
Math.Comput.Sci. (2021) 15:373–405
https://doi.org/10.1007/s11786-021-00510-7 Mathematics in Computer Science

A Symbolic-Numeric Validation Algorithm for Linear ODEs
with Newton–Picard Method

Florent Bréhard

Received: 17 October 2020 / Revised: 4 March 2021 / Accepted: 16 March 2021 / Published online: 15 May 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract A symbolic-numeric validation algorithm is developed to compute rigorous and tight uniform error
bounds for polynomial approximate solutions to linear ordinary differential equations, and in particular D-finite
functions. It relies on an a posteriori validation scheme, where such an error bound is computed afterwards, inde-
pendently from how the approximation was built. Contrary to Newton–Galerkin validation methods, widely used
in the mathematical community of computer-assisted proofs, our algorithm does not rely on finite-dimensional
truncations of differential or integral operators, but on an efficient approximation of the resolvent kernel using a
Chebyshev spectral method. The result is a much better complexity of the validation process, carefully investigated
throughout this article. Indeed, the approximation degree for the resolvent kernel depends linearly on the magnitude
of the input equation, while the truncation order used in Newton–Galerkin may be exponential in the same quan-
tity. Numerical experiments based on an implementation in C corroborate this complexity advantage over other a
posteriori validation methods, including Newton–Galerkin.

Keywords Validated numerics · A posteriori validation · Chebyshev spectral methods · Linear differential
equations · D-finite functions

Mathematics Subject Classification 65G20 · 65L60 · 65L70 · 65Y20

1 Introduction

Many functions arising in scientific computing are implicitly defined by functional equations, of which differential
equations are probably the most commonly encountered ones. Yet, one frequently requires to explicitly manipulate
and evaluate these functions. Polynomials (in a broad sense) often provide accurate, global and smooth approximants,
and are easy to manipulate on a computer. Moreover, in some applicative contexts, like computer-assisted proofs
in mathematics, notably in dynamical systems, or safety-critical industrial applications (e.g., aerospace challenges,
automatic vehicles or remotemedicine), those computationsmust be accompaniedwith strong reliability guarantees.

F. Bréhard (B)

Department of Mathematics, Uppsala University, Box 480, 751 06 Uppsala, Sweden
e-mail: florent.brehard@univ-lille.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-021-00510-7&domain=pdf

374 F. Bréhard

1.1 Background and Related Works

A wide range of techniques in computer algebra allow for a symbolic, exact manipulation of certain classes of
functions defined implicitly. A major example are the D-finite functions, that is the solutions of linear ordinary
differential equations (ODEs)with polynomial coefficients [35].Despite this seemingly restricted definition,D-finite
functions account for about 60% [32] of the functions listed inAbramowitz and Stegun’sHandbook ofMathematical
Functions [1]. Yet, many applications require to move from symbolic representations, based on linear differential
operators [33], to numeric or symbolic-numeric ones providing quantitative information. While numerical analysis
focuses on algorithms to compute approximations, error estimates are most of the time asymptotic. For example, the
Chebfun library1 in Matlab allows for powerful numerical computations with functions using polynomials obtained
by truncating Chebyshev expansions, but it does not provide rigorous error bounds. On the other side, validated
numerics [37] (also called rigorous or set-valued numerics) is concerned with the computation of such error bounds,
encompassing both method and rounding errors. Such a challenge, and more specifically the following problem, is
at the core of the present work.

Problem 1.1 Given a polynomial y◦ approximating the solution y∗ of the Initial Value Problem (IVP):

{
y(r)(x) + ar−1(x)y

(r−1)(x) + · · · + a0(x)y(x) = h(x), x ∈ [xl , xr],
y(i)(x0) = vi ∈ R, 0 � i < r, x0 ∈ [xl , xr],

(1)

compute a bound ε � ‖y◦ − y∗‖∞ = supx∈[xl ,xr] |y◦(x) − y∗(x)|.
The branch of validated numerics dedicated to the validation of functional problems has its origins in the early 80s

withultra-arithmetics [12,13,20].By analogywithfloating-point numbers and interval arithmetics [26] to rigorously
approximate real numbers on computers, ultra-arithmetics proposes a quite general framework to provide similar
operations on functions. Solutions are approximated using polynomials (in a broad sense), and rigorously enclosed
in balls or other domains in function spaces using rigorous polynomial approximations (RPAs), typically pairs
(p, ε) with an approximation p and a rigorous error bound ε. Notable implementations of RPAs include Taylor
models [5,28] and Chebyshev models [10,19], based on Taylor and Chebyshev expansions, respectively.

Numerous techniques have been developed over past decades to compute rigorous enclosures for solutions of
ODEs [17,21,24,27,30,41,42] and of wider classes of equations (e.g., partial differential equations, delay equa-
tions), thereby contributing to the rise of computer-assisted proofs in dynamics [38]. More recently, several works
[2,6,8,25] paved the way towards an algorithmic and complexity approach to such methods, aiming at the devel-
opment of general-purpose reliable and efficient libraries for symbolic-numeric computations. This article brings
its own contributions to this approach. The counterpart is the restriction to more limited classes of ODEs, notably
D-finite functions, that is, linear ODE (1) with polynomial or rational coefficients ai (x). However, we emphasize
the fact that many of the ODE validation methods cited above proceed by linearization of the ODE after bounding
the nonlinear terms. Also, analytic coefficients ai (x) in (1) can be rigorously represented with RPAs. Hence, the
application scope of these algorithmic works, including this article in particular, goes far beyond D-finite functions:
they provide an algorithmic core for the validation of differential equations in a broad perspective.

1.2 Setting and Contributions

A powerful representation of D-finite functions y in computer algebra is via differential operators L for which
L{y} = 0 (together with sufficiently many initial conditions), where:

L = ∂r + ar−1(x)∂r−1 + · · · + a1(x)∂ + a0(x),

1 https://www.chebfun.org/.

https://www.chebfun.org/

A Symbolic-Numeric Validation Algorithm 375

Table 1 Notation

x Independent variable ‖ · ‖∞ Uniform norm over [xl , xr]
[xl , xr] Real compact interval of interest C0 Space of continuous functions over [xl , xr]
x0 Initial time in [xl , xr] RN [x] Space of univariate polynomials with real

T = max(xr − x0, x0 − xl) maximum time Coefficients of degree � N

∂ Differentiation operator w.r.t. x Tn n-th Chebyshev polynomial of the first

L Linear differential operator kind, rescaled over [xl , xr]
L∗ adjoint differential operator [f]n n-th Chebyshev coefficient of f

r Order of L PN : C0 → RN [x] N-th Chebyshev truncation

ai Coefficients of L Q1 Banach space of absolutely summable

s = max0�i<r deg ai maximum degree Chebyshev series

h Right-hand side of differential equation ‖ · ‖Q1 Norm associated toQ1

y Unknown function in differential equation K[N] Truncated integral operator

y(i) Iterated derivative of y I Identity operator

y[i] y[0] = y and y[i+1] = ar−1−i y − ∂{y[i]} IN Order N identity matrix

K(x, t) Bivariate kernel K ∗ L Composition of kernels

[xl , xr |x0] = {(x, t) s.t. xl � x � t � x0 R(x, t) Resolvent kernel

or x0 � t � x � xr } R◦(x, t) Polynomial approximation of R(x, t)

K Integral operator of kernel K(x, t) Eρ Bernstein ellipse of parameter ρ > 1

g Right-hand side of integral equation NG Truncation order in Newton–Galerkin

f Unknown function in integral equation NR Degree of R◦(x, t) in Newton–Picard

with ai polynomials or rational functions, belongs to the Ore algebra of differential operators [11,22], spanned
by x (x{y} = x �→ xy(x)) and ∂ (∂{y} = y′), with the skew commutation rule ∂x − x∂ = 1. In the theoretical
developments of this article, the ai may actually be analytic functions over the real compact interval [xl , xr] of
interest. For the algorithmic parts, they are supposed to be polynomials (with rational, floating-point or interval
coefficients) for the sake of clarity, even if adapting the algorithms to RPA representations of the ai (x) is rather
straightforward (see the example of Sect. 4.3).We thus propose a fully algorithmic validationmethod for Problem1.1
with analytic coefficients ai representable by RPAs. In particular, iterating this construction allows for the rigorous
numerical treatment of Dn-finite functions [18]. Also, in the case of non-homogeneous linear ODEs, the same
remarks hold for the right-hand side h in (1).

Our validation method is based on an automatic reformulation of IVP (1) into an equivalent Volterra linear
integral equation of the second kind [23] (simply referred to as integral equation in this article):

f (x) + K{ f }(x) = g(x), where K{ f }(x) =
∫ x

x0
K(x, t) f (t)dt. (2)

The bivariate kernel K(x, t) associated to the integral operator K is analytic, and even polynomial if the ai are.
Therefore, representations through integral equations are equally algorithmic. Moreover, such integral equations are
particularly suited for numerical resolution via Galerkin spectral methods [7,15,29], which compute a polynomial
approximation y◦ for Problem 1.1 using truncated expansions (e.g., Taylor, Fourier, Chebyshev), by transforming
functional equation (2) into a linear system on the unknown coefficients.

Several works, e.g. [17,24,41], proposed ODE validation methods based on a posteriori Newton-like methods
in well-chosen coefficient spaces. The main idea is to approximate the (infinite-dimensional) inverse Jacobian by
finite-dimensional truncations, as done by spectral methods in numerical analysis, in order to construct a contracting
Newton-like operator and apply theBanach fixed-point theoremor a variant of it. Suchmethods,whichwe propose to

376 F. Bréhard

callNewton–Galerkin validation methods, have been extensively used in the mathematical community of computer-
assisted proofs. In [8], we developed a detailed analysis of aNewton–Galerkin validation algorithm in theChebyshev
basis, by enhancing this general schemewith the linear algebra algorithms of [29] for so-called almost-banded linear
systems. In the present article, we propose an alternative validation algorithm, which we call Newton–Picard, to
overcome the complexity shortcomings ofNewton–Galerkin validationmethods, acknowledged in [8]. The leitmotif
is to approximate the inverse Jacobian by computing polynomial approximations of the so-called resolvent kernel
associated to (1) which arises from the well-known Picard iterations. More or less related ideas have already been
used in previousworks, notably [2,21,30].However, the algorithmic description and complexity analysiswe propose
here lead to a robust and efficient validation algorithm, together with a fair comparison with Newton–Galerkin. Our
conclusions are the following.

1. We prove that Newton–Picard runs in polynomial time with respect to the magnitude of the coefficients in
the input equation, while Newton–Galerkin’s complexity can be exponential in the same parameters, even,
surprisingly, in the analytic case we consider here. The result is that moderate to hard instances of Problem 1.1
(e.g., exponentially increasing or highly oscillating functions) may be intractable with Newton–Galerkin, but
solved within a few seconds with Newton–Picard on a modern computer.

2. The Newton–Picard validation method is widely independent of the underlying approximation tools, although
presented in a Chebyshev approximation theory flavor in this article. Indeed, the algorithms could be
parametrized by a generic type of RPAs to rigorously enclose functions without major modifications. Instead
of Chebyshev models, one could use Fourier approximations (for trigonometric functions), splines (for Ck
functions), depending on the context. Validation of solutions with singularities or on unbounded intervals also
belongs to future applications of Newton–Picard method.

3. A challenging goal we want to address in the future is the formalization in a proof assistant, for example Coq [4],
of an ODE a posteriori validation algorithm. To this purpose, Newton–Picard turns out to be a better candidate
than Newton–Galerkin. Indeed, the correctness of the algorithms presented in this article requires very limited
functional analysis background, contrary to Newton–Galerkin which involves more Chebyshev approximation
theory.Moreover, the resolvent kernel approximation can be safely computed outside the proof assistant without
compromising the final reliability.

Throughout this article, we consider an arithmetic model for the complexity, where each arithmetic operation
(+,−,×,÷), typically on floating-point numbers or intervals, is assumed to have a constant costO(1). Therefore,
the claimed complexity estimates do not take into account the fact that particularly stiff ODEs may require a larger
floating-point bit precision to provide sufficiently accurate results.

1.3 Outline

First, Sect. 2 provides the necessary background (a posteriori Newton-like validation principle, reformulation of
IVP (1) into integral Eq. (2), Chebyshev approximation theory and spectral methods) and summarizes the main
lines of [8] about the Newton–Galerkin validation method. Then, Sect. 3 introduces Newton–Picard validation
method, with the main algorithm NewtonPicardValid and the approximation routine ResolventKernel for
the resolvent kernel approximation, together with detailed complexity results. After that, Sect. 4 presents how
the method is implemented in the C library ChebValid2 and illustrates its performances on practical examples, in
comparison with other methods. We finally discuss the obtained results and the future perspectives of this work.

2 https://gitlab.inria.fr/brisebar/tchebyapprox/-/releases/v0.0.1.

https://gitlab.inria.fr/brisebar/tchebyapprox/-/releases/v0.0.1

A Symbolic-Numeric Validation Algorithm 377

2 A Posteriori Validation and Newton–Galerkin Method

This section lays out the main prerequisites to this article: a posteriori validation paradigm using Newton-like
fixed-point operators (Sect. 2.1), transformation(s) of linear IVPs (1) into integral equations (2) (Sect. 2.2), some
highlights of Chebyshev approximation theory and in particular spectral methods (Sect. 2.3). Finally, Sect. 2.4 gives
an overview of the principles and limitations of Newton–Galerkin validation method, thoroughly investigated in
[8]. This serves as a basis for comparison with the novel Newton–Picard algorithm presented in Sect. 3.

2.1 Principle of A Posteriori Validation Using Newton-Like Fixed-Point Operators

In an a posteriori validation scheme, an approximation x◦ to the exact solution x∗ is first constructed by whatever
numerical routine of choice, and then a rigorous error bound between x◦ and x∗ is computed in a totally independent
second step. Some advantages of this paradigm include the possibility to use external non-trusted numerical routines
for the approximation step without compromising the final reliability; the need for rigorous numerics (e.g., interval
arithmetics) in the validation step only; and a rather elegant mathematical formulation that eases the verification by
a formal proof assistant.

A wide range of such methods involve fixed-point based validation, in which x∗ is expressed as the fixed point
of a well chosen equation T(x) = x , with T a contracting operator. Then a rigorous error bound is obtained using
a suitable fixed-point theorem, for example this formulation of the Banach fixed-point theorem [3, Thm. 2.1].

Theorem 2.1 Let T : X → X with (X, ‖ · ‖) a Banach space and D ⊆ X closed, such that:

• D is T-stable: T(D) ⊆ D;
• T is contracting over D: there exists λ ∈ [0, 1) such that:

‖T(x) − T(y)‖ � λ‖x − y‖, for all x, y ∈ D.

Then:

• T has a unique fixed point x∗ in D;
• For any x◦ ∈ D,

d

1 + λ
� ‖x◦ − x∗‖ � d

1 − λ
, where d = ‖T(x◦) − x◦‖.

Most of the problems encountered in scientific computing are certainly not of this form. In this context, Newton-
like validation methods (also called Krawczyk methods) reuse the ideas behind Newton-Raphson iterations in
numerical analysis to transform the initial problem into an instance on which Theorem 2.1 applies. Assume that the
original equation is of the form F(x) = 0, with F : X → Y a Fréchet differentiable map between Banach spaces X
and Y . The exact solution x∗ is supposed to be simple root of F, so that the Fréchet derivative DF(x) is invertible
in a neighborhood of x∗. We are given an approximation x◦ of x∗.
1. Compute a bounded injective linear operator A approximating DF(x◦)−1, the inverse of the Fréchet derivative

of F at x◦. Then F(x) = 0 is equivalent to the fixed-point equation associated to the Newton-like operator T:

T(x) = x, where T(x) = x − A(F(x)).

2. Compute rigorously a closed subset D ⊆ X containing x◦ (e.g. a ball centered at x◦ with suitable radius r) and
a contraction ratio λ < 1 satisfying the assumptions of Theorem 2.1.

3. Return the error bound ε = ‖A(F(x◦))‖/(1−λ) as in Theorem 2.1. If F has several roots in X , also ensure that
the unique fixed-point of T inside D is necessarily x∗.

378 F. Bréhard

Remark 2.2 The IVP (1) (or the equivalent integral equation (2)) we consider in this article are linear, which some-
what simplifies the scheme above. The Newton-like operator T is indeed affine, and hence it is locally contracting if
and only if it is globally contracting (i.e. D = X), and λ is given by the operator norm of its linear part. Moreover,
the solution being unique by the Picard-Lindelöf theorem, no additional verification is required in step 3 above.

2.2 Reformulation of Linear ODE into Integral Equation

Several reasons may lead us to prefer integral equations rather than differential ones in numerical analysis. From
a theoretical point of view, the differentiation operator ∂ can rarely be seen as a bounded linear endomorphism in
one function space, since it typically reduces the regularity. Manipulating differential equations thus requires to
consider a separate function space for each iterated application of ∂ (which is for example the approach of [29] using
ultraspherical polynomials). On the contrary, the operation of integration increases the regularity, which allows us
to work in a single function space. Moreover, the compactness property, necessary for the projection approach of
spectral methods, easily follows (see Sect. 2.3). On the practical side also, integral equations often lead to better
conditioned numerical problems [16].

There are several possibilities to transform a linear ODE into an equivalent integral equation, acting on the same
function y or one of its iterated derivatives. In this article, we focus on two such transforms, giving integral equations
acting on y and y(r), respectively. The obvious “duality” between them will play an important role later in Sect. 3.

2.2.1 Integral Equation on Highest-Order Derivative

This transformation, considered for example in [8], is the simplest one, acting on f = y(r). We here consider a
differential equation L{y} = h with a linear differential operator L given in a “standard form”, which we call x − ∂

form:

L = ∂r + ar−1(x)∂
r−1 + · · · + a1(x)∂ + a0(x). (3)

Proposition 2.3 The linear initial value problem:

{
L{y}(x) = h(x), x ∈ [xl , xr],
y(i)(x0) = vi , 0 � i < r ,

with L in x − ∂ form (3),

is equivalent to the integral equation on f = y(r):

f (x) + K{ f }(x) = g(x), where K{ f }(x) =
∫ x

x0
K(x, t) f (t)dt,

with K(x, t) =
r−1∑
i=0

ai (x)
(x − t)r−1−i

(r − 1 − i)! , and g(x) = h(x) −
r−1∑
i=0

ai (x)
r−1∑
j=i

(x − x0) j−i

(j − i)! v j .

Proof By a repeated use of the integration by part formula, one has for 0 � i < r :

y(i)(x) =
∫ x

x0

∫ t1

x0
. . .

∫ tr−1−i

x0
f (tr−i)dtr−1 . . . dt1 +

r−1∑
j=i

(x − x0) j−i

(j − i)! v j

=
∫ x

x0

(x − t)r−1−i

(r − 1 − i)! f (t)dt +
r−1∑
j=i

(x − x0) j−i

(j − i)! v j .

A Symbolic-Numeric Validation Algorithm 379

Doing the substitutions in L{y} = h, regrouping the integral terms and moving the initial condition terms to the
right, one obtains the expected kernel K(x, t) and the right-hand side g(x). ��

2.2.2 Integral Equation on the Same Function

Another possible reformulation, used for example in [2], is to define an integral equation directly on f = y. To do
so, we need to have L in a ∂ − x form, with the polynomial (or analytic) coefficients ai (x) located to the right of
the ∂ symbols:

L = (−∂)r + (−∂)r−1ar−1(x) + · · · − ∂a1(x) + a0(x). (4)

We systematically use −∂ instead of simply ∂ in ∂ − x forms to be consistent with the adjunction L �→ L∗ that will
play a crucial role in Sect. 3.3.

While a x − ∂ form linear ODE relates together the iterated derivatives y(i) where y(i+1) = ∂{y(i)}, it is more
natural with a ∂ − x form to consider functions y[i] for 0 � i � r , with y[0] = y, y[i+1] = ar−i−1y − ∂{y[i]}, and
then equating y[r](x) = h(x). By doing so, we have y[i] = L[i]{y} where:

L[i] = (−∂)i + (−∂)i−1ar−1(x) + · · · − ∂ar−i+1(x) + ar−i (x),

so that the “natural” ∂ − x initial conditions at x0 are y[i](x0) = L[i]{y}(x0) = wi for 0 � i < r .

Remark 2.4 It is clear that, as long as one can differentiate the ai (x) symbolically sufficiently many times, one
easily converts between x − ∂ and ∂ − x operators L and initial conditions. Note however that for large r , this may
result in a differential operator with enormous coefficients, potentially leading to numerical stability issues.

The integral equation on f = y follows by merely integrating the linear ODE r times.

Proposition 2.5 The linear initial value problem:

{
L{y}(x) = h(x), x ∈ [xl , xr],
L[i]{y}(x0) = wi , 0 � i < r ,

with L in ∂ − x form (4),

is equivalent to the integral equation on y:

y(x) + K{y}(x) = g(x), where K{y}(x) =
∫ x

x0
K(x, t)y(t)dt,

with K(x, t) = −
r−1∑
i=0

(t − x)r−1−i

(r − 1 − i)! ai (t), and g(x) = −
∫ x

x0

(t − x)r−1

(r − 1)! h(t)dt +
r−1∑
i=0

wi
(x0 − x)i

i ! .

Proof We first prove by induction on 0 � k � r :

∫ x

x0
. . .

∫ tk−1

x0
y[k](tk)dtk . . . dt1 = (−1)k

(
y −

∫ x

x0

r−1∑
i=r−k

(t − x)r−1−i

(r − 1 − i)! ai (t)y(t)dt −
k−1∑
i=0

(x0 − x)i

i ! wi

)
. (5)

380 F. Bréhard

This is trivially true for k = 0. If it holds for k < r , since y[k+1] = ar−k−1y − ∂{y[k]}, then:
∫ x

x0
. . .

∫ tk

x0
y[k+1](tk+1)dtk+1 . . . dt1 =

∫ x

x0
. . .

∫ tk

x0
ar−k−1(t)y(t)dtk+1 . . . dt1 −

∫ x

x0
. . .

∫ tk−1

x0
(y[k](tk) − wk)dtk . . . dt1

=
∫ x

x0

(x − t)k

k! ar−k−1(t)y(t)dt −
∫ x

x0
. . .

∫ tk−1

x0
y[k](tk)dtk . . . dt1 + (x − x0)k

k! wk

= (−1)k+1

(
y −

∫ x

x0

r−1∑
i=r−k−1

(t − x)r−1−i

(r − 1 − i)! ai (t)y(t)dt −
k∑

i=0

(x0 − x)i

i ! wi

)
.

This completes the proof of (5). Taking this equality with k = r allows us to rewrite:

(−1)r
∫ x

x0
. . .

∫ tk−1

x0
y[r](tk)dtk . . . dt1 = (−1)r

∫ x

x0
. . .

∫ tk−1

x0
h(tk)dtk . . . dt1,

into the desired integral equation with expected K(x, t) and g(x). ��

2.3 Chebyshev Approximation Theory and Spectral Methods

When dealing with analytic functions over a compact real interval [xl , xr], Chebyshev approximation theory turns
out to be an efficient generic tool to provide global, smooth and remarkably accurate approximants. Here we simply
recall some fundamentals of this beautiful and rich theory, to which numerous introductory books are dedicated
[7,14,36].

The Chebyshev polynomials form a graded family of univariate polynomials, commonly defined over [−1, 1]
by the three-term recurrence:

T0(x) = 1, T1(x) = x, Tn+2(x) = 2xTn+1(x) − Tn(x) for n � 0.

The mantra from a complexity point of view is that manipulating polynomials in the Chebyshev basis is asymptoti-
cally equivalent to the same operations in the monomial basis. Indeed, multiplication and differentiation/integration
are given by the formulas:

Tn(x)Tm(x) = 1

2
(Tn+m(x) + Tn−m(x)), for 0 � m � n, (6)

Tn(x) = 1

2

(
Tn+1(x)

n + 1
− Tn−1(x)

n − 1

)′
, for n � 2. (7)

Remark 2.6 Multiplication of two degree n polynomials in the Chebyshev basis can be computed in O(n log n)

floating-point arithmetic operations thanks to fast algorithms for Discrete Cosine Transform (DCT), which is the
analog to the Fast Fourier Transform (FFT). However, designing a numerically stable algorithm for fast multipli-
cation of polynomials with interval coefficients (in the monomial or Chebyshev basis) is still an open and debated
topic.3 This is why in Sect. 3 we will assume a quadratic complexity when interval arithmetics is needed.

From an analysis point of view, the relation Tn(cosϑ) = cos(nϑ) strongly connects Chebyshev polynomials
with Fourier approximation theory. In particular, |Tn(x)| � 1 for −1 � x � 1 and they form an orthogonal family

3 see, e.g., https://www.texmacs.org/joris/stablemult/stablemult-abs.html.

https://www.texmacs.org/joris/stablemult/stablemult-abs.html

A Symbolic-Numeric Validation Algorithm 381

w.r.t. the scalar product:

〈 f, g〉 =
∫ 1

−1

f (x)g(x)√
1 − x2

dx =
∫ π

0
f (cosϑ)g(cosϑ)dϑ,

which motivates the definition of Chebyshev coefficients for a continuous function f over [−1, 1] by orthogonal
projection:

[f]n = 〈 f, Tn〉
〈Tn, Tn〉 =

⎧⎪⎨
⎪⎩

1

π
〈 f, 1〉 for n = 0,

2

π
〈 f, Tn〉 for n � 1.

Remark 2.7 By an affine change of variable, the above definitions are transposed from [−1, 1] to any compact
interval. We assume in this article that the Chebyshev polynomials Tn are defined over [xl , xr].

Chebyshev approximations are defined by truncated Chebyshev series using the truncation (or projection) oper-
ator:

PN : C0 → RN [x], f �→ PN { f } =
N∑

n=0

[f]nTn .

The key point of Chebyshev approximation theory is that the more regular f is, the faster PN { f } converges to f
as N → ∞. In the analytic case we consider—and contrary to Taylor approximations—convergence on [xl , xr]
always holds, at exponential rate with ratio ρ determined by the location of singularities in the complex plane
(Lemma 3.15 in Sect. 3 gives a quantitative estimate).

When working with infinite sequences of Chebyshev coefficients, a relevant subspace of C0 is the space Q1 of
absolutely summable Chebyshev series [8, Sec. 2.2], which is the analog of the Wiener algebra A(T) for Fourier
series.

Definition 2.8 The Q1 space is the space of continuous functions f over [xl , xr] for which the quantity,

‖ f ‖Q1 =
∞∑
n=0

|[f]n|,

is finite. This makes (Q1, ‖ · ‖Q1) a Banach space, with the property ‖ f ‖Q1 � ‖ f ‖∞.

Obviously, Chebyshev coefficients [f]n cannot be directly computed most of the time. Turning back to the
integral equation (2), a spectral method approach [7,15] is to cast this problem into an infinite-dimensional linear
system in the Chebyshev space of coefficients. More specifically, the integral operator K of polynomial kernel
K(x, t) becomes a bounded endomorphism ofQ1, acting on the vector of Chebyshev coefficients of a function f as
an infinite-dimensional matrix (depicted in Fig. 1a). The multiplication (6) and integration (7) formulas imply that
K has a sparse structure called almost-banded (following the terminology of [29]), that is, nonzero coefficients are
located in a finite number of rows and diagonals.Moreover,K is a compact endomorphism ofQ1, where coefficients
in the matrix tend to zero. Therefore, spectral methods relax this infinite-dimensional problem by projecting it onto
a finite-dimensional subspace, using the truncated integral operator K[N] = PN KPN (see Fig. 1b). The resulting
almost-banded linear system of dimension N + 1 is eventually solved in linear time w.r.t. the approximation degree
N using the QR-like algorithms of [29].

382 F. Bréhard

(A) (B)

Fig. 1 Almost-banded matrix representations in the Chebyshev basis of an integral operator K and its truncation K[N]

Proposition 2.9 (see [29, Sec. 5]) The solution of the integral equation (2) can be approximated by a degree N
polynomial in the Chebyshev basis using a spectral method requiring O(N (r + s)2) arithmetic operations. More
precisely:

• A first algorithm AlmostBandedQRFactor computes a (structured) QR factorization of IN+1 + K[N] in
O(N (r + s)2) arithmetic operations.

• Given this QR factorization, a second algorithm AlmostBandedBackSubs performs a back-substitution to
solve:

(IN+1 + K[N]){y◦} = PN {g},

of unknown y◦ =
N∑

n=0
cnTn, in O(N (r + s)) arithmetic operations.

2.4 A Brief Summary of the Newton–Galerkin Validation Method

Problem 1.1 typically falls within the class of function space problems that can be solved using the fixed-point
based a posteriori validation scheme presented in Sect. 2.1. One needs to compute a rigorous error bound between
an approximation f ◦ and the exact solution f ∗ of the affine equation:

F{ f } = 0, where F{ f } = f + K{ f } − g : Q1 → Q1.

We recall the main ideas of Newton–Galerkin validation method, in the way it is presented in [8], with complexity
analysis results and discussion about its shortcomings.

2.4.1 Newton–Galerkin Fixed-Point Operator and Validation Algorithm

The principle of the Newton–Galerkin validation algorithm is to construct the linear operator A ≈ (I + K)−1

(required by step 1 of Newton-like validation) using finite dimensional projections. Indeed, K[N] converges to K,
so the algorithm chooses a suitable truncation order NG (which is totally independent of the approximation f ◦ to
be validated) and computes a numerical inverse A of the (NG + 1)-square matrix ING+1 + K[NG]. A is defined by
extending the matrix A over Q1 with identity (see Fig. 2a).

A Symbolic-Numeric Validation Algorithm 383

After that, in step 2, a contraction ratioλ for the resultingNewton–Galerkin fixed-point operatorT is automatically
computed by rigorously bounding the operator norm (w.r.t. theQ1-norm) of the linear part, simply denoted by DT:

‖DT‖Q1 = ‖I − A(I + K)‖Q1 � ‖I − A(I + K[NG])‖Q1 + ‖A(K[NG] − K)‖Q1 . (8)

• The first quantity ‖I − A(I + K[NG])‖Q1 is due to the fact that A is computed as a numerical inverse (either
dense, or even approximated by an almost-bandedmatrix, see [8, sec. 4.2]). Bounding this quantity only requires
straightforward operations on finite-dimensional matrices.

• The second quantity ‖A(K[NG] − K)‖Q1 , where the two matrices of this product are depicted in Fig. 2, is a

consequence of the fact that K[NG] is only an approximation of K. The difficulty, addressed in details in [8, Sec.
5.1], consists in rigorously computing a tight bound for the resulting infinite-dimensional tail, in reasonable
complexity. Indeed, gross overestimations would force us to use a larger truncation index NG to ensure a
contraction ratio λ < 1, thus strongly impacting the overall efficiency.

Finally, the defect d = ‖T{ f ◦} − f ◦‖Q1 = ‖A{ f ◦ + K{ f ◦} − g}‖Q1 (step 3) is rigorously computed in a
straightforward manner, yielding the final bound d/(1 − λ).

Theorem 2.10 (see [8, Prop. 5.3]) Let f ◦ be an approximate solution for the integral equation (2). Then, given a
validation truncation index NG , algorithms in [8], if they do not fail, realize the following4:

• A Newton–Galerkin fixed-point validation operator T with truncation index NG is computed and bounded in

O
(
N 2
G(r + s)

)
arithmetic operations,

where r is the order of L and s = maxi deg ai in Problem 1.1.
• Having this Newton–Galerkin operator and if the rigorously computed contraction ratio λ < 1, then a candidate
approximation f ◦ (with right-hand side g) is validated in

O
(
NG(n + m + r + s) + n(r + s)2

)
arithmetic operations,

where n = deg f ◦ and m = deg g.

Obviously, the overall efficiency of the procedure depends on how large NG must be to ensure a contracting
operator T. This crucial question is discussed in the next section.

2.4.2 Limitations of the Newton–Galerkin Validation Method

Aspointed out in [8], theNewton–Galerkin validationmethod, althoughwidely used in themathematical community
of computer-assisted proofs, suffers from several limitations, especially when targeting certified implementation in
a proof assistant.

The first shortcoming is the difficulty to process “harder” instances, e.g. LODEswith highly oscillating or rapidly
increasing solutions, due to the value of the truncation index NG . Indeed, K[NG] converges to K in O(1/NG) only,
while the Q1-norm of (I + K)−1 (and hence the approximation A) is exponentially bounded by the magnitude
‖ai‖Q1 of the input LODE coefficients. This explains why the minimum NG to ensure a contracting operator T can
grow exponentially fast with the ‖ai‖Q1 [8, Sec. 5.2]. Although other norms for the space of Chebyshev coefficients
have been investigated, e.g. in [17,24], it seems that none of them avoid this exponential bound.

4 Refined complexity estimates are given in [8, Prop. 5.3] when using an almost-banded A instead of a dense one.

384 F. Bréhard

(A) (B)

Fig. 2 Bounding the truncation error ‖A(K − K[NG])‖Q1 in Newton–Galerkin method

Another limitation of Newton–Galerkin validation methods is that implementations can hardly be generic w.r.t.
the approximation setting. Indeed, changing the approximation basis from (Tn) to another (ϕn) (e.g., Fourier,
Legendre) or the norm implies substantial modifications in the technical formulas used to bound the operator norm
of T. Moreover, not all norms are suitable when working with coefficient spaces. This is for example why we use
‖ · ‖Q1 to overapproximate ‖ · ‖∞ here.

Finally, the need to consider infinite-dimensional matrix representations of the involved operators, as well as
the rather technical formulas that are used to bound them, makes Newton–Galerkin not the best candidate for a
certified implementation in a proof assistant. The Newton–Picard validation algorithm presented in the next section
not only offers a far more satisfying solution to the above-mentioned issues of complexity and genericness, it is
also in essence more “algebraic” and adapted to formal proof.

3 Newton–Picard Validation Algorithm

The conclusion to draw from Newton–Galerkin’s pessimistic complexity estimates is that (I + K)−1 is poorly
approximated by finite-dimensional truncations (I+K[NG])−1. By contrast, numerical experiments (see for example
Fig. 3c related to the Airy function example in Sect. 4.2) show that (I + K)−1 is “asymptotically” almost-banded,
meaning that it is very well approximated by almost-banded operators of moderate band width. This phenomenon is
investigated in Sect. 3.1 from the point of view of integral operators. More specifically, we prove that (I + K)−1 =
I + R, where R is an integral operator of kernel R(x, t) called resolvent kernel. This elegant framework is the
cornerstone of the Newton–Picard validation algorithm presented in Sect. 3.2.

Contrary to the validationmethod [2]which performs explicit Picard iterations to construct a contracting operator,
our novel approach relies on theChebyshev spectralmethod to compute a polynomial approximation of the resolvent
kernelR(x, t) (Sect. 3.3). The resulting complexity is carefully investigated in Sect. 3.4 and comparedwithNewton–
Galerkin.

3.1 Kernel Composition, Picard Iterations and the Resolvent Kernel

The essence of Newton–Picard validation is to represent an integral operatorK not as an infinite-dimensional matrix
in some coefficient space, but using its kernel K(x, t) defined over [xl , xr |x0]:

K{ f }(x) =
∫ x

x0
K(x, t) f (t)dt, f ∈ C0,

[xl , xr |x0] = {(x, t) ∈ R
2 s.t. xl � x � t � x0 or x0 � t � x � xr }.

(9)

A Symbolic-Numeric Validation Algorithm 385

The following lemma shows the bijectivity of this correspondence.

Lemma 3.1 Let K be an integral operator with a continuous kernelK(x, t) as in (9). Then K{ f } = 0 for all f ∈ C0
if and only if K(x, t) = 0 for all (x, t) ∈ [xl , xr |x0].
Proof The “if” part of the proof is straightforward. For the “only-if” part, let x ∈ [xl , xr] and suppose, without loss
of generality, that x � x0. Define f ∈ C0 by f (t) = K(x, t) for t ∈ [x0, x] and extend it constantwise over [xl , x0]
and [x, xr]. Then:

K{ f }(x) =
∫ x

x0
K(x, t) f (t)dt =

∫ x

x0
K(x, t)2dt = 0,

which implies K(x, t) = 0 for all t ∈ [x0, x]. Therefore, K(x, t) = 0 for all (x, t) ∈ [xl , xr |x0]. ��
Another nice property of the class of integral operators is its closedness under composition, where the resulting

kernel is given by a “convolution-like” operation, denoted by ∗ throughout this article.

Lemma 3.2 Let K and L be integral operators with respective continuous kernels K(x, t) and L(x, t). Then the
composition K L is again an integral operator, with kernel K ∗ L given by the associative law:

(K ∗ L)(x, t) =
∫ x

t
K(x, s)L(s, t)ds, (x, t) ∈ [xl , xr |x0].

In particular, if K and L are polynomials, then so is K ∗ L, with:

degK ∗ L � degK + degL + 1.

Proof The kernel composition formula simply follows from an application of Fubini’s theorem:

K{L{ f }} =
∫ x

x0
K(x, s)

∫ s

x0
L(s, t) f (t)dtds =

∫ x

x0

∫ x

t
K(x, s)L(s, t) f (t)dsdt =

∫ x

x0
(K ∗ L)(x, t) f (t)dt.

Moreover, since the composition ◦ of operators is associative and by injectivity given by Lemma 3.1, we deduce
that the operation ∗ of kernel composition is associative too. ��

Historically, the expression of (I + K)−1 involving an integral operator arose from the Picard iterations [23,31],
which build a sequence (fn) of functions converging to the solution f ∗ of (2):

{
f0 = g,

fn+1 = g − K{ fn}, n � 0.

This indeed motivates to write (I + K)−1 (at least symbolically) as the Neumann series:

(I + K)−1 = I − K + K2 − · · · + (−1)nKn + . . . (10)

This matches with the observation that (I + K)−1 is “asymptotically” almost-banded, since Kn is almost-banded,
of band width n times larger than K. The classic Theorem 3.3 below, for which we provide a proof for the sake
of completeness, makes it rigorous by establishing the convergence of this series. This gives rise to the resolvent
kernel R(x, t) that plays a central role in Newton–Picard validation method.

386 F. Bréhard

Theorem 3.3 Let K of continuous kernel K(x, t) act as an endomorphism of C0. Then (I + K)−1 = I + R, where
the resolvent kernel R(x, t) is defined using the iterated kernels K∗n:

R =
∞∑
n=1

(−1)nK∗n, where

{
K∗1 = K,

K∗n+1 = K ∗ K∗n, n � 1.
(11)

We have the following estimates:

|R(x, t)| � MeM|x−t |, for (x, t) ∈ [xl , xr |x0],
‖(I + K)−1‖∞ = ‖I + R‖∞ � eMT , where M = sup

(x,t)∈[xl ,xr |x0]
|K(x, t)|.

Proof First, we prove by induction on n � 1 that:

|K∗n(x, t)| � Mn |x − t |n−1

(n − 1)! for (x, t) ∈ [xl , xr |x0].

This clearly holds for n = 1. Suppose that this is true for n. Take w.l.o.g. x0 � t � x � xr :

|K∗n+1(x, t)| �
∫ x

t
|K(x, s)||K∗n(s, t)|ds �

∫ x

t
Mn+1 (s − t)n−1

(n − 1)! ds = Mn+1 (x − t)n

n! .

It follows therefrom that the series (11) defining R(x, t) converges in norm, that ‖Kn‖∞ � (MT)n

n! , and that the
Neumann series (10) makes sense, with the expected estimates for |R(x, t)| and ‖I + R‖∞. ��

The notion of resolvent kernel is closely related to that of Green’s function associated to a linear differential
operator [31]. The validation methods proposed in [21] and [30] rigorously bound the Green’s function to provide
a bound on the exact inverse operator associated to L. Our validation algorithm, presented in next section, proceeds
differently: it approximates the resolvent kernel and rigorously bounds the operator norm of the resulting Newton-
like operator T. This allows for sharper bounds and a more convenient complexity analysis.

3.2 The Validation Algorithm

Algorithm NewtonPicardValid below implements the three steps of the Newton-like a posteriori validation
scheme presented in Sect. 2.1, by approximating the inverse derivative (I + K)−1 as I + R◦, where R◦ is an
integral operator of polynomial kernel R◦(x, t) approximating the analytic resolvent kernel R(x, t). Similarly to
the truncation index NG in Newton–Galerkin validation procedure, a parameter NR (the approximation degree for
R◦(x, t)) is passed to the validation algorithm. In general, NR is at least r + s, where r is the order of L and
s = max0�i<r deg ai , so that we make the assumption r + s = O(NR) in the complexity estimates.

1. First, the subroutine ResolventKernel (postponed in Sect. 3.3) computes degree NR polynomials α◦
i , β

◦
i and

sets:

R◦(x, t) =
r−1∑
i=0

α◦
i (x)β

◦
i (t) ≈ R(x, t), degα◦

i , degβ◦
i � NR. (12)

This defines the Newton–Picard fixed-point operator T{ f } = f − (I + R◦){ f + K{ f } − g}.

A Symbolic-Numeric Validation Algorithm 387

2. The linear part of affine operator T:

E = I − (I + R◦)(I + K) = −K − R◦ − R◦K,

is an integral operator whose polynomial kernel E = −K − R◦ − R◦ ∗ K is explicitly computed as∑
i, j

εi j Ti (x)Tj (t). This yields the bound λ:

‖E‖∞ = sup
x∈I

sgn(x − x0)
∫ x

x0
|E(x, t)|dt � T

∑
i, j

|εi j | = λ.

3. If λ � 1, then go back to step 1 using a larger approximation degree NR. Otherwise, compute and bound the
defect as d, using, for instance, the Q1 norm (or any other more refined, yet rigorous overestimation of the
uniform norm):

‖T{ f ◦} − f ◦‖∞ � ‖(I + R◦){ f ◦ + K{ f ◦} − g}‖Q1 = d,

and return d/(1 − λ).

For the sake of efficiency, kernels are represented using low-rank decompositions.

Definition 3.4 A bivariate kernel K(x, t) is said to be of rank k if there are functions α0(x), . . . , αk−1(x) and
β0(t), . . . , βk−1(t) over [xl , xr] such that:

K(x, t) =
k−1∑
i=0

αi (x)βi (t), (x, t) ∈ [xl , xr |x0].

The kernel K(x, t) in Propositions 2.3 and 2.5 is clearly of rank r . Also, we shall see in the next section that
the resolvent kernel R(x, t) is of rank r too (which is not obvious from its definition using iterated kernels in
Theorem 3.3). This explains why we compute a R◦(x, t) of rank r to approximate R(x, t) in (12). Therefore,
elementary operations on low rank kernels (evaluation on a polynomial and composition with ∗) are necessary to
implement these three steps inAlgorithmNewtonPicardValid. Their complexity is investigated in the subsequent
Lemmas 3.7 and 3.8.

Theorem 3.5 Let f ◦ be a degree n polynomial approximation of the solution f ∗ of the integral equation of
Proposition 2.3 or 2.5, and NR the degree used for R◦(x, t). If NewtonPicardValid(K, g, f ◦, NR) does not
fail, then it outputs a rigorous error bound for ‖ f ◦ − f ∗‖. More precisely:

• It computes a Newton–Picard fixed-point operator T and a rigorous contraction ratio λ in

O(N 2
Rr2) arithmetic operations.

• Given T and λ, it computes for any right-hand side g and any approximation f ◦ a rigorous error bound for
‖ f ◦ − f ∗‖ in

O((NR + n + m)NRr) arithmetic operations,

where n = deg f ◦ and m = deg g.

388 F. Bréhard

Algorithm 1 NewtonPicardValid(K, g, f ◦, NR)
Input: The polynomial kernel K(x, t) and polynomial right-hand side g(x) coming from L{y} = h using Proposition 2.3 or 2.5, a

polynomial approximation f ◦(x) and a validation degree NR.
Output: A rigorous error bound ε � ‖ f ◦ − f ∗‖∞.

� Step 1: approximating the resolvent kernel R(x, t) using floating-point arithmetics

1: Write K(x, t) as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r−1∑
i=0

κi (x)Ti (t) if L is in x − ∂ form

or −
r−1∑
i=0

Ti (x)κi (t) if L is in ∂ − x form

2: R◦(x, t) =
r−1∑
i=0

α◦
i (x)β

◦
i (t) ← ResolventKernel(K, NR)

� Step 2: Bounding the contraction ratio of T using interval arithmetics
3: M(x, t) ← KernelComp(R◦,K)

4: E(x, t) =∑
i, j

εi j Ti (x)Tj (t) ← −R◦(x, t) − K(x, t) − M(x, t)

5: λ ← T
∑
i, j

|εi j |

� Step 3: Compute the final bound using interval arithmetics
6: if λ < 1 then
7: δ(x) ← f ◦(x) + K{ f ◦}(x) − g(x)
8: δ(x) ← δ(x) + R◦{δ}(x)
9: d ← ‖δ‖Q1

10: return d
1−λ

11: else
12: return "FAIL"
13: end if

Remark 3.6 Theorem 3.5 gives a separate complexity estimate for Step 3, since Steps 1 and 2 are completely
independent of f ◦ and g. This means that the same Newton–Picard fixed-point validation operator T can be reused
to validate another approximation f ◦ in Problem 1.1, possibly with a different right-hand side h and/or different
initial conditions vi .

Lemma 3.7 If K is an integral operator with polynomial kernel K(x, t) = ∑k−1
i=0 αi (x)βi (t) of rank k and total

degree n, and f (x) a univariate polynomial of degree m, then K{ f } =
∫ x

x0
K(x, t) f (t)dt is a polynomial of degree

at most n + m + 1 that can be computed in O(kn(n + m)) arithmetic operations.

Proof For each 0 � i < k, αi (x)
∫ x
x0

βi (t) f (t)dt is a univariate polynomial of degree at most degαi + degβi +
deg f +1 � n+m+1, that requiresO(degβi deg f) arithmetic operations for the inner multiplication,O(degβi +
deg f) ones for the integration, and finally O(degαi (degβi + deg f)) ones for the outer multiplication, giving a
total of O(n(n + m)) arithmetic operations. The claimed overall complexity follows from the iteration for each
0 � i < k and the additions. ��

Lemma 3.8 Let K(x, t) = ∑k−1
i=0 αi (x)βi (t) and L(x, t) = ∑l−1

j=0 γ j (x)δ j (t) be polynomial kernels of respective
ranks k and l, and respective total degrees n and m. ThenKernelComp(K,L) computes a rank k+l decomposition
of K ∗ L with degree at most n + m + 1, in O(kl(n + m)2) arithmetic operations.

A Symbolic-Numeric Validation Algorithm 389

Algorithm 2 KernelComp(K,L)

Input: Polynomial kernels K(x, t) =
k−1∑
i=0

αi (x)βi (t) and L(x, t) =
l−1∑
j=0

γ j (x)δ j (t).

Output: Polynomial kernel M(x, t) =
k+l−1∑
i=0

μi (x)νi (t) equal to K ∗ L.

1: for i = 0 to k − 1 and j = 0 to l − 1 do ζi j (s) ← ∫
βi (s)γ j (s)ds end for

2: for i = 0 to k − 1 do
3: μi (x) ← αi (x)

4: νi (t) ← −
l−1∑
j=0

ζi j (t)δ j (t)

5: end for
6: for j = 0 to l − 1 do

7: μk+ j (x) ←
k−1∑
i=0

αi (x)ζi j (x)

8: νk+ j (t) ← δ j (t)
9: end for

10: return M(x, t) ←
k+l−1∑
i=0

μi (x)νi (t)

Proof Algorithm KernelComp first computes primitives in line 1:

ζi j (s) =
∫

βi (s)γ j (s)ds, 0 � i < k, 0 � j < l,

in O(klnm) arithmetic operations, giving polynomials of degree at most n + m + 1.
The computation of M(x, t) then follows:

(K ∗ L)(x, t) =
∫ x

t
K(x, s)L(s, t)ds =

k−1∑
i=0

l−1∑
j=0

αi (x)(ζi j (x) − ζi j (t))δ j (t)

=
l−1∑
j=0

[
k−1∑
i=0

αi (x)ζi j (x)

]
︸ ︷︷ ︸

μk+ j (x)

δ j (t)︸︷︷︸
νk+ j (t)

−
k−1∑
i=0

αi (x)︸ ︷︷ ︸
μi (x)

⎡
⎣ l−1∑

j=0

ζi j (t)δ j (t)

⎤
⎦

︸ ︷︷ ︸
νi (t)

.

More precisely, νi (t) (line 4) requiresO(l(n +m)m) arithmetic operations, and similarly μk+ j (x) (line 7) requires
O(kn(n + m)) ones. This concludes the proof of the claimed complexity. ��

Proof of Theorem 3.5 First, for step 1, rewriting K(x, t) given in Propositions 2.3 or 2.5 as a rank r expression
(line 1) requires O(r2s) arithmetic operations. Then, anticipating the complexity estimate for ResolventKernel
given in Proposition 3.13, line 2 requires O(NR(r + s)2) arithmetic operations. Moving on to step 2, the kernel
composition in line 3 runs in complexityO((NR+r + s)2r2), according to Lemma 3.8. After that, the computation
of a bound λ for E(x, t) (lines 4 and 5) runs in O((NR + r + s)2r). This justifies the overall complexity for steps
1 and 2, assuming r + s = O(NR).

Concerning step 3, lines 7 and 8 computing δ(x) respectively require O(r(r + s)(r + s + n) + m) and
O(2NR(2NR + r + s +n+m)r) arithmetic operations, using Lemma 3.7. Finally, the bound d � ‖δ‖Q1 � ‖δ‖∞
computed line 9 requires deg δ(x) = O(2NR +r + s+n+m) arithmetic operations. Thus,O((NR +n+m)NRr)
is a compact majorant for the complexity, assuming r + s = O(NR). ��

390 F. Bréhard

Remark 3.9 The total complexity can be made quasi-linear w.r.t. NR by using a fast DCT-based algorithm for
polynomial multiplication in the kernel composition (line 3), and bounding the low-rank kernel E(x, t) (lines 4–5)
using an adequate orthogonalization process (to reduce overestimation). However, as explained in Remark 2.6, we
choose to keep the quadratic estimate in this article.

Remark 3.10 The use of Chebyshev approximations for R◦(x, t) is not crucial to the principle of the validation
algorithm. The reason of this choice is that they are asymptotically excellent candidates and allow for an elegant
complexity analysis in Sect. 3.4.However, for intermediate precision, other approximants (e.g., splines)mayperform
better.

3.3 Resolvent Kernel Approximation

Algorithm NewtonPicardValid above requires a polynomial approximation R◦(x, t) of R(x, t). We first show
in Sect. 3.3.1 thatR admits an analytic rank r expression, involving the solutions of the homogeneous linear ODE
L{y} = 0, together with those of the adjoint equation L∗{y} = 0. The adjunction L �→ L∗, defined as:

x∗ = x, ∂∗ = −∂, (L1 L2)
∗ = L∗

2 L∗
1, (L1 + L2)

∗ = L∗
1 + L∗

2,

plays a crucial role to this purpose. Clearly, the x − ∂ form differential operator in (3) and the one in ∂ − x form
in (4) are mutually adjoint. For the sake of clarity, we opt for the convention to refer to the former as L, and the
latter as L∗. We also call K and K(x, t) the integral operator and kernel associated to L by Proposition 2.3, and
similarly K∗ and K∗(x, t) for L∗ in Proposition 2.5. Note the following adjunction relation on integral operators5:

K∗(x, t) = −K(t, x), (x, t) ∈ [xl , xr]2.

The formulas given in Proposition 3.12 below for the resolvent kernelsR andR∗ associated toK andK∗ also satisfy
R∗(x, t) = −R(t, x).

Based on this, Sect. 3.3.2 presents the approximation routine ResolventKernel which numerically solves the
homogeneous equations using the Chebyshev spectral method presented in Sect. 2.3. This completes the algorithmic
description of the Newton–Picard validation procedure.

3.3.1 Formulas for the Resolvent Kernel

The scalar linear ODE (3) can be transformed into the equivalent r -dimensional first-order vectorial linear ODE
Y ′(x) = A(x)Y (x) + H(x), where:

Y (x) =

⎛
⎜⎜⎜⎜⎜⎝

y(x)
y′(x)

...

...

y(r−1)(x)

⎞
⎟⎟⎟⎟⎟⎠ , A(x) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
-a0(x)-a1(x)-a2(x)· · ·-ar−1(x)

⎞
⎟⎟⎟⎟⎟⎠ , H(x) =

⎛
⎜⎜⎜⎜⎜⎝

0
...
...

0
h(x)

⎞
⎟⎟⎟⎟⎟⎠ .

5 The adjunction relation requires the kernels to be defined over [xl , xr]2 rather than [xl , xr |x0] only, which is always the case in this
article.

A Symbolic-Numeric Validation Algorithm 391

It is well known that the solution with initial conditions v = (v0, . . . , vr−1)
T can be expressed using an integral

operator with kernel �(x)�(t)−1:

Y (x) = �(x)

[
v +

∫ x

x0
�(t)−1H(t)dt

]
,

where �(x) is the fundamental matrix, satisfying the matrix ODE �′(x) = A(x)�(x) with �(x0) = Ir . In
other words, �(x) contains the canonical basis of solutions for the homogeneous linear ODE L{y} = 0 and their
derivatives up to order r − 1. In particular, its columns are linearly independent for all x . Hence, �(x) is invertible
and we have:

(�(x)−1)′ = −�(x)−1�′(x)�(x)−1 = −�(x)−1A(x)�(x)�(x)−1 = −�(x)−1A(x),

which means that the inverse transpose x �→ �(x)−T satisfies the matrix ODE M ′(x) = −A(x)T M(x).
On the other hand, the scalar linear ODE L∗{y} = h with L∗ given in ∂ − x form as in (4) is equivalent to the

vectorial ODE Y ′(x) = B(x)Y (x) + H(x), where:

Y (x) =

⎛
⎜⎜⎜⎜⎜⎝

y(x)
y[1](x)

...

...

y[r−1](x)

⎞
⎟⎟⎟⎟⎟⎠ , B(x) =

⎛
⎜⎜⎜⎜⎜⎝

ar−1(x) −1 0 . . . 0
ar−2(x) 0 −1 . . . 0

...
...

...
. . .

...

a1(x) 0 0 . . . −1
a0(x) 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ , H(x) =

⎛
⎜⎜⎜⎜⎜⎝

0
...
...

0
−h(x)

⎞
⎟⎟⎟⎟⎟⎠ .

Similarly, the fundamental matrix �(x) is defined as the solution of � ′(x) = B(x)�(x) with �(x0) = Ir . A key
observation is that:

Jr B(x)Jr = −A(x)T , where Jr =
⎛
⎜⎝
0 . . . 1
... . .

. ...

1 . . . 0

⎞
⎟⎠ , (13)

leading to the following crucial orthogonality relations.

Lemma 3.11 The canonical basis ϕ0, . . . , ϕr−1 for the solution space of L:

L{ϕi } = 0, ϕ
(j)
i (x0) =

{
1 if i = j

0 otherwise,

and the dual basis ψ0, . . . , ψr−1 for the solution space of the adjoint L∗:

L∗{ψi } = 0, ψ
[j]
i (x0) =

{
1 if i = j

0 otherwise,

satisfy the orthogonality relations for 0 � j, k < r:

r−1∑
i=0

ϕ
(j)
i (x) ψ

[k]
r−1−i (x) =

{
1 if k + j = r − 1,

0 otherwise,
for all x ∈ [xl , xr]. (14)

392 F. Bréhard

Proof The matrices �(x) = (ϕ
(i)
j (x))0�i, j<r and �(x) = (ψ

[i]
j (x))0�i, j<r satisfy �(x0) = �(x0) = Ir , and are

solutions to the matrix linear ODEs �′(x) = A(x)�(x) and � ′(x) = B(x)�(x), respectively. From identity (13),
we have that:

(Jr�(x)Jr)
′ = Jr B(x)�(x)Jr = −A(x)T (Jr�(x)Jr).

Hence, x �→ Jr�(x)Jr satisfies the same ODE M ′(x) = −A(x)T M(x) as x �→ �(x)−T , and both are equal to Ir
at x0. It follows therefrom that �(x)−T = Jr�(x)Jr , and in particular:

�(x)Jr�(x)T Jr = Ir for all x ∈ [xl , xr],

which unfolds as the orthogonality relations (14). ��
Proposition 3.12 The resolvent kernels R and R∗ are given by:

R(x, t) =
r−1∑
i=0

ϕ
(r)
i (x)ψr−1−i (t), (15)

R∗(x, t) = −
r−1∑
i=0

ψi (x)ϕ
(r)
r−1−i (t), (16)

with the ϕi , ψi defined in Lemma 3.11.

Proof • ForR, callR′(x, t) the right-hand side of (15) and R′ the integral operator defined by this kernel. Since, by
Theorem 3.3, I+K is already known to be invertible, of inverse I+R, it is sufficient to prove that (I+K)(I+R′) = I,
that is K ∗ R′ + R′ + K = 0. For 0 � i < r , L{ϕi } = 0 implies from Proposition 2.3 by renaming x0 into t :

ϕ
(r)
i (x) +

∫ x

t
K(x, s)ϕ(r)

i (s)ds = −
r−1∑
j=0

a j (x)
r−1∑
k= j

(x − t)k− j

(k − j)! ϕ
(k)
i (t).

Multiplying the left-hand side by ψr−1−i (t) and summing over i gives R′(x, t) + (K ∗ R′)(x, t). Doing the
same operations on the right-hand side and commuting the summation symbols allows us to isolate the term∑r−1

i=0 ϕ
(k)
i (t)ψr−1−i (t), which by Lemma 3.11 is nonzero (and equal to 1) if and only if k = r − 1. We thus obtain

the expected equality:

R′(x, t) + (K ∗ R′)(x, t) = −
r−1∑
j=0

a j (x)
(x − t)r−1− j

(r − 1 − j)! = −K(x, t).

• For R∗, call R′′(x, t) the right-hand side of (16). Clearly, R′′(x, t) = −R(t, x). We have:

(K∗ ∗ R′′)(x, t) + R′′(x, t) + K∗(x, t)

=
∫ x

t
K∗(x, s)R′′(s, t)ds + R′′(x, t) + K∗(x, t)

=
∫ x

t
K(s, x)R(t, s)ds − R(t, x) − K(t, x) = −(R ∗ K)(t, x) − R(t, x) − K(t, x) = 0,

since−R K−R−K = I−(I+R)(I+K) = 0. Hence the corresponding operatorR′′ satisfies (I+K∗)(I+R′′) = I,
which implies R′′ = R∗ and hence R′′ = R∗. ��

A Symbolic-Numeric Validation Algorithm 393

3.3.2 Resolvent Kernel Approximation Algorithm

A major advantage of the formulas in Proposition 3.12 from the computational point of view, is that in both x − ∂

and ∂ − x cases, one requires the ψi , solutions to an ODE in ∂ − x form, and the ϕ
(r)
i where the ϕi are solutions to

an ODE in x − ∂ form. Hence, no conversion from x − ∂ and ∂ − x forms is needed here.
Algorithm ResolventKernel below computes degree NR polynomial approximations of these analytic func-

tions. To do so, the Chebyshev spectral method of Sect. 2.3 is applied on the following integral equations, equivalent
by Propositions 2.3 and 2.5 to the IVPs defining ϕi and ψi in Lemma 3.11:

(I + K){ϕ(r)
i } = gi , with gi (x) = −

i∑
j=0

a j (x)
(x − x0)i− j

(i − j)! ,

(I + K∗){ψi } = g∗
i , with g∗

i (x) = (x0 − x)i

i ! .

(17)

Algorithm 3 ResolventKernel(K, NR)
Input: Kernel K(x, t) obtained from L using Proposition 2.3 or 2.5, and approximation degree NR.

Output: Polynomial kernel R◦(x, t) =
r−1∑
i=0

α◦
i (x)β

◦
i (t) approximating the resolvent kernel R(x, t).

1: K∗(x, t) ← −K(t, x)
2: if L is in ∂ − x form then
3: K(x, t) ↔ K∗(x, t) � Exchange the role of L and its adjoint L∗
4: end if

� Compute approximations ϕ
(r)◦
i to the ϕ

(r)
i associated to L{ϕ} = 0

5: M ← INR+1 + K[NR]
6: (Q, R) ← AlmostBandedQRFactor(M)

7: for i = 0 to r − 1 do
8: gii ← −ai
9: gi j ← gi−1, j

x−x0
i− j for j = 0 to i − 1

10: gi ← gi0 + · · · + gii
11: ϕ

(r)◦
i ← AlmostBandedBackSubs(Q, R, gi)

12: end for

� Compute approximations ψ◦
i to the ψi associated to L∗{ψ} = 0

13: M∗ ← INR+1 + K∗[NR]
14: (Q∗, R∗) ← AlmostBandedQRFactor(M∗)
15: g∗

0 ← 1
16: for i = 0 to r − 1 do
17: ψ◦

i ← AlmostBandedBackSubs(Q∗, R∗, g∗
i)

18: g∗
i+1 ← g∗

i
x0−x
i+1

19: end for

� Return polynomial kernel R◦(x, t)
20: if L is in x − ∂ form then
21: (α◦

i , β
◦
i) ← (ϕ

(r)◦
i , ψ◦

r−1−i) for i = 0 to r − 1
22: else if L is in ∂ − x form then
23: (α◦

i , β
◦
i) ← (−ψ◦

i , ϕ
(r)◦
r−1−i) for i = 0 to r − 1

24: end if

25: return R◦(x, t) ←
r−1∑
i=0

α◦
i (x)β

◦
i (t)

394 F. Bréhard

Proposition 3.13 Algorithm ResolventKernel computes a rank r , degree 2NR polynomial kernel R◦(x, t)
approximating the resolvent kernel R(x, t) in O(NR(r + s)2) arithmetic operations.

Proof First, the computation of M (line 5) and M∗ (line 13) only requires O(NRr(r + s)) arithmetic operations,
due to the specific form of K(x, t) built in line 1 of Algorithm NewtonPicardValid. Indeed, for 0 � i < r
and 0 � j � NR, the computation of κi (x)

∫ x
x0
Ti (t)Tj (t)dt or Ti (t)

∫ x
x0

κi (t)Tj (t)dt involves two multiplications
where at most one operand has O(r + s) nonzero coefficients (O(1) for the other one), and one integral where the
integrand has at most O(r + s) nonzero coefficients. Hence, for 0 � j � NR, the nonzero coefficients of K{Tj }
and K∗{Tj } (forming the horizontal and diagonal bands of M and M∗) are computed in O(r(r + s)) arithmetic
operations each.

Then, according to Proposition 2.9, the computation of the QR factorizations in lines 6 and 14 using Algorithm
AlmostBandedQRFactor requires O(NR(r + s)2) arithmetic operations.

After that, for each 0 � i < r , the computation of the right-hand side gi (lines 8–10) requires O(r(r + s))
arithmetic operations, while the updating of the right-hand side g∗

i of the adjoint equation (line 18) needsO(r + s)
ones. Finally, solving the resulting almost-banded linear systems using AlmostBandedBackSubs in lines 11
and 17 with the previously computed QR factorizations requires O(NR(r + s)) arithmetic operations. Iterating
over 0 � i < r , this yields a complexity of O(NRr(r + s)) for lines 7–12 and 16–19, assuming r + s = O(NR).

Hence, the overall complexity of ResolventKernel is O(NR(r + s)2). ��
Remark 3.14 Instead of computing a fundamental matrix for the adjoint equation L∗{y} = 0 (lines 16–19 in
ResolventKernel), we can also directly approximate the inverse of the fundamental matrix of L{y} = 0 (already
computed in lines 7–12). To do so, sample the fundamental matrix at NR + 1 Chebyshev nodes (with complexity
O(NR log NRr2) using fast DCT), invert the matrix at each node (with a total ofO(NRrω) arithmetic operations),
and finally re-interpolate in complexity O(NR log NRr2).

3.4 Newton–Galerkin vs Newton–Picard Validation Complexity

The overall complexity ofNewtonPicardValid depends on how large the degree NR of the approximate resolvent
kernel R◦(x, t) has to be to ensure a contracting Newton–Picard operator T. This, in turn, is determined by the
approximation errors ε

(NR)
i = ‖ϕ(r)◦

i − ϕ
(r)
i ‖∞ and η

(NR)
i = ‖ψ◦

i − ψi‖∞ of the ϕ
(r)◦
i and ψ◦

i computed by
ResolventKernel.

The use of spectralmethods ismotivated by both efficiency and accuracy, and in practice the resulting error is close
to the one from the mere truncation of the exact Chebyshev series. In the analytic framework we consider (where the
coefficients of L are polynomials or analytic functions over a complex neighborhood of [xl , xr], represented using
RPAs), Chebyshev series enjoy far better convergence properties than the simple summability condition defining
the Q1 space. Let Eρ denote the Bernstein ellipse [36, Chap. 8] of parameter ρ > 1 rescaled over [xl , xr], i.e. the
ellipse in the complex plane of foci xl and xr and eccentricity 2/(ρ + ρ−1). It is the typical domain of convergence
of Chebyshev series, which play the same role as the convergence disks do for Taylor series. The following lemma
(see e.g. [36, Thm. 8.1]) asserts the exponential decay of Chebyshev coefficients for analytic functions.

Lemma 3.15 Let f be an analytic function over Eρ . Then its Chebyshev coefficients [f]n satisfy:

|[f]n| �
{ ‖ f ‖Eρ

for n = 0,

2‖ f ‖Eρ
ρ−n for n � 1,

where ‖ f ‖Eρ
= sup

z∈Eρ

| f (z)| is the uniform norm over Eρ . In particular,

‖ f − Pn{ f }‖∞ � ‖ f − Pn{ f }‖Q1 � 2‖ f ‖Eρ

ρ−n

ρ − 1
, n � 0.

A Symbolic-Numeric Validation Algorithm 395

Let us fix ρ > 1 such that all coefficients of L (and consequently the IVP solutions) are analytic over Eρ .
Theorem 3.16 provides an estimate for NR under the simplifying assumption that exact truncated Chebyshev series
of degree NR for ϕ

(r)
i and ψi can be computed. We discuss later why including the approximation error of the

Chebyshev spectral method used in ResolventKernel does not significantly affect it.

Theorem 3.16 Under the hypothesis thatR(x, t) is approximated using exact truncated Chebyshev series for ϕ
(r)
i

and ψi :

ϕ
(r)◦
i = PNR{ϕ(r)

i }, ψ◦
i = PNR{ψi }, 0 � i < r, (18)

theminimum value for NR to ensure a contractingNewton–Picard fixed-point operator is bounded by the asymptotic
estimate:

NR = O

⎛
⎜⎜⎜⎝
log

(
1 +

r−1∑
i=0

‖ai‖∞ T r−i

(r−i)!
)

+ log

(
T

r−1∑
i=0

‖ϕ(r)
i ‖Eρ

‖ψr−1−i‖Eρ

)
− log(ρ − 1)

log ρ

⎞
⎟⎟⎟⎠ .

Proof • We first bound the operator norm of the linear part E = I − (I + R◦)(I + K) = (R − R◦)(I + K) of the
Newton–Picard fixed-point operator T as:

‖E‖∞ � T

(
r−1∑
i=0

(‖ϕ(r)
i ‖∞η

(NR)
r−1−i + ‖ψr−1−i‖∞ε

(NR)
i + ε

(NR)
i η

(NR)
r−1−i

)(
1 +

r−1∑
i=0

‖ai‖∞
T r−i

(r − i)!

)
. (19)

Indeed, the definition of K(x, t) in Proposition 2.3 or 2.5 yields:

‖K{ f }‖∞ �
(
r−1∑
i=0

‖ai‖∞ sup
x∈[xl ,xr]

sgn(x − x0)
∫ x

x0

|x − t |r−1−i

(r − 1 − i)! dt
)

‖ f ‖∞ �
(
r−1∑
i=0

‖ai‖∞
T r−i

(r − 1)!

)
‖ f ‖∞,

from which we have the expected bound for ‖K‖∞. Moreover, in the x − ∂ case:

R◦(x, t) − R(x, t) =
r−1∑
i=0

(
ϕ

(r)
i (x)(ψ◦

r−1−i − ψr−1−i)(t) + (ϕ
(r)◦
i − ϕ

(r)
i)(x)ψr−1−i (t)

+(ϕ
(r)◦
i − ϕ

(r)
i)(x)(ψ◦

r−1−i − ψr−1−i)(t)
)

,

and a similar decomposition holds in the ∂ − x case. This gives the bound:

‖R◦ − R‖∞ � T

(
r−1∑
i=0

(‖ϕ(r)
i ‖∞η

(NR)
r−1−i + ε

(NR)
i ‖ψr−1−i‖∞ + ε

(NR)
i η

(NR)
r−1−i

)
.

• Instantiating ε
(NR)
i = 2‖ϕ(r)

i ‖Eρ
ρ−NR/(ρ − 1) and η

(NR)
i = 2‖ψi‖Eρ

ρ−NR/(ρ − 1) in (19) yields:

‖E‖ � 4T

(
ρ−NR

ρ − 1
+ ρ−2NR

(ρ − 1)2

)(r−1∑
i=0

‖ϕ(r)
i ‖Eρ

‖ψr−1−i‖Eρ

)(
1 +

r−1∑
i=0

‖ai‖∞
T r−i

(r − i)!

)
.

396 F. Bréhard

Taking the logarithm and reordering the terms gives the claimed asymptotic lower bound for NR. ��
This estimate depends on the magnitude of the transition matrix associated to the linear ODE, which is consistent

with the intuition that stiff ODEs with large amplitude solutions are harder to validate. We can however provide a
more conservative estimate depending on the initial data only.

Corollary 3.17 Let Tρ = (xr − xl)(ρ + ρ−1)/2 � T be the major axis of Eρ and Mρ = ∑r−1
i=0 ‖ai‖Eρ

T r−1−i
ρ

(r−1−i)! .
Then, under the same simplifying assumption (18), the minimum NR is given by:

NR = O
(
TρMρ − log(ρ − 1)

log ρ

)
.

Proof Reusing the notations of (17), the formulas ϕ
(r)
i = (I + R){gi } and ψi = (I + R∗){g∗

i } extend over the
Bernstein ellipse Eρ in the complex plane. An adaptation of the inverse bound estimate of Theorem 3.3 yields
‖I + R‖Eρ

, ‖I + R∗‖Eρ
� eTρMρ . Also, for 0 � i < r :

‖gi‖Eρ
‖g∗

r−1−i‖Eρ
�

i∑
j=0

‖a j‖Eρ

T r−1− j
ρ

(i − j)!(r − 1 − i)! � Mρ.

Hence, in the estimate of Theorem 3.16:

log

(
Tρ

r−1∑
i=0

‖ϕ(r)
i ‖Eρ

‖ψr−1−i‖Eρ

)
� log(rTρMρe

2TρMρ) = O(TρMρ),

from which we obtain the claimed asymptotic estimate. ��
This estimate confirms the significant efficiency gap between the Newton–Picard and the Newton–Galerkin

validation methods for moderate to hard instances. Both algorit0hms run in quadratic time w.r.t. the parameter NG
(truncation index inNewton–Galerkin) or NR (resolvent kernel approximation degree inNewton–Picard). However,
contrary to the linear estimate for NR given above, NG can grow exponentially fast w.r.t. the magnitude of the input
ODE, as explained in Sect. 2.4.2.

This conclusion must be tempered by noticing that the quantity Mρ characterizes the magnitude of the input
ODE over the Bernstein ellipse Eρ . In fact, ‖ai‖Eρ

may be in theory way larger than ‖ai‖Q1 (and consequently than
‖ai‖∞). Indeed, for n � 0, ‖Tn‖∞ = ‖Tn‖Q1 = 1, while ‖Tn‖Eρ

= O(ρn). However, most of the time in practice,
the ai are polynomials of reasonable degrees or analytic functions with fast decaying Chebyshev coefficients, so
that this ratio still makes NR way smaller than NG . If not, then both Newton–Galerkin and Newton–Picard perform
poorly for themere reason that even the numerical spectralmethod computing a candidate Chebyshev approximation
will require a very high degree, since the Chebyshev coefficients of the solution may be large and decrease slowly.

Including the Spectral Method Error. The estimates for NR given in Theorem 3.16 and Corollary 3.17 above rely
on the simplifying assumption (18) thatR◦(x, t) is built from the exact truncated Chebyshev series for the ϕ

(r)
i and

ψi defining the resolvent kernel R(x, t). In practice, such truncations cannot be directly obtained, and Algorithm
ResolventKernel resorts to spectral methods to compute the desired polynomial approximations ϕ

(r)◦
i and ψ◦

i .
Therefore, we prove in Theorem 3.18 below that the same asymptotic estimate for NR holds in this more realistic
setting where method errors of spectral methods are taken into account.

Chebyshev spectral methods perform roughly as well as merely truncating the Chebyshev series (see e.g. [29,
Thm. 4.5]), with a convergence in O(ρ−N) with N the approximation degree in the analytic case. However, the
proof is asymptotic, and valid as long as ϕ +K[N]{ϕ} = g has a solution ϕ with degϕ � N . Obviously, since I +K
is itself invertible, so is I + K[N] for N sufficiently large, e.g. if ‖(I + K)−1(K − K[N])‖Q1 � 1. But this quantity,

A Symbolic-Numeric Validation Algorithm 397

already encountered in (8), precisely leads to an exponential bound for N = NG in the Newton–Galerkin validation
method. To avoid this phenomenon for the degree N = NR used in Newton–Picard, we propose a slightly modified
procedureResolventKernel, by replacing the linear systemwith a least-squares problem to approximate the exact
solution ϕ∗ = (I+K)−1{g}. It is important to note that the following development is essentially theoretical and aims
at justifying the linear asymptotic estimate for NR given in Corollary 3.17. In practice however,ResolventKernel
is still implemented as presented in Sect. 3.3.2.

Let m = N − r − s, and call K[N ,m] = PN K Pm the (N + 1) × (m + 1) rectangular projection of K. The key
observation is that K[N ,m]{ϕ} = K[N]{ϕ} = K{ϕ} for all ϕ with degϕ � m. To solve the following least-squares

problem, we replace ‖ · ‖Q1 by an Euclidean norm, namely ‖h‖2 =
√∑N

i=0 a
2
i for h = ∑N

i=0 ai Ti , keeping in

mind the classical norm equivalence ‖h‖2 � ‖h‖Q1 �
√
N + 1‖h‖2.

min
ϕ

‖(I + K[N ,m]){ϕ} − g‖2,
s.t. degϕ � m.

(20)

Let ϕ̃ be the optimal solution to (20). By comparing it with suboptimal ϕ = Pm{ϕ∗}, we get:

‖(I + K[N ,m]){ϕ̃} − g‖2 � ‖(I + K[N ,m]){ϕ} − g‖2 � ‖(I + K){ϕ} − g‖Q1

� ‖I + K‖Q1
‖ϕ − ϕ∗‖Q1 � ‖I + K‖Q1

2‖ϕ∗‖Eρ

ρ−N+r+s

ρ − 1
.

We therefore deduce the bound:

‖ϕ̃ − ϕ∗‖∞ � ‖(I + K)−1‖∞‖(I + K[N ,m]){ϕ̃} − g‖∞
� ‖(I + K)−1‖∞

√
N + 1‖(I + K[N ,m]){ϕ̃} − g‖2

� ‖(I + K)−1‖∞‖I + K‖Q1
2‖ϕ∗‖Eρ

√
N + 1

ρ−N+r+s

ρ − 1
.

(21)

Theorem 3.18 With the polynomial approximations ϕ
(r)◦
i and ψ◦

i computed by ResolventKernel using the
modified spectral method presented above, the minimum value for NR to ensure a contracting Newton–Picard
fixed-point operator is bounded by the asymptotic estimate:

NR = O
(
TρMρ − log(ρ − 1)

log ρ

)
.

Proof Combining the method error for the (modified) Chebyshev spectral method (21) with ‖(I + K)−1‖∞ �
eMT � eMρTρ and ‖I + K‖Q1 � 1 + 2MρTρ

ρ−1 , we get for ϕ = ϕ
(r)
i or ψi and N = NR:

‖ϕ◦ − ϕ‖∞ � eMρTρ

(
1 + 2MρTρ

ρ − 1

)
2‖ϕ‖Eρ

√
NR + 1

ρ−NR+r+s

ρ − 1
.

Instantiating the error bounds ε
(NR)
i and η

(NR)
i with these values instead of the mere truncation bounds in the

proof of Theorem 3.16 yields the same asymptotic estimate for N = NR in Corollary 3.17. ��

398 F. Bréhard

To conclude, we also note that this modified procedure still runs in O(NR(r + s)2) arithmetic operations. Let
M = IN+1,m+1 + K[N ,m]. The solutions ϕ̃ to the least squares problem (20) are the solutions of:

MT M ϕ̃ = MT g. (22)

Since M is (rectangular) almost-banded, adapting the algorithms of [29] leads to a QR decomposition of M in
complexity O(NR(r + s)2) and a solution ϕ̃ of (22) in complexity O(NR(r + s)).

Remark 3.19 The overall complexity analysis in this article does not include the effect of rounding errors of floating-
point arithmetics and the growth of interval width in the validation part. This could be avoided by using rational
numbers instead. However, in most examples we tried, including those presented in the following section, rounding
errors do not seem to play an important role. Also, the Q1 norm used in line 9 of NewtonPicardValid could be
replaced by a polynomial extrema isolation technique to get sharper bounds.

4 Implementation, Examples and Discussion

We briefly present our implementation of the Newton–Picard validation algorithm presented in this paper, and draw
up more detailed observations based on practical examples.

4.1 Implementation in the ChebValid library

Algorithm NewtonPicardValid presented in this article is implemented in the C library ChebValid6 dedicated
to rigorous numerics with RPAs in the Chebyshev basis (a.k.a. Chebyshev models). This library, which relies on
MPFR7 for floating-point arithmetics in arbitrary precision and its extension MPFI8 for interval arithmetics, was
initially designed to implement the Newton–Galerkin validation method of [8]. It implements data types as polyno-
mials with double floating-point numbers, arbitrary precision floating-point numbers or interval coefficients, under
the name double_chebpoly_t, mpfr_chebpoly_t and mpfi_chebpoly_t. The type chebmodel_t
implements Chebyshev models, that is a pair consisting of a mpfi_chebpoly_t and a floating-point bound for
the remainder.

For the purpose of this article, we enriched ChebValid with low-rank integral operators, implemented
as the type prefix_lrintop_t (where prefix_ = double_chebpoly_, mpfr_chebpoly_ or
chebmodel_), together with relevant operations, in particular evaluation on a polynomial or RPA, compo-
sition (that is, operation ∗ on the kernels), and rigorous bound. The validation method is implemented in
mpfi_chebpoly_newtonpicard/. In Sect. 4.2 below, we test it on a D-finite example, namely the Airy
function of the first kind, and discuss the performances compared to other a-posteriori or self-validating methods.
Also, Sect. 4.3 exemplifies the extension of NewtonPicardValid to non-polynomial coefficients, represented
using RPAs (i.e., chebmodel_t), and implemented in chebmodel_newtonpicard/.

4.2 A D-finite Example: The Airy Function

The Airy function of the first kind Ai is a special function, notably used in different branches of physics (e.g.,
quantum mechanics and optics). It is a D-finite function, satisfying the following second order linear ODE:

y′′(x) − xy(x) = 0, (23)

6 https://gitlab.inria.fr/brisebar/tchebyapprox/-/releases/v0.0.1
7 https://www.mpfr.org/
8 https://gforge.inria.fr/projects/mpfi/

https://gitlab.inria.fr/brisebar/tchebyapprox/-/releases/v0.0.1
https://www.mpfr.org/
https://gforge.inria.fr/projects/mpfi/

A Symbolic-Numeric Validation Algorithm 399

with transcendental initial conditions v0 = Ai(0) = 3−2/3/�(23) and v1 = Ai′(0) = −3−1/3/�(13). While Ai

converges exponentially fast as x → +∞, namely Ai(x) ∼ x− 1
4 e− 2

3 x
3/2

/2
√

π , the Airy function of the second
kind Bi, which together with Ai forms a basis of the solution space of (23), is exponentially divergent, with

Bi(x) ∼ x− 1
4 e

2
3 x

3/2
/
√

π as x → +∞ (see Fig. 3a). This means that even slight perturbations of the (non-
rational) initial conditions v0 and v1 result in exponentially growing errors when evaluating Ai(x) using the D-finite
equation (23). This justifies the use of rigorous validation methods.

First, this IVP for Ai is transformed into an equivalent integral equation on f = Ai′′ using Proposition 2.3:

f (x) +
∫ x

0
(xt − x2) f (t)dt = v0x + v1x

2. (24)

A polynomial approximation y◦ is computed using the Chebyshev spectral method described in Sect. 2.3. The
magnitude of the Chebyshev coefficients of Ai over the symmetric interval [−a, a] = [−15, 15] is depicted in
Fig. 3b. The observed super-linear convergence in log-scale (that is, in o(ρ−n) for any ρ > 1) is typical for
entire functions. According to the plot, a Chebyshev polynomial approximation y◦ with double-precision accuracy
(≈ 10−16) needs to be of degree roughly 90. However, such a heuristic truncation, as done for example in the
Chebfun library, is not a rigorous proof.

As clearly evidenced by Fig. 3c, the coefficients in the matrix representation in the Chebyshev basis of (I+K)−1

converge exponentially fast to 0 when moving off a few diagonals or upper rows, in accordance with the logarithmic
bound for NR claimed in Theorem 3.16. On the contrary, it also appears that finite-dimensional truncations are, by
far, less efficient approximations. This phenomenon is reflected by the minimum value for Newton–Galerkin’s NG
and Newton–Picard’s NR needed to ensure a contracting fixed-point operator. More precisely, Fig. 3d compares the
evolution in function of [xl , xr] = [−a, a] of NG (Newton–Galerkin), NR (Newton–Picard), and NP , the number
of Picard iterations needed in the algorithm of [2]. In addition, we provide the a priori conservative estimate for
NR from Corollary 3.17, computed over a Bernstein ellipse with ρ = 2 (the estimate can be made effective rather
than asymptotic by using the bounds in the proof).

The first observation is that Newton–Galerkin validation method can hardly run with a � 10, due to the exponen-
tial blow-up of the truncation index NG . This indeed requires to perform rigorous computations with matrices with
several billions entries... The second observation is that although NR and NP should be similar in theory (which
is reflected by the similar behavior of NP and the a priori estimate for NR), in practice NP is significantly larger,
because it is computed as a conservative, purely a priori estimate, contrary to NR where the actual contraction ratio
of T is explicitly computed.
Timing Comparison. To conclude the Airy example, we compare timings of computing RPAs in the Chebyshev
basis using several a posteriori validation methods:

• The Newton–Picard validation algorithm NewtonPicardValid presented in this article and implemented in
the C library ChebValid.

• The Newton–Galerkin validation method detailed in [8], for which the ChebValid library was initially designed.
• The Picard iteration based a posteriori validation algorithm of [2], which we implemented (without any opti-
mization) in ChebValid.

Although the application scope of self-validating methods slightly differs (the validation method constructs its
own approximant, which is no longer freely provided by the user), we also compared for the sake of completeness
with two implementations compatible with multiprecision:

• The CAPD library9 computes rigorous Taylor forms with remainders using a higher-order Lohner method [40].
The result is a piecewise analytic representation of the solution, as opposed to uniform polynomial approximants
considered in this article.

9 http://capd.ii.uj.edu.pl/

http://capd.ii.uj.edu.pl/

400 F. Bréhard

(A) (B)

(C)

(D)

Fig. 3 Validation of the Airy function Ai over [xl , xr] = [−a, a]

• The algorithm developed in [25] and implemented in the SageMath ore_algebra package10 combines a
majorant series approach with a binary splitting algorithm to evaluate pointwise D-finite functions. The scope
is even more restricted, but we fairly acknowledge the remarkable performances of this implementation.

We first note that in the category of Newton-like a posteriori validation methods, the Newton–Picard algorithm
presented in this paper outperforms Newton–Galerkin and Picard iterations, which are both unable to deal with the
instances where a � 10 in reasonable time. For the former, the main reason is that the required truncation index NG
becomes very large and rapidly exceeds the memory available on a standard machine. For the latter, the number of
iterations remains reasonable (although larger than the degree NR used in Newton–Picard), but the iteration process
using interval arithmetics suffers from numerical instability, which in the simple case a = 5 forced us to use MPFR
floating-point numbers with 20, 000 bits of precision.

The comparison with self-validating methods used in CAPD or SageMath is more delicate, since those imple-
mentations are by far more mature than our prototypes. However, the timings highlight the “cost to pay” to construct
a contracting fixed-point operator as a common feature of a posteriori validation methods. For very high precision,
this constant cost is amortized by the linear asymptotic complexity w.r.t. the degree of the candidate approximation.
In particular, NewtonPicardValid performs better than CAPD when high precision is required. Note however
that we did not manage to use CAPD with Taylor models of degree more than 70, which may explain the poorer
performance of this reputed library in high precision.

Finally, when it comes to the simple pointwise rigorous evaluation of Ai, the algorithm implemented in SageMath
outperforms all the other methods. One reason for this is that it uses a binary splitting technique to evaluate the

10 https://github.com/mkauers/ore_algebra/.

https://github.com/mkauers/ore_algebra/

A Symbolic-Numeric Validation Algorithm 401

Table 2 Timings comparison for the rigorous computation of Ai
over [−a, a] with prescribed target accuracy, between Newton–
Picard (N–P), Newton–Galerkin (N–G), Picard iterations (Pit)
and Taylor forms in the CAPD library. Timings for the rigor-

ous evaluation of Ai(a) using the SageMath ore_algebra
package are also provided. “mpfr prec” denotes the MPFR pre-
cision in bits and “deg” the degree of the Chebyshev polynomial
approximation used in (N-P), (N-G) and (Pit)

a Accuracy mpfr prec deg Timings (s)
N-P N-G Pit CAPD (Sage)

5 1e–16 128 45 0.016 0.306 107. 0.027 (0.008)

5 1e–32 256 65 0.021 0.382 108. 0.037 (0.009)

5 1e–64 512 105 0.032 0.520 110. 0.073 (0.010)

5 1e–128 512 165 0.038 0.523 113. 0.465 (0.011)

10 1e–16 256 85 0.060 − − 0.044 (0.010)

10 1e–32 256 110 0.064 − − 0.069 (0.010)

10 1e–64 512 155 0.091 − − 0.137 (0.012)

10 1e–128 1024 235 0.210 − − 1.554 (0.013)

15 1e–16 256 140 0.198 − − 0.066 (0.012)

15 1e–32 512 165 0.268 − − 0.097 (0.012)

15 1e–64 512 215 0.287 − − 0.251 (0.014)

15 1e–128 1024 300 0.602 − − 2.945 (0.017)

truncated Taylor series without computing explicitly the Taylor coefficients up to the truncation order. This is quite
different from Problem 1.1 where we want to compute an RPA with an explicit polynomial approximation that can
be manipulated. However, some techniques used in this implementation could certainly be reused to improve the
existing algorithms for RPAs.

4.3 A Boundary Value Problem with Non-Polynomial Coefficients

As mentioned in the introduction, Algorithm NewtonPicardValid easily extends to the case of linear ODEs
with non-plynomial coefficients, represented using RPAs. Indeed, one just needs to provide routines to manipulate
low-rank kernels defined with univariate RPAs rather than pure polynomials, namely evaluation on another RPA,
composition and rigorous bound. This is implemented in the ChebValid library, with the prefix chebmodel_
replacing mpfi_chebpoly_ in the names of the corresponding functions.

To illustrate this, let us consider the following boundary layer problem considered in [29] and reused in [8]:

⎧⎪⎨
⎪⎩

y′′(x) − 2x

ε

(
cos x − 8

10

)
y′(x) + 1

ε

(
cos x − 8

10

)
y(x) = 0, x ∈ [−1, 1],

y(−1) = y(1) = 1.

(25)

This is a Boundary Value Problem (BVP) rather than an Initial Value Problem (IVP). However, since the problem is
linear, this amounts to solving two IVPs on the same ODE, namely computing y = y0 + λy1 with y0, y1 solutions
to the IVP with initial conditions (1, 0) and (0, 1), respectively, and with λ = (1 − y0(1))/y1(1).

We first use Algorithm NewtonPicardValid to compute an RPA for cos over [−1, 1], using the differential
equation y′′ + y = 0. This allows us to provide RPAs of arbitrary accuracy for the two coefficients in (25). Then
we call this algorithm again on the resulting IVP, overloaded with RPAs. The smaller ε is, the steeper the slope
of the solution y is, as it can be observed in Fig. 4a. This results in an increasing degree NR to approximate the
resolvent kernel (see Fig. 4b). Note however that NR is way smaller than the truncation order NG required by

402 F. Bréhard

(A) (B)

Fig. 4 Validation of the boundary layer example using NewtonPicardValid

Newton–Galerkin validation method (see [8, Sec. 7.3]). As a consequence, we can rigorously deal with instances
with really small ε (up to 10−6 within a few seconds), while Newton–Galerkin is limited to ε = 0.005 roughly.

On a last note, one remarks that y0 and y1 have very high amplitude compared to the BVP solution y. With the
algorithm of [29], one can in fact directly numerically solve this BVP by replacing the first two rows of the almost-
banded system by the corresponding equations representing the boundary conditions. An interesting future work
is to extend Newton–Picard validation algorithm to BVPs, by investigating the resolvent kernel of the associated
integral equation.

4.4 High Order D-finite Equations

In order to check that the proposed method successfully handles linear ODEs of order greater than 2, 21 random
D-finite equations L10, L11, . . . , L30 were generated, with order ri = i and degree 2 polynomial coefficients with
integer coefficients uniformly chosen between −100 and 100, like the following one:

L10 = ∂10 + (−93x2 + 5x + 73)∂9 + (−51x2 + 22x + 74)∂8 + (−8x2 − 41x + 41)∂7

+ (−18x2 − 76x − 11)∂6 + (79x2 − 45x + 70)∂5 + (−11x2 + 61x − 83)∂4

+ (−74x2 − 5x − 84)∂3 + (−x2 − 63x + 96)∂2 + (−95x2 + 86x − 57)∂ + (−8x2 + 21x − 56),

together with random integer initial conditions between −100 and 100.
Despite the high order and dense coefficients of theLi , AlgorithmNewtonPicardValid requires quitemoderate

degrees NR to construct the Newton–Picard fixed-point operator (always less than 700 for those 21 randomly
generated instances). Hence, we see in practice that the remarkable approximation properties of Chebyshev spectral
methods are reflected in the validation procedure.

Examples of “natural” high order ODEs are hard to find in the literature and applications. Yet, they frequently
appear in the context of D-finite functions, e.g. when performing closure operations like addition, multiplica-
tion or algebraic substitution on simpler functions, and their properties may be quite different from those of
random equations. Consider for example the D-finite function f (x) = cos x + cos 5x2 − sin 3x4 over [0, 2],
plotted in Fig. 5a. The holexprtodiffeq command of Maple’s Gfun package [34] automatically com-
putes an order 6, degree 37 differential equation L{ f } = 0, with a 6-dimensional solution space spanned by
{cos x, sin x, cos 5x2, sin 5x2, cos 3x4, sin 3x4}. Unfortunately, the leading coefficient,

A Symbolic-Numeric Validation Algorithm 403

(A) (B)

Fig. 5 An example of a D-finite function with high-order, ill-conditioned differential equation

a6(x) = 268738560000x29 − 5374771200x27 − 365158969344x25 + 3732480000x23 + 463694284800x21

− 6366325248x19 − 66390306048x17 + 2217859200x15 + 27057529296x13 − 2477301120x11

+ 3908641720x9 − 134485400x7 + 1100233x5 + 15403262x3,

is non-constant, and in particular singular at x = 0. To circumvent this difficulty, the Desingularize command
can be used to compute a non-singular, higher order equation. The result is an operator of order 9 and degree 35,
with significantly larger coefficients, which is generated in approximately 10 seconds in Maple. Our experiments
on this equation show the following:

• TheChebyshev spectralmethodprovides remarkably accurate numerical approximations of this function, despite
the considerable size of the equation. Indeed, the Chebyshev coefficients (see Fig. 5b) converge at a super-linear
rate, since f is entire.

• Unfortunately,NewtonPicardValid fails to validate this example in reasonable time, due to a too large degree
NR needed to approximate the resolvent kernel so as to get a contracting operator. Indeed, the functions ϕi and
ψi definingR(x, t) are way larger than f , and cannot be accurately approximated with a moderate degree. The
reason is that the desingularization step produces a much bigger and ill-conditioned equation (in this example,
max0�i<9 ‖ai‖Q1 = 1.26 · 1022). Hence, the extra 3 functions in the new 9-dimensional solution space most
probably have Chebyshev coefficients of size exponential in this bound, and are therefore not even representable
in MPFR.

The key lesson of this example is that while the Chebyshev spectral method can perform well on specific initial
conditions associated to a well-behaved particular function of the solution space of the differential equation, the
Newton–Picard validationmethod needs to inspect thewhole solution space (ofL andL∗) to guarantee themaximum
error “in every direction”. Still, future improvements could help in taming the contribution of the ill-conditioned but
non-relevant solutions. Also, in this example and more generally for D-finite functions, handling directly singular
equations is an interesting future challenge.

4.5 Discussion and Future Work

Newton–Galerkin a posteriori validation methods have been widely used over recent years to provide successful
computer-assisted proofs for the existence (and the effective approximation) of solutions to various kinds of func-
tional equations, notably (linear or nonlinear) ODEs with initial or boundary value conditions, partial differential
equations, delay-differential equations, etc. Elaborating on the simpler case of linear ODEs with initial values, we
presented a new validation algorithm (which we propose to call Newton–Picard) and provided a thorough com-

404 F. Bréhard

plexity analysis to explain why it performs better than other a posteriori validation algorithms in the literature. This
algorithm is implemented in the prototype C library ChebValid.

This work is to be seen as part of a long term effort to combine the field of rigorous numerics towards computer-
assisted proofs in mathematics with the algorithmic and complexity approach of computer algebra, in order to
design efficient and fully trusted symbolic-numeric libraries for function space computations. In particular, several
future goals can be identified:

• Combining the Newton–Picard fixed-point operator with the radii polynomial approach of [17] to bound non-
linear terms will allow for the efficient treatment of nonlinear ODEs, where even proving the existence of a
solution on a given interval is a nontrivial problem. In particular, investigating the complexity and comparing
with the results of [6] is an interesting challenge.

• Deriving formulas for the resolvent kernel in the case of boundary conditions is the key to adapting this algorithm
to BVPs.

• Even in the case of D-finite functions, dealing with singular points (that is, when the leading coefficient, instead
of being 1, vanishes at some point of the interval) is a difficult problem. While rigorous evaluation of D-
finite functions near regular singular points has already been investigated, e.g. in [25,39], rigorous uniform
approximation (with a suitable norm) is, up to our knowledge, still an open problem. A similar question is the
case of unbounded intervals.

• Computing rigorous approximants for PDE solutions is amajor challenge due to the (time and space) complexity
issues related to the several variable case. Hence, proposing efficient and reliable algorithms is crucial in the
development of computer-assisted proofs for such problems.

• Finally, we propose to implement this validation algorithm in the Coq proof assistant in order to provide a fully
reliable tool to engineers and mathematicians. More specifically, we want to integrate it into our experimental
development of certified RPAs in Coq using an a posteriori (or certificate-based) approach [9]. The algebraic
framework of Newton–Picard with integral operators and polynomial kernels makes this new validation algo-
rithm a relevant choice for that task.

Acknowledgements I would like to thank the anonymous referees for their careful reviewing work and their useful suggestions, which
helped improve the clarity of this article.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, volume 55
of National Bureau of Standards Applied Mathematics Series. Courier Corporation (1964)

2. Benoit, A., Joldes, M., Mezzarobba, M.: Rigorous uniform approximation of D-finite functions using Chebyshev expansions. Math.
Comput. 86(305), 1303–1341 (2017). https://doi.org/10.1090/mcom/3135

3. Berinde, V.: Iterative Approximation of Fixed Points. Lecture Notes in Mathematics, vol. 1912. Springer, Berlin (2007)
4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and ProgramDevelopment: Coq’Art: the Calculus of Inductive Constructions.

Springer (2013)
5. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models.

Reliable Comput. 4(4), 361–369 (1998). https://doi.org/10.1023/A:1024467732637
6. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In: Proceedings of the 37th International

Symposium on Symbolic and Algebraic Computation, pp. 115–121 (2012). https://doi.org/10.1145/2442829.2442849
7. Boyd, J.P.: Chebyshev and Fourier spectral methods. Dover Publications (2001)
8. Bréhard, F., Brisebarre, N., Joldes, M.: Validated and numerically efficient Chebyshev spectral methods for linear ordinary differ-

ential equations. ACM Trans. Math. Softw. 44(4), 44:1–44:42 (2018). https://doi.org/10.1145/3208103
9. Bréhard, F., Mahboubi, A., Pous, D.: A certificate-based approach to formally verified approximations. In: 10th International

Conference on Interactive Theorem Proving (ITP 2019), vol. 141, pp. 8:1–8:19 (2019). https://doi.org/10.4230/LIPIcs.ITP.2019.8
10. Brisebarre, N., Joldes, M.: Chebyshev interpolation polynomial-based tools for rigorous computing. In: Proceedings of the 2010

International Symposium on Symbolic and Algebraic Computation, pp. 147–154. ACM (2010). URL: https://doi.org/10.1145/
1837934.1837966

11. Chyzak, F.: The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research
(HDR), Université d’Orsay (2014). https://tel.archives-ouvertes.fr/tel-01069831

https://doi.org/10.1090/mcom/3135
https://doi.org/10.1023/A:1024467732637
https://doi.org/10.1145/2442829.2442849
https://doi.org/10.1145/3208103
https://doi.org/10.4230/LIPIcs.ITP.2019.8
https://doi.org/10.1145/1837934.1837966
https://doi.org/10.1145/1837934.1837966
https://tel.archives-ouvertes.fr/tel-01069831

A Symbolic-Numeric Validation Algorithm 405

12. Epstein, C., Miranker, W.L., Rivlin, T.J.: Ultra-arithmetic. I. Function data types. Math. Comput. Simul. 24, 1–18 (1982). https://
doi.org/10.1016/0378-4754(82)90045-3

13. Epstein, C., Miranker, W.L., Rivlin, T.J.: Ultra-arithmetic. II. Intervals of polynomials. Math. Comput. Simul. 24, 19–29 (1982).
https://doi.org/10.1016/0378-4754(82)90046-5

14. Fox, L., Parker, I.B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London-New York-Toronto, Ont.
(1968)

15. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications, vol. 26. SIAM (1977)
16. Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28(4), 1071–1080 (1991).

https://doi.org/10.1137/0728057
17. Hungria, A., Lessard, J.-P., Mireles James, J.D.: Rigorous numerics for analytic solutions of differential equations: the radii

polynomial approach. Math. Comput. 85(299), 1427–1459 (2016). https://doi.org/10.1090/mcom/3046
18. Jiménez-Pastor, A., Pillwein, V., Singer,M.F.: Some structural results on Dn-finite functions. Adv. Appl.Math. 117, 102027 (2020).

https://doi.org/10.1016/j.aam.2020.102027
19. Joldes, M.: Rigorous Polynomial Approximations and Applications. PhD thesis, École normale supérieure de Lyon – Université

de Lyon, Lyon, France (2011). https://tel.archives-ouvertes.fr/tel-00657843
20. Kaucher, E., Miranker, W.L.: Validating computation in a function space. In: Reliability in computing: the role of interval methods

in scientific computing, pages 403–425. Academic Press Professional, Inc. (1988). https://doi.org/10.1016/B978-0-12-505630-4.
50028-6

21. Kedem, G.: A posteriori error bounds for two-point boundary value problems. SIAM J. Numer. Anal. 18(3), 431–448 (1981).
https://doi.org/10.1137/0718028

22. Koutschan, C.: Advanced Applications of the Holonomic Systems Approach. PhD thesis, Research Institute for Symbolic Compu-
tation (RISC), Johannes Kepler University, Linz, Austria (2009). https://www3.risc.jku.at/research/combinat/software/ergosum/
RISC/HolonomicFunctions.html

23. Lalescu, T.: Introduction à la Théorie des Équations Intégrales (Introduction to the Theory of Integral Equations). Hermann, Librairie
Scientifique A (1911)

24. Lessard, J.-P., Reinhardt, C.: Rigorous numerics for nonlinear differential equations using Chebyshev series. SIAM J. Numer. Anal.
52(1), 1–22 (2014). https://doi.org/10.1137/13090883X

25. Mezzarobba, M.: Autour de l’ évaluation numérique des fonctions D-finies. PhD thesis, École polytechnique (2011). URL: https://
tel.archives-ouvertes.fr/pastel-00663017/

26. Moore, R.E.: Interval Analysis. Prentice-Hall (1966)
27. Nakao, M.T.: Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal.

Optim. 22(3–4), 321–356 (2001). https://doi.org/10.1081/NFA-100105107
28. Neumaier, A.: Taylor forms—use and limits. Reliable Comput. 9(1), 43–79 (2003). https://doi.org/10.1023/A:1023061927787
29. Olver, S., Townsend, A.: A fast and well-conditioned spectral method. SIAM Rev. 55(3), 462–489 (2013). https://doi.org/10.1137/

120865458
30. Plum, M.: Computer-assisted existence proofs for two-point boundary value problems. Computing 46(1), 19–34 (1991). https://

doi.org/10.1007/BF02239009
31. Rall, L.B.: Resolvent kernels of Green’s function kernels and other finite-rank modifications of Fredholm and Volterra kernels. J.

Optim. Theory Appl. 24, 59–88 (1978). https://doi.org/10.1007/BF00933182
32. Salvy, B.: D-finiteness: Algorithms and applications. In: M. Kauers (ed.) ISSAC 2005: Proceedings of the 18th International

Symposium on Symbolic and Algebraic Computation, Beijing, China, July 24-27, 2005, pages 2–3. ACM Press (2005). https://
doi.org/10.1145/1073884.1073886

33. Salvy, B.: Linear differential equations as a data-structure. Foundations of Computational Mathematics, pp. 1071–1012, (2019).
https://doi.org/10.1007/s10208-018-09411-x

34. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable.
ACM Trans. Math. Softw. (TOMS) 20(2), 163–177 (1994). https://doi.org/10.1145/178365.178368

35. Stanley, R.P.: Differentiably finite power series. Eur. J. Combinat. 1, 175–188 (1980). https://doi.org/10.1016/
S0195-6698(80)80051-5

36. Trefethen, L.N.: Approximation Theory and Approximation Practice. SIAM (2013). http://www.chebfun.org/ATAP/
37. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press (2011)
38. van den Berg, J.B., Lessard, J.-P.: Rigorous numerics in dynamics. Not. AMS 62(9), 1 (2015). https://doi.org/10.1090/noti1276
39. van der Hoeven, J.: Fast evaluation of holonomic functions near and in regular singularities. J. Symbol. Comput. 31(6), 717–743

(2001). https://doi.org/10.1006/jsco.2000.0474
40. Wilczak, D., Zgliczyński, P.: Cr -Lohner algorithm. Schedae Informaticae 20, 9–42 (2011)
41. Yamamoto, N.: A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s

fixed-point theorem. SIAM J. Numer. Anal. 35(5), 2004–2013 (1998). https://doi.org/10.1137/S0036142996304498
42. Zgliczyński, P.: C1 Lohner algorithm. Found. Comput. Math. 2(4), 429–465 (2002). https://doi.org/10.1007/s102080010025

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/0378-4754(82)90045-3
https://doi.org/10.1016/0378-4754(82)90045-3
https://doi.org/10.1016/0378-4754(82)90046-5
https://doi.org/10.1137/0728057
https://doi.org/10.1090/mcom/3046
https://doi.org/10.1016/j.aam.2020.102027
https://tel.archives-ouvertes.fr/tel-00657843
https://doi.org/10.1016/B978-0-12-505630-4.50028-6
https://doi.org/10.1016/B978-0-12-505630-4.50028-6
https://doi.org/10.1137/0718028
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://www3.risc.jku.at/research/combinat/software/ergosum/RISC/HolonomicFunctions.html
https://doi.org/10.1137/13090883X
https://tel.archives-ouvertes.fr/pastel-00663017/
https://tel.archives-ouvertes.fr/pastel-00663017/
https://doi.org/10.1081/NFA-100105107
https://doi.org/10.1023/A:1023061927787
https://doi.org/10.1137/120865458
https://doi.org/10.1137/120865458
https://doi.org/10.1007/BF02239009
https://doi.org/10.1007/BF02239009
https://doi.org/10.1007/BF00933182
https://doi.org/10.1145/1073884.1073886
https://doi.org/10.1145/1073884.1073886
https://doi.org/10.1007/s10208-018-09411-x
https://doi.org/10.1145/178365.178368
https://doi.org/10.1016/S0195-6698(80)80051-5
https://doi.org/10.1016/S0195-6698(80)80051-5
http://www.chebfun.org/ATAP/
https://doi.org/10.1090/noti1276
https://doi.org/10.1006/jsco.2000.0474
https://doi.org/10.1137/S0036142996304498
https://doi.org/10.1007/s102080010025

	A Symbolic-Numeric Validation Algorithm for Linear ODEs with Newton–Picard Method
	Abstract
	1 Introduction
	1.1 Background and Related Works
	1.2 Setting and Contributions
	1.3 Outline

	2 A Posteriori Validation and Newton–Galerkin Method
	2.1 Principle of A Posteriori Validation Using Newton-Like Fixed-Point Operators
	2.2 Reformulation of Linear ODE into Integral Equation
	2.2.1 Integral Equation on Highest-Order Derivative
	2.2.2 Integral Equation on the Same Function

	2.3 Chebyshev Approximation Theory and Spectral Methods
	2.4 A Brief Summary of the Newton–Galerkin Validation Method
	2.4.1 Newton–Galerkin Fixed-Point Operator and Validation Algorithm
	2.4.2 Limitations of the Newton–Galerkin Validation Method

	3 Newton–Picard Validation Algorithm
	3.1 Kernel Composition, Picard Iterations and the Resolvent Kernel
	3.2 The Validation Algorithm
	3.3 Resolvent Kernel Approximation
	3.3.1 Formulas for the Resolvent Kernel
	3.3.2 Resolvent Kernel Approximation Algorithm

	3.4 Newton–Galerkin vs Newton–Picard Validation Complexity

	4 Implementation, Examples and Discussion
	4.1 Implementation in the ChebValid library
	4.2 A D-finite Example: The Airy Function
	4.3 A Boundary Value Problem with Non-Polynomial Coefficients
	4.4 High Order D-finite Equations
	4.5 Discussion and Future Work

	Acknowledgements
	References

