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Abstract Computer algebramethodswere used to find the roots of a nonlinear algebraic system that determines the
equilibrium orientations for a system of two bodies, connected by a spherical hinge, that moves along a circular orbit
under the actionof gravitational torque.Todetermine the equilibriumorientations of twoconnectedbodies the system
of 12 algebraic equationswas decomposed using algorithms forGröbner basis construction. The number of equilibria
was found by analyzing the real roots of the algebraic equations from the calculated Gröbner basis. Evolution of
the conditions for equilibria existence in the dependence of the parameter of the problem was investigated. The
effectiveness of the algorithms for Gröbner basis construction was analyzed depending on the number of parameters
for the problem under consideration.

Keywords Two connected bodies · Satellite–stabilizer system · Spherical hinge · Gravitational torque · Circular
orbit · Lagrange equations · Algebraic equations · Equilibrium orientation · Computer algebra · Gröbner basis
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1 Introduction

In the present paper, we consider the dynamics of a system of two bodies (satellite and stabilizer) connected by
a spherical hinge. The system moves in a central Newtonian force field along a circular orbit. The problem is of
practical importance for designing passive gravitational orientation systems of satellites, that can stay on the orbit
for a long time without energy consumption. The study of the satellite–stabilizer dynamics under the influence of
gravitational torque is an important topic for the application in attitude control systems of theEarth artificial satellites.
The dynamics of a satellite–stabilizer subjected to gravitational torque was considered in many papers [1–6]. The
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survey of the investigations of the dynamics of various composite schemes for satellite–stabilizer gravitational
orientation systems was presented in detail in [7]. In [8], all equilibrium orientations were found in the case of
both an axisymmetric satellite and an axisymmetric stabilizer. The planar equilibrium orientations of two bodies
system were found in papers [9,10] in the special cases, when the spherical hinge is located at the intersection of
the satellite and stabilizer principal central axis of inertia and when the hinge is located on the intersection line of
the principal central planes of inertia of the satellite and stabilizer. In paper [11], some classes of spatial equilibrium
orientations of the satellite–stabilizer system in the orbital reference frame were analyzed, using the combination of
computer algebra and linear algebra methods. In [12,13], the main attention was paid to the study of the conditions
of existence of the equilibrium orientations of the system of two bodies refers to special cases when one of the
principal axes of inertia of each of the two bodies coincides with either the normal of the orbital plane, the radius
vector or the tangent to the orbit. For these special cases we separated the algebraic system of 12 equations, which
determines the equilibrium orientations for a system of two bodies into a set of nine simple algebraic subsystems
and solve separately each of algebraic subsystem. Some of the indicated algebraic subsystems were solved in paper
[12], the other subsystems were solved in paper [13].

The presented paper is a more general then the papers indicated above. At the previous works we tried to separate
the initial algebraic system of 12 equations into set of more simple algebraic subsystems using special conditions
for the system parameters. Now we tried to solve the initial algebraic system of 12 equations by reducing the
number of system parameters. We study the spatial equilibrium orientations of the satellite–stabilizer system in
the orbital coordinate frame for the certain combinations of values of inertial and geometrical characteristic of the
connected bodies when equations of stationary motions of the system depends on one parameter, using Gröbner
basis construction method [14]. The spatial equilibrium orientations were determined by analyzing the roots of
algebraic equations from the constructed Gröbner basis.

In mechanics, computer algebra is widely used to study the equilibria of differential and dynamical systems.
Some computer algebra algorithms for solving these problems were described in [15]. The study of regions in the
parameter space with certain equilibria properties also occurred in relevance to a biology problem was presented
in [16].

2 Equations of Motion

We consider the system of two bodies connected by a spherical hinge that moves in a circular orbit [7]. To write the
equations of motion of two bodies, we introduce the following right-handed Cartesian coordinate systems (Fig. 1):
OXY Z is the orbital coordinate system, the OZ axis is directed along the radius vector connecting the Earth center
of massC and the center of mass O of the two–body system, the OX axis is directed along the linear velocity vector
of the center of mass O , and the OY axis coincides with the normal to the orbital plane. The axes of coordinate
systems O1x1y1z1 and O2x2y2z2, are directed along the principal central axes of inertia of the first and the second
body, respectively (Fig. 1). The orientation of the coordinate system Oi xi yi zi with respect to the orbital coordinate
system is determined by the aircraft angles αi (pitch), βi (yaw), and γi (roll) (see [7]) in the form

a(i)
11 = cosαi cosβi ,

a(i)
12 = sin αi sin γi − cosαi sin βi cos γi ,

a(i)
13 = sin αi cos γi + cosαi sin βi sin γi ,

a(i)
21 = sin βi , a(i)

22 = cosβi cos γi , (1)

a(i)
23 = − cosβi sin γi , a(i)

31 = − sin αi cosβi ,

a(i)
32 = cosαi sin γi + sin αi sin βi cos γi ,

a(i)
33 = cosαi cos γi − sin αi sin βi sin γi .
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Fig. 1 Basic coordinate
systems

The indices i = 1 and i = 2 refer to body 1 (satellite) and body 2 (stabilizer), respectively. Consider the case when
the hinge is located at the intersection point of the O1x1 and the O2x2 axes.

Suppose that (ai , bi , ci ) are the coordinates of the spherical hinge P in the body coordinate system Oxi yi zi ,
Ai , Bi ,Ci are principal central moments of inertia; M1M2/(M1 + M2) = M ; Mi is the mass of the i th body;
ai j = a(1)

i j , bi j = a(2)
i j , pi , qi , and ri are the projections of the absolute angular velocity of the i th body onto the axes

Oxi , Oyi and Ozi ; ω0 is the angular velocity for the center of mass of the two-body systemmoving along a circular
orbit. Then we use the expressions for kinetic energy of the system in the case when b1 = b2 = c1 = c2 = 0 and
the coordinates of the spherical hinge P in the body coordinate systems are (ai , 0, 0) in the form

T = 1/2
(
A1 p

2
1 +

(
B1 + Ma21

)
q21 +

(
C1 + Ma21

)
r21

)

+1/2
(
A2 p

2
1 +

(
B2 + Ma22

)
q22 +

(
C2 + Ma22

)
r22

)

−Ma1a2 ((r1a12 − q1a13) (r2b12 − q2b13)

+ (r1a22 − q1a23) (r2b22 − q2b23) + (r1a32 − q1a33) (r2b32 − q2b33)) . (2)

The force function, which determines the effect of the Earth gravitational field on the system of two connected by
a hinge bodies, is given by [7]

U = 3/2ω2
0

((
C1 − A1 + Ma21

)
a231 + (C1 − B1) a

2
32

)

+3/2ω2
0

((
C2 − A2 + Ma22

)
b231 + (C2 − B2)

)
b232

)

−Ma1a2ω
2
0 (a11b11 + a21b21 + a31b31) . (3)

By using the kinetic energy expression (2) and the expression (3) for the force function, the equations of motion
for this system can be written as Lagrange equations of the second kind by applying symbolic differentiation in the
Maple system [17]

d

dt

∂T

∂ ẋi
− ∂T

∂xi
− ∂U

∂xi
= 0, i = 1, 6,

where x1 = α1, x2 = α2, x3 = β1, x4 = β2, x5 = γ1, x6 = γ2, and this equations have the form

A1 ṗ1 + (C1 − B1)q1r1 − 3ω2
0(C1 − B1)a32a33 = 0,(

B1 + Ma21

)
q̇1 − Ma1a2(a13b13 + a23b23 + a33b33)q̇2
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+Ma1a2(a13b12 + a23b22 + a33b32)ṙ2 + Ma1a2 (a13 (r2(p2b13 − r2b11)

−q2(q2b11 − p2b12)) + a23 (r2 (p2b23 − r2b21) − q2(q2b21 − p2b22))

+a33(r2(p2b33 − r2b31) − q2(q2b31 − p2b32)))

+Mω2
0a1 (a2(a13b11 + a23b21 + a33b31) + 3a33(a1a31 − a2b31))

+
(
(A1 − C1) − Ma21

)
r1 p1 − 3ω2

0(A1 − C1)a33a31 = 0,
(
C1 + Ma21

)
ṙ1 + Ma1a2(a12b13 + a22b23 + a32b33)q̇2

−Ma1a2(a12b12 + a22b22 + a32b32)ṙ2 − Ma1a2 (a12 (r2(p2b13 − r2b11)

−q2(q2b11 − p2b12)) + a22(r2(p2b23 − r2b21) − q2(q2b21 − p2b22))

+a32(r2(p2b33 − r2b31) − q2(q2b31 − p2b32)))

−Mω2
0a1 (a2(a12b11 + a22b21 + a32b31) + 3a32(a1a31 − a2b31))

+
(
(B1 − A1) + Ma21

)
p1q1 − 3ω2

0 (B1 − A1) a31a32 = 0,

A2 ṗ2 + (C2 − B2)q2r2 − 3ω2
0(C2 − B2)b32b33 = 0,(

B2 + Ma22

)
q̇2 − Ma1a2(a13b13 + a23b23 + a33b33)q̇1

+Ma1a2(a12b13 + a22b23 + a32b33)ṙ1 + Ma1a2 (b13 (r1(p1a13 − r1a11)

−q1(q1a11 − p1a12)) + b23(r1(p1a23 − r1a21) − q1(q1a21 − p1a22))

+b33 (r1 (p1a33 − r1a31) − q1 (q1a31 − p1a32)))

+Mω2
0a2 (a1(a11b13 + a21b23 + a31b33) + 3b33(a2b31 − a1a31))

+
(
(A2 − C2) − Ma22

)
r2 p2 − 3ω2

0(A2 − C2)b33b31 = 0,

(C2 + Ma22)ṙ2 + Ma1a2(a13b12 + a23b22 + a33b32)q̇1

−Ma1a2(a12b12 + a22b22 + a32b32)ṙ1 − Ma1a2 (b12 (r1(p1a13 − r1a11)

−q1(q1a11 − p1a12)) + b22(r1(p1a23 − r1a21) − q1(q1a21 − p1a22))

+b32 (r1 (p1a33 − r1a31) − q1(q1a31 − p1a32)))

−Mω2
0a2 (a1(a11b12 + a21b22 + a31b32) + +3b32(a2b31 − a1a31))

+
(
(B2 − A2) + Ma22

)
p2q2 − 3ω2

0(B2 − A2)b31b32 = 0. (4)

The kinematic Euler equations have the form

p1 = (α̇1 + 1)a21 + γ̇1, p2 = (α̇2 + 1)b21 + γ̇2,

q1 = (α̇1 + 1)a22 + β̇1 sin γ1, q2 = (α̇2 + 1)b22 + β̇2 sin γ2,

r1 = (α̇1 + 1)a23 + β̇1 cos γ1, r2 = (α̇2 + 1)b23 + β̇2 cos γ2. (5)

3 Equilibrium Orientations of Satellite–Stabilizer System

Assuming the initial condition (αi , βi , γi ) = (αi0 = const, βi0 = const, γi0 = const), also Ai �= Bi �= Ci , we
obtain from (4) and (5) the stationary equations

a22a23 − 3a32a33 = 0,

(a23a21 − 3a33a31) + m1(a23b21 − 3a33b31) = 0,

(a22a21 − 3a32a31) − n1(a22b21 − 3a32b31) = 0,
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b22b23 − 3b32b33 = 0,

(b23b21 − 3b33b31) + m2(b23a21 − 3b33a31) = 0,

(b22b21 − 3b32b31) − n2(b22a21 − 3b32a31) = 0, (6)

which allow us to determine the equilibrium orientations of the system of two bodies connected by a spherical hinge
in the orbital coordinate system.

In (6): m1 = Ma1a2/
(
(A1 − C1) − Ma21

)
; m2 = Ma1a2/

(
(A2 − C2) − Ma22

)
; n1 = Ma1a2/ ((B1 − A1)

+Ma21
)
; n2 = Ma1a2/

(
(B2 − A2) + Ma22

)
.

Taking into account the expressions for the direction cosines from (1), system (6) can be considered as a system
of six trigonometric equations for six (angular) unknowns αi0, βi0, and γi0 (i = 1, 2). However, we do not know
methods how to solve this trigonometric system.

Therefore, we consider system (6) as the system of six algebraic equations for 12 direction cosines unknowns.
To solve algebraic equations (6) we add to this system six orthogonality conditions for the direction cosines

a221 + a222 + a223 − 1 = 0,

a231 + a232 + a233 − 1 = 0,

a21a31 + a22a32 + a23a33 = 0,

b221 + b222 + b223 − 1 = 0,

b231 + b232 + b233 − 1 = 0,

b21a31 + b22b32 + b23b33 = 0,

(7)

and obtain closed algebraic system of 12 equations for 12 unknowns.
For system (6), (7) the following problem is formulated: for given four parameters, determine all twelve direction

cosines. The other six direction cosines (a1i and b1i ) can be obtained from the orthogonality conditions.
In [9,10] planar oscillations of the two-body systemwere analyzed, all equilibrium orientations were determined,

and sufficient conditions for the stability of the equilibrium orientations were obtained, using the energy integral as
a Lyapunov function. In [11], system (6), (7) was decomposed into homogeneous subsystems, using linear algebra
methods and algorithms for constructing Gröbner basis. Some classes of spatial equilibrium solutions were obtained
from the algebraic equations included in the Gröbner basis.

In [12,13] system (6), (7) was solved in the special cases, when one of the principal axes of inertia of each of
the two bodies coincides with either the normal to the orbital plane, the radius vector or the tangent to the orbit.
In [12], algebraic system (6), (7) was divided on the set of nine subsystems, then some distinct solutions of these
subsystems was founded. Another part of the subsystems from [12] was solved in paper [13].

Solving the system of 12 algebraic equations (6) and (7) depending on four parameters by applying methods for
constructingGröbner bases is a very complicated algorithmic problem.Experiments on the construction of aGröbner
basis for the system of polynomials (6) and (7) by applying the Groebner[Basis] package implemented in
Maple [17] and GroebnerBasis package implemented in CASWolframMathematica [18] were performed on a
personal computer with 8 GB of RAM and 2.9 GHz Intel(R) Core(TM) i7 CPU running 64-bit MSWindows 10. The
computation of a Gröbner basis with the lexicographic ordering option tookmore than 10 h of CPU time, after which
the run was terminated because of exceeding the admissible memory size available in Maple. A Gröbner basis for
the system of polynomials (6) and (7) was constructed only in the special cases when m1 = m,m2 = n1 = n2 = 1,
m1 = n1 = m,m2 = n2 = 1 and when all parameters were identical: m1 = m2 = n1 = n2 = m. In the first and
the second case, the computation of a Gröbner basis required more than 2 h of CPU time on a personal computer,
while, in the third case, the computation of a Gröbner basis required more than 24 h of CPU time on a server
with 16 Intel Xeon processors and 128 GB of RAM with the use of Maple 18, and more than 31 h on a PC when
used GroebnerBasis package implemented in Mathematica. The results of the experiments are presented in
the Table 1. The computation of the Gröbner basis of Maple package with the lexicographic ordering often was
terminated because of exceeding the admissible memory size available in Maple. When calculating the Gröbne
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Table 1 Time required to compute Gröbner basis for particular cases of the system parameters in Maple and Mathematica

Ex Case of the problem Maple Type of Maple algorithm Mathematica

1 m1 = m; n1 = m2 = n2 = 1 12324 s Walk/ lexdeg option 6520 s

2 m1 = n1 = m;m2 = n2 = 1 5503 s F4/ tdeg option 18445 s

3 m1 = n1 = m2 = n2 = m 24 h FGLM/ plex option 31 h

16 CPU HPC

basis in Mathematica system, such a problem with memory did not arise, although the time for calculating the basis
on the same computer in some cases was longer than in Maple. In the general case, we failed to construct a Gröbner
basis for this system.

4 Investigation of Equilibria

We carry out a detailed study of the solution of the system of algebraic equations (6) and (7) for the case when
m1 = m2 = n1 = n2 = m. To solve this algebraic system, the Groebner[Basis] package for Maple 18 [17]
was used. For Gröbner bases construction first, we applied the FGLM algorithm, developed by J.C. Faugere, P.
Gianni, P. Lazard, and T. Mora [19] with the option of the lexicographic order of variables. The total time of the
Gröbner basis computation amounts to 24 h of CPU time on a server with 16 Intel Xeon processors and 128 GB
of RAM with the use of Maple 18. The time of the Gröbner basis computation using the Wolfram Mathematica
11 GroebnerBasis package for this case amounted to 31 h of CPU time on a PC with 2.9 GHz Intel Core i7
processor and 8 GB of RAM.

We tried to use different variable orderings. Since the change of variables ai j to bi j and vice versa does not
change the form of system (6), (7), we used the different ai j variable orderings when constructing the Gröbner
basis. The result for the variables bi j was the same.

We also have used other monomial orderings in our task. For the simpler case m1 = n1 = m, n2 = m2 = 1 the
Gröbner basis was constructed in power order of variable only with the tdeg option. We were unable to compute
the Gröbner basis of the lexicographic order with the FGLM algorithm because of a program interruption caused
by exceeding the allowable memory limit. In Mathematica system the result for this case was obtained.

For the case m1 = m,m2 = n1 = n2 = 1 the Gröbner basis was constructed using the Walk algorithm [20] with
the lexdeg option. The number of polynomials in the resulting Gröbner basis was 170, and the number of 120
character lines in the basis exceeded one million. The calculating the Gröbner basis in Mathematica system on the
same computer was faster than in Maple (see Table 1).

For the more general case when m1 = m2 = n1 = n2 = m. we constructed the Gröbner basis of the system of
12 second-order polynomials (6),(7) with 12 variables ai j (i = 2, 3; j = 1, 2, 3), bi j (i = 2, 3; j = 1, 2, 3) on
high performance server with respect to the lexicographic ordering of variables by using the Groebner[Basis]
package for Maple 18 option plex, and in the list of polynomials we include the polynomials from the left-hand
sides fi (i = 1, 2, . . . 12) of the algebraic equations (6), (7). The number of polynomials in the constructed Gröbner
basis was 160, the size of which occupies more than 1 million 120 character lines. Then we repeated this result of
the construction the Gröbner basis using the Wolfram Mathematica 11 GroebnerBasis package on PC.

The degree of the largest variable a33 in the first polynomial in the constructed Gröbner basis is equal to 29, in
the second polynomial the degree of the largest variable a33 is equal to 13, in the third polynomial the degree of the
largest variable a33 is equal to 21. In the remaining polynomials, the degree of the variables varies from 20 to 2.

Calculating the Gröbner basis over the field of rational functions in m we compute the generic solutions of
our problem. In the case of algebraic system with parameters solving, when the parameters reach non-generic
solutions, the symbolic application based on comprehensive Gröbner bases [21], discriminant varieties [22], and
comprehensive triangular decomposition [15,23] methods are used. In our task, we did not use these methods
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because we did not consider the cases of bifurcation values of the parameters and for our problem, these methods
are rather complicated.

Here we write down the first polynomial in the Gröbner basis that depends only on one variable x = a33. This
polynomial after factorization has the form

P(x) = x(x2 − 1)P1(x)P2(x)P3(x)P4(x)P5(x)P6(x)P7(x)P8(x) = 0, (8)

where

P1(x) = x2 + m2 − 1,

P2(x) = 16x4 + 8
(
m2 − 2

)
x2 + m2,

P3(x) = 16m4
(
m2 − 1

)
x4 + 8m2

(
2 + m2 − 3m4

)
x2 + 9m6

+3m4 − 8m2 − 16,

P4(x) = 12x2 − m3 − 4m2 − 5m − 2,

P5(x) = 12x2 + m3 − 4m2 + 5m − 2,

P6(x) = 144m8x4 − 24m4
(
m2 − 1

) (
7m2 + 4

)
x2

−3m10 + 22m8 − 63m6 + 124m4 − 144m2 + 4,

P7(x) = 144m8
(
m2 − 1

)
x4 − 24m4

(
m2 − 1

) (
4m4 + 3m2 − 4

)
x2

−
(
m6 + m4 − m2 − 4

) (
3m4 + 5m2 + 4

) (
m2 − 4

)
,

P8(x) = 16
(
m2 + 1

) (
m2 + 4

)
x4 + 8

(
m2 + 1

) (
m2 + 4

) (
m2 − 2

)
x2

+m2
(
m2 − 2

)2
.

It is necessary to consider two cases a33 = 0, a233 = 1, and eight cases Pi (a33) = 0 (i = 1, 2, 3, 4, 5, 6, 7, 8) to
investigate the solutions of system (6), (7).

Cases a33 = 0 and a233 = 1 were considered in detail in [12].
Case 1: P1(a33) = 0. The satellite–stabilizer equilibrium solutions are determined by the real roots of the equation

a233 = 1 − m2. The real roots of this equation exist under the conditions −1 ≤ m ≤ 1.
Case 2: P2(a33) = 0. The solutions of this equation have the form

a233 =
2 − m2 ±

√(
m2 − 1

)
(m2 − 4)

4
(9)

and they exist under the conditions −1 ≤ m ≤ 1 (0 ≤ a233 ≤ 1).
Case 3: P3(a33) = 0. The solutions of this equation have the form

a233 =
3m4 − m2 − 2 ± 2

√
3
(
m2 − 1

)

4m2
(
m2 − 1

) . (10)

Solutions (10) exist when the numerator has the sign “+” in front of the radical, and when 0 ≤ a233 ≤ 1 under
the conditions m ≤ −2 or m ≥ 2. When the numerator in (10) has the sign “−” in front of the radical and when
0 ≤ a233 ≤ 1, the solutions (10) exist under the conditions m ≤ −2/

√
3 or m ≥ 2/

√
3.
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Case 4: P4(a33) = 0. The solutions are determined by the real roots of the equation a233 = (
2(2m2 + 1)

+m(m2 +5)
)
/12m2. The real roots of this equation exist under the conditions −2 ≤ m ≤ 7−√

57
2 ; 1 ≤ m ≤ 7+√

57
2

.
Case 5: P5(a33) = 0. The solutions are determined by the real roots of the equation a233 = (

2
(
2m2 + 1

) −
m

(
m2 + 5

) )
/12m2. The real roots of this equation exist under the conditions − 7+√

57
2 ≤ m ≤ −1; −7+√

57
2 ≤

m ≤ 2 .
Case 6: P6(a33) = 0. The solutions of this equation have the form

a233 = (7m2 + 4)(m2 − 1) ± (m4 + 5m2 − 4)
√
3(m2 − 1)

12m4 . (11)

Solutions (11) exist in the case when the numerator has the sign“+” in front of the radical and when 0 ≤ a233 ≤ 1
under the conditions −2 ≤ m ≤ −1 or 1 ≤ m ≤ 2. In the case when the numerator in (11) has the sign “−” in
front of the radical and when 0 ≤ a233 ≤ 1 solutions (11) exist under the conditions −2 ≤ m ≤ −2/

√
3; m = ±1;

2/
√
3 ≤ m ≤ 2.

Case 7: P7(a33) = 0. The solutions of this equation have the form

a233 =
(
4m4 + 3m2 − 4

) (
m2 − 1

) ± (
m6 + 2m4 − 5m2 − 4

) √
3
(
m2 − 1

)

12m4
(
m2 − 1

) . (12)

Solutions (12) exist in the case when the numerator has the sign “+” in front of the radical, and when 0 ≤ a233 ≤ 1
under the conditions m ≤ −2/

√
3 or m ≥ 2/

√
3. In the case when the numerator in (12) has the sign “−” in front

of the radical and when 0 ≤ a233 ≤ 1 the solutions exist under the conditions −2 < m < −1; 1 < m < 2.
Case 8: P8(a33) = 0. The solutions of this equation have the form

a233 =
(m2 − 2)

(
− (

m2 + 1
) (
m2 + 4

) ± (
m2 + 2

) √(
m2 + 1

) (
m2 + 1

)

4
(
m2 + 1

) (
m2 + 4

) . (13)

Solutions (13) exist if −√
2 ≤ m ≤ √

2 (0 ≤ a233 ≤ 1).
For each solution of the cases 1–8, one can find from the third polynomial of the constructed Gröbner basis two

values of a32. This polynomial has the following structure 6(3m + 1)a232P9(m) + P10(a33,m), where P9(m) is the
polynomial of the 67th degree in variable m, and P10(a33,m) is the polynomial of the 68th degree in variable m
and the 20th degree in variable a33. Since the values a32 depend on the parameter m, then for a32 there are no more
than two real values. We will get two values of a32, which lie between −1 and 1 only for the certain values ofm that
can be obtained numerically. Then we can obtain respective two values a31 from the second condition (7) These
will be real, if and only if the values of a33 and a32 are real and lie between −11 and 1. For each set of values a31,
a32, a33 one can find two values of a23 and, next, their respective values a21 and a22. For each set of values a2i and
a3i one can unambiguously determine from the original system (6), (7) the values of the other direction cosines.
Thus, each real root of the equations in the cases 1–8 corresponds to no more than 8 equilibrium orientations of the
system of two bodies connected by a spherical hinge on a circular orbit.

To study the evolution of the conditions of the existence of a different number of equilibrium orientations
depending on the magnitude of parameter m we perform a detailed analysis of the inequalities of the cases above.

The symbolic computations of the system of inequalities that determines the existence of the real roots of the
equations Pi (a33) = 0 were obtained with the help of Mathematica function Reduce, which reduces the statement
by solving inequalities. The calculated ranges of the values of parameter m with an equal number of equilibrium
solutions for the 8 cases are shown in the Table 2.
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Table 2 Equilibrium solutions

m Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Total

> (7 + √
57)/2 – – 4 – – – 2 – 6

2 – – 4 2 – – 2 – 8√
2 – – 2 2 2 4 4 – 14

2/
√
3 – – 2 2 2 4 4 4 18

1 – – – 2 2 2 2 4 12

(−7 + √
57)/2 2 4 – – – 2 – 4 12

(7 − √
57)/2 2 4 – – – – – 4 10

−1 2 4 – 2 – – – 4 12

−2/
√
3 – – – 2 2 2 2 4 12

−√
2 – – 2 2 2 4 4 4 18

- 2 – – 2 2 2 4 4 – 14

(−7 + √
57)/2 – – 4 – 2 – 2 – 8

< −(7 + √
57)/2 – – 4 – – – 2 – 6

The resulting partition of the range of parameterm into 13 intervals with equal numbers of equilibria for all eight
cases can be summarized as follows.

In the intervals m < − 7+√
57

2 ;m > 7+√
57

2 there are no more than 6 equilibrium solutions (48 equilibrium
orientations). Four solutions (10) in case 3 and two solutions in case 7, when in (12) the numerator has the sign “+”
in front of the radical.

In the intervals − 7+√
57

2 ≤ m ≤ −2; 2 ≤ m ≤ 7+√
57

2 there are no more than 8 equilibrium solutions (64

equilibrium orientations). Four solutions (10) in case 3, two solutions in case 4 in the interval 2 ≤ m ≤ 7+√
57

2 , two

solutions in case 5 in the interval − 7+√
57

2 ≤ m ≤ −2 and two solutions in case 7, when in (12) the numerator has
the sign “+” in front of the radical.

In the intervals−2 < m ≤ −√
2;√

2 ≤ m < 2 there are no more than 14 equilibrium solutions (112 equilibrium
orientations). Two solutions (10) in case 3, when in (11) the numerator has the sign“−” in front of the radical. Two
solutions in case 4, two solutions in case 5, four solutions in case 6 and four solutions in case 7.

In the intervals −√
2 < m ≤ −2/

√
3; 2/√3 ≤ m <

√
2 there are no more than 18 equilibrium solutions (144

equilibrium orientations). Two solutions (10) in case 3, when in (10) the numerator has the sign“−” in front of the
radical. two solutions in case 4, two solutions in case 5, four solutions in case 6, four solutions in case 7 and four
solutions in case 8.

In the intervals −2/
√
3 < m < −1; 1 < m < 2/

√
3 there are no more than 12 equilibrium solutions (96

equilibrium orientations). Two solutions in case 4, two solutions in case 5, two solutions (11) in case 6, when in
(11) the numerator has the sign“+” in front of the radical, two solutions (12) in case 7, when in (12) the numerator
has the sign“−” in front of the radical and four solutions in case 8.

In the intervals −1 ≤ m < 7−√
57

2 ; −7+√
57

2 < m ≤ 1 there are no more than 12 equilibrium solutions (96
equilibrium orientations). Two solutions in case 1, four solutions in case 2, two solutions in case 4 in the interval

(−1 ≤ m < 7−√
57

2 ), two solutions in case 5 in the interval −7+√
57

2 < m ≤ 1 and four solutions in case 8.

In the final interval 7−√
57

2 ≤ m ≤ −7+√
57

2 there are no more than 10 equilibrium solutions (80 equilibrium
orientations). Two solutions in case 1, four solutions in case 2 and four solutions in case 8.

Equation (8) and system (6), (7) make it possible to determine all the spatial equilibrium configurations of the
satellite–stabilizer, due to the action of the gravity torque for the given values of system parameter m. Special case
when all four parameters m1 = m2 = n1 = n2 are equal make technically sense because these parameters depend
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on 9 physical parameters (M, Ai , Bi ,Ci , ai ) as indicated below the system (6). To obtain condition when all four
parameters are equal, it is possible to choose such 9 physical parameters values, so that equalities ((A1 − C1) −
Ma21) = ((A2 − C2) − Ma22) = ((B1 − A1) − Ma21) = ((B2 − A2) − Ma22) hold.

5 Conclusion

In the present paper we have considered the rotational motion of a satellite–stabilizer system relative to its center
of mass in a circular orbit under the action of gravitational torque. The computer algebra method based on the
construction of Gröbner basis has been used to determine all the equilibrium orientations of the satellite–stabilizer
system in the orbital coordinate frame for the given values of the parameter m in the special case when m = m1 =
m2 = n1 = n2. This configuration makes sense from an engineering point of view. The conditions for the existence
of these equilibria were obtained. We have classified the ranges of the parameter m where an equal number of
equilibrium solutions of the satellite–stabilizer system can take place.

We have estimated the size of a problem, that can be solved by the application of the Gröbner basis construction
method. The obtained results can be used at the stage of preliminary design of gravitational systems to control the
orientation of the artificial Earth satellites.
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