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Abstract In this paper, we introduce and study Carlitz polyominoes. In particular, we show that, as n grows to
infinity, asymptotically the number of

(1) column-convex Carlitz polyominoes with perimeter 2n is
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(2) convex Carlitz polyominoes with perimeter 2n is

n + 1
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)n−2

.
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1 Introduction and Preliminaries

Take the upright square lattice and call each of its squares, together with its sides, a cell. A squared lattice polyomino,
or simply polyomino, is a finite collection of edge-connected cells in the lattice. The polyominoes were first
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Table 1 Various classes of the polyominoes

Description Ref.

Convex polyominoes [15]

Column convex polyominoes [21–23]

k-convex polyominoes [24]

Smooth polyominoes [25]

Bargraphs [23]

Directed animals on a strip [2]

introduced and studied by Golomb in 1953 [1] in certain mathematical recreational problems, and soon, they
became central objects in the study of Ising model, Pott model, percolation theory, branched polymers [2–5]), the
mechanics of macromolecules [6], tiling problems [7–12], and enumeration problems [13–15]. We refer to [16,17]
and references therein for a review of early literature.

The enumeration of polyominoes in the general case is an intractable and long-standing open problem. To tackle
the problem, many authors have analyzed different subsets of polyominoes assuming additional constraints such as
convexity, in which the enumeration has been conducted with respect to several statistics; including but not limited
to the area, the perimeter, the outer/inner perimeter, and the corners. The techniques advised in enumeration of these
subsets are diverse and range from bijective methods [13,18], and algorithmic enumeration [14,19,20], to various
forms of decompositions (see [21] and references wherein). See Table 1 for few examples.

Our objective in this paper is to introduceCarlitz polyominoes and enumerate themwith someadditional convexity
constraints. To that goal, we first recall some standard definitions. A column (resp. row) of a polyomino is the
collection of all cells in the polyomino belonging to an infinite vertical (resp. horizontal) array of cells in the lattice.
For any polyomino ν, let h(ν) and v(ν) to be the number of rows and columns of ν, respectively. We define the
perimeter of ν as 2(h(ν)+v(ν)). A polyomino is said to be column-convex (resp. row convex) if each of its columns
(resp. rows) is a single contiguous block of cells. We say a polyomino is convex if it is both column-convex and row
convex. We further assume that the cells are all squares of size one and equip the lattice with the Cartesian system,
in which the bottom-left corner of the bottom cell of the leftmost column lies at the origin. Numerate the columns
from the left side to the right side with the leftmost column counted as “1”. Let ν be any nonempty polyomino with
m columns. We say that the bottom (resp. top) cell of the i th column of ν is at the position k if it lays on (resp.
below) and touches the line y = k and we denote this by bi (ν) = k (resp. ui (ν) = k), for i = 1, 2, . . . ,m. Define

B(ν) = |{i | bi (ν) = bi+1(ν), i = 1, 2, . . . ,m − 1}|,
U (ν) = |{i | ui (ν) = ui+1(ν), i = 1, 2, . . . ,m − 1}|,

and refer to B(ν) and U (ν) as bottom levels and top levels, respectively.
A polyomino ν is said to be a Carlitz polyomino if B(ν) = U (ν) = 0. A polyomino is said to be a convex

(resp. column-convex) Carlitz polyomino if it is both convex (resp. column-convex) and Carlitz. See Fig. 1 for a
column-convex Carlitz polyominoe.

We remark that smooth polyominoes introduced in [25] are somewhat related to Carlitz polyominoes. For each
smooth polyomino, the top and bottom positions of the columns cannot change by more than one unit going from
each column to its neighbors. By contrast, the top and bottom positions in a Carlitz polyomino changes by at least
one unit going from each column to its neighbors.

The paper is organized as follows. Section 2 is devoted to the enumeration of the column-convex Carlitz polyomi-
noes. We first obtain an explicit formula for the generating function of the number of these polyominoes according
to their perimeter. Then, Corollary 2.3 yields that the number of column-convex Carlitz polyominoes with the
perimeter 2n is asymptotic to
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Fig. 1 An example of
column-convex Carlitz
polyomino
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as n grows to infinity. In Sect. 3, the convex Carlitz polyominoes are counted. We obtain the generating function for
the number of convex Carlitz polyominoes according to their perimeters. Then, the explicit form is used to show
that, as n goes to infinity, the number of convex Carlitz polyominoes of the perimeter 2n is asymptotic to
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.

2 Enumeration of Column-Convex Carlitz Polyominoes

In this section, we consider certain decompositions of the column-convex polyominoes and establish a functional
system of linear combinations of multivariate series of forms A(t1, . . . , tr ; x1, . . . , xs). These forms do not depend
on x1, . . . , xs, simultaneously and, their coefficients are referred to as kernels [26]. A systematic approach to solve
these type of equations is given in [26]. We conduct all of our calculations and manipulations having the following
facts in mind. LetQ,Q[x1, . . . , xs], andQ[[x1, . . . , xs]] denote, respectively, the field of rational numbers, the ring
of polynomials in x1, . . . , xs , and the ring of formal power series in x1, . . . , xs with coefficients in Q. Recall that
a series A ∈ Q[x1, . . . , xs][[t1, . . . , tr ]] is D-finite if its partial derivatives span a finite dimensional vector space
over the field of rational functions in t1, . . . , tr with coefficients in Q[x1, . . . , xs]. Note that any algebraic series
is D-finite. The specializations of a D-finite series, obtained by assigning values in Q to a subset of variables, are
D-finite, if well-defined.Moreover, if A is D-finite, then any substitution xi = 1with i ∈ I ⊆ [s] or/and xi = x j for
(i, j) ∈ I × I ⊆ [s] × [s] into A is also D-finite. One last remark is that to derive asymptotic forms for our results,
we apply singularity analysis (see [27, Section VI] for a comprehensive review). All calculations for asymptotic
analysis require an appropriate domain of complex number C. We omit the details for the sake of brevity as it is
standard.

For the rest of this paper, we use x, y, p, and q to mark h(.), v(.), B(.) and U (.), respectively, while defining
the corresponding generating functions. This section follows the methodology implemented in [28] closely. Define
CCP to be the set of all nonempty column-convex polyominoes. Similarly, set CCPa to be the set of polyominoes
in CCP with a cells in their first columns. We define Fa := Fa(x, y, p, q) to be the generating function for the
polyominoes in CCPa according to h(.), v(.), B(.), and U (.); that is,

Fa(x, y, p, q) :=
∑

ν∈CCPa

xh(ν)yv(ν) pB(ν)qU (ν).

Next, decompose each ν ∈ CCPa by considering the size and the bottom position of its second column (if any), as
described in Fig. 2.
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Fig. 2 Decomposition of a polyomino in CCPa

By a careful analysis of these cases, for each a ≥ 1, we may write

Fa = xya +
a−1∑
s=1

(a − 1 − s + p + q)xya−s Fs + pqxFa

+ 2
a∑

s=2

x
ya+1−s − ya

1 − y
Fs +

∑
s≥a+1

x(2
y − ya

1 − y
+ p + q)Fs +

∑
s≥a+2

(s − 1 − a)xFs .

Now, define

F(u) = F(u; x, y, p, q) =
∑
a≥1

Fau
a−1.

By multiplying the last recurrence by ua−1 and summing over all a ≥ 1, we obtain the following result.

Lemma 2.1 The generating function F(u) = F(u; x, y, p, q) satisfies

K (u; x, y, p, q)F(u)

= xy

1 − yu
+ x

1 − u

(
2yu

1 − yu
+ p + q − 1

1 − u

)
F(1) + x

1 − u

∂

∂u
F(u) |u=1,

where K (u; x, y, p, q) = 1 − (qyu(u−1)−yu2−qu+2yu+q−1)(pyu(u−1)−yu2−pu+2yu+p−1)x
(1−u)2(1−yu)2

.

Note that by setting q = p in Lemma 2.1, we get

K (u; x, y, q, q)F(u)

= xy

1 − yu
+ x

1 − u

(
2yu

1 − yu
+ 2q − 1

1 − u

)
F(1) + x

1 − u

∂

∂u
F(u) |u=1,

where

K (u; x, y, q, q) = 1 − (qyu(u − 1) − yu2 − qu + 2yu + q − 1)2x

(1 − u)2(1 − yu)2
.

To solve this functional equation, we apply kernel method (see [26]). To that end, setting K (u; x, y, q, q) = 0
yields

∓1 + (q − 1)
√
x + ((±1 − √

xq)(y + 1) + 2
√
x y)u + (∓y + (q − 1)

√
x y)u2 = 0.
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Solving for u, the roots of this equation are

u± =
1 −

√
1 − 4y((q

√
x±1)2+√

x(2q−1)(∓2−√
x))

((1∓√
xq)(y+1)±2

√
x y)2

2y(1+√
x(q−1))

((1∓√
xq)(y+1)±2

√
x y)2

.

By substituting u = u± into Lemma 2.1, solving for F(1; x, y, q, q), and evaluating ∂
∂u F(u; x, y, q, q) |u=1, we

obtain the main result of this section.

Theorem 2.2 The generating function F(1; x, y, q, q) is given by

(u+ − 1)(u− − 1)y(y − 1)

u+u−y(y − 2) + (u+ + u−)y − 2y + 1

= xy + xy2 + q2x2y + xy3 + (q2 + 4q)x2y2 + q4x3y + · · · .

In particular, F(1; x, y, 0, 0) counts the number of the column-convex Carlitz polyominoes according to h(.) and
v(.), and is given by

(v+ − 1)(v− − 1)y(y − 1)

v+v−y(y − 2) + (v+ + v−)y − 2y + 1

= xy + xy2 + xy3 + xy4 + 4x2y3 + xy5 + 12x2y4 + x3y3 + · · · ,

where v± = u± |q=0.

Note that the generating function for the number of the column-convex Carlitz polyominoes according to the
perimeter is simply given by

F(1; x2, x2, 0, 0) = (1 − x2)(20x6 − 45x4 + 42x2 − 21)

4(8x6 − 27x4 + 36x2 − 18)

+ (1 − x)(2x3 − 9x2 + 9)(x + 1)2

4(8x6 − 27x4 + 36x2 − 18)

√
4x4 + x2 + 1 − 2x(1 + 2x2) (2.1)

− (1 + x)(2x3 + 9x2 − 9)(x − 1)2

4(8x6 − 27x4 + 36x2 − 18)

√
4x4 + x2 + 1 + 2x(1 + 2x2)

+ 3(x2 − 1)2

4(8x6 − 27x4 + 36x2 − 18)

√
(4x4 + x2 + 1)2 − 4x2(1 + 2x2)2.

We end this section by extracting the coefficient of xn in F(1; x, x, 0, 0) and d
dq F(1; x, x, q, q) |q=1, for large n,

by conducting singularity analysis of (2.1). The end result states that

Corollary 2.3 Asymptotically, as n gets large,

(1) the number of column-convex Carlitz polyominoes with perimeter 2n is 9
√
2(14+3

√
3)

2704
√

πn3
4n.

(2) the total sum of B +U over all column-convex polyominoes with perimeter 2n is

(1588 − 999
√
2)

√
5
√
2 − 7 + 6(51

√
2 − 28)

√
99

√
2 − 140

2209
√

πn
(
3 + 2

√
2

2
)n .
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Fig. 3 An example of
polyominoes in (left) CP t

(right) CPbt

3 Enumeration of Convex Carlitz Polyominoes

This section follows the approach developed in [21] closely. We define CP t to be the set of all nonempty convex
polyominoes ν, where for each column j of ν, us(ν) ≤ u j (ν) for all s ≥ j + 1. Similarly, CPb is the set of
all nonempty convex polyominoes ν such that for all columns j, and for all s ≥ j + 1, bs(ν) ≥ b j (ν). Set
CPbt := CP t ∩ CPb. By a clear upside down symmetry, there is a bijection between the set CP t and the set CPb.
See Fig. 3, for an example of polyominoes in CP t and CPbt . In addition, we let CP t

a, CPb
a, CPbt

a , and CPa denote
the set of polyominoes in CP t , CPb, CPbt , and CP with a cells in their first columns. Our enumeration is done as
follows. The first step is to count the number of polyominoes in CPbt with respect to the statistics of interest h(.),
v(.), U (.), and B(.). Then, for the second step, we extend the result from CPbt to CP t and CPb. This can be done
since the corresponding generating functions can be written recursively in terms of the corresponding generating
functions in CPbt . When this is done, the last step is to obtain the results for CP by lifting up the result obtained
for CP t and CPb.

Let Ga := Ga(x, y, p, q) be the generating functions of h(.), v(.), B(.), and U (.) over CPa ; that is,

Ga := Ga(x, y, p, q) =
∑

ν∈CPa

xh(ν)yv(ν) pB(ν)qU (ν).

We define Gt
a , G

b
a , G

bt
a similarly for the set of polyominoes CPb

a , CP t
a , CPbt

a , respectively. Moreover, we define the
generating function G(u) = G(u; x, y, p, q) = ∑

a≥1 Gaua−1. Additionally, we define Gb(u),Gt (u) and Gbt (u).
Consider a polyomino ν in CPbt

a with the second column of size s (if any). If second column does not exist then
the contribution to Gbt

a is exactly xya . If second column exists then u2(ν) ≤ u1(ν) and b2(ν) ≥ b1(ν), so there are
exactly a + 1 − s ways of gluing the second column to the first column. By considering all four cases

(1) u2(ν) < u1(ν), b2(ν) > b1(ν)

(2) u2(ν) < u1(ν), b2(ν) = b1(ν),
(3) u2(ν) = u1(ν), b2(ν) > b1(ν), and
(4) u2(ν) = u1(ν), b2(ν) = b1(ν),

we obtain

Gbt
a = xya +

a−1∑
s=1

(a − 1 − s + p + q)xya−sGbt
s + pqxGbt

a .

By multiplying by ua−1 and summing over a ≥ 1, we obtain

Gbt (u) = xy

1 − yu
+ xyu(−yu(p + q − 1) + p + q)

(1 − yu)2
Gbt (u) + pqxGbt (u).
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Fig. 4 Decomposition of a polyomino in CP t
a

Hence,

Gbt (u; x, y, p, q) =
xy

1−yu

1 − pqx − xyu(−yu(p+q−1)+p+q)

(1−yu)2

. (3.1)

Now, let us find a formula for Gt (u). Any nonempty polyomino ν ∈ CP t
a can be decomposed as described in

Fig. 4.
Therefore, the generating function Gt

a(u) satisfies

Gt
a = xya +

a−1∑
s=1

(a − 1 − s)xya−sGbt
s + q

a−1∑
s=1

xya−sGbt
s + p

a−1∑
s=1

xya−sGt
s

+ pqxGt
a +

a∑
s=2

x
ya+1−s − ya

1 − y
Gt

s +
∑

s≥a+1

x

(
y − ya

1 − y
+ q

)
Gt

s .

By multiplying this recurrence by ua−1 and summing over a ≥ 1, we obtain the equation

(
1 − pqx + qx

1 − u
− pxyu

1 − yu
+ xyu

(1 − u)(1 − yu)

)
Gt (u)

= xy

1 − yu
+

(
xy2u2

(1 − yu)2
+ qxyu

1 − yu

)
Gbt (u) + xyu + qx(1 − yu)

(1 − u)(1 − yu)
Gt (1), (3.2)

which will be solved by using the kernel method (see the beginning of Sect. 2). First, by finding the roots of the
equation

1 − pqx + qx

1 − u′ − pxyu′

1 − yu′ + xyu′

(1 − u′)(1 − yu′)
= 0

for variable u, we get

u′ =
1 −

√
1 − 4y(1+p(1−q)x)(1+q(1−p)x)

(1+y−pqx−xy(1−p)(1−q))2

2y(1+p(1−q)x)
1+y−pqx−xy(1−p)(1−q)

.

Then, setting u = u′ in last functional equation yields

Gt (1) = y(u′ − 1)

yu′ + q(1 − yu′)
+ yu′(u′ − 1)

1 − yu′ Gbt (u′).

Thus, by (3.1), we can state the following result.
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a a s
1 ≤ s ≤ a − 2

a s
1 ≤ s ≤ a − 1

a s
1 ≤ s ≤ a − 1

a s = a a

s
2 ≤ s ≤ a

a s
2 ≤ s ≤ a

a

s
s ≥ a+ 1

a s
s ≥ a+ 1

a
s
s ≥ a+ 2

Fig. 5 Decomposition of a polyomino in CPa

Lemma 3.1 Thegenerating functionGt (u; x, y, p, q) is givenby (3.2), where thegenerating functionGt (1; x, y, p, q)

is given by

Gt (1) = y(u′ − 1)

yu′ + q(1 − yu′)
+ xy2u′(u′ − 1)

(1 − pqx)(1 − yu′)2 − xyu′(p + q)(1 − yu′) − xy2u′2 . (3.3)

Next, we find the generating function G(1; x, y, p, q) based on Gt and Gb. To that goal, we decompose each
convex polyomino as described in Fig. 5.

Considering these cases, we can rewrite Ga(x, y, t) as

Ga = xya +
a−1∑
s=1

(a − 1 − s)xya−sGbt
b + p

a−1∑
s=1

xya−sGt
b + q

a−1∑
s=1

xya−sGb
s

+ xGa +
a∑

s=2

x(ya−1 + · · · + ya+1−s)Gt
s +

a∑
s=2

x(ya−1 + · · · + ya+1−s)Gb
s

+
∑

s≥a+1

x(ya−1 + · · · + y)Gt
s +

∑
s≥a+1

x(ya−1 + · · · + y)Gb
s + (p + q)

∑
s≥a+1

xGs

+
∑

s≥a+1

(s − 1 − a)xGs .

By multiplying by ua−1 and summing over a ≥ 1, we obtain(
1 − pqx + (p + q)x

1 − u
− x

(1 − u)2

)
G(u)

= xy

1 − yu
+ xy2u2

(1 − yu)2
Gbt (u) + xyu

1 − yu
(pGt (u) + qGb(u))
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+ xyu

(1 − u)(1 − yu)
(Gt (1) + Gb(1) − Gt (u) − Gb(u))

+ (p + q)x

1 − u
G(1) − x

(1 − u)2
G(1) + x

1 − u

∂

∂u
G(u) |u=1 . (3.4)

Recall Gb(u; x, y, p, q) = Gt (u; x, y, q, p) by a symmetry argument. Also, note that the roots of the kernel

K (u) = 1 − pqx + (p + q)x

1 − u
− x

(1 − u)2

are

u± = 1 + (p + q)x ± √
(p − q)2x2 + 4x

2(1 − pqx)
.

By inserting u = u+ and u = u−, one at the time, into the functional equation (3.4), we obtain a system of two
equations with variables G(1) and ∂

∂u G(u) |u=1. Solving this system yields

Theorem 3.2 The generating function G(1; x, y, p, q) is given by

y(y − 1)(1 − u+)(1 − u−)

(1 − yu+)(1 − yu−)

+ y2(1 − u+)(1 − u−)

u+ − u−

(
u2+(1 − u+)Gbt (u+; x, y, p, q)

(1 − yu+)2
− u2−(1 − u−)Gbt (u−; x, y, p, q)

(1 − yu−)2

)

− yu+(1 − u+)(1 − u−)

(u+ − u−)(1 − yu+)

(
(1 − p(1 − u+))Gt (u+; x, y, p, q) + (1 − q(1 − u+))Gt (u+; x, y, q, p)

)
+ yu−(1 − u+)(1 − u−)

(u+ − u−)(1 − yu−)

(
(1 − p(1 − u−))Gt (u−; x, y, p, q) + (1 − q(1 − u−))Gt (u−; x, y, q, p)

)
+ y(1 − u+)(1 − u−)

(1 − yu+)(1 − yu−)
(Gt (1; x, y, p, q) + Gb(1; x, y, q, p)),

where Gbt (u; x, y, p, q), Gt (u; x, y, p, q) and Gt (1; x, y, p, q) are given by (3.1), (3.2) and (3.3), respectively.

As a corollary, the generating function G(1; x, x, q, q) is given by

x2A

(q2x2 − q2x − 2qx2 + x2 − 3x + 1)2(q2x2 − q2x − 2qx2 + x2 + x + 1)2

− x4(q3x2 − q3x − 3q2x2 + q2x + 3qx2 − qx − x2 + q + x + 1)2

(q2x2 − q2x − 2qx2 + x2 − 3x + 1)3/2(q2x2 − q2x − 2qx2 + x2 + x + 1)3/2

= x2 + (q2 + 1)x3 + (q4 + q2 + 4q + 1)x4 + (q2 + 1)(q4 + 8q + 5)x5 + · · · ,

where

A = 1 − 3(q2 + 1)x + q(3q3 + 10q − 2)x2 − (q2 + 1)(q4 + 11q2 − 6q − 4)x3

+ (q − 1)(6q5 + 17q3 − 7q2 − 5q − 3)x4 − (q2 + 1)(q4 + 11q2 − 6q − 4)(q − 1)2x5

+ q(3q3 + 10q − 2)(q − 1)4x6 − 3(q2 + 1)(q − 1)6x7 + (q − 1)8x8.

By considering G(1; x, x, 0, 0), we show that the generating function for the number of convex Carlitz poly-
ominoes according to their perimeters is given by

x4(x16 − 3x14 + 4x10 + 3x8 + 4x6 − 3x2 + 1)

(x4 − 3x2 + 1)2(x4 + x2 + 1)2
− x8(x4 − x2 − 1)2

(x4 − 3x2 + 1)3/2(x4 + x2 + 1)3/2
.

Next, by singularity analysis of G(1; x, x, 0, 0), we get
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Corollary 3.3 As n grows to infinity, the number of convex Carlitz polyominoes with the perimeter 2n is asymptotic

to n+1
10

(
3+√

5
2

)n−2
.

Note that by Theorem 3.2,

d

dq
G(1; x, x, q, q) |q=1 = 2x3(16x4 − 12x3 + 10x2 − 5x + 1)

(1 − 4x)3
+ 4x4(4x2 − 1)

(1 − 4x)5/2
.

We conclude this section by stating that singularity analysis of d
dq G(1; x, x, q, q) |q=1 also yields

Corollary 3.4 The total sum of B +U over all convex polyominoes with perimeter 2n is asymptotic to n24n−4.
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