Pairing on BLS Pairing Friendly Curves
with Odd Embedding Degree

Azebaze Guimagang Laurian ·
Fouotsa Emmanuel · El Mrabet Nadia ·
Pecha Njiahouo Aminatou

Received: 15 September 2021 / Revised: 26 May 2022 / Accepted: 1 June 2022 / Published online: 22 June 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract Since the advent of pairing-based cryptography, various optimization methods that increase the speed
of pairing computations have been exploited, as well as new types of pairings. This paper extends the work of
(Kinoshita and Suzuki Advances in Information and Computer Security - 15th International Workshop on Security,
IWSEC 2020, Fukui, Japan, September 2-4, 2020, Proceedings, Lecture Notes in Computer Science, Springer,
2020) who proposed a new formula for the β-Weil pairing on curves with even embedding degree by eliminating
denominators and exponents during the computation of the Weil pairing. We provide novel formulas suitable for
the parallel computation for the β-Weil pairing on curves with odd embedding degree which involve vertical line
functions useful for sparse multiplications. For computations we used Miller’s algorithm combined with storage
and multifunction methods. Applying our framework to BLS-27, BLS-15 and BLS-9 curves at respectively the 256
bit, the 192 bit and the 128 bit security level, we obtain faster β-Weil pairings than the previous state-of-the-art
constructions. The correctness of all the formulas and bilinearity of pairings obtained in this work is verified by a
SageMath code.

Keywords β-Weil pairing · Optimal Ate pairing · Multifunction technique · Storage technique · BLS curves

Mathematics Subject Classification Primary 14H52; Secondary 1990S

Authors 1, 2 and 4 are supported by the Simons Foundation through the project PREMA, Subsaharan Africa. The second author
aknowledges the support of TWAS UNESCO under the Grant 20-063 RG/MATHS/AF/AC-I.

A. G. Laurian
Faculty of Science, Department of Mathematics, The University of Yaounde 1, P.O BOX 812, Yaounde, Cameroon
e-mail: azebazelaurian@yahoo.fr

F. Emmanuel (B)
Department of Mathematics, Higher Teacher Training College, The University of Bamenda, P.O BOX 39 Bambili, Cameroon
e-mail: emmanuelfouotsa@yahoo.fr

E. M. Nadia
Mines Saint-Etienne, CEA-Tech, Departement SAS, F - 13541 Gardanne, France
e-mail: nadia.el-mrabet@emse.fr

P. N. Aminatou
Ecole Nationale Supérieure Polytechnique de Maroua, Université de Maroua, P.O.Box 46, Maroua, Cameroon
e-mail: aminap2001@yahoo.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-022-00531-w&domain=pdf

13 Page 2 of 23 A. G. Laurian et al.

1 Introduction

Pairings have first been studied in mathematical research areas such as algebraic number theory and algebraic
geometry [2]. Then pairings on elliptic curves have attracted significant attention and have been applied to many
cryptographic schemes, namely Boneh and Franklin’s identity based encryption scheme [3], Boneh, Lynn and
Shacham’s short signature scheme [4] and Joux’s one round tripartite key exchange [5]. Before the advent of
pairings one did not know how to effectively build up these protocols. A pairing is a bilinear map from the cartesian
product of two abelian additive groups to an abelian multiplicative group. For instance, the Weil pairing e over the
r -torsion E[r] of an elliptic curve E, satisfies the following basic properties :

• e is bilinear i.e. for every P1, P2, Q1 and Q2 in E[r], we have that e(P1 + P2, Q1) = e(P1, Q1) · e(P2, Q1)

and e(P1, Q1 + Q2) = e(P1, Q1) · e(P1, Q2);
• e is non degenerate i.e. if e(P, Q) = 1 for all P ∈ E[r], then Q = O, where O is the point at infinity;
• e is alternating i.e. e(P, P) = 1 for all P in E[r].

The bilinearity is the most important property for building applications with cryptographic pairings. The very
first pairings used in cryptography were the Weil and the Tate pairings [3,6]. To date there are several variants of
the Tate pairing and the most efficient candidate is the optimal Ate pairing [7]. On the other hand variants of the
Weil pairing such as α-Weil [8], β-Weil [8–10] and ω-Weil pairings [11,12] are elegant constructions tailored for
parallel executions. Viewed in this angle, the β-Weil pairing is more efficient than the optimal Ate pairing [9,10].
Moreover our motivation for computing the β-Weil pairing rather than the Tate pairing or its variants, is that it has
no time-consuming final exponentiation and can be trivially parallelized [9]. The pairings can be implemented on
a smart card, but due to the limited computing power and constrained memory there is a need to faster evaluate the
pairings.

In this work, we focus on the β-Weil pairing defined over pairing-friendly elliptic curves with odd embedding
degrees 9, 15 and 27. These curves admit twists of degree three which enable computations to be done in subfields
and also lead to the denominator elimination technique. It is noticed in [13] that elliptic curves with embedding
degree k = 27 are a suitable choice for computing product of pairings. Moreover, Barbulescu et al. showed that
at the 256 bits security level, curve with k = 27 seem to be the best choice for pairing efficiency [14]. Also in
[10] Fouotsa et al. proposed a pairing denoted β̂k-pairing different from β-pairing which is more efficient than the
optimal Ate pairing over BLS-15. Many works in the litterature have been carried out for faster evaluation of the
pairings such as [15–21] including their security [22–24].

The original β-Weil pairing that we consider here is the generalised formula proposed by Fouotsa et al. in [10].
Their theoretical evaluation showed some limitations such as:

– The inversions of Miller’s functions which are very costly,
– The precomputation of some points [pi]P that underestimated the total cost of the β-Weil pairing,
– the β-Weil pairing was not tailored for multifunction technique, this technique extremely reduces the cost of

squarings in the finite field.

Our main contribution is the extension of Kinoshita and Suzuki’s work [1] who proposed a formula for the β-Weil
pairing on the curves with even embedding degree by eliminating the denominators and the exponents. But their
formula to simplify the denominators does not work for odd embedding degrees. We then provide a novel formula
for the β-Weil pairing on curves with odd embedding degrees which involve vertical line functions useful for sparse
multiplications. To compute the new formula of our novel β-Weil pairing, we use Miller’s algorithm based on
storage and multifunction techniques.

Whereas, storage technique consists of compute and store line functions for Miller’s loop that are reused to
find another line functions for other Miller’s function, multifunction technique evaluates the product of n Miller’s
functions and only requires a single squaring in the extension field per iteration instead of n squarings in the naive
way. The idea of precomputation and storage of line functions and the exploitation of sparsity can be found in [25]
and for multi-function technique see [26].

Faster Beta Weil Pairing on BLS Page 3 of 23 13

The correctness of the formulas for curves with embedding degrees 27, 15 and 9 are ensured by a SageMath
script available at [27] and inspired by Aurore’s online SageMath repository for even embedding degree pairings.
As applications we applied the variant of Miller’s algorithm with these formulas with the Miller loop parameters
obtained by applying the recommendation in [28] and [29,30]. The pairings over these curves are resistant to the
STNFS attacks.

Detailed cost estimation of β-Weil pairing on BLS-27, BLS-15 and BLS-9 at respectively the 256, 192 and 128
bits level of security are provided. Our theoretical results reduce the number of multiplication operations on the
prime field in β-Weil pairing for BLS family with k = 27, 15 and 9 about 44.78%, 49.07% and 38.49%, as well
as the number of divisions of about 87.1% 78.8% and 61.2% respectively for serial computation. The optimal Ate
pairing remains the fastest pairing in the serial computation. However, the proposed β-Weil pairing on curve with
k = 15 is competitive to optimal Ate pairing on the same curve. In the parallel computation with 3 processors, the
β-Weil pairing on BLS-27, BLS-15 and BLS-9 is faster than the optimal Ate pairing. For more details see Sect. 6,
Appendix A.2.2 and Table 3.

This paper is organized as follows. The Sect. 2 summarises the mathematical background on Weil pairing over
elliptic curves and recalls the idea of Kinoshita and Suzuki [1] to accelerate the β-Weil pairing computation. Sect. 3
provides a new formula of the β-Weil pairing on curves with odd embedding degrees. Sect. 4 describes storage and
multifunction techniques. Sect. 5 estimates the theoretical cost of the basic and special operations of the pairing.
Sects. 6 provides theoretical costs of computing, the new β-Weil pairing both in serial and parallel and sect. 7
compares our results with those done on previous works. Finally, Sect. 8 concludes the work.

2 Mathematical Preliminaries

In this section, we define the Weil pairing as well as its variant called β-Weil pairing with some past results.

2.1 The Weil Pairing

Let E be an elliptic curve defined over Fp, where p is a large prime number and let r be the largest prime number
such that r divides #E(Fp). Let k be the smallest positive integer such that r divides pk − 1. The integer k is called
the embedding degree of E (with respect to r). For any P ∈ E[r], we denote fr,P the rational function with divisor

div(fr,P) = r [P] − r [O].

The Weil pairing is defined as:

eW : E(Fpk)[r] × E(Fpk)[r] −→ μr : (P, Q) �−→ (−1)r fr,P (Q)

fr,Q(P)
.

The function fr,P is called the Miller function, it is obtained through Miller’s algorithm [17] based on the
following relations. For all a, b ∈ Z and P ∈ E[r],

f1,P = 1, (2.1)

fa+b,P = fa,P · fb,P · h[a]P,[b]P , (2.2)

fab,P = f a
b,P · fa,[b]P = f b

a,P · fb,[a]P , (2.3)

where h[a]P,[b]P = l[a]P,[b]P/V[a+b]P and l[a]P,[b]P is the straight line containing [a]P and [b]P and V[a+b]P is
the corresponding vertical line passing through [a + b]P .

The Weil pairing is composed of two executions of the Miller’s loop for the evaluation of fr,P (Q) and fr,Q(P).

The efficiency of Miller’s loop highly depends on the choice of the elliptic curve and the system of coordinates

13 Page 4 of 23 A. G. Laurian et al.

of the elliptic curve. Pairing-friendly elliptic curves are curves allowing an efficient implementation of pairings.
These curves are parametrized by polynomials p(x), r(x) and t (x) such that for a given security level, we find the
corresponding value of x such that #E(Fp(x)) = p(x) + 1 − t (x) is divisible by r(x). The parameters p(x), r(x)

and t (x) for elliptic curves with embedding degrees 9, 15 and 27 denoted as BLS-9, BLS-15 and BLS-27 in [31]
are respectively represented as polynomials as follows:

BLS-27: r(x) = 1
3 (x18 + x9 + 1), p(x) = 1

3 (x − 1)2(x18 + x9 + 1) + x, t (x) = x + 1.

BLS-15: r(x) = x8 − x7 + x5 − x4 + x3 − x + 1, p(x) = 1
3 (x12 − 2x11 + x10 + x7 − 2x6 + x5 + x2 + x + 1),

t (x) = x + 1.

BLS-9: r(x) = 1
3 (x6 + x3 + 1), p(x) = 1

4 ((x + 1)2 + 1
3 ((x − 1)2(2x3 + 1)2)), t (x) = x + 1.

2.2 Previous Results on β-Weil Pairing Computation

The most efficient way to optimize a pairing is by using Miller’s algorithm which computes the rational function
fs,R where, s ∈ Z and R ∈ E[r]. This rational function is called Miller’s function with divisor div(fs,R) =
s(R)−([s]R)−(s−1)(O).Vercauteren [7] introduced the extended Miller function fs,h,R with divisor div(fs,h,R) =∑w

i=0 hi (([pi]R) − (O)), where h(x) = ∑w
i=0 hi xi in Z[x] is the optimal polynomial obtained by using a lattice-

based method such that h(p) = 0 mod r. For m = h(p)/r and m � r, this extended Miller function is expressed
as

fs,h,R = f m
r,R

∏w
j=0 f

h j

p j ,R

. (2.4)

The extended Miller’s function was used to propose efficient variants of Ate pairing and Weil pairing such as
optimal Ate pairing [7] and β-Weil pairing [8] on curves of even embedding degrees where the Miller’s loop length
is reduced to log2(x) iterations.

In [10], Fouotsa et al. extended the work of Aranha et al. [8] on the β-Weil pairing to curves with an odd
embedding degree k. They provided the following formula.

Theorem 2.1 ([10], Theorem 4). Let l be a proper divisor of k. There exists a polynomial h(z) = ∑w
i=0 hi zi ∈ Z[z]

such that |hi | < r
1

ϕ(k) and h(p) = rs so that the map

βk : G1 × G2 → μr : (P, Q) �→
⎛

⎝
e−1∏

i=0

(
f p,h,Q([pi]P)

f p,h,[pi]P (Q)

)pe−1−i ⎞

⎠

pl−1

,

is a pairing and e = k/d where d is the twisted degree of the curve. More precisely, if r � spe−1−i and r � h j , for
all 0 ≤ i ≤ e − 1 and 1 ≤ j ≤ w, then the map βk is non-degenerate.

Note that the final powering pl − 1 sends to 1 the multiplicative factors of the Miller’s function which lies in
proper subfields of Fpk .

Remark 2.2 For curves of even embedding degrees, Aranha [8] et al. provided the following formula of the β-Weil
pairing

βk(P, Q) =
⎛

⎝
e−1∏

i=0

(
f p,h,Q([pi]P)

f p,h,[pi]P (Q)

)pe−1−i ⎞

⎠

pk/2−1

.

To avoid denominators and exponents in the computation of β-Weil pairings for curves of even embedding
degrees, Kinoshita et al. [1] considered the useful results in the following lemma.

Faster Beta Weil Pairing on BLS Page 5 of 23 13

Lemma 2.3 1. Elimination of the denominators (and thus an inversion) of the β-Weil pairing. In the context of
an elliptic curve of even embedding degree, the following relations hold:

f −1
a,R = fa,−R and f −1

p,h,R = f p,h,−R

2. Elimination of the exponents of the β-Weil pairing. For any P ∈ G1 and Q ∈ G2 :

f pi

p,h,P (Q) = f p,h,P (πpi (Q)) and f pi

p,h,Q(P) = f p,h,πpi (Q)(P).

Then they provided the simplified formula of the β-Weil pairing

βk(P, Q) =
(

e−1∏

i=0

f p,h,π
pδi (Q)([pi]P) · f p,h,[pi]P (πpδi (Q))

)pk/2−1

(2.5)

where, P = −P and δi = e − 1 − i.
The first item of the Lemma 2.3 does not work on elliptic curves with odd embedding degrees. In the following

we will derive an analogous lemma as well as the new β-Weil pairing on elliptic curves of odd embedding degrees.

3 New Formula for β-Weil Pairing

In this section we first provide a new general formula of β-Weil pairing on elliptic curves of odd embedding degrees.
Then we give the explicit formulas of β-Weil pairing on BLS-27, BLS-15 and BLS-9.

3.1 New Formula for β-Weil Pairing: the Case of Odd Embedding Degrees

The following lemma gives nice properties of the Miller’s function in the case of odd embedding degrees.

Lemma 3.1 For all a ∈ Z and R ∈ E, we obtain the following two relations:

(i) f −1
a,R = fa,−R · V[a]R · V−a

R .

(ii) f −1
p,h,R = f p,h,−R · ∏w

j=0 V
−h j

[p j]R
.

Proof (i) From Eq. 2.3, We have that, f −1
a,R = f a

−1,R · fa,[−1]R

f−1,[a]R
.

Since, div(f−1,[a]R) = −(([a]R) + ([−a]R)) − 2(O) = div(V−1
[a]R)

and div(f a
−1,R) = di(V−a

R). Then, f −1
a,R = fa,−R · V[a]R .V−a

R .

(ii) From Eq. 2.4, we have that f p,h,R = frm,R
∏w

i=1 f hi
pi ,R

. Taken this equation to power −1, it yields

f −1
p,h,R = f −1

rm,R
∏w

i=1(f −1
pi ,R

)hi
. Then from (i), f −1

p,h,R = frm,−R · V[rm]R · V−rm
R

∏w
i=1

(

f hi
pi ,−R

· Vhi
[pi]R

· V−pi hi
R

) = frm,−R
∏w

i=1 f hi
pi ,−R

·

V[rm]R · V−rm
R

∏w
i=1(Vhi

[pi]R
) · V−∑w

j=0 hi pi

R

. Since, [r]R = O and
∑w

j=0 h j p j = r · m, the result follows

f −1
p,h,R = f p,h,−R · ∏w

j=0 V
−h j

[p j]R
.

A straightforward application of Lemma 3.1 in the Theorem 2.1 gives the following theorem:

13 Page 6 of 23 A. G. Laurian et al.

Theorem 3.2 For every curves of odd embedding degrees, the new formula of β-Weil pairing is given as follows

βk(P, Q) =
⎛

⎝
e−1∏

i=0

f p,h,π
pδi (Q)([pi]P) · f p,h,[pi]P (πpδi (Q)) ·

w∏

j=0

V−h j

[pi+ j]P
(πpδi (Q))

⎞

⎠

pl−1

, (3.1)

where P = −P and δi = e − 1 − i .

Corollary 3.3 For pairing-friendly curves of embedding degrees k = 27, 15 and 9, the polynomial h(z) for the
extended Miller’s function yields h(z) = x − z, then f p,h,P = fx,P and Eq. 3.1 becomes

βk(P, Q) =
(

e−1∏

i=0

fx,Qi (Pi) · fx,Pi
(Qi) · V−x

Pi
(Qi) · VPi+1(Qi)

)pl−1

, (3.2)

where Pi = [pi]P and Qi = πpδi (Q).

Enge and Milan [32] proposed a variant of Miller’s algorithm (Algorithm 2) which evaluates the function fx,P

or fx,Q for any seed x, positive, negative, sparse, in binary and in 2−NAF form, that is, x = ∑n
i=0 si 2i with si in

{0,−1, 1}.
Moreover, for a matter of efficiency, it is possible to find the parameters x, so as to avoid the computation of

V−x
Pi

(Qi). The simplified formulas in this case are given by corollary 3.4.

Corollary 3.4 The simplified formulas of the β-Weil pairing with x = −2n + ∑n−1
i=0 si 2i , or x = 2n + ∑n−1

i=0 si 2i ,

where si ∈ {0,−1, 1}, is

βk(P, Q) =
(

e−1∏

i=0

fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1(Qi)

)pl−1

, (3.3)

where Pi = [pi]P and Qi = πpδi (Q).

Proof If x < 0, that is x = −|x | since, Pi = −Pi then, fx,Pi
(Qi) = f−|x |,−Pi (Qi). From Eq. 2.3, f−|x |,−Pi (Qi) =

f |x |
−1,−Pi

(Qi) · f|x |,Pi (Qi). But, f−1,−Pi (Qi) = V−1
−Pi

(Qi) and V−1
−Pi

(Qi) = V−1
Pi

(Qi), therefore fx,Pi
(Qi) =

f|x |,Pi (Qi) · V−|x |
Pi

(Qi) = f−x,Pi (Qi) · V x
Pi

(Qi).

If x > 0, f−x,Pi (Qi) = fx,−Pi (Qi) · V−x
Pi

(Qi) i.e fx,Pi
(Qi) = f−x,Pi (Qi) · V x

Pi
(Qi).

For each case substitute, fx,Pi
(Qi) by f−x,Pi (Qi) · V x

Pi
(Qi) in Eq. 3.2 and it becomes Eq. 3.3. ��

Algorithm 1 computes fx,Q(P) for positive x, whereas Algorithm 2 computes fx,Q(P) for negative x . In fact,
fx,Q(P) = f−x,−Q(P) · V x

Q(P) and the Algorithm 2 computes V x
Q(P) internally.

Faster Beta Weil Pairing on BLS Page 7 of 23 13

Algorithm 1: Evaluate Full Miller’s function fx,Q(P) for x > 0.

Input: x = 2n + ∑n−1
i=0 si 2i , where si ∈ {0, 1}

Output: fx,Q(P), [x]Q
1 V ← Q,

2 f ← 1,

3 for i from n − 1 down to 0 do
4 f ← f 2.hV,V (P), V ← [2]V
5 if si = 1 then
6 f ← f.hV,Q(P), V ← V + Q

7 return f, V .

Algorithm 2: Evaluate Full Miller’s function fx,Q(P) for x < 0.

Input: x = −2n + ∑n−1
i=0 si 2i , where si ∈ {0,−1}

Output: fx,Q(P), [x]Q
1 V ← −Q,

2 f ← V−1
Q (P),

3 for i from n − 1 down to 0 do
4 f ← f 2.hV,V (P), V ← [2]V
5 if si = −1 then
6 f ← f.hV,−Q(P).V−1

Q (P), V ← V − Q

7 return f, V .

By direct analogy with Algorithm 1 and 2, exchanging P and Q gives two algorithms for computing Miller Lite
function this is, fx,P (Q) for positive x and fx,P (Q) for negative x respectively. Note that the Miller Lite function
is defined over Fp and evaluated at a point of E(Fpk). Whereas the Full Miller function is defined over Fpk and
evaluated at a point of E(Fp).

Remark 3.5 Lin et al. [33] first observed that, for every point S in G1 and R in G2, we have that

1

VR(S)
= 1

xS − xR
= x2

S + xS xR + x2
R

y2
S − y2

R

.

This leads to the denominator elimination with cubic twist since, y2
S − y2

R lies in a subfield. Then V−1
R (S) can be

replaced by

SR(S) = x2
S + xS xR + x2

R . (3.4)

3.2 Applications on BLS Curves: Explicit Formulas

In this subsection, we apply the proposed Formula 3.3 to BLS pairing friendly curves. BLS curves are available
for several embedding degrees [31], in particular, the curves with embedding degrees k = 27, 15 and k = 9 named
BLS-27, BLS-15 and BLS-9 respectively. These curves have the form y2 = x3 + b and admit a cubic twist.

Table 1 provides explicit formulas of β-Weil pairing on BLS-27, BLS-15 and BLS-9 at different levels of security.
These new formulas of the β-Weil pairing are more suitable for the storage and multifunction techniques as

explained in the next section.

13 Page 8 of 23 A. G. Laurian et al.

Table 1 New β-Weil pairing formulas on BLS curves. At 128-bit, 192-bit level of security the seeds provided come from the recom-
mendation of Guillevic in [28]. At 256−bit security level no seed is given for k = 27 we then refer to [29]

Curves Level of security Size of p The β-Weil pairing
and the x value

BLS-27 256-bit 1019
(∏8

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1 (Qi)
)p9−1

−251 − 231 − 221 − 28 − 24

BLS-15 192-bit 930
(∏4

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1 (Qi)
)p5−1

−277 − 276 − 268 − 250

BLS-9 128-bit 593
(∏2

i=0 fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1 (Qi)
)p3−1

−274 − 272 − 246 − 231

4 Storage and Multifunction Techniques For Fast Computation

The storage technique stores some line equations during the Miller’s algorithm in order to speed up the computation,
whereas the multifunction technique reduces the number of squarings in the pairing computation.

4.1 Storage Technique

The computation of the Miller’s function fs,Q(P) can be performed in two steps: the first step consists of evaluating
the line functions depending on Q, while the second step is to evaluate the line functions at P . Storage technique
then computes and stores the line functions of the first step. As Algorithm 3 computes and stores all line functions
of fs,Q or fs,P , Algorithm 4 computes and stores line functions of fs,πpi (Q) by raising all the line functions of fs,Q

to the power pi .

Algorithm 3: CSL: Compute and Store Line functions for s < 0
Input: R ∈ G1 (or R ∈ G2),
integer s = −2n + ∑n−1

i=0 si 2i , where si ∈ {0,−1}
Output: An array g of 	log2 s
 + H W (s) − 1 line functions and [s]R.
H W (s) is the Hamming weight of s

1 T ← −R and j ← 1
2 for i ← n − 1 to 0 do
3 g[j] ← hT,T , T ← 2T, j ← j + 1
4 if si �= 0 then
5 g[j] ← hT,R , T ← T − R, j ← j + 1

6 return g, T .

We remark that, for s > 0, item 1 becomes T = R and item 5 is T = T + R.

Algorithm 4: CSLFrob: pi−th Frobenius for Stored Line functions [1]
Input: An array g of line functions, integer i
Output: An array g′ of line functions

1 for j ← 1 to length of g do
2 g′[j] ← g[j]pi

3 return g′.

Faster Beta Weil Pairing on BLS Page 9 of 23 13

4.2 Multifunction Technique

After computing and storing all line functions, we compute the products of e Miller’s functions with the help of
multifunction technique. The method only requires a single squaring in the extension field per doubling step instead
of e squarings in the naive way. Algorithm 5 evaluates the product of e-multifunction.

Algorithm 5: EPM: Evaluate Product of e-Multifunction for s < 0

Input:
[
(g0, P0), ..., (ge−1, Pe−1), (h0, Q0), ..., (he−1, Qe−1)

]
s = −2n + ∑n−1

j=0 s j 2 j , where s j ∈ {0,−1}
h′

i s are the stored line functions from f−s,Pi

g′
i s are the stored line functions from fs,Qi

Output:
∏e−1

i=0

(
fs,Qi ([pi]P) · f−s,Pi (Qi)

)
,

1 f ← ∏e−1
k=0 S−Qk (Pk), (see Eq. 3.4)

2 j ← 1
3 for i from n − 1 down to 0 do
4 f ← f 2

5 f ← f · ∏e−1
k=0 gk[j](Pk) · hk[j](Qk), j ← j + 1,

6 if si �= 0 then
7 f ← f · ∏e−1

k=0 gk[j](Pk) · hk[j](Qk) · S−Qk (Pk), j ← j + 1,

8 return f.

By direct analogy with Algorithm 5 exchanging P and Q yields another algorithm for positive s.
To estimate the theoretical complexity of Algorithm 5, we need some notations:

– Gkj cost of the multiplication by the line function gk[j],
– Subs(gkj) cost of substitution of Pk in the line function gk[j],
– Hkj cost of the multiplication by the line function hk[j],
– Subs(hkj) cost of substitution of Qk in the line function hk[j],
– MS−Qi (Pi) cost of the multiplication by the line S−Qi (Pi),

– H W (x) the hamming weight of x,

– Sk cost of the squaring in Fpk .

Then, total operations cost of Algorithm 5 is given by

CostAlg. 5 = e × costS−Qi (Pi) + (e − 1) × MS−Qi (Pi)

+ log2(x) × (Sk + e × (Gkj + Subs(gkj) + Hkj + Subs(hkj)))

+H W (x) × e × (Gkj + Subs(gkj) + Hkj + Subs(hkj) + MS−Qi (Pi)). (4.1)

5 Basic Operations for β-Weil on BLS Curves with Twisted Degree 3

Under this section, basic and special operations for the β-Weil pairing on BLS curves of cubic twist are computed.
Let M, S and I denote the cost of the multiplication, squaring and inversion in Fp, whereas, Mk, Sk, Ik, Fp, Ex

denote the cost of the multiplication, squaring, inversion, p − th Frobenius operation and the power of x in Fpk

respectively. Let Icyc denote the cost of the inversion in the cyclotomic subgroup Gφk .

5.1 Tower Extension

From Table 1, we have a specific value of x as well as the parameter p which defines the field Fp for each curve
BLS-27, BLS-15 and BLS-9. For efficient arithmetic, the extension field Fpk (k = 27, 15, 9) can be constructed as
follows:

13 Page 10 of 23 A. G. Laurian et al.

Fpk/3 = Fpi [β]/(βk/(3i) − α),

Fpk = Fpk/3 [ω]/(ω3 − β),

where α is a primitive root in Fpi and i = 1 for k = 9, 15 and i = 3 for k = 27. We then derived the cited BLS
curves (E) : y2 = x3 + b from the parameters p(x), r(x) and t (x) for the chosen value x (see table 1). The cubic
twisted curve E ′ of E and their isomorphic mapping ψ3 are given as follows: E ′ : y2 = x3 + bβ2 and

ψ3 : E ′(Fpk/3)[r] → E(Fpk)[r]
(x, y) �→ (ω−2x, β−1 y).

5.2 Elliptic Curve Doubling and Elliptic Curve Addition

Let us consider T = (ω−2xT ′ , β−1 yT ′), Q = (ω−2xQ′ , β−1 yQ′) given in affine coordinates on the group E(Fpk)

such that T ′ = (xT ′ , yT ′) and Q′ = (xQ′ , yQ′) are on the twisted curve E ′ defined over Fpk/3 . Let the elliptic curve
doubling of T be 2T = (x2T , y2T) and P = (xP , yP) where xP , yP ∈ Fp.

The formulas for computing the doubling and the corresponding line function in affine coordinates are obtained
in [13] as follows:

• λT,T = 3x2
T

2yT
= 3ω−4x2

T ′
2β−1 yT ′ = 3x2

T ′
2yT ′ ω

−1 = λT ′,T ′ω−1, where λT ′,T ′ = 3x2
T ′

2yT ′ .

• x2T = λ2
T,T − 2xT = λ2

T ′,T ′ω−2 − 2ω−2xT ′ = (λ2
T ′,T ′ − 2xT ′)ω−2 = x2T ′ω−2, where x2T ′ = λ2

T ′,T ′ − 2xT ′ .

• y2T = λT,T (xT − x2T) − yT = λT ′,T ′ω−1(xT ′ω−2 − x2T ′ω−2) − yT ′β−1 = [λT ′,T ′(xT ′ − x2T ′) − yT ′]β−1 =
y2T ′β−1 where y2T ′ = λT ′,T ′(xT ′ − x2T ′) − yT ′ .

• lT,T (P) = x2
P +x2T xP +x2

2T −λT,T (yP − y2T) = x2
P +[(x2

2T ′ + y2T ′λT ′,T ′)β−1 −λT ′,T ′ yP]ω−1 +x2T ′ xPω−2.

When considering the affine coordinates (x, y, t) = (x, y, x2), the previous affine formulas are given by com-
puting the following sequences of operations:

A = 3tT ′ , B = 1
2yT ′ , C = A · B, x2T ′ = C2 − 2xT ′ , y2T ′ = C · (xT ′ − x2T ′) − yT ′ , D = x2

2T ′ , E =
Dβ−1 + C · (y2T ′β−1 − yP), F = x2T ′ · xP , x2T = x2T ′ω−2, y2T = y2T ′β−1, lT,T (P) = tP + Eω−1 + Fω−2.

Therefore the doubling step and line evaluation cost 1Ik/3 +3Mk/3 +2Sk/3 + k
3 M. (See [13] for more explanation).

The elliptic curve addition step (T �= Q) and line evaluation can also be optimized similarly to the above
procedure. Let the elliptic curve addition of T and Q be R = T + Q = (xR, yR). The formulas for computing the
point addition and the corresponding line function are obtained as follows:

• λT,Q = yQ−yT
xQ−xT

= yQ′−yT ′
xQ′−xT ′ β

−1ω2 = yQ′−yT ′
xQ′−xT ′ ω

−1 = λT ′,Q′ω−1, where λT ′,Q′ = yQ′−yT ′
xQ′−xT ′ .

• xR = λ2
T,Q − xQ − xT = (λ2

T ′,Q′ − xQ′ − xT ′)ω−2 = xR′ω−2, where xR′ = λ2
T ′,Q′ − xQ′ − xT ′ .

• yR = λT,Q(xT − xR)− yT = λT ′,Q′ω−1(xT ′ω−2 − xR′ω−2)− yT ′β−1 = [λT ′,Q′(xT ′ − xR′)− yT ′]β = yR′β−1

where yR′ = λT ′,Q′(xT ′ − xQ′) − yT ′ .
• lT,Q(P) = x2

P + xR xP + x2
R − λT,Q(yP − yR) = x2

P + [(x2
R′ + yR′λT ′,Q′)β−1 − λT ′,Q′ yP]ω−1 + xR′ xPω−2

When considering the affine coordinates (x, y, t) = (x, y, x2), the previous affine formulas are given by computing
sequence of operations:

A = yQ′ − yT ′ , B = 1
xQ′−xT ′ , C = A · B, xR′ = C2 − xQ′ − xT ′ , yR′ = C · (xT ′ − xR′) − yT ′ , D = x2

R′ ,

E = Dβ−1 + C · (yR′β−1 − yP), F = xR′ · xP , xR = xR′ω−2, yR = yR′β−1, lT,Q(P) = tP + Eω−1 + Fω−2.

Therefore the addition step and line evaluation cost 1Ik/3 + 3Mk/3 + 2Sk/3 + k
3 M.

5.3 Affine Sparse Multiplication and Projective Sparse Multiplication

The sparse multiplication reduces the cost of the multiplications in Fpk for Miller’s algorithm.

Faster Beta Weil Pairing on BLS Page 11 of 23 13

Affine sparse multiplication. In affine coordinates, as we have previously seen, the line function obtained from
the elliptic curve doubling and addition steps is

l(x, y) = x2 + (ay + bβ−1)ω−1 + cxω−2, (a, b, c ∈ Fpk/3),

where (x, y) ∈ Fp × Fp. Since ω3 = β, then ω−1 = β−1ω2 and ω−2 = β−1ω hence,

l(x, y) = A + Bω + Cω2, (5.1)

where A = x2, B = cxβ−1 and C = ayβ−1 + bβ−2.

The sparse multiplication consists of computing f · l(P) with f in Fpk and it is evaluated through Algorithm 6.

Algorithm 6: Affine Sparse Multiplication (ASM) in Fpk

Input: a = a0 + a1ω + a2ω
2, where a0 ∈ Fp and a1, a2 ∈ Fpk/3

b = b0 + b1ω + b2ω
2 where b0, b1, b2 ∈ Fpk/3

Output: a · b ∈ Fpk

1 A ← a0b0, B ← a1b1, C ← a2b2,

2 D0 ← a0 + a1, D1 ← a1 + a2, D2 ← a0 + a1 + a2,

3 E0 ← b0 + b1, E1 ← b1 + b2, E2 ← b0 + b1 + b2,

4 F0 ← D0 E0 − (A + B), F1 ← D1 E1 − (B + C), F2 ← D2 E2 − (A + C + F0 + F1),

5 G0 ← A + F1β, G1 ← F0 + Cβ,

6 return c ← G0 + G1ω + F2ω
2.

The Affine Sparse Multiplication cost 5Mk/3 + k
3 M in the base field (instead of 6Mk/3 multiplications with the

Karatsuba formulas).
Moreover, the vertical line function from elliptic curve is given as follows

V(x, y) = x − a,

where a belongs to Fp. We substitute Q in the previous equation and obtain V(Q) = β−1xQ′ω − a. The sparse
multiplication f · V(Q) for f in Fpk can be calculated by Algorithm 7.

Algorithm 7: Sparse Multiplication with vertical line in Fpk

Input: a = a0 + a1ω, where a0 ∈ Fp and a1 ∈ Fpk/3

b = b0 + b1ω + b2ω
2 where b0, b1, b2 ∈ Fpk/3

Output: a · b ∈ Fpk

1 A ← a0b0, B ← a1b1, C ← a0b2, D ← a1b2,

2 E ← a0 + a1, F ← b0 + b1, H ← E F − (A + B),

3 I ← A + Dβ, J ← B + C,

4 return c ← I + Hω + Jω2.

The affine Sparse Multiplication cost 3Mk/3 + 2(k
3 M) in the base field (instead of 6Mk/3 multiplications with

the Karatsuba formulas).
Projective sparse multiplication. In projective coordinates, the line function from elliptic curve doubling and

addition steps is given in [34] as follows

l(x, y) = ax2 + bx + cy + d,

where a, b, c and d are in Fp. The point Q = (x, y) in E(Fpk) can be viewed as ψ3(Q′) = (ω−2xQ′ , β−1 yQ′)
for Q′ in E(Fpk/3). We substitute Q in the previous equation and obtain l(Q) = A + Bω + Cω2, where

13 Page 12 of 23 A. G. Laurian et al.

A = cyQ′β−1 + d, B = bxQ′β−1 and C = ax2
Q′β−2 are in Fpk/3 . We did not find an efficient computation

method for the following multiplication f · l(Q) where f ∈ Fpk .

The inverse of the vertical line From Eq. 3.4, the inverse of the vertical line 1/VQ(P) becomes SQ(P) =
x2

P + xQ xP + x2
Q . For Q = (ω−2xQ′ , β−1 yQ′), with (xQ′ , yQ′) in E(Fpk/3) we have, SQ(P) = x2

P + xQ′ xPω−2 +
x2

Q′(βω)−1. This cost 1Sk/3 + k/3M.

pi−th Frobenius map for the line function.
From Eq. 5.1 the line functions for computing fx,Q are represented as :

l(x, y) = A + Bω + Cω2,

where, A ∈ Fp and B, C ∈ Fpk/3 . The pi−th Frobenius map is l pi
(x, y) = A + B pi

ωpi + Cω2pi
, since A ∈ Fp.

The cost of Frobenius map for the extension field element is at most the degree of field extension, so the cost
of pi−th Frobenius map for B and C are 2 k

3 M, since B, C ∈ Fpk/3 . Then for a given ωpi
and ω2pi

, the pi−th

Frobenius map for line function cost 2 k
3 M.

pi−th Frobenius map for a point Q.

πpi (Q) = πpi (ω
−2xQ′ ;β−1 yQ′) = (

(ωpi
)−2x pi

Q′ ; (β pi
)−1 y pi

Q′
)

For the given ω−pi
and β−pi

, the computational costs of πpi (Q) is the total cost of the pi−th Frobenius map for
xQ′ and yQ′ .

6 Application on BLS-27: Theoretical Costs of β-Weil Computation

We used the ideas of storage and multifunction techniques to evaluate the β-Weil pairing on BLS-27 either in serial
or parallel computation.

Proposition 6.1 For pairing-friendly curves of embedding degrees k = 27, 15 and 9, with the extended Miller
function h(z) = x − z such that h(p) = 0 mod r, the relation [p]P = [x]P holds, for any P in G1 or G2 of
order r.

Proof : By hypothesis, h(p) = 0 mod r, then x = p mod r, and [x]P = [p]P, since P is of order r. ��
The proposed β-Weil pairing formula for BLS-27 in Table 1 is

β27(P, Q) =
[8∏

i=0

(fx,Qi (Pi) · f−x,Pi (Qi)) ·
8∏

i=0

VPi+1(Qi)
]p9−1

.

The basic operations used to evaluate the theoretical cost of the β-Weil pairing on BLS-27 are recapitulated in the
following Table 2.

6.1 Serial Computation of the β-Weil Pairing Over BLS-27

In the first paragraph, we evaluate the theoretical cost of the line functions for each of the Miller functions. In
the second paragraph, we estimate the cost of A = ∏8

i=0(fx,Qi (Pi) · f−x,Pi (Qi)) using Algorithm 5 and the line
functions previously obtained. After we evaluate the product of the vertical lines and end with the final powering
p9 − 1.

On the first hand, we compute in projective coordinates and store the line functions for each Miller-Lite func-
tion f−x,Pi where, x = −251 − 231 − 221 − 28 − 24, and Pi = [pi]P. This is done through Algorithm 3:
C SL([pi]P,−x) = hi . Each Miller’s function is composed by 51 doubling steps (13M) and 4 mixed addition

Faster Beta Weil Pairing on BLS Page 13 of 23 13

Table 2 Costs of arithmetic operations in a tower extension field Fp27 and special operations in the β-Weil pairing computations on
BLS-27 in this work and [17]

Field Multiplication Squaring Inversion

Fp3 M3 = 6M S3 = 5M I3 = I + 9M + 2S

Fp9 M9 = 36M S9 = 25M I9 = I + 63M + 12S

Fp27 M27 = 216M S27 = 125M I27 = I + 387M + 62S

Fp27 Arithmetic Operation count (S = M)

Affine sparse multiplication 189M

Projective sparse multiplication 216M

pi Frobenius ([17] table 2) 18M for i = 3, 6, 9 and 26M otherwise i

E ′(Fp9) Arithmetic Operation count (S = M)

Point doubling with line I9 + 2S9 + 3M9 = 233M + I

Point addition with line I9 + 2S9 + 3M9 = 233M + I

Substitution of P in the line

l(x, y) = x2 + (aβ + by)ω + cxω2 9M

πpi (Q) ([17] table 2) 12M for i = 3, 6, 9 and 16M otherwise

E(Fp) Arithmetic (see [34], section 4) Operation count (S = M)

Point doubling with line 6M + 7S = 13M

Mixed point addition with line 13M + 3S = 16M

Substitution Q for line

l(x, y) = (ax + b)x + cy + d 27M

steps (16M). So for each 0 ≤ i ≤ 8, the addition and doubling steps cost 51 ·13M +4 ·16M = 727M. Since [pi]P
is equal to [−xpi−1]P (see Proposition 6.1) and that we obtain [−xpi−1]P after computing C SL([pi−1]P,−x),

we do not need to compute again [pi]P. For mixed addition coordinate (see [34]), it is required to convert
[pi]P = (Xi : Yi : Zi) from projective to affine coordinates (Xi · Z−1

i , Yi · Z−1
i) for a cost of I + 2M for

each i (1 ≤ i ≤ 8). Note that for i = 0, P0 = P is given in each coordinate. Hence, the total cost of all line
functions computation for all Miller-Lite functions is 9 · 727M + 8(I + 2M) = 6559M + 8I.

On the other hand, we compute in affine coordinates and store the line functions for computing fx,Q . This is done
through Algorithm 3: C SL(Q, x) = g0. The Full Miller’s function is composed by 51 doubling steps (233M + I)
and 4 mixed addition steps (233M + I). This yields 51(233M + I) + 4(233M + I) = 12815M + 55I. From x is
−251 − 231 − 221 − 28 − 24, fx,Q is made of 55 line functions. Since the pi−th Frobenius map for line function
is 18M, the cost of one C SL Frob(g0, i) execution for fx,πp8−i (Q) is 55 · 18M = 990M. Therefore, the total cost
of all line functions computation for all Full-Miller’s functions is (12815M + 55I) + 8 · 990M = 20735M + 55I.

Hence, the total cost of all line functions computation for A = ∏8
i=0(fx,Qi (Pi) · f−x,Pi (Qi)) is (6559M +8I)+

(20735M + 55I) = 27294 M+ 63 I .

Secondly, we evaluate all line functions at a given point and compute the product of Miller’s functions by using
Algorithm 5. From Table 2, the computational costs of πpi (Q) for 1 ≤ i ≤ 8 is 2 · 12M + 6 · 16M = 120M. Since
each S−Qi (Pi) (Eq. 3.4) costs S9 + 9M = 34M and the multiplication by S−Qi (Pi) in Fp27 costs 189M. From
Eq. 4.1, the execution cost for A is 9 · 34M + 8 · 189M + 51 · 125 + 51 · 9 · (189M + 9M + 216M + 27M) + 4 · 9 ·
(189M + 9M + 216M + 27M + 189M) = 233292M. Therefore the total cost is 120M + 233292M = 233412 M.

Thirdly, we compute B = A · ∏8
i=0 VPi+1(Qi). To have B, we multiply A by each VPi+1(Qi) for 0 ≤ i ≤ 8 for

a cost of 9 · 126M = 1134 M (see Algorithm 7). There is no need to evaluate the point P9 = [p9]Q as we obtain
P9 after computing f−x,P8 .

13 Page 14 of 23 A. G. Laurian et al.

Finally, (B)p9−1 is made of one inversion, one multiplication and one p9−Frobenius in Fp27 , at the cost of
I27 + M27 + 18M = 683 M+I.

The total cost of serial computation of the β-Weil pairing is (27294M + 63I) + (233412M) + (1134M) +
(683M + I) = 262523 M+64 I.

6.2 Parallel Computation of β27(P, Q) Using 3 Processors

Here we parallelise the evaluation of β27(P, Q) and find its theoretical cost. In the first step, each processor computes
and stores 6 line functions. For step 2, each processor evaluates the stored line functions using the multifuction
technique. Whereas step 3 computes the additional factors of β27(P, Q) and the last step combines each result.
Since Pi = [pi]P and Qi = πp8−i (Q) for 0 ≤ i ≤ 8,

β27(P, Q) = [
fx,πp8 (Q)(P) · f−x,P (πp8(Q)) · fx,πp5 (Q)(P3) · f−x,P3(πp5(Q)) · fx,πp2 (Q)(P6)

· f−x,P6(πp2(Q)) · VP1(πp8(Q)) · VP4(πp5(Q)) · VP7(πp2(Q))

· fx,πp7 (Q)(P1) · f−x,P1(πp7(Q)) · fx,πp4 (Q)(P4) · f−x,P4(πp4(Q)) · fx,πp(Q)(P7)

· f−x,P7(πp(Q)) · VP2(πp7(Q)) · VP5(πp4(Q)) · VP8(πp(Q))

· fx,πp6 (Q)(P2) · f−x,P2(πp6(Q)) · fx,πp3 (Q)(P5) · f−x,P5(πp3(Q)) · fx,Q(P8)

· f−x,P8(Q) · VP3(πp6(Q)) · VP6(πp3(Q)) · VP9(Q)
]p9−1

.

That is,

β27(P, Q) = [{
fx,πp6 (Q)(P) · f−x,P (πp6(Q)) · fx,πp3 (Q)(P3) · f−x,P3(πp3(Q)) · fx,Q(P6)

· f−x,P6(Q) · VP1(πp6(Q)) · VP4(πp3(Q)) · VP7(Q)
}p2

· {
fx,πp6 (Q)(P1) · f−x,P1(πp6(Q)) · fx,πp3 (Q)(P4) · f−x,P4(πp3(Q)) · fx,Q(P7)

· f−x,P7(Q) · VP2(πp6(Q)) · VP5(πp3(Q)) · VP8(Q)
}p

· fx,πp6 (Q)(P2) · f−x,P2(πp6(Q)) · fx,πp3 (Q)(P5) · f−x,P5(πp3(Q)) · fx,Q(P8)

· f−x,P8(Q) · VP3(πp6(Q)) · VP6(πp3(Q)) · VP9(Q)
]p9−1

.

For parallel computation using 3 processors, β27(P, Q) can be regarded as

β27(P, Q) = (X p2 · Y p · Z)p9−1,

where

X = fx,πp6 (Q)(P) · f−x,P (πp6(Q)) · fx,πp3 (Q)(P3) · f−x,P3(πp3(Q)) · fx,Q(P6) · f−x,P6(Q) · H1,

Y = fx,πp6 (Q)(P1) · f−x,P1(πp6(Q)) · fx,πp3 (Q)(P4) · f−x,P4(πp3(Q)) · fx,Q(P7) · f−x,P7(Q) · H2,

Z = fx,πp6 (Q)(P2) · f−x,P2(πp6(Q)) · fx,πp3 (Q)(P5) · f−x,P5(πp3(Q)) · fx,Q(P8) · f−x,P8(Q) · H3

and

H1 = VP1(πp6(Q)) · VP4(πp3(Q)) · VP7(Q),

H2 = VP2(πp6(Q)) · VP5(πp3(Q)) · VP8(Q),

H3 = VP3(πp6(Q)) · VP6(πp3(Q)) · VP9(Q).

Step 1.

1. The 1st processor computes and stores C SL([pi]P,−x) = hi for 0 ≤ i ≤ 8 for a cost of 9·727M+8(I +2M) =
6559M + 8I and C SL(Q, x) = g0 for a cost of 12815M + 55I. The total cost is 19374 M+63 I.

Faster Beta Weil Pairing on BLS Page 15 of 23 13

2. The 2nd processor computes and stores πp3(Q) and C SL(πp3(Q), x) = g3 for a cost of 12M+12815M+55I =
12827M + 55I.

3. The 3rd processor computes and stores πp6(Q) and C SL(πp6(Q), x) = g6 for the same cost as the 2nd processor.

Step 2.

1. From Eq. 4.1, the 1st processor computes X1 = E P M
([

(g6, P0), (g3, P3), (g0, P6),

(h0, πp6(Q)), (h3, πp3(Q)), (h6, Q)
]
, x

)
for a cost of 3 · 34M + 2 · 189M + 51S27 + 51 · 3 · (189M + 9M +

216M + 27M) + 4 · 3 · (189M + 9M + 216M + 27M + 189M) = 81922 M.

2. The 2nd processor computes Y2 = E P M
([

(g6, P1), (g3, P4), (g0, P7), (h1, πp6(Q)),

(h4, πp3(Q)), (h7, Q)
]
, x

)
for the same cost as the 1st processor.

3. The 3rd processor computes Z3 = E P M
([

(g6, P2), (g3, P5), (g0, P8), (h2, πp6(Q)),

(h5, πp3(Q)), (h8, Q)
]
, x

)
for the same cost as the 1st processor.

Step 3.

1. The 1st processor computes X = X1 · H1 = X1 · VP1(πp6(Q)) · VP4(πp3(Q)) · VP7(Q) at cost of 3 · 126M =
378 M.

2. The 2nd processor computes Y for the same cost as the 1st processor.
3. The 3rd processor computes Z for the same cost as the 1st processor.

Step 4.
Since β27(P, Q) = ((X p ·Y)p · Z)p9−1, in the final step one processor computes two p− and one p9−Frobenius

maps, three multiplications and one inversion in Fp27 which yields 2 · 26M + 18M + 3M27 + I27 = 1167 M+I.
The total cost of parallel computation of the β-Weil pairing using 3 processors is (19374M + 63I)+ 81922M +

378M + (1167M + I) = 102841 M+64I.
Similarly, in Appendix 1 we find the theoretical costs of the β-Weil pairing on the BLS-15, BLS-9 curves.

7 Comparison

In this section, we compare the theoretical costs of the optimal Ate pairing (see Appendix B.2, B.2, B.2), the original
β-Weil pairing (see Appendix A.2.2) and the proposed β-Weil pairing (Corollary 3.4) on the BLS-27, BLS-15,

BLS-9 curves. The parallel computation of the optimal Ate pairing is obtained when parallelising the computation
of Miller loop only [8], since to date there is not a way to parallelise the final exponentiation. Given that in the
literature there is no parallel computation of the optimal Ate pairing on the aforementioned curves, we estimate the
costs by dividing a Miller loop cost by the number of processors (see 8.1) and add this to the final exponentiation
cost. Then our theoretical results reduce the number of multiplication operations on the prime field in β-Weil pairing
for BLS family with k = 27.15 and 9 about 44.78%, 49.07% and 38.49%, as well as the number of divisions of
about 87.1% 78.8% and 61.2% respectively for serial computation. The optimal Ate pairing when compared with
the new β-Weil pairing in the sequential case, it is approx. 33% more efficient for k = 27 and approx. 17% more
efficient for k = 9. Also, the two pairing types for k = 15 have pretty much the same execution time. However,
the proposed β-Weil pairing on curve with k = 15 is competitive to optimal Ate pairing. Indeed, since the final
exponentiation in the optimal Ate pairing is expensive and it is about 5, 4 and 2 times the Full Miller functions for
k = 27, 15 and 9 respectively with one extra Full Miller function the optimal Ate pairing is about 6, 5 and 3 times
the Full Miller functions for k = 27, 15 and 9 respectively. In the other hand without the Miller Lite functions and
the simple final exponentiation, the new β-Weil pairing is made of 9, 5 and 3 the Full Miller functions that need to
be evaluate by only one processor for k = 27, 15 and 9 respectively. This explain the difference between the two
pairings on the BLS-27, BLS-15 and BLS-9.

In the parallel computation with 3 processors, the β-Weil pairing on BLS-27, BLS-15 and BLS-9 is faster than
the optimal Ate pairing. See the Table 3 for a complete comparison.

13 Page 16 of 23 A. G. Laurian et al.

Table 3 Theoretical cost of the optimal Ate pairing, the original β-Weil pairing (without storage technique and multifunction technique)
and the proposed β-Weil pairing

curve Pairing Serial computation Parallel computation
(with 3 processors)

Optimal Ate [17] 176, 881M + 56I 156, 301M + 20I

BLS-27 Original β-Weil pairing [10] 475, 463M + 497I 163, 815M + 167I

at 256-bit Proposed β-Weil pairing 262,523 M + 64 I 102,841 M+64 I

Optimal Ate [17] 91, 469M + 81I 81, 220M + 41I

BLS-15 Original β-Weil pairing [10] 177, 657M + 401I -

at 192-bit Proposed β-Weil pairing 90,477 M + 85 I 46,666 M+ 85 I

Optimal Ate [17] 22, 365M + 78I 18, 379M + 40I

BLS-9 Original β-Weil pairing [10] 43, 873M + 232I -

at 128-bit Proposed β-Weil pairing 26,984 M+90 I 11,414 M+78 I

Table 4 Number of Fp elements required to be stored for our method

Curve Serial computation Parallel computation (with 3 processors)

BLS-27 9 · 55 · 4 + 9 · 55 · 27 = 15, 345 9 · 55 · 4 + 3 · 55 · 27 = 6, 435

BLS-15 5 · 80 · 4 + 5 · 80 · 15 = 7, 600 5 · 80 · 4 + 3 · 80 · 15 = 5, 200

BLS-9 3 · 77 · 4 + 3 · 77 · 9 = 3, 003 3 · 77 · 4 + 2 · 77 · 9 = 2, 310

Table 4 gives the number of Fp elements required to store for the β-Weil pairing computation. The total storage
of elements is determined by the following formula a1b1c1 + a2b2c2, where,

– a1 and a2 are the number of stored extended Miller functions f p,h,Pi and f p,h,Qi respectively,
– b1 and b2 are the number of stored lines in f p,h,Pi and f p,h,Qi respectively,
– c1 and c2 are the number of Fp elements of line coefficients in f p,h,Pi and f p,h,Qi respectively.

8 Conclusion

In this paper, we extended the work of Kinoshita and Suzuki [1] by providing a new formula for the β-Weil
pairing on curves with odd embedding degrees. This formula involves vertical line functions useful for the sparse
multiplications during Miller’s loop. For faster computation of the proposed β-Weil pairing we compute and store
line functions for some Miller’s functions that are reused to find other line functions for other Miller’s functions.
The multifunction technique evaluates the product of n Miller’s functions and only requires a single squaring in the
extension field per iteration instead of n squarings in the naive way. Then our theoretical results give faster β-Weil
computation on the BLS family with k = 9, 15 and 27 than the original β-Weil pairing on the same curves. The
proposed β-Weil pairing on curve with k = 15 is competitive to optimal Ate pairing. The implementation results
of the proposed methods and the original β-Weil pairings on BLS−9, BLS−15 and BLS−27 curves are left for
future work to confirm the theoretical results.

Acknowledgements The authors acknowledge the support of the anonymous reviewers of the Journal Mathematics and Computer
Science (MCS) their comments helped to improve significantly the quality of this work.

Faster Beta Weil Pairing on BLS Page 17 of 23 13

Appendix A. Computation of the β-Weil Pairing Over BLS-15 and BLS-9

A.1 Evaluation of the New β-Weil Pairing Formula on BLS-15 Curve

Following the same process, we find the theoretical cost of the serial and the parallel computations of the β-Weil
pairing on BLS-15 curve. The proposed β-Weil pairing formula for BLS-15 is given as

β15(P, Q) =
(

4∏

i=0

fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1(Qi)

)p5−1

where x = −277 − 276 − 268 − 250.

Costs of arithmetic operations in the fields Fp5 and Fp15 can be found in [35] and [17]. Also, the special operations
in the β-Weil pairing computations on BLS-15 curve can be obtained in [17] (sect. 5).

A.1.1 Serial Computation of the β-Weil Pairing Over BLS-15

Algorithm 3 computes and stores the line functions necessary to find f−x,Pi , i = 0, 1, 2, 3, 4 for a cost of 5(77 ·
13M + 3 · 16M) + 4(I + 2M) = 5253 M+ 4 I. Also Algorithm 3 computes and stores the line functions for fx,Q,

for a cost of 77(95M + I) + 3(95M + I) = 7600 M + 80 I. Whereas Algorithm 4 computes and stores the line
functions for fx,Qi , i = 1, 2, 3, 4 for a cost of 4 · 80 · 10M = 3200 M, where the pi−th Frobenius map for line
function is 10M.

Before using Algorithm 5 to find the product of Miller’s functions, we first compute πpi (Q) for 1 ≤ i ≤ 4 for
the cost of 4 · 10M = 40 M. See Table 5 for the other computations.

The total cost of the β-Weil pairing on BLS-15 is then 90477M + 85I.

A.1.2 Parallel Computation of the β-Weil Pairing Over BLS-15 Using 3 Processors

The parallel computation of β15(P, Q) with 3 processors of the β-Weil pairing on BLS-15 curve is defined as

β15(P, Q) = (X p2 · Y · Z)p5−1.

Table 5 computational cost of Algorithm 5 for β15 (see [35] and [17] for basic operations)

Part of Algorithm 5 Computational Cost

S−Qi (Pi) 1S5 + 5M = 18M

Substitution by Qi in gi [j](x, y) 15M

Substitution by Pi in hi [j](x, y) 5M

Multiplication by gi [j](Pi) in Fp15 70M

Multiplication by hi [j](Qi) in Fp15 78M

Multiplication by S−Qi (Pi) in Fp15 70M

Multiplication by VPi (Qi) in Fp15 3M5 + 2 · 5M = 49M

The product
∏4

i=0 S−Qi (Pi) in line 1 5 · 18M + 4 · 70M = 370M

Line 4 78M

Line 5 5(70M + 5M + 78M + 15M) = 840M

Line 7 5(70M + 5M + 78M + 15M) + 70 = 910M

Miller’s algorithm (lines 1 − 7) 370M + 77 · 78M + 77 · 840M + 3 · 910M = 73786 M

The product
∏4

i=0 VPi+1 (Qi) 5 · 49M = 245 M

Final exponentiation 10M + 1M15 + 1I15 = 353 M+I

13 Page 18 of 23 A. G. Laurian et al.

Where

X = fx,πp2 (Q)(P) · f−x,P (πp2(Q)) · fx,πp(Q)(P1) · f−x,P1(πp(Q)) · VP1(πp2(Q)) · VP2(πp(Q)),

Y = fx,πp2 (Q)(P2) · f−x,P2(πp2(Q)) · fx,πp(Q)(P3) · f−x,P3(πp(Q)) · VP3(πp2(Q)) · VP4(πp(Q))

Z = fx,Q(P4) · f−x,P4(Q) · VP5(Q)

Step 1.

1. The 1st processor computes C SL([pi]P,−x) = hi for 0 ≤ i ≤ 4 for a cost of 5(77 · 13M + 3 · 16M) + 4(I +
2M) = 5253 M+ 4 I and C SL(Q, x) = g0 for a cost of 77(95M + I) + 3(95M + I) = 7600 M + 80 I.

2. The 2nd processor computes πp(Q) and C SL(πp(Q), x) = g1 for a cost of 10M + (7600M + 80I) =
7610M + 80I .

3. The 3rd processor computes πp2(Q) and C SL(πp2(Q), x) = g2 for a cost of 10M + (7600M + 80I) =
7610M + 80I .

Step 2.

1. The 1st processor computes X1 = E P M
([

(g2, P0), (g1, P1), (h0, πp2(Q)),

(h1, πp(Q)),
]
, x

)
as in the table 5, for a cost of 2 · 18M + 1 · 70M + 77 · 78M + 77[2(70M + 5M +

78M + 15M)] + 3[2(70M + 5M + 78M + 15M) + 70M] = 33202 M. Also this processor computes X =
X1 · VP1(πp2(Q)) · VP2(πp(Q)) for 2 · 49M = 98 M.

2. The 2nd processor computes Y1 = E P M
([

(g2, P2), (g1, P3), (h2, πp2(Q)),

(h3, πp(Q))
]
, x

)
and Y = Y1 · VP3(πp2(Q)) · VP4(πp(Q)) for the same cost as the first processor.

3. The 3rd processor computes Z1 = E P M
([

(g0, P4), (h4, Q)
]
, x

)
for a cost of 18M + 77 · 78M + 77[(70M +

5M + 78M + 15M)] + 3[(70M + 5M + 78M + 15M) + 70M] = 19674M Also this processor computes
Z = Z1 · VP5(Q) for 49M.

Step 3.
Since β15(P, Q) = (X p2 · Y · Z)p5−1, in the final step one processor computes one p2 Frobenius map, three

multiplications and one inversion in Fp15 which yields 14M + 3M15 + I15 = 513 M+I.
The total cost of the parallel computation of the β-Weil pairing using 3 processors is 46666 M+ 85 I.

A.2 Evaluation of the New β-Weil Pairing Formula on BLS-9 Curve

Similarly, we find the serial and the parallel computations of the β-Weil pairing on BLS-9. The proposed β-Weil
pairing formula for BLS-9 is given as

β9(P, Q) =
(

2∏

i=0

fx,Qi (Pi) · f−x,Pi (Qi) · VPi+1(Qi)

)p3−1

where x = −274 − 272 − 246 − 231.

A.2.1 Serial Computation of the β-Weil Pairing Computations on the BLS-9

Algorithm 3 computes and stores the line functions necessary to find f−x,Pi , i = 0, 1, 2 for a cost of 3(74 · 13M +
3 · 16M)+ 2(I + 2M) = 3034M+ 2I. Also Algorithm 3 computes and stores the line functions for fx,Q, for a cost
of 74(39M + I) + 3(39M + I) = 3003 M+77 I. Whereas Algorithm 4 computes and stores the line functions for
fx,Qi , i = 1, 2 for a cost of 2 · 77 · 8M = 1232 M.

Before using Algorithm 5 to find the product of Miller’s functions, we first compute πpi (Q) for i = 1, 2 for the
cost of 2 · 4M = 8 M. See Table 6 for the other computations.

The total cost of the β-Weil pairing on the BLS-9 is then 26984M + 80I.

Faster Beta Weil Pairing on BLS Page 19 of 23 13

Table 6 computational cost of Algorithm 5 for β9 with the help of [17]

Part of Algorithm 5 Computational Cost

S−Qi (Pi) 1S3 + 3M = 8M

Evaluation of gi [j](x, y) by Qi 9M

Evaluation of hi [j](x, y) by Pi 3M

Multiplication by gi [j](Pi) 33M

Multiplication by hi [j](Qi) 36M

Multiplication by S−Qi (Pi) 33M

Multiplication by VPi (Qi) 3M3 + 2 · 3M = 24M

The product
∏2

i=0 S−Qi (Pi) in line 1 3 · 8M + 2 · 33M = 90M

Line 4 25M

Line 5 3(33M + 3M + 36M + 9M) = 243M

Line 7 3(33M + 3M + 36M + 9M) + 33M = 276M

Miller’s algorithm (lines 1 − 7) 90M + 74 · 25M + 74 · 243M + 3 · 276M = 20750 M

The product
∏2

i=0 VPi+1 (Qi) 3 · 24M = 72 M

Final exponentiation 6M + 1M9 + 1I9 = 117 M+I

A.2.2 Parallel Computation of β9(P, Q) Using 3 Processors

The parallel computation with 3 processors of the β-Weil pairing on the BLS-9 curve is defined as

β9(P, Q) = (X p · Y · Z)p3−1

Where

X = fx,πp(Q)(P) · f−x,P (πp(Q)) · VP1(πp(Q)),

Y = fx,πp(Q)(P1) · f−x,P1(πp(Q)) · VP2(πp(Q)),

Z = fx,Q(P2) · f−x,P2(Q) · VP3(Q).

Step 1.

1. The 1st processor computes C SL([pi]P,−x) = hi for i = 0, 1, 2 for a cost of 3(74 · 13M + 3 · 16M)+ 2(I +
2M) = 3034M + 2I.

2. The 2nd processor computes C SL(Q, x) = g0 for a cost of 74(39M + I) + 3(39M + I) = 3003M + 77I.
3. The 3rd processor computes πp(Q) and C SL(πp(Q), x) = g1 for a cost of 4M + 3003M + 77I =

3007 M + 77 I.

Step 2.

1. The 1st processor computes X1 = E P M
([

(g1, P0), (h0, πp(Q))
]
, x

)
as in Table 6, at a cost of 8M + 74 ·

25M +74[(33M +3M +36M +9M)]+3[(33M +3M +36M +9M)+33M] = 8194 M. Also this processor
computes X = X1 · VP1(πp(Q)) for 24 M .

2. The 2nd processor computes Y1 = E P M
([

(g1, P1), (h1, πp(Q))
]
, x

)
and Y = Y1 ·VP2(Q1) for the same cost.

3. The 3rd processor computes Z1 = E P M
([

(g0, P2), (h2, Q)
]
, x

)
and Z = Z1 · VP3(Q) for the same cost.

Step 3.
Since β9(P, Q) = ((X p · Y · Z)p3−1, in the final step one processor computes one p3 Frobenius map, three

multiplications and one inversion in Fp9 which yields 6M + 3M9 + I9 = 189 M+I.
The total cost of the parallel computation of the β-Weil pairing on BLS-9 using 3 processors is 11414 M+78 I.

13 Page 20 of 23 A. G. Laurian et al.

Appendix B. Original β-Weil Pairing on BLS Curves with Embedding Degree 27, 15 and 9.

In this section, we find the theoretical cost of the original β-Weil pairing computation on BLS-27, BLS-15, and
BLS-9 curves without storage technique and multifunction technique.

The original β-Weil pairing (see theorem 2.1) on BLS-27 for seed x = −251 − 231 − 221 − 28 − 24 is given as:

β27(P, Q) =
8∏

i=0

(
fx,Q([pi]P)

fx,[pi]P (Q)

)(p8−i)(p9−1)

=
[
(

f p8

x,Q(P) · f p7

x,Q([p]P) · f p6

x,Q([p2]P) · f p5

x,Q([p3]P) · f p4

x,Q([p4]P)

· f p3

x,Q([p5]P) · f p2

x,Q([p6]P) · f p
x,Q([p7]P) · fx,Q([p8]P)

)

· (
f p8

x,P (Q) · f p7

x,[p]P (Q) · f p6

x,[p2]P
(Q) · f p5

x,[p3]P
(Q) · f p4

x,[p4]P
(Q)

· f p3

x,[p5]P
(Q) · f p2

x,[p6]P
(Q) · f p

x,[p7]P
(Q) · fx,[p8]P (Q)

)−1
]p9−1

B.1 Serial Computation

Original β-Weil pairing for serial computation are 9 Miller lite functions, 9 full Miller functions, 2 p, 2 p2, 2 p3, 2
p4, 2 p5, 2 p6, 2 p7, 2 p8, and 1 p9 Frobenius maps, 18 multiplications, 2 inversions in Fp27 . From Algorithm 2, the
cost of Miller Lite is 34M +51(125M)+51(13M +27M +216M)+4(16M +27M +216M +216M) = 21365M.

The cost of Full Miller is 34M +51(125M)+51(233M + I +9M +189M)+4(233M + I +9M +189M +189M) =
30870M + 55I. The total cost is 9 · 21365M + 9(30870M + 55I) + 2(3 · 18M + 6 · 26M) + 18M + 18 · 216M +
2(I + 449M + 62S) = 475463M + 497I.

Similarly, the computational cost of the original β-Weil pairing on BLS-15 given as β15(P, Q) =
∏4

i=0

(
fx,Q([pi]P)

fx,[pi]P (Q)

)(p4−i)(p5−1)

with x = −277 − 276 − 268 − 250 is 5Miller.Lite + 5Full.Miller +
2(F1 + F2 + F3 + F4) + 10M15 + F5 + 2I15 = 177657M + 401I, where Miller.Lite = 14747M and
Full.Miller = 20498M + 80I.

Also, the computational cost of the original β-Weil pairing on BLS-9 given as β9(P, Q) = ∏2
i=0

(
fx,Q([pi]P)

fx,[pi]P (Q)

)(p2−i)(p3−1)

with x = −274 − 272 − 246 − 231 is 3Miller.Lite + 3Full.Miller + 2(F1 + F2) +
6M9 + F3 + 2I9 = 43874M + 232I, where Miller.Lite = 6441M and Full.Miller = 7972M + 77I.

B.2 Parallel Computation of β-Weil Pairing on BLS-27 Using 3 Processors

1st processor computes
(

f p8

x,Q(P). f p7

x,Q([p]P) · f p6

x,Q([p2]P)

)

·
(

f p8

x,P (Q) · f p7

x,[p]P (Q) · f p6

x,[p2]P
(Q)

)−1

2nd processor computes
(

f p5

x,Q([p3]P) · f p4

x,Q([p4]P) · f p3

x,Q([p5]P)

)

·
(

f p5

x,[p3]P
(Q) · f p4

x,[p4]P
(Q) · f p3

x,[p5]P
(Q)

)−1

3rd processor computes
(

f p2

x,Q([p6]P) · f p
x,Q([p7]P) · fx,Q([p8]P)

)

·
(

f p2

x,[p6]P
(Q) · f p

x,[p7]P
(Q) · fx,[p8]P (Q)

)−1

Faster Beta Weil Pairing on BLS Page 21 of 23 13

We see that, 3rd processor’s cost is greater than 1st and 2nd processors’ cost because 3rd processor require the extra
computation of [pi]P (1 ≤ i ≤ 6) which does not require in 1st and 2nd processors. Therefore, the computational
cost of the 3rd processor is cost.of.([p6]P) + 3Miller.Lite + 3Full.M Iller + 2(F1 + F2) + 5M27 + I27 =
6 · 727M + 3(21365M) + 3(30870M + 55I) + 2(26M + 26M) + 5 · 216M + (449M + I) = 162700M + 166I.
In the last step, one processor multiplies the three results of each processor and computes the p9 − 1 power at a
cost of 3 · 216M + 18M + (I + 449M) = 1115M + I. Therefore, the total cost is 163815M + 167I.

Appendix C: Computation of the Optimal Ate Pairing on BLS−27 Curve with a New Parameter

Remark 8.1 The method of [8] (section 3 page 6) for parallelizing the computation of the Miller function fx,Q is
the following. We first write x = 2wx1 + x0, where x0 < 2w. We obtain

fx,Q = f 2w

x1,Q · f2w,x1 Q · fx0,Q · l2wx1 Q,x0 Q

Vx Q

Thus the computation of fx,Q can be parallelized by computing f 2w

x1,Q on one processor, f2w,x1 Q on a second

processor and fx0,Q · l2w x1 Q,x0 Q

Vx Q
on a third processor. This is the case where the three processors are independent.

The parameter w should be carefully selected in order to balance the time of the three function computations. And
if it is done in the right way we can estimate the cost one processor (the more costly) to be about 1

3 of the initial
Miller loop. Note that we can only parallelize the Miller function but not the final exponentiation.

The optimal Ate pairing on BL S − 27 curve in [13] is given by:

e0(Q, P) = fx,Q(P)(p27−1)/r .

For x = −251 − 231 − 221 − 28 − 24, the Miller loop executes 51 doubling steps, 4 addition steps, 51 squarings and
59 multiplications in Fp27 . As in [17], the Miller loop cost of M27 = 34M + 51(233M + I + 9M) + 4(233M +
I + 9M) + 51(125M) + 59 · 189M = 30870M + 55I.

The final exponentiation is divided into two parts: the easy part A = f p9−1 and the hard part Ad , where
d = (p18 + p9 + 1)/r .

the easy part is 1 p9−Frobenius, 1 multiplications and 1 inversion in Fp27 . That is 18M+1M27+1I27 = 682M+I .
The element d = (p18 p +9 +1)/r , is decomposed as

(x − 1)2 · (p9 + x9 + 1) · (p8 + x .p7 + ... + x7.p + x8) + 3. The evaluation of the hard part is as follows:
A1 = Ap8 · Axp7 · Ax2 p6 · Ax3 p5 · Ax4 p4 · Ax5 p3 · Ax6 p2 · Ax7 p · Ax8

,

A2 = A(x−1)2

1 , A3 = Ax9

2 · Ap9

2 · A2, A4 = A3 · A3.

The computation of the hard part requires 17 powers of x, 2 powers of x − 1, 11 multiplications in Fp27 and p,
p2, p3, p4, p5, p6, p7, p8, p9−Frobenius maps. The negative coefficient in the value of x requires 19 inversions in
the cyclotomic subgroup when raising to the power of x during the final exponentiation. (Note that A−1 = Ap9 · Ap18

and cost 2 · 18M + 1M27 = 252M). The hard part then cost
17(51S27+4M27)+2(51S27+5M27)+11M27+2·18M +6·26M +19IG

ϕ3(p9)
= 145329M. The computational

cost of the optimal Ate pairing over BL S − 27−curve is then (31365M + 55I) + (682M + I) + 145329M =
176881 M+56I.

Appendix D: Computation of the Optimal Ate Pairing on BLS-15 Curve with a New Parameter

Similarly, we evaluate e0(Q, P) = fx,Q(P)(p15−1)/r with x = −277 − 276 − 268 − 250 on BLS-15 curve. The
computational cost of Miller full is 20498M + 80I and best cost of the final exponentiation is 9Ex + 2Ex−1

13 Page 22 of 23 A. G. Laurian et al.

+12M15 + S15 + I15 +3Icyc +3F1 + F2 + F3 + F4 +2F5 + F6 + F7 see [36]) for this we will add 11 cyclotomique
inversion due to the negative parameter x . Ex = 77S15 + 3M15, Ex−1 = 77S15 + 4M15 and Icyc = 54M. Thus the
final exponentiation cost 70971M + I and the computational cost of the optimal ate is then 91469M + 81I.

Appendix E: Computation of the Optimal Ate Pairing on BLS-9 Curve with a New Parameter

We evaluate e0(Q, P) = fx,Q(P)(p9−1)/r with x = −274 − 272 − 246 − 231 on BLS-9 curve. The computational
cost of Miller full is 7972M + 77I and the optimal cost of the final exponentiation is 5Ex + 2Ex−1 + 7M9 +
S9 + I9 + F1 + F2 + 2F3 see [36]) for this we will add 7 cyclotomique inversion due to the negative parameter x .

Ex = 74S9 + 3M9, Ex−1 = 74S9 + 4M9 and Icyc = 33M. Thus the final exponentiation cost 14393M + I and
the computational cost of the optimal Ate is then 22365M + 78I.

References

1. Kinoshita, K., Suzuki, K.: Accelerating Beta Weil pairing with precomputation and multi-pairing techniques. In Aoki, K., Kanaoka,
A. (eds.) Advances in Information and Computer Security - 15th International Workshop on Security, IWSEC 2020, Fukui, Japan,
September 2-4, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12231, pp. 261–281. Springer, (2020)

2. Silvermann J.H.: The Arithmetic of elliptic curves. graduate texts in Mathematics. vol. 106. Springer-Verlag, (1986)
3. Boneh, D., Matthew, K.F.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) In Advances in cryptology -

Crypto’2001, vol. 2139, pp. 213–229. Springer, Berlin Heidelberg (2001)
4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J Cryptology 17(4), 297–319 (2004)
5. Joux A.: A one round protocol for tripartite diffie-hellman. In: Algorithmic Number Theory, 4th International Symposium, ANTS-

IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, vol. 1838, pp. 385–394. (2000)
6. Scott, M., Barreto, P.S.L.M.: Advances in cryptology - Crypto’2004. In: Matt, F. (ed.) Compressed pairings., vol. 3152, pp. 140–156.

Springer-Verlag, Berlin (2004)
7. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
8. Aranha, D.F., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.: Parallelizing the Weil and Tate pairings. In: Chen, L. (ed.),

Cryptography and Coding - 13th IMA International Conference, IMACC 2011, Oxford, UK, December 12-15, 2011. Proceedings,
Lecture Notes in Computer Science, vol. 7089, pp. 275–295. Springer, (2011)

9. Aranha, D.F., Castañeda, L.F., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.: Implementing pairings at the 192-bit security level.
In: Abdalla, M., Lange, T. (eds.) Pairing-Based Cryptography - Pairing 2012 - 5th International Conference, Cologne, Germany,
May 16-18, 2012, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7708, pp. 177–195. Springer, (2012)

10. Fouotsa, E., Pecha, A., El Mrabet, N.: Beta Weil pairing revisited. Afr. Mat. 30, 371–388 (2019)
11. Zhao, C., Xie, D., Zhang, F., Zhang, J., Chen, B.L.: Computing bilinear pairings on elliptic curves with automorphisms. Des. Codes

Cryptogr. 58(1), 35–44 (2011)
12. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. J Cryptology

24(3), 446–469 (2011)
13. Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels. In: Galbraith, S.D., Nandi, M. (eds.) Progress

in Cryptology - INDOCRYPT 2012, 13th International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings, Lecture Notes in Computer Science, vol. 7668, pp. 412–430. Springer, (2012)

14. Barbulescu, R., El Mrabet, N., Ghammam, L.: A taxonomy of pairings, their security, their complexity. IACR Cryptology ePrint
Arch. 2019, 485 (2019)

15. Miller, S.V.: The Weil pairing, and its efficient calculation. J Cryptology 17(4), 235–261 (2004)
16. Feng, Q.Y., Ming, T.C., Baoan, G., Zhi, X.M.: Super-optimal pairings. In: Mechanical Engineering, Materials and Energy II.

Applied Mechanics and Materials, vol. 281, pp 127–133. Trans Tech Publications Ltd, 3 (2013)
17. Fouotsa, E., El Mrabet, N., Pecha, A.: Optimal Ate pairing on elliptic curves with embedding degree 9, 15 and 27. journal of

Groups, Complexity, Cryptology, 12, (2020)
18. Clarisse, R., Duquesne, S., Sanders, O.: Curves with fast computations in the first pairing group. In: Krenn, S., Shulman, H.,

Vaudenay, S. (eds.) Cryptology and Network Security - 19th International Conference, CANS 2020, Vienna, Austria, December
14-16, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12579, pp. 280–298. Springer, (2020)

19. Lavice, A., El Mrabet, N., Berzati, A., Rigaud, J.B., Proy, J.: Hardware implementations of pairings at updated security levels.
In Grosso, V., Pöppelmann, T. (eds.) Smart Card Research and Advanced Applications - 20th International Conference, CARDIS
2021, Lübeck, Germany, November 11-12, 2021, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13173, pp.
189–209. Springer, (2021)

20. Emmanuel Fouotsa and Abdoul Aziz Ciss: Faster ate pairing computation on selmer’s model of elliptic curves. Groups Complexity
Cryptology 8(1), 55–67 (2016)

Faster Beta Weil Pairing on BLS Page 23 of 23 13

21. Narcisse Bang Mbiang, Diego de Freitas Aranha, and Emmanuel Fouotsa. Computing the optimal ate pairing over elliptic curves
with embedding degrees 54 and 48 at the 256-bit security level. International Journal of Applied Cryptography, 4(1):45–59, 2020

22. El Mrabet, N., Fouotsa, E.: Failure of the point blinding countermeasure against fault attack in pairing-based cryptography. In: El
Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) Codes, Cryptology, and Information Security - First International Conference,
C2SI 2015, Rabat, Morocco, May 26-28, 2015, Proceedings - In Honor of Thierry Berger. Lecture Notes in Computer Science,
vol. 9084, pp. 259–273. Springer, (2015)

23. Blömer, J., Gomes da Silva, R., Günther, P., Krämer, J., Seifert, J.P.: A practical second-order fault attack against a real-world
pairing implementation. IACR Cryptol. ePrint Arch., page 543, (2014)

24. Weng, J., Dou, Y., Chuangui, Ma., El Mrabet N.: Fault attacks against the miller algorithm in hessian coordinates. In: Wu, C., Yung,
M., Lin, D. (eds.) Information Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, November
30 - December 3, 2011. Revised Selected Papers. Lecture Notes in Computer Science, vol. 7537, pp. 102–112. Springer, (2011)

25. Scott, M.: Pairing implementation revisited. IACR Cryptology ePrint Arch., page 77, (2019)
26. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) Topics in Cryptology – CT-RSA 2005, pp. 293–304. Springer, Berlin

Heidelberg (2005)
27. Azebaze, G.L., Fouotsa, E., El Mrabet, N., Pecha, A.: Sage code for the verification of various algorithms/ formulas and bilinearity

of pairings. In: http://www.emmanuelfouotsa-prmais.org/Portals/22/codeBetaWeil.zip (2021)
28. Guillevic, A.: A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level. In: Kiayias, A., Kohlweiss,

M., Wallden, P., Zikas, V. (eds.) Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on Practice and Theory
of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111,
pp. 535–564. Springer, (2020)

29. Scott, M., Guillevic, A.: A new family of pairing-friendly elliptic curves. In Budaghyan, L., Rodríguez-Henríquez, F. (eds.),
Arithmetic of Finite Fields - 7th International Workshop, WAIFI 2018, Bergen, Norway, June 14-16, 2018, Revised Selected
Papers, Lecture Notes in Computer Science, vol. 11321, pp. 43–57. Springer, (2018)

30. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. J Cryptology 32(4), 1298–1336 (2019)
31. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In Cimato, S., Galdi, C.,

Persiano, G. (eds.) Security in Communication Networks, Third International Conference, SCN 2002, Amalfi, Italy, September
11-13, 2002. Revised Papers. Lecture Notes in Computer Science, vol. 2576, pp. 257–267. Springer, (2002)

32. Enge, A., Milan, J.: Implementing cryptographic pairings at standard security levels. In: Chakraborty, R.S., Matyas, V., Schaumont,
P. (eds.) Security, Privacy, and Applied Cryptography Engineering - 4th International Conference, SPACE 2014, Pune, India,
October 18-22, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8804, pp. 28–46. Springer, (2014)

33. Lin, X., Zhao, C., Zhang, F., Wang, Y.: Computing the Ate pairing on elliptic curves with embedding degree k = 9. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 2007(9), 2387–2393 (2008)

34. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Public Key Cryptography
- PKC 2010, 13th International Conference on Practice and Theory in Public Key Cryptography, Paris, France, May 26-28, 2010.
Proceedings, pp. 224–242, (2010)

35. Guillevic, A., Masson, S., Thomé, E.: Cocks-Pinch curves of embedding degrees five to eight and optimal Ate pairing computation.
Des. Codes Cryptogr. 88(6), 1047–1081 (2020)

36. Hayashida, D., Hayasaka, K., Teruya, T.: Efficient final exponentiation via cyclotomic structure for pairings over families of elliptic
curves. J Cryptology ePrint Arch. 2020, 875 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.emmanuelfouotsa-prmais.org/Portals/22/codeBetaWeil.zip

	Faster Beta Weil Pairing on BLS Pairing Friendly Curves with Odd Embedding Degree
	Abstract
	1 Introduction
	2 Mathematical Preliminaries
	2.1 The Weil Pairing
	2.2 Previous Results on β-Weil Pairing Computation

	3 New Formula for β-Weil Pairing
	3.1 New Formula for β-Weil Pairing: the Case of Odd Embedding Degrees
	3.2 Applications on BLS Curves: Explicit Formulas

	4 Storage and Multifunction Techniques For Fast Computation
	4.1 Storage Technique
	4.2 Multifunction Technique

	5 Basic Operations for β-Weil on BLS Curves with Twisted Degree 3
	5.1 Tower Extension
	5.2 Elliptic Curve Doubling and Elliptic Curve Addition
	5.3 Affine Sparse Multiplication and Projective Sparse Multiplication

	6 Application on BLS-27: Theoretical Costs of β-Weil Computation
	6.1 Serial Computation of the β-Weil Pairing Over BLS-27
	6.2 Parallel Computation of β27(P,Q) Using 3 Processors

	7 Comparison
	8 Conclusion
	Acknowledgements
	Appendix A. Computation of the β-Weil Pairing Over BLS-15 and BLS-9
	A.1 Evaluation of the New β-Weil Pairing Formula on BLS-15 Curve
	A.1.1 Serial Computation of the β-Weil Pairing Over BLS-15
	A.1.2 Parallel Computation of the β-Weil Pairing Over BLS-15 Using 3 Processors

	A.2 Evaluation of the New β-Weil Pairing Formula on BLS-9 Curve
	A.2.1 Serial Computation of the β-Weil Pairing Computations on the BLS-9
	A.2.2 Parallel Computation of β9(P,Q) Using 3 Processors

	Appendix B. Original β-Weil Pairing on BLS Curves with Embedding Degree 27,15 and 9.
	B.1 Serial Computation
	B.2 Parallel Computation of β-Weil Pairing on BLS-27 Using 3 Processors
	Appendix C: Computation of the Optimal Ate Pairing on BLS-27 Curve with a New Parameter
	Appendix D: Computation of the Optimal Ate Pairing on BLS-15 Curve with a New Parameter

	Appendix E: Computation of the Optimal Ate Pairing on BLS-9 Curve with a New Parameter

	References

