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Abstract We introduce a decomposition method for column-convex polyominoes and enumerate them in terms
of two statistics: the number of internal vertices and the number of corners in the boundary. We first find the
generating function for the column-convex polyominoes according to the horizontal and vertical half-perimeter,
and the number of interior vertices. In particular, we show that the average number of interior vertices over all
column-convex polyominoes of perimeter 2n is asymptotic to αon3/2 where αo ≈ 0.57895563 . . . . We also find
the generating function for the column-convex polyominoes according to the horizontal and vertical half-perimeter,
and the number of corners in the boundary. In particular, we show that the average number of corners over all
column-convex polyominoes of perimeter 2n is asymptotic to α1n where α1 ≈ 1.17157287 . . . .

Keywords Polyominoes · Interior vertices · Bondary vertices · Kernel method

Mathematics Subject Classification 05B50 · 05A16

1 Introduction

Unit squares with integer vertices in the square lattice are called cells. Two cells are connected if they share a
common edge. A polyomino is a finite union of connected cells. Polyominoes have important applications in physics,
chemistry, and biology, and enumeration of them is an active area of research in combinatorics. For the earliest
works in these directions, see [11,26,27] and references therein. Other aspects of polyomino research include:
bijective results [3,9], asymptotic enumeration [12,16–18,28], algorithmic enumeration [7,15], and probabilistic
results [19,20].
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The area of a polyomino is the number of cells it contains. We define the boundary of a polyomino as the set of
all edges that are incident to a cell of the polyomino and a cell outside the polyomino. The perimeter of a polyomino
is the number of edges in its boundary. Determining the number of polyominoes of area n is a long-standing open
question in combinatorics but there are promising results for enumerations of some special type of polyominoes.
A column (row) of a polyomino is the intersection between the polyomino and any infinite vertical (horizontal)
strip of unit squares. A polyomino is called column-convex (row-convex) if each of its columns (rows) is a single
contiguous block of cells. A convex polyomino is both column-convex and row-convex. We use CCP to denote
the set of all column-convex polyominoes on the square lattice. For any polyomino, we identify the bottom cell
in its first column with the cell with vertices (0, 0), (1, 0), (1, 1), (0, 1). An important subclass of column-convex
polyominoes is bargraphs. A bargraph is a column-convex polyomino such that the lower edge of its first row lies
on the horizontal axis.

Delest and Viennot [8] used a bijection between convex polyominoes and words of an algebraic language to
show that the number of convex polyominoes with perimeter 2n + 8 is given by

(2n + 11)4n − 4(2n + 1)

(
2n

n

)
.

The perimeter generating function for column-convex polyominoes is defined as

C(x, y) =
∑

π∈CCP
xh(π)yv(π)

where h(π) and v(π) denotes the half of the number of horizontal and of the vertical edges in the boundary of the
polyomino π , respectively.

Feretić and Svrtan [13,14] showed that the perimeter generating function is given by

C(x, y) = (1 − y) − 4(1 − y)

6 −
√

(1 − √
x)2 − 4

√
x y

1−y −
√

(1 + √
x)2 + 4

√
x y

1−y

, (1.1)

These results have been extended to the Carlitz polyominoes in [22]. In particular, it showed that, as n grows
to infinity, asymptotically the number of column-convex and convex Carlitz polyominoes with perimeter 2n is
9
√

2(14+3
√

3)

2704
√

πn3
4n and n+1

10

(
3+√

5
2

)n−2
, respectively.

In this paper, we refine and extend this result in two directions. In Sect. 2, we study the generating function

F(x, y, t, q) =
∑

π∈CCP
xh(π)yv(π)tarea(π)qintv(π)

where area(π) and intv(π) denote the number of the cells, and the number of interior vertices in the polyomino
π , respectively. A vertex in a polyomino π is called an interior vertex if it is adjacent to exactly four different cells
of π , otherwise it is called a boundary vertex. We find an exact expression for the generating function, and show
that the average number of interior vertices over all column-convex polyominoes of perimeter 2n is asymptotic
to αon3/2 where αo ≈ 0.57895563 . . . . In [23] bargraphs were enumerated according to the number of interior
vertices and then the results were extended to the set partitions in [21].

In Sect. 3, we study the generating function that counts all column-convex polyominoes by their corners. For
a polyomino π , we call a vertex in its boundary a corner if it is of degree either 2 or 4. Note that a degree 2
(degree 4) vertex in the boundary is adjacent to exactly one (three) cell(s) in the polyomino π . For instance, for the
polyomino in Fig. 1, deg2(π) = 11 and deg4(π) = 7. In [4] (see also [1,5,6]) integer partitions were enumerated
by corners, and then the results were extended to compositions, bargraphs, and set partitions in [24,25]. We define
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Fig. 1 An example of a
polyomino with 19 cells, a
horizontal perimeter of 10, a
vertical perimeter of 20,
interior vertices of 5,
degree-2 boundary vertex of
11, and degree-4 boundary
vertex of 7

the generating function

H(x, y, p, q) =
∑

π∈CCP
xh(π)yv(π) pdeg2(π)qdeg4(π)

where deg2(π) and deg4(π) denotes the number of degree 2 and degree 4 corners in the polyomino π . We obtain
an exact expression for this generating function, and show that the average number of corners over all column-
convex polyominoes of perimeter 2n is asymptotic to α1n where α1 ≈ 1.17157287 . . .. We also use the generating
functions F and H , and obtain the asymptotic order of the number of column-convex polyominoes which is given
by c1

2n
√

πn
(3 + 2

√
2)n where c1 ≈ 0.15099723 . . ., see also [14].

2 Results on the Internal Vertex Statistic

Let π be a nonempty column-convex polyomino with m columns such that the bottom cell of the first column lays
on the x-axis. We say that a bottom (upper) cell of the i th column of π is at position k if it lays on (lays below and
touches) the line y = k.

Let Fa = Fa(x, y, t, q) be the generating function for the column-convex polyominoes with the first column of
size a, according to the statistics h(π), v(π), area(π) and intv(π), counted by variables x , y, t and q, respectively.
We introduce a decomposition method for column-convex polyominoes and calculate the related generating func-
tions by using it. We call this decomposition CCP-column decomposition. The details are as follows: we decompose
a column-convex polyomino with the first column of size a by considering the size and the bottom-cell’s position
of its second column, see Fig. 2.

• Case I in Fig. 2: The column-convex polyomino has only one column;

Case I

a

Case II

a b

· · ·

1 ≤ b ≤ a

Case III

a

b

· · ·

b ≥ 2

Case IV

a

b

· · ·

b ≥ 2

Case V

a

b ≥ a+ 2

· · ·

Fig. 2 CCP-column decomposition of a column-convex polyomino
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• Case II in Fig. 2: The size of the second column is b, 1 ≤ b ≤ a, and its bottom cell is not below the line y = 0
and its upper cell is not above the line y = a;

• Case III in Fig. 2: The size of the second column is b, b ≥ 2, and its bottom cell is below the line y = 0 and its
upper cell is not above the line y = a;

• Case IV in Fig. 2: The size of the second column is b, b ≥ 2, and its bottom cell is not below the line y = 0
and its upper cell is above the line y = a;

• Case V in Fig. 2: The size of the second column is b, b ≥ a + 2, and its bottom cell is below the line y = 0 and
its upper cell is above the line y = a.

Thus,

Fa = xyata +
a∑

b=1

(a + 1 − b)qb−1xya−bta Fb + 2
a∑

b=2

xta
qb−1ya+1−b − ya

q − y
Fb

+ 2
∑

b≥a+1

xta
ya − qa

y − q
Fb +

∑
b≥a+2

(b − 1 − a)xtaqa−1Fb.

We define F(u) = F(u; x, y, t, q) = ∑
a≥1 Fau

a−1. Then by multiplying the last recurrence by ua−1 and summing
over all a ≥ 1, we obtain

F(u) = xyt

1 − ytu
+ xt

(1 − ytu)2 F(qtu) + 2xyt

(q − y)(1 − ytu)
(F(qtu) − F(1))

+ 2qxt (F(1) − F(qtu))

(q − y)(1 − qtu)
+ xt

(1 − qtu)2 (F(qtu) − F(0))

− xt

(1 − qtu)2 (F(1) − F(0)) + xt

1 − qtu

∂

∂u
F(u) |u=1 . (2.1)

Note that by substituting u = 0 into (2.1), we obtain

∂

∂u
F(u) |u=1= 1

xt
F(0) − y − F(1).

Thus, (2.1) can be written as

F(u) = xyt

1 − ytu
+ xt

(1 − ytu)2 F(qtu) + 2xyt

(q − y)(1 − ytu)
(F(qtu) − F(1))

+ 2qxt

(q − y)(1 − qtu)
(F(1) − F(qtu)) + xt

(1 − qtu)2 (F(qtu) − F(0))

− xt

(1 − qtu)2 (F(1) − F(0)) + 1

1 − qtu
(F(0) − xyt − xt F(1)). (2.2)

Let G(u; x, y) = F(u; x, y, 1, 1). Then (2.2) with t = q = 1 gives

(
1 − (1 − y)2u2x2

(1 − u)2(1 − yu)2

)
G(u; x2, y)

= − (1 − 2y + yu)ux2

(1 − u)2(1 − yu)
G(1; x2, y) + 1

1 − u
G(0; x2, y) − x2yu(1 − y)

(1 − u)(1 − yu)
. (2.3)



A Decomposition of Column-Convex Polyominoes Page 5 of 13 9

This type of functional equation can be solved using the kernel method, see [2]. If we assume that u takes the values
u+, u− where

u+ = u+(x, y) = 1 + x + y − xy − √
(1 + x + y − xy)2 − 4y

2y
,

u− = u−(x, y) = 1 − x + y + xy − √
(1 − x + y + xy)2 − 4y

2y
,

with u± satisfying

x(1 − y)u±
(1 − u±)(1 − yu±)

= ±1,

then we have

− (1 − 2y + yu±)ux2

(1 − u±)(1 − yu±)
G(1; x2, y) + G(0; x2, y) = x2yu±(1 − y)

1 − yu±
.

Solving for G(1; x2, y), we obtain the main result of this section, see also [14].

Theorem 2.1 The perimeter generating function for the column-convex polyominoes is given by

G(1; x, y) = − (1 − y)(1 − u+(
√
x, y))(1 − u−(

√
x, y))y

(1 − yu+(
√
x, y))(1 − yu−(

√
x, y)) − 2y(1 − u+(

√
x, y))(1 − u−(

√
x, y))

.

Moreover, the perimeter generating function for the column-convex polyominoes with the first column of size one
is given by

G(0; x, y) = xy(1 − y)2u+(
√
x, y)u−(

√
x, y)

(1 − yu+(
√
x, y))(1 − yu−(

√
x, y)) − 2y(1 − u+(

√
x, y))(1 − u−(

√
x, y))

.

Note that Theorem 2.1 also proves that G(1; x, y) = C(x, y) for all x, y and hence provides another proof of
(1.1).

We can also find the asymptotic of the coefficient of xn in the generating function G(1; x, x) which gives the
number of colum-convex polyominoes of perimeter 2n. By singularity analysis, see [10], we have

G(1; x, x) = c0 − c1
√

1 − x/r + O(1 − x/r),

where

c0 = 2(1 − 2
√

10 − 7
√

2)(7 − √
2)

47
= 0.086983606 . . . ,

c1 = 2
√

5
√

2 − 7((138
√

2 + 444)
√

10 − 7
√

2 + 589
√

2 − 410)

2209
= 0.15099723 . . . .

Hence, the coefficient of xn in G(1; , x, x) is asymptotic to

[xn]F(x, x, 1, 1) ∼ c1

2n
√

πn
(3 + 2

√
2)n . (2.4)

Next, we will find the average number of interior vertices over all column-convex polyominoes with perimeter
2n. We need to consider some special cases of G(u; x, y).

By using (2.3), we obtain a formula for G(u; x2, y).



9 Page 6 of 13 N. Cakić et al.

Corollary 2.2 The generating function G(u; x2, y) is given by

x2y(1 − y)2(u − u+)(u − u−)(1 − uy)

((1 − yu+)(1 − yu−) − 2y(1 − u+)(1 − u−))((yu2 − (1 + y)u + 1)2 − x2(1 − y)2u2)
.

We define G ′(u; x2, y) = ∂
∂u G(u; x2, y). Note that, in particular, Corollary 2.2 gives the expressions for

G(u±; x2, y) and G ′(u±; x2, y) as follows:

Corollary 2.3 We have

G(u±; x2, y) = ±xy(1 − y)(1 − u±y)(u− − u+)

2(y(y − 2)u+u− + y(u+ + u− − 2) + 1)(2 − (1 ± x + y ∓ xy)u±)
,

and

G ′(u±; x2, y) =
y2L±

4((y − 1)(1 ∓ x)2 ∓ 4x)(1 − (1 ± x + y ∓ xy)u±)(y(y − 2)u+u− + y(u+ + u− − 2) + 1)
,

where

L± = (y − 1)(u∓ − 1)(yu± − 1) ± (2y(1 − 2y)u+u− + 3y2u± + 2yu∓ − u± − 2y)x

+ (y − 1)(3yu±(u∓ − 1) + u∓ + 1)x2 ± u±(y − 1)2x3.

We are ready to find the generating function for the column-convex polyominoes according to the semi-perimeters
and number of interior vertices.

Define Q(u; x, y) = ∂
∂q F(u; x, y, 1, q) |q=1, and Q′(u; x, y) = ∂

∂u Q(u; x, y). By differentiating (2.2) at q = 1,
we have

(
1 − x2(1 − y)2u2

(1 − u)2(1 − uy)2

)
Q(u; x2, y) = x2(1 − 2u + yu)

(1 − u)2(1 − yu)
Q(1; x2, y)

+ x2(1 − y)2u3

(1 − u)2(1 − uy)2 G
′(u; x2, y) + x2u

(1 − u)2 G
′(1; x2, y) + x2

1 − u
Q′(1; x2, y) (2.5)

+ 2x2(1 − y)u2

(1 − u)3(1 − yu)
G(u; x2, y) − 2x2(1 − y)u2

(1 − u)3(1 − uy)
G(1; x, y).

Note that by substituting u = 0 into (2.5) gives

x2Q(1; x2, y) + x2Q′(1; x2, y) − Q(0; x2, y) = 0

and by (2.1), we obtain

G ′(1; x2, y) = 1

x2 G(0; x2, y) − y − G(1; x2, y).

Hence, (2.5) gives

(
1 − x2(1 − y)2u2

(1 − u)2(1 − uy)2

)
Q(u; x2, y)

= − x2(1 − 2y + yu)u

(1 − u)2(1 − yu)
Q(1; x2, y) + 1

1 − u
Q(0; x2, y)
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+ x2(1 − y)2u3

(1 − u)2(1 − uy)2 G
′(u; x2, y)

+ 2x2(1 − y)u2

(1 − u)3(1 − yu)
G(u; x2, y) − x2(1 + u − 3yu + yu2)u

(1 − u)3(1 − uy)
G(1; x2, y)

+ u

(1 − u)2 G(0; x2, y) − x2yu

(1 − u)2 . (2.6)

As before, by substituting u = u±, we obtain the following two equations:

x2(1 − 2y + yu±)u±
(1 − u±)(1 − yu±)

Q(1; x2, y) − Q(0; x2, y)

= x2(1 − y)2u3±
(1 − u±)(1 − yu±)2 G

′(u±; x2, y)

+ 2x2(1 − y)u2±
(1 − u±)2(1 − yu±)

G(u±; x2, y) − x2(1 + u± − 3yu± + yu2±)u±
(1 − u±)2(1 − yu±)

G(1; x2, y)

+ u±
1 − u±

G(0; x2, y) − x2yu±
1 − u±

.

Hence, by subtracting these two equations, we obtain the following result.

Theorem 2.4 We have

Q(1; x2, y) = R(x, u+) − R(x, u−)

x2(1−2y+yu+)u+
(1−u+)(1−yu+)

− x2(1−2y+yu−)u−
(1−u−)(1−yu−)

.

where

R(x, u) = x2(1 − y)2u3

(1 − u)(1 − yu)2 G
′(u; x2, y) + 2x2(1 − y)u2

(1 − u)2(1 − yu)
G(u; x2, y)

− x2(1 + u − 3yu + yu2)u

(1 − u)2(1 − yu)
G(1; x2, y) + u

1 − u
G(0; x2, y) − x2yu

1 − u
.

Note that the expressions for G(u±; x2, y) and G ′(u±; x2, y) are given in Corollary 2.3 and the expressions for
G(1; x2, y) and G(0; x2, y) are given in Theorem 2.1.

After several algebraic operations, the generating function Q(1; x2, x2) for the total number of interior vertices
over all polyominoes of perimeter 2n can be written as

Q(1; x2, x2) = a(x2)

4(1 + x2)(2x6 − 23x4 + 38x2 − 18)2((1 − x2)2 − 4x2)

+
√

1 − x2(b(x) + b(−x))

4x
√

1 + x2(2x6 − 23x4 + 38x2 − 18)2

+ (1 − x2)c(x2)

4(2x6 − 23x4 + 38x2 − 18)2
√

(1 − x2)2 − 4x2
,
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where

a(x) = −11x9 − 11x8 + 1084x7 − 4684x6 + 6617x5 + 217x4 − 9836x3 + 9892x2

− 3702x + 402,

b(x) =
4x17 − 7x16 − 17x15 + 75x14 + 4x13 − 456x12 + 65x11 + 1213x10 − 1272x9

−1663x8 + 3322x7 + 1410x6 − 3398x5 − 742x4 + 1490x3 + 230x2 − 198x − 36

(1 + 2x − x2)
√

1 − 2x − x2
,

c(x) = −21x6 + 172x5 − 553x4 + 1072x3 − 1026x2 + 480x − 78.

Note that generating function Q(1; x, x) is analytic in the disk |x | < r = (
√

2 − 1)2, while it has a singular point
at x = r . Moreover,

Q(1; x, x) = 794
√

2 − 999 + 6(51 − 14
√

2)
√

10 − 7
√

2

8836(1 − x/r)
+ O(1/

√
1 − x/r).

Hence, by Theorem IV.5 in [10] and (2.4), we can state the following result.

Theorem 2.5 The average number of interior vertices over all column-convex polyominoes of perimeter 2n is
asymptotic to(

794
√

2 − 999 + 6(51 − 14
√

2)
√

10 − 7
√

2
) √

π

2
√

2(12(209 − 144
√

2) + (589
√

2 − 410)
√

10 − 7
√

2)
n3/2

where the coefficient is approximately equal to 0.57895563 . . . .

3 Results on the Corner Statistic

Recall that the generating function for the number of column-convex polyominoes according to the statistics h(π),
v(π), deg2(π) and deg4(π), counted by x, y, p and q, respectively, is defined by

H(x, y, p, q) =
∑

π∈CCP
xh(π)yv(π) pdeg2(π)qdeg4(π)

where deg2(π) and deg4(π) denote the number of degree 2 and degree 4 corners in the polyomino π . The main
result of this section is the following:

Theorem 3.1 The generating function H is given by

H(x, y, p, q) = − y(1 − y)p2(1 − v+)(1 − v−)

q2((1 − v+y)(1 − v−y) − 2y(1 − v+)(1 − v−))
,

where

v± = (1 ∓ √
x)(1 + y) ± 2pq

√
x y − √

((1 ∓ √
x)(1 + y) ± 2pq

√
x y)2 − 4y(1 ∓ √

x ± pq
√
x)2

2y(1 ∓ √
x ± pq

√
x)

.

For instance, H(x, y, p, q) = p4xy + p4xy2 + p4x2y + p4xy3 + p4(4pq + 1)x2y2 + p4x3y + p4xy4 +
p4(4p2q2 + 8pq + 1)x2y3 + p4(4p2q2 + 8pq + 1)x3y2 + p4x4y + · · · , where the bold coefficient counts the 5
column-convex polyominoes in Fig. 3.
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p5q p5q p5q p5q p4

Fig. 3 Polyominoes with horizontal and vertical perimeter of 4

Note that Theorem 3.1 with p = q = 1 gives (1.1). Indeed, the Proof of Theorem 3.1 provides a different proof
of (1.1). As an application of Theorem 3.1, in Corollary 3.3, we show that the average number of corners over all
column-convex polyominoes of perimeter 2n is asymptotic to

4(6(51 − 14
√

2)
√

10 − 7
√

2 + 794
√

2 − 999)

6(23
√

2 + 74)
√

10 − 7
√

2 + 589
√

2 − 410
n

where the coefficient is approximately equal to 1.17157287 . . . . For the asymptotic results for corners of degrees
2 and 4, see Corollary 3.4.

Let π be any nonempty polyomino with m columns such that the bottom cell of the first column lays on the
x-axis. We say that a bottom (upper) cell of the i th column of π is at position k if it lays on (lays below and touches)
the line y = k.

Let Ha = Ha(x, y, p, q) be the generating function for the column-convex polyominoes with the first column of
size a, according to the statistics h(π), v(π), deg2(π) and deg4(π), counted by variables x, y, p and q, respectively.
We will first write an equation for the generating function Ha by making use of CCP-column decomposition as
used in Sect. 2. See also Fig. 2:

• Case I in Fig. 2: The column-convex polyomino has only one column. Thus the contribution of this case is given
by xya p4.

• Case II in Fig. 2: The size of the second column is b, 1 ≤ b ≤ a, and its bottom cell is not below the
line y = 0 and its upper cell is not above the line y = a. Thus, the contribution of this case is given by
xya−b(2pq + p2q2(a − 1 − b))Hb when b = 1, 2, . . . , a − 1 and xHb when b = a.

• Case III in Fig. 2: The size of the second column is b, b ≥ 2, and its bottom cell is below the line y = 0 and

its upper cell is not above the line y = a. Thus, the contribution of this case is given by xp2q2 ya+1−b−ya

1−y Hb

when 2 ≤ b ≤ a, xp2q2 y−ya

1−y Hb when b ≥ a + 1 and the upper cell of the second column is not above the line
y = a − 1, and xpqHb when b ≥ a + 1 and the upper cell of the second column is below and touches the line
y = a.

• Case IV in Fig. 2: The size of the second column is b, b ≥ 2, and its bottom cell is not below the line y = 0 and

its upper cell is above the line y = a. As In case I I I , the contribution of this case is given by xp2q2 ya+1−b−ya

1−y Hb

when 2 ≤ b ≤ a, xp2q2 y−ya

1−y Hb when b ≥ a + 1 and the lower cell of the second column is not below the
line y = 1, and xpqHb when b ≥ a + 1 and the lower cell of the second column is above and touches the line
y = 0.

• Case V in Fig. 2: The size of the second column is b, b ≥ a + 2, and its bottom cell is below the line y = 0
and its upper cell is above the line y = k. The contribution of this case is given by xp2q2(b − 1 − a)Hb when
b ≥ a + 2.

Thus,

Ha = xya p4 + x
a−1∑
b=1

ya−b(2pq + p2q2(a − 1 − b))Hb + xHb + 2xp2q2
a∑

b=2

ya+1−b − ya

1 − y
Hb

+ 2xp2q2
∑

b≥a+1

y − ya

1 − y
Hb + 2xpq

∑
b≥a+1

Hb + xp2q2
∑

b≥a+2

(b − 1 − a)Hb,

We define H(u) = H(u; x, y, p, q) = ∑
a≥1 Haua−1.
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Then by multiplying the last recurrence by ua−1 and summing over all a ≥ 1, we obtain

H(u) = xyp4

1 − yu
+ xy2 p2q2u2

(1 − yu)2 H(u) + 2xypqu

1 − yu
H(u) + xH(u)

+ 2xyp2q2H(u)

(1 − y)(1 − yu)
+ 2xyp2q2uH(1)

(1 − u)(1 − yu)
− 2xyp2q2H(u)

(1 − u)(1 − y)
+ 2xpq(H(1) − H(u))

1 − u

+ xp2q2

(1 − u)2 (H(u) − H(0)) − xp2q2

(1 − u)2 (H(1) − H(0)) + xp2q2

1 − u

d

du
H(u) |u=1,

which is equivalent to

(
1 − (y(pq − 1)u2 + (1 + y − 2ypq)u + pq − 1)2x2

(1 − u)2(1 − yu)2

)
H(u, x2, y, p, q)

= x2 pq(2 − pq + (3pqy − 2y − 2)u + 2y(1 − pq)u2)

(1 − u)2(1 − yu)
H(1; x2, y, p, q) (3.1)

+ x2yp4

1 − yu
+ x2 p2q2

1 − u

d

du
H(u; x2, y, p, q) |u=1 .

We will solve this functional equation by using the kernel method. If we assume that u takes the values of u+, u−
where

u+ = u+(x, y, p, q)

= 1 − x + y − xy + 2pqxy − √
(1 − x + y − xy + 2pqxy)2 − 4y(1 − x + pqx)2

2y(1 − x + pqx)
,

u− = u−(x, y, p, q)

= 1 + x + y + xy − 2pqxy − √
(1 + x + y + xy − 2pqxy)2 − 4y(1 + x − pqx)2

2y(1 + x − pqx)
,

with u = u± satisfying

1 − (y(pq − 1)u2 + (1 + y − 2ypq)u + pq − 1)2x2

(1 − u)2(1 − yu)2 = 0,

then, we obtain

q(2 − pq + (3pqy − 2y − 2)u+ + 2y(1 − pq)u2+)

(1 − u+)(1 − yu+)
H(1; x2, y, p, q)

+ yp3(1 − u+)

1 − yu+
+ pq2 d

du
H(u; x2, y, p, q) |u=1= 0,

q(2 − pq + (3pqy − 2y − 2)u− + 2y(1 − pq)u2−)

(1 − u−)(1 − yu−)
H(1; x2, y, p, q)

+ yp3(1 − u−)

1 − yu−
+ pq2 d

du
H(u; x2, y, p, q) |u=1= 0.
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By solving this system for H(1; x2, y, p, q), we obtain

H(1; x2, y, p, q) = − y(1 − y)p2(1 − u+)(1 − u−)

q2((1 − u+y)(1 − u−y) − 2y(1 − u+)(1 − u−))
,

which, by substituting expressions of u±, completes the Proof of Theorem 3.1. 
�
Note that cor(π) = deg2(π) + deg4(π) is the number of all corners in π . Thus, by Theorem 3.1, we have the

following corollary.

Corollary 3.2 We set v±(x, y, p, q) = u±(
√
x, y, p, q). Then

(i) The generating function for the column-convex polyominoes according to the statistics h(π), v(π), and the
number of corners, counted by x, y and q, respectively, is given by

−y(1 − y)(1 − v+(x, y, q, q))(1 − v−(x, y, q, q))

(1 − yv+(x, y, q, q))(1 − yv−(x, y, q, q)) − 2y(1 − v+(x, y, q, q))(1 − v−(x, y, q, q))
.

(ii) The generating function for the column-convex polyominoes according to the statistics h(π), v(π) and deg2(π),
counted by x, y and p, respectively, is given by

−y(1 − y)p2(1 − v+(x, y, p, 1))(1 − v−(x, y, p, 1))

((1 − yv+(x, y, p, 1))(1 − yv−(x, y, p, 1)) − 2y(1 − v+(x, y, p, 1))(1 − v−(x, y, p, 1)))
.

(iii) The generating function for the column-convex polyominoes according to the statistics h(π), v(π) and deg4(π),
counted by x, y and q, respectively, is given by

−y(1 − y)(1 − v+(x, y, 1, q))(1 − v−(x, y, 1, q))

q2((1 − yv+(x, y, 1, q))(1 − yv−(x, y, 1, q)) − 2y(1 − v+(x, y, 1, q))(1 − v−(x, y, 1, q)))
.

We can find the asymptotic of the coefficient of xn in the generating function H(x, x, 1, 1). Let r = 3 − 2
√

2,
by singularity analysis, see [10], we have

H(x, x, 1, 1) = c0 − c1
√

1 − x/r + O(1 − x/r),

where

c0 = 2(1 − 2
√

10 − 7
√

2)(7 − √
2)

47
= 0.086983606 . . . ,

c1 = 2
√

5
√

2 − 7((138
√

2 + 444)
√

10 − 7
√

2 + 589
√

2 − 410)

2209
= 0.15099723 . . . .

Hence, the coefficient of xn in H(x, x, 1, 1) is asymptotic to

[xn]H(x, x, 1, 1) ∼ c1

2n
√

πn
(3 + 2

√
2)n . (3.2)

In the following, we study the average number of of corners, the sum of the corners of degrees 2 and 4, in
column-convex polyominoes of perimeter 2n.

By differentiating H(x, x, q, q) at q = 1, Corollary 3.2 gives

∂

∂q
H(x, x, q, q) |q=1

= y(1 − y)2(yv′+v2− + yv2+v′− − (1 + y)v′+v− − (1 + y)v+v′− + v′+ + v′−)

(y2v+v− − 2yv+v− + y(v+ + v−) − 2y + 1)2 ,



9 Page 12 of 13 N. Cakić et al.

where v± = u±(
√
x, x, 1, 1) and v′± = ∂

∂q u±(
√
x, x, q, q) |q=1. After substituting the expressions of v± and v′±

into ∂
∂q H(x, x, q, q) |q=1, we obtain

∂

∂q
H(x, x, q, q) |q=1= d0√

1 − x/r
+ d1 + O(

√
1 − x/r),

where

d0 = 24(51 − 14
√

2)
√

10 − 7
√

2
√

5
√

2 − 7 + 4(794
√

2 − 999)
√

5
√

2 − 7

2209
= 0.08845213 . . . ,

d1 = 24(97025 − 68562
√

2)

103823
+ 2(190697

√
2 − 269765)

√
10 − 7

√
2

103823
= 0.0142419 . . . .

Hence, the coefficient of xn in ∂
∂q H(x, x, q, q) |q=1 is asymptotic to d0√

πn
(3 + 2

√
2)n . Thus, by (3.2), we have the

following result.

Corollary 3.3 The average number of corners over all column-convex polyominoes of perimeter 2n is asymptotic
to

2d0n

c1
= 4(6(51 − 14

√
2)

√
10 − 7

√
2 + 794

√
2 − 999)

6(23
√

2 + 74)
√

10 − 7
√

2 + 589
√

2 − 410
n

where the coefficient is approximately equal to 1.17157287 . . . .

3.1 Corners of Degree Either 2 or 4

Similar arguments as in the above subsection (counting all corners), where we consider the generating functions
∂
∂p H(x, x, p, 1) |p=1 and ∂

∂p H(x, x, 1, q) |q=1, Corollary 3.2 leads to the following result.

Corollary 3.4 The average number of corners of degree 2 (degree 4) over all column-convex polyominoes of
perimeter 2n is asymptotic to

2(6(51 − 14
√

2)
√

10 − 7
√

2 + 794
√

2 − 999)

6(23
√

2 + 74)
√

10 − 7
√

2 + 589
√

2 − 410
n,

where the coefficient is approximately equal to 0.5857864358 . . ..
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