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Abstract Effective methods are introduced for testing zero-dimensionality of varieties at a point. The motivation
of this paper is to compute and analyze deformations of isolated hypersurface singularities. As an application,
methods for computing local dimensions are also described. For the case where a given ideal contains parameters,
the proposed algorithms can output in particular a decomposition of a parameter space into strata according to the
local dimension at a point of the associated varieties. The key of the proposed algorithms is the use of the notion of
comprehensive Gröbner systems.
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1 Introduction

The local dimension, the dimension of a variety at a point, is one of the most important invariants in algebraic
geometry, complex analysis and singularity theory [2,7,15,19]. Thus, a practical tool to compute the dimension or
test zero-dimensionality is required for studying local properties of a variety [3,11,12,14].

In this paper, we propose two methods for testing zero-dimensionality of a variety at a point, and we generalize
them to the parametric cases. The main tools of our approach are Gröbner bases and comprehensive Gröbner
systems. The proposed methods do not utilize primary ideal decompositions, and are free from computation in local
rings.

Definition 1 Let V be an affine variety in C
n . For p ∈ V , the dimension of V at p, denoted dim p(V ), is the

maximum dimension of an irreducible component of V containing the point p.
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In singularity theory, problems that contain parameters are often studied, for instance, deformations of singulari-
ties, a family of hyperplane sections of a variety, etc. In such cases, since structures of relevant ideals or varieties may
vary as parameters changes, there is a possibility that the local dimension of varieties may also depend on the values
of parameters. We need methods to decompose a parameter space into strata according to the local dimensions of
a given family of varieties.

In order to state precisely the problem,wegive an example. Let f0 = x41+x1x23+x42 and consider f = f0+t1x2x23 ,
where t1 is a parameter. The hypersurface defined by f0 = 0 has an isolated singularity at the origin O in C

3, i.e.,
dimO(V( f0,

∂ f0
∂x1

,
∂ f0
∂x2

,
∂ f0
∂x3

)) = 0. Since f has the parameter t1, there is a possibility that the family of hypersurfaces

defined by f = 0 has non-isolated singularities at the origin for some values of the parameter t1. In fact, if t41 +1 = 0,

then f has a non-isolated singularity at O and dimO(V( f, ∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

)) = 1. If t41 +1 �= 0, then f has an isolated

singularity at O . We really would like the condition t41 +1 �= 0, or detect the condition t41 +1 = 0 in an algorithmic
manner to study local properties of the deformation of an isolated singularity. How do we obtain such conditions?

Basically, the condition can be obtained by testing zero-dimensionality of the variety V( f, ∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

) at
the origin O . We show in the present paper that the methods for testing zero-dimensionality of a variety at a
point can be constructed by using Gröbner bases. Furthermore, we generalize the methods to parametric cases by
utilizing comprehensive Gröbner systems [5,9,10,13,17]. We give two different kinds of algorithms for testing
zero-dimensionality at a point of a family of varieties with parameters.

Note that the resulting algorithms do not involve computation in local rings and efficiently output the necessary
and sufficient conditions for zero-dimensionality.

This paper is organized as follows. Section 2 briefly reviews comprehensive Gröbner systems, and gives notations
that will be used in this paper. Section 3 considers the use of tangent cone and gives the discussion of the first
algorithm for testing zero-dimensionality of varieties at a point. Section 4 considers the use of saturation and
discusses the second algorithm for testing zero-dimensionality of varieties at a point. Section 5 gives results of
the benchmark tests. Appendix A gives an efficient algorithm for computing ideal quotients with parameters, that
utilizes a comprehensive Gröbner system of a module.

2 Preliminaries

Let t = {t1, . . . , tm} and x = {x1, . . . , xn} be variables such that t ∩ x = ∅ and C[t][x] be a polynomial ring with
coefficients in a polynomial ringC[t]. For f1, . . . , fs ∈ C[x] (orC[t][x]), 〈 f1, . . . , fs〉 = {∑s

i=1 hi fi |h1, . . . , hs ∈
C[x]( or C[t][x])}.

A symbol Term(x) is the set of terms of x . Fix a term order � on Term(x). Let f ∈ C[x] (or f ∈ C[t][x]),
then, ht( f ), hm( f ) and hc( f ) denote the head term, head monomial and head coefficient of f (i.e., hm( f ) =
hc( f ) · ht( f )). For F ⊂ C[x] (or F ⊂ C[t][x]), ht(F) = {ht( f )| f ∈ F}.

For g1, . . . , gr ∈ C[t], V(g1, . . . , gr ) ⊆ C
m denotes the affine variety of g1, . . . , gr , i.e., V(g1, . . . , gr ) = {t̄ ∈

C
m |g1(t̄) = · · · = gr (t̄) = 0}. We call an algebraic constructible set of a formV(g1, . . . , gr )\V(g′

1, . . . , g′
r ′) ⊆ C

m

with g1, . . . , gr , g′
1, . . . , g′

r ′ ∈ C[t], a stratum. Notations A1,A2, . . . ,Aν are frequently used to represent strata.
For every t̄ ∈ C

m , the canonical specialization homomorphism σt̄ : C[t][x] → C[x] (or C[t] → C) is defined
as the map that substitutes t by t̄ in f (t, x) ∈ C[t][x] (i.e., σt̄ ( f ) = f (t̄, x) ∈ C[x]). The image σt̄ of a set F is
denoted by σt̄ (F) = {σt̄ ( f )| f ∈ F} ⊂ C[x]. In this paper, the set of natural numbers N includes zero.

We adopt the following as a definition of a comprehensive Gröbner system.

Definition 2 (comprehensive Gröbner system) Let � be a term order on Term(x). Let F be a subset
of C[t][x], A1,A2, . . . ,Aν strata in C

m and G1, G2, . . . , Gν subsets in C[t][x]. If a finite set G =
{(A1, G1), (A2, G2), . . . , (Aν, Gν)} of pairs satisfies the following conditions

1. Ai �= ∅ and Ai ∩ A j = ∅ for 1 ≤ i �= j ≤ ν,
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2. for all t̄ ∈ Ai , σt̄ (Gi ) is a minimal Gröbner basis of 〈σt̄ (F)〉 w.r.t. � in C[x], and
3. for all t̄ ∈ Ai and f ∈ Gi , σt̄ (hc( f )) �= 0,

the set G is called a comprehensive Gröbner system on A1 ∪ · · · ∪ A� for 〈F〉 w.r.t. �. We simply say that G is a
comprehensive Gröbner system for 〈F〉 if A1 ∪ · · · ∪ A� = C

m .

In several papers [5,9,10,13], algorithms and implementations for computing comprehensive Gröbner systems
are introduced.

Example 1 Let F = {t1x1x2 + x2 + 1, x21 x2 + t1x1 + 3} be a subset in C[t1][x1, x2] and � the lexicographic term
order s.t. x1 � x2. We regard t1 as a parameter in C. Then, a comprehensive Gröbner system of 〈F〉 w.r.t. � is{
(C\V(t31 −t1), {x22 +(2t21 +2)x2−t21 +1, (t31 −t1)x1+x2+3t21 +1}), (V(t21 −1), {4x1+3t1, x2+4}), (V(t1), {x21 −

3, x2 + 1})
}
.

3 Algorithm 1 (Tangent Cone Approach)

Here, we present an algorithm for testing zero-dimensionality of a variety at a point. This algorithm is based on the
method described in section 9 of the famous textbook [1]. We generalize the method to parametric cases.

Before introducing the algorithm, we prepare some notations and basic facts.
Let p = (p1, . . . , pn) ∈ C

n , α = (α1, . . . , αn) ∈ N
n and (x − p)α = (x1 − p1)α1 · · · (xn − pn)

αn . Given any
polynomial f ∈ C[x] of total degree d, f can be written as a polynomial in xi − pi , namely,

f = f p,0 + f p,1 + · · · + f p,d (3.1)

where f p, j is a linear combination of (x − p)α for α1 + · · · + αn = j ≤ d. Note that f p,0 = f (p) and
f p,1 = ∂ f

∂x1
(p)(x1 − p1) + · · · + ∂ f

∂xn
(p)(xn − pn).

The next definition is borrowed from [1].

Definition 3 (tangent cone) Let V ⊂ C
n be an affine variety and let p = (p1, . . . , pn) ∈ V .

(i) If f ∈ C[x] is a non-zero polynomial, then f p,min is defined to be f p, j , where j is the smallest integer such
that f p, j �= 0 in (3.1).

(ii) The tangent cone of V at p, denoted C p(V ), is the variety

C p(V ) = V

(
f p,min | f ∈ I(V )

)

where I(V ) = { f ∈ C[x]| f (x̄) = 0, for all x̄ ∈ V }.
The details of the tangent cone are described in [18,19]. In 1965, H. Whitney gave the following theorem.

Theorem 1 (H. Whitney [17]) Let V ⊂ C
n be an affine variety and let p = (p1, . . . , pn) ∈ V . Then,

dim p(V ) = dim(C p(V )).

In order to compute a tangent cone, we need the following definition.

Definition 4 (i) Let f (x) ∈ C[x] be a polynomial of total degree d. Let f (x) = ∑d
i=0 fi (x) be the expansion of

f (x) as the sum of its homogeneous components where fi (x) has total degree i . Then,

f h(x0, x) =
d∑

i=0

fi (x)xd−i
0

is a homogeneous polynomial of total degree d in C[x0, x] where x0 is a new variable.



320 K. Nabeshima, S. Tajima

(ii ) Let I be an ideal in C[x]. We define the homogenization of I to be the ideal

I h = 〈 f h | f ∈ I 〉 ⊂ C[x0, x].
From now on, we assume that the point p is the origin O = (0, . . . , 0) in Cn .

Proposition 1 (Proposition 4, p. 485 [1]) Assume that the origin O is a point of V ⊂ C
n. Let � be a block term

order such that x0 � x. Let I be an ideal such that V = V(I ). If {g1, . . . , gr } is a Gröbner basis of I h w.r.t. �,
then

CO(V ) = V

(
ε(g1)O,min, ε(g2)O,min, . . . , ε(gr )O,min

)

where ε(gi ) is the dehomogenization of gi for 1 ≤ i ≤ r .

There exist several algorithms for computing the dimension of a variety, thus, the dimension of CO(V ) can be
obtained. The procedure for computing dimO(V ) is the following.

Step 1: Compute CO(V ).
Step 2: Compute dim(CO(V )).
Return dim(CO(V )) (as dimO(V ) = dim(CO(V ))).

We turn to the parametric cases. Let I be an ideal in C[t][x] where we regard t as parameters. After here we
simply say that I is a “parametric” ideal.

As described in Sect. 2, there exist algorithms for computing comprehensive Gröbner systems, it is possible
to compute a comprehensive Gröbner system of I h w.r.t. � in Proposition 1. Therefore, Proposition 1 and the
procedure above can be extended to the case of parametric ideals.

The following algorithm which utilizes a comprehensive Gröbner system outputs a condition of zero-
dimensionality of V(F) at O .

Algorithm 1

Input: F = { f1, f2, . . . , fs} ⊂ C[t][x] s.t. O ∈ V(F).
�: a block term order s.t. x0 � x on Term({x0} ∪ x).
Output:A ⊂ C

m : For all t̄ ∈ A, dimO(V(σt̄ (F))) = 0 (i.e.,V(σt̄ (F)) has an isolated point at O). For all t̄ ∈ C
m\A,

dimO(V(σt̄ (F))) �= 0.
BEGIN
A ← ∅;
G ← Compute a comprehensive Gröbner system of 〈 f h

1 , f h
2 , . . . , f h

s 〉 w.r.t. � in C[t][x0, x];
while G �= ∅ do
Select (A′, G ′) from G; G ← G\{(A′, G ′)};
M ← ht(G ′) w.r.t. �;
CO ← {ε(h)|h ∈ M} in C[x];
if dim(CO) = 0 then
A ← A

′ ∪ A;
end-if
end-while
return A;
END

Since the algorithms [5,9,10,13,17] for computing comprehensive Gröbner systems always terminate and return
a finite set of pairs, Algorithm 1 also terminates. The correctness follows from Theorem 1 and Proposition 1.

Note that Algorithm 1 contains a part of computing local dimensions. Thus, it can be naturally generalized to
a method for decomposing a parameter space into strata according to the local dimensions of a given family of
varieties.
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We illustrate Algorithm 1 with the following example.

Example 2 Let f = x31 + t1x21 x42 + x122 ∈ C[t1][x1, x2], F = { f, ∂ f
∂x1

,
∂ f
∂x2

} and I = 〈F〉 where t1 is a parameter.
Let � be the total degree lexicographic term order with x1 � x2.

A comprehensive Gröbner systems of

I h = 〈x31 x90 + t1x21 x42 x60 + x122 , 3x21 x20 + 2t1x42 , 4t1x21 x32 x60 + 12x112 〉
w.r.t. the block term order with x0 � {x1, x2}, in C[t1][x0, x1, x2], is

{(C\V(t1(4t31 + 27)), {(4t31 + 27)x1x112 , (4t31 + 27)x152 , 3x30 x21 + 2t1x1x42 ,

2t21 x30 x1x72 − 9x112 }),
(V(4t31 + 27), {3x30 x21 + 2t1x1x42 , 3x30 x1x72 + 2t1x112 }), (V(t1), {x112 , x0x21 })}.
Hence,

• if t1 belongs to C\V(t1(4t31 + 27), then CO(V(I )) = V(x1x112 , x152 , x21 , x1x72) and dimO(V(I )) = 0,
• if t1 belongs to V(4t31 + 27), then CO(V(I )) = V(x21 , x1x72) and dimO(V(I )) = 1,
• if t1 belongs to C\V(t1), then CO(V(I )) = V(x21 , x112 ) and dimO(V(I )) = 0.

Therefore, for all t̄ ∈ C\V(4t31 + 27), dimO(V(σt̄ (I ))) = 0, namely, f has an isolated singularity at the origin O .

4 Algorithm 2 (Saturation Approach)

in this section, we consider the use of saturation and introduce an alternative method for testing zero-dimensionality
of a variety at a point. We present an algorithm for testing zero-dimensionality of a family of varieties at a point,
that utilizes a comprehensive Gröbner system of a module. Furthermore, we improve the algorithm in speed and
give an efficient algorithm. We also show that, according to the concept of Chevalley dimension, local dimensions
of varieties can also be computed by utilizing saturation.

4.1 Saturation Approach

Let I, J be ideals in C[x]. The ideal quotient of I by J is I : J = {h ∈ C[x]|hg ∈ I for all g ∈ J }. The saturation
of I with respect to J is the ideal

I : J∞ = {h ∈ C[x]|h Jr ⊂ I for some r > 0}.
The saturation I : J∞ is the ideal at which the chain

I : J ⊆ I : J 2 ⊆ I : J 3 ⊆ · · ·
stabilizes.

Now, we give the following main theorem which is utilized to construct the new algorithm for testing the
zero-dimensionality of a variety at a point.

Theorem 2 Let F ⊂ C[x], m = 〈x1, . . . , xn〉 ⊂ C[x] and O ∈ V(F). Let G be a basis of the ideal 〈F〉 : m∞ in
C[x]. Then, the affine variety V(F) has an isolated point at the origin O if and only if there exists g ∈ G such that
g(O) �= 0 (i.e., g has non-zero constant term).

Proof As G is a basis of 〈F〉 : m∞, V(G) = V(〈F〉 : m∞) is the Zariski closure V(F)\{O}. The variety V(F) can
be written as V(F) = V1 ∪ V2 ∪ · · · ∪ Vν (finite union) where V1, V2, . . . , Vν are distinct irreducible varieties.

First, assume that the affine variety V(F) has an isolated point at the origin O . Then, one of Vi must be {O} and
other varieties does not contain O where i ∈ {1, 2, . . . , ν}. Without loss of generality, set V1 = {O}. Then,
V(G) = V(〈F〉 : m∞) = V(F)\{O} = V2 ∪ · · · ∪ Vν .
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As O /∈ V2 ∪ · · · ∪ Vν = V(G), there exists g ∈ G such that g(O) �= 0.
Next, assume that there exists g ∈ G such that g(O) �= 0. Since O ∈ V(F),

V(G) = V(〈F〉 : m∞) = V(F)\{O} and O /∈ V(G),

there exists an irreducible variety {O} in V(F). Therefore, V(F) has an isolated point at the origin O . ��
The following corollary is a direct consequence of Theorem 2.

Corollary 1 Let f ∈ C[x], m = 〈x1, . . . , xn〉 ⊂ C[x] and O ∈ V( f, ∂ f
∂x1

, . . . ,
∂ f
∂xn

). Let G be a basis of

〈 ∂ f
∂x1

, . . . ,
∂ f
∂xn

〉 : m∞ (or 〈 f, ∂ f
∂x1

, . . . ,
∂ f
∂xn

〉 : m∞). Then, the hypersurface, defined by f , has an isolated singularity
at O if and only if there exists g ∈ G such that g(O) �= 0.

Example 3 Let us consider f1 = x21 x3 + x2x23 + x52 + x32 x3, f2 = x21 x3 + x2x23 + x52 + 2x32 x3 andm = 〈x1, x2, x3〉
in C[x1, x2, x3]. Let � be the total degree lexicographic term order with x1 � x2 � x3. Then, the reduced Gröbner
basis of 〈 ∂ f1

∂x1
,

∂ f1
∂x2

,
∂ f1
∂x3

〉 : m∞ w.r.t. � is

{1},
and the reduced Gröbner basis of 〈 ∂ f2

∂x1
,

∂ f2
∂x2

,
∂ f2
∂x3

〉 : m∞ w.r.t. � is

{x22 + x3, x1}.
Therefore, f1 has an isolated singularity at O , and f2 does not have an isolated singularity at O .

We turn to the parametric cases. There exists an algorithm for computing a comprehensive Gröbner system of
the saturation of 〈F〉 w.r.t. a given parametric ideal. The algorithm is given in Appendix A. Therefore, Theorem 2
is generalized to the parametric cases.

Algorithm 2-1

Input: F = { f1, f2, . . . , fs} ⊂ C[t][x] s.t. O ∈ V(F), m = 〈x1, . . . , xn〉.
�: a term order on Term(x).
Output:A ⊂ C

m : For all t̄ ∈ A, dimO(V(σt̄ (F))) = 0 (i.e.,V(σt̄ (F)) has an isolated point at O). For all t̄ ∈ C
m\A,

dimO(V(σt̄ (F))) �= 0.
BEGIN
A ← ∅;
G ← Compute a comprehensive Gröbner system of 〈F〉 : m∞ w.r.t. �;
while G �= ∅ do
Select (A′, G ′) from G; G ← G\{(A′, G ′)};
if ∃g ∈ G ′ s.t. g(O) �= 0 then
A ← A

′ ∪ A;
end-if
end-while
return A;
END

The correctness and termination ofAlgorithm2-1 follows fromTheorem2 and that of the algorithm for computing
comprehensive Gröbner systems.

We illustrate Algorithm 2-1 with the following example.

Example 4 Let f = x31 + x1x23 + t1x1x32 + x32 x3 ∈ C[t1][x1, x2, x3] and � the total degree reverse lexicographic
term order with the coordinate x1 � x2 � x3.
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A comprehensive Gröbner system of 〈 f, ∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

〉 : 〈x1, x2, x3〉∞ w.r.t. � is

{(C\V(t21 + 1), {1}), (V(t21 + 1), {x1 − t1x3, x32 + 2t1x23 })}.
Hence,

• if t1 belongs to C\V(t21 + 1), then dimO

(
V( f, ∂ f

∂x1
,

∂ f
∂x2

,
∂ f
∂x3

)
)

= 0,

• if t1 belongs to V(t21 + 1), then dimO

(
V( f, ∂ f

∂x1
,

∂ f
∂x2

,
∂ f
∂x3

)
)

�= 0.

Therefore, for all t̄ ∈ C\V(t21 + 1), σt̄ ( f ) has an isolated singularity at the origin O .

4.2 Improvement

We improve Algorithm 2-1 in computation speed. The following lemma allows us to devise an efficient and practical
algorithm for computing the saturation 〈F〉 : m∞.

Lemma 1 Let F ⊂ C[x] and m = 〈x1, . . . , xn〉. For all α1, α2, . . . , αn ∈ N\{0},
(
〈F〉 : 〈xα1

1 , xα2
2 , . . . , xαn

n 〉
)

: m∞ = 〈F〉 : m∞.

Proof There exists β ∈ N such that

〈F〉 : mβ−1 ⊂ 〈F〉 : mβ = 〈F〉 : mβ+1 = · · · .

Let J = 〈xα1
1 , xα2

2 , . . . , xαn
n 〉 and α = max

(
{α1, α2, . . . , αn}

)
. Obviously,

(
〈F〉 : J

)
: mβ = 〈F〉 : J · mβ.

Since J · mβ ⊆ mβ , thus 〈F〉 : mβ ⊆ 〈F〉 : J · mβ . Take a sufficiently large number N such that N > α + β, then
mN ⊆ J · mβ . Hence,

〈F〉 : mβ ⊆ 〈F〉 : J · mβ ⊆ 〈F〉 : mN .

As 〈F〉 : mβ = 〈F〉 : mN , we have 〈F〉 : mβ = 〈F〉 : J ·mβ . Therefore,
(
〈F〉 : 〈xα1

1 , . . . , xαn
n 〉

)
: m∞ = 〈F〉 : m∞.

The lemma above leads the following procedure for computing 〈F〉 : m∞.

Step 1: Compute a basis G of 〈F〉 : 〈xα1
1 , xα2

2 , . . . , xαn
n 〉.

Step 2: Compute a basis G ′ of 〈G〉 : m∞.
Return G ′.

Notice that in the procedure above arbitrary positive integers α1, . . . , αn can be used to compute 〈F〉 : m∞. Our
strategy of choosing the integers is the following.

Let f =
∑

r∈Nn

arxr be a non-zero polynomial in C[x] and F ⊂ C[x]. Let mdegxi
( f ) be the degree of the

polynomial f w.r.t. the variable xi , i.e.,

mdegxi
( f ) := max

(
{γi | r = (γ1, . . . , γi , . . . , γn) ∈ N

n, ar �= 0}
)
,

where i ∈ {1, . . . , n}. Moreover,let mdegxi
(F) := max({mdegxi

(g)|g ∈ F}).. In Algorithm 2-2, we take

α = max
(
{mdegx1(F),mdegx2(F), . . . ,mdegxn

(F)}
)

as α1, . . . , αn to compute a basis of 〈F〉 : m∞, namely, α1 = α2 = · · · = αn = α.
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Lemma 1 and the strategy above yield the following improvement.

Algorithm 2-2

Input: F = { f1, f2, . . . , fs} ⊂ C[t][x] s.t. O ∈ V(F), m = 〈x1, . . . , xn〉.
�: a term order on Term(x).
Output: A∗ ⊂ C

m : For all t̄ ∈ A
∗, dimO(V(σt̄ (F))) = 0 (i.e., V(σt̄ (F)) has an isolated point at O). For all

t̄ ∈ C
m\A∗, dimO(V(σt̄ (F))) �= 0.

BEGIN
A

∗ ← ∅; α ← max
(
{mdegx1(F),mdegx2(F), . . . ,mdegxn

(F)}
)
;

G ← Compute a comprehensive Gröbner system of 〈F〉 : 〈xα
1 , xα

2 , . . . , xα
n 〉 w.r.t. �;

while G �= ∅ do
Select (A, G) from G; G ← G\{(A, G)};
G′ ← Compute a comprehensive Gröbner system of 〈G〉 : m∞ w.r.t. � on A;
while G′ �= ∅ do
Select (A′, G ′) from G′; G′ ← G\{(A′, G ′)};
if ∃g ∈ G ′ s.t. g(O) �= 0 then
A

∗ ← A
′ ∪ A

∗;
end-if
end-while
end-while
return A

∗;
END

We illustrate Algorithm 2-2 with the next example, briefly.

Example 5 Let f = x31 x2 + t1x21 x42 + x102 + t2x112 ∈ C[t1, t2][x1, x2], F = { ∂ f
∂x1

,
∂ f
∂x2

} and V = V(F). We use the
total degree lexicographic term order with x1 � x2.

Since mdegx1( f ) = 3 andmdegx2( f ) = 11, we compute a comprehensive Gröbner system G of 〈F〉 : 〈x111 , x112 〉.
Then,

G = {(C2\V((4t31 + 27)t1t2), {(297t2x2 + 40t31 + 270)x1,−264627t22 x21
+(−3200t71 − 43200t41 − 145800t1)x1x2, 66t21 t2x1 + (44t31 t2 + 297t2)x32

+(40t31 + 270)x22 }),
(
V(4t31 + 27)\V(4t31 + 27, t2),

{
x1, 20t22 x1 − 99t2x42 − 90x32

})
,

(V(4t31 + 27, t2),
{
−2t21 x1 + 9x32

}
,
(
V(t1)\V(t1, t2),

{
11t2x2 + 10, x21

})
,

(V(t1, t2), {1}), (V(t2)\V(4t41 + 27t1, t2), {x1, x22 })}.
Next, for each pair (A, G) of the comprehensive Gröbner system G, we compute a comprehensive Gröbner

system of 〈G〉 : 〈x1, x2〉∞ on A. Then, we can obtain a comprehensive Gröbner system of 〈F〉 : 〈x1, x2〉∞ as
follows:

{(C2\V((4t31 + 27)t1t2), {−2910897t21 t32 x1 + (−35200t91 t2 − 712800t61 t2 − 4811400t31 t2 − 10825650t2)x2

−32000t91 − 648000t61 − 4374000t31 − 9841500,−9801t21 t22 x1

+(880t61 t2 + 11880t31 t2 + 40095t1)x22 + (800t61 + 10800t31 + 36450)x2}),
(V(4t31 + 27)\V(4t31 + 27, t2), {x1, 11t2x2 + 10}), (V(4t31 + 27, t2), {2t21 x1 − 9x32},(
V(t1)\V(t1, t2),

{
11t2x2 + 10, x21

})
, (V(t1, t2), {1}), (V(t2)\V(4t41 + 27t1, t2), {1})}.

From the comprehensive Gröbner system above, we have the following result.
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• If (t1, t2) belongs to W = V(4t31 + 27, t2), then then dimO(V ) �= 0. The hypersurface S does not have an
isolated singularity at O .

• If (t1, t2) belongs to C
2\W, then dimO(V ) = 0, namely, the hypersurface S, defined by f , has an isolated

singularity at O .

We have implemented Algorithm 2-2 in the computer algebra system Risa/Asir [16]. We give an output of our
implementation in the following example.

Example 6 Let f = x1x23 + x41 + x42 + t1x2x23 + t2x21 x22 ∈ C[t1, t2][x1, x2, x3] and V = V(
∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

). Our
implementation outputs the following.

• If (t1, t2) belongs to

W =
(
C
2\V((t41 + t21 t2 + 1)(t2 − 2)(t2 + 2)

)
∪

(
V(t2)\V(t41 + 1, t2)

)
,

then dimO(V ) = 0, namely, the hypersurface S, defined by f , has an isolated singularity at O .
• If (t1, t2) does not belong to W , then dimO(V ) �= 0. The hypersurface S does not have an isolated singularity
at O .

We will see in Sect. 5 how the use of 〈F〉 : 〈xα
1 , xα

2 , . . . , xα
n 〉 reduces the cost of computation of the saturation

〈F〉 : m∞ drastically.

4.3 Primary Ideal Component at O

Let 〈F〉 be the ideal generated by F s.t. O ∈ V(F). Let

〈F〉 = Q0 ∩ Q1 ∩ . . . ∩ Qν

be the primary ideal decomposition of the ideal 〈F〉. Let S denote the saturation 〈F〉 : m∞ wherem = 〈x1, . . . , xn〉
is the maximal ideal in C[x].

Assume that O /∈ V(S). Then, we have

〈F〉 = Q0 ∩ S and Q0 = 〈F〉 : S.

Therefore, the primary component Q0 at O of 〈F〉 such that V(Q0) = {O} can also be computed by using the
saturation S = 〈F〉 : m∞.

The method above works for parametric cases, too.

Example 7 Let f = x31 x2+x21 x42+t1x102 ∈ C[t1][x1, x2] and F = { ∂ f
∂x1

,
∂ f
∂x2

}. Let� be the total degree lexicographic
term order with x1 � x2. A comprehensive Gröbner system of 〈F〉 : m∞ w.r.t. � is

{(V(t1), {1}), (C\V(t1), {2910897t31 x1 + 16385050t1x2 + 14895500,

−9801t21 x1 + 52855t1x22 + 48050x2})}.
(i) A comprehensive Gröbner system of 〈F〉 : 〈1〉 on V(t1) w.r.t. � is

{(V(t1), Q′
0)},

where Q′
0 = {3x21 x2 + 2x1x42 , x41 x2, x51 , 2x41 + 53x31 x32 , x31 + 4x21 x32 + 10x92 }. This means that if t1 = 0, then

〈Q′
0〉 is the primary ideal component such that V(Q′

0) = {O}.
(ii) A comprehensive Gröbner system of

〈F〉 : 〈2910897t31 x1 + 16385050t1x2 + 14895500,−9801t21 x1 + 52855t1x22 + 48050x2〉
on C\V(t1) w.r.t. � is

{(C\V(t1), Q′′
0)}

where Q′′
0 = {3x21 x2+2x1x42 , x41 x2, x51 , 2x41 +53x31 x32 ,−1331t31 x41 + (−32065t21 x22 +29150t1 x2+5300)x31 +

21200x21 x32 + 53000x92 }. Thus, if t1 �= 0, 〈Q′′
0〉 is the primary ideal component such that V(Q′

0) = {O}.
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4.4 Local Dimensions

In this subsection, we give an algorithm for computing the local dimension at O .
Let F be a set of polynomials in C[x]. Let E be a set of families of linear polynomials

x1 + u11x�+1 + u12x�+2 + · · · + u1n−�xn,

x2 + u21x�+1 + u22x�+2 + · · · + u2n−�xn,

x3 + u31x�+1 + u32x�+2 + · · · + u3n−�xn,
...

x� + u�1x�+1 + u�2x�+2 + · · · + u�n−�xn,

in C(u)[x] where u = {u11, . . . , u1n−�, u21, . . . , u2�−n, . . . , u�1, . . . , u�n−�}, � ≤ n and C(u) is the rational
function field on u alternatively, the multivariate rational function field. Then, we have the following proposition.

Proposition 2 Let m = 〈x1, . . . , xn〉 ⊂ C[x] and O ∈ V(F). Let G be a basis of the ideal 〈F ∪ E〉 : m∞ in
C(u)[x]. Let � be the minimum number that satisfies

“there exists g ∈ G such that g(O) �= 0.′′

Then, dimO(V(F)) = �.

Proof ByTheorem 2, if there exists g ∈ G such that g(O) �= 0, then dimO(V(F ∪E)) = dimO(V(F)∩V(E)) = 0.
Note that C(u) is the fields of rational functions and E is a set of � linear polynomials with O ∈ V(E) Hence,
dimO(V(E)) = n − �. Since � is the minimum number, it follows from the classical action lemma or the concept
of Chevally dimension that dimO(V(F)) = �.

By this proposition, we can construct an algorithm for computing dimO(V(F)) as follows.

Algorithm 3

Input: F = { f1, . . . , fs} ⊂ C[x] s.t. O ∈ V(F), m = 〈x1, . . . , xn〉, �: a term order on Term(x).
Output: dimO(V(F)).
BEGIN
� ← 0; flag ← 0; E ← ∅; U ← ∅;
while flag �= 1 do
G ← Compute a basis of 〈F ∪ E〉 : m∞ w.r.t. � in C(U )[x]; /*if U = ∅, then C(U ) = C.*/
if ∃g ∈ G s.t. g(O) �= 0 then
flag ← 1;
else
� ← � + 1;
E ← {x1 + u11x�+1 + · · · + u1n−�xn, x2 + u21x�+1 + · · · + u2n−�xn,

· · · , x� + u�1x�+1 + · · · + u�n−�xn};
U ← {u11, . . . , u1n−�, u21, . . . , u2�−n, . . . , u�1, . . . , u�n−�};
end-if
end-while
return �;
END

We illustrate Algorithm 3 with the following examples.

Example 8 Let f = x41+x62+2x21 x32 ∈ C[x1, x2] and F = { ∂ f
∂x1

,
∂ f
∂x2

}. Let�be the total degree reverse lexicographic
term order with x1 � x2.
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The reduced Gröbner basis of 〈F〉 : 〈x1, x2〉∞ w.r.t. �, in C[x1, x2], is
{x21 + x32}.
Thus, dimO(V(F)) �= 0.

Next, let us consider the case � = 1. Let E = {x1 + u11x2}. The reduced Gröbner basis of 〈F ∪ E〉 : 〈x1, x2〉∞
w.r.t. � is, C(u11)[x1, x2] is
{x2 + u2

11, x1 − u3
11}.

Hence, as dimO(V(F ∪ E)) = 0, we obtain dimO(V(F)) = 1.

Example 9 Let f = x31 + x2x23 + 2x21 x22 + x1x42 ∈ C[x1, x2, x3] and F = { ∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

}. Let � be the total degree
reverse lexicographic term order with x1 � x2 � x3.

The reduced Gröbner basis of 〈F〉 : 〈x1, x2, x3〉∞ w.r.t. �, in C[x1, x2, x3], is
{x3, x1 + x22 }.
Thus, dimO(V(F)) �= 0.

Next, let us consider the case � = 1. Let E = {x1 + u11x2 + u12x3}. The reduced Gröbner basis of 〈F ∪ E〉 :
〈x1, x2, x3〉∞ w.r.t. �, in C(u11, u12)[x1, x2, x3] is
{x3, x2 − u11, x1 + u2

11}.
Hence, as dimO(V(F ∪ E)) = 0, we obtain dimO(V(F)) = 1.

Algorithm 3 can be generalized to parametric cases. The key of the generalized method is to compute compre-
hensive Gröbner systems in (C(u)[t])[x]. We illustrate the method with the following example.

Example 10 Let f = x31 + x1x23 + t1x1x32 + x32 x3 ∈ C[t1][x1, x2, x3] and F = { ∂ f
∂x1

,
∂ f
∂x2

,
∂ f
∂x3

} where t1 is a
parameter. Let � be the total degree reverse lexicographic term order with x1 � x2 � x3.

(i) Let us consider the case � = 0. A comprehensive Gröbner system of 〈F〉 : 〈x1, x2, x3〉∞ w.r.t. � is

{(C\V(t21 + 1), {1}), (V(t21 + 1), {x1 − t1x3, x32 + 2t1x23 })}.
Hence, if the parameter t1 belongs to C\V(t21 + 1), then dimO(V(F)) = 0.

(ii) Next, let us consider the case � = 1. Let E = {x1 + u11x2 + u12x3}. A comprehensive Gröbner system of
〈F ∪ E〉 : 〈x1, x2, x3〉∞ ⊂ (C(u11, u12)[t1])[x1, x2, x3] w.r.t. �, on the stratum V(t21 + 1), is

{(V(t21 + 1), {(u6
12 + 3u4

12 + 3u2
12 + 1)x3 + (−2u3

12 + 6u12)u
3
11t1 + (−6u2

12 + 2)u3
11, (−u4

12 − 2u2
12 − 1)x2

+(−2u2
12 + 2)u2

11t1 − 4u12u2
11, (u

6
12 + 3u4

12 + 3u2
12 + 1)x1 + (−6u2

12 + 2)u3
11t1 + (2u3

12 − 6u12)u
3
11})}.

The first polynomial (u6
12 + 3u4

12 + 3u2
12 + 1)x3 + (−2u3

12 + 6u12)u3
11t1 + (−6u2

12 + 2)u3
11 is not zero at the

origin O . Hence, the local dimension of V(F) is equal to 1 on the stratum V(t21 + 1).

5 Comparisons

Here we give results of the benchmark tests. All algorithms in this paper have been implemented in the computer
algebra systemRisa/Asir [16]. All tests presented in Table 1, have been performed on a machine [OS: Windows 10
(64bit), CPU: Intel(R) Core i9-7900 CPU@ 3.30 GHz, RAM: 128 GB] and the computer algebra systemRisa/Asir
version 20150126 [16]. The time is given in second (CPU time). In Table 1, “< 0.0156” means it takes less than
0.0156 seconds, and “> 3h” means it takes more than 3 hours.
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Table 1 Comparison of the three algorithms

Problem F Algorithm 1 Algorithm 2-1 Algorithm 2-2

1
{

f1,
∂ f1
∂x ,

∂ f1
∂y ,

∂ f1
∂z

}
0.0156 0.0781 0.0156

2
{

f2,
∂ f2
∂x ,

∂ f2
∂y

}
1.375 0.0468 <0.0156

3
{

f3,
∂ f3
∂x ,

∂ f3
∂y

}
27.94 0.7031 <0.0156

4
{

∂ f4
∂x ,

∂ f4
∂y

}
> 3 h 0.0156 <0.0156

5
{

f5,
∂ f5
∂x ,

∂ f5
∂y

}
2.719 > 3 h 0.0156

6
{

∂ f6
∂x ,

∂ f6
∂y ,

∂ f6
∂z

}
0.063 9.969 0.2188

7
{

∂ f7
∂x ,

∂ f7
∂y ,

∂ f7
∂z

}
0.0156 > 3 h 226.8

8
{

f7,
∂ f7
∂x ,

∂ f7
∂y ,

∂ f7
∂z

}
0.0156 6.922 0.3125

9
{

∂ f8
∂x ,

∂ f8
∂y

}
> 3 h 0.375 0.2669

10
{

f9,
∂ f9
∂x ,

∂ f9
∂y ,

∂ f9
∂z

}
> 3h > 3 h 1.391

11
{

f10,
∂ f10
∂x ,

∂ f10
∂y ,

∂ f10
∂z

}
> 3 h > 3 h 6.188

We use the total degree reverse lexicographic term order with x � y � z (or x � y) in the benchmark tests.
Since there are no well-known collections in the area, we construct following 10 polynomials

f1 = x3 + xz2 + axy3 + y3z + xy4

f2 = x3y + ay15 + bxy11 + xy12

f3 = x4y + y8 + axy8 + bx2y4

f4 = x3y + ay4 + y3 + y8x + by6

f5 = x4 + yz5 + y4 + ax4z + y2z7 + z4

f6 = x5y3 + z8 + axz8 + y6z + byz5

f7 = (x2y + z4 + y5)2 + ay6z4 + y4z6

f8 = x10 + x5y3 + ay6 + 3y14 + bx10y5 + xy14

f9 = x5 + yz4 + y3 + ax5y + bx2y7 + z4

f10 = x6 + yz7 + ax3y4 + y10 + x2y5z4

where x, y, z are variables and a, b are parameters.
As is evident from Table 1, in Problem 2, 3, 4, 5, 9, 10, 11, Algorithm 2-2 results in better performances in

contrast to Algorithm 1 and Algorithm 2-1. In Problem 6, 7, 8, Algorithm 1 results in better performances in
contrast to Algorithm 2-1 and Algorithm 2-2. Hence, we cannot say that which one is the best in general. However,
as Algorithm 2-2 returns all results within 230 seconds, it is better to utilize Algorithm 2-2 in general.

IfV(F) has an irreducible component V0 = {O}, then the ideal 〈F〉 can be written as 〈F〉 = Q0 ∩ Q1 ∩· · ·∩ Qν

where Q0, Q1, . . . , Qν are distinct primary ideals and V(Q0) = V0. Actually, Algorithm 1 computes the ideal Q0

and its dimension. In contrast, Algorithm 2-1 and 2-2 compute the ideal Q1 ∩ · · · ∩ Qν . Hence, if the structure of
Q0 is complicated, then we can expect that the computation cost of Algorithm 2-2 is lower than that of Algorithm 1.

In the realm of symbolic computation, the standard basis is regarded as a classical or typical tool to handle
ideals in local rings. However, to the best of our knowledge, no effective algorithm for computing standard bases
of parametric ideals is known. In order to treat local dimensions for parametric cases, we utilize comprehensive
Gröbner systems.
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To conclude this paper, we emphasize again that even though the problems considered in the present paper are
local in nature, the proposed algorithms resolve the problems in polynomial rings and they are free from standard
bases and Mora’s reduction (Tangent cone algorithm [4,8]).

Appendix A: Ideal Quotients with Parameters

Several algorithms for computing a basis of an ideal quotient in a polynomial ring are introduced in some textbooks
(cf. [1,4]). As, in general, the algorithms utilizeGröbner basis computation, the algorithms can be naturally extended
to the parametric cases by utilizing comprehensive Gröbner systems (see the appendix of [11]).

Here, we briefly describe an efficient algorithm for computing ideal quotients with parameters, that utilizes a
comprehensive Gröbner system of a module.

Let e1 = (1, 0) and e2 = (0, 1). Then, {e1, e2} is a free basis of (C[x])2. Let � be a term order on Term(x) and
�m be a POT (position over term) module order on (C[x])2 with e1 > e2 and �. The following theorems are from
[4,6].

Theorem A.1 Let f1, . . . , fs, q be non-zero polynomials in C[x]. Suppose F ⊂ (C[x])2 is a C[x]-module
generated by { f1 · e1, f2 · e1, . . . , fs · e1, q · e1 − e2} and G is a minimal Gröbner basis of F w.r.t. �m. Set
H = {h ∈ C[x]|h · e2 ∈ G}. Then, 〈 f1, . . . , fs〉 : 〈q〉 = 〈H〉.

There exists algorithms and implementations for computing a comprehensive Gröbner system of a given module
with parameters (cf. [6,9]). Hence, we are able to obtain a comprehensive Gröbner system of an ideal quotient with
parameters.

Theorem A.2 Let y = {y2, . . . , yr } be new variables such that t ∩ x = ∅. Let f1, . . . , fs, q1, . . . , qr be non-zero
polynomials inC[x]. Set q = q1+ y2q2+· · ·+ yr qr and let G be a Gröbner basis of the ideal quotient 〈 f1, . . . , fs〉 :
〈q〉 w.r.t. a block term order such that y � x in C[y, x]. Then, 〈 f1, . . . , fs〉 : 〈q1, . . . , qr 〉 = 〈G ∩ C[x]〉.

As we know how to compute a comprehensive Gröbner systems of 〈 f1, . . . , fs〉 : 〈q〉, Theorem A.2 also can be
generalized to the parametric cases, too.

An algorithm for computing a comprehensive Gröbner system of an ideal quotient is the following.

Algorithm A (ideal quotients with parameters)

Input: f1, . . . , fs, q1, . . . , qr ∈ C[t][x] (∀t̄ ∈ C
m , 1 ≤ ∃i ≤ s s.t. σt̄ ( fi ) �= 0).

�: a block term order with y � x on Term(x ∪ y).
�m: a POT module order on (C[x])2 with e1 > e2 and �.
Output: Q: a comprehensive Gröbner systems of 〈 f1, . . . , fs〉 : 〈q1, . . . , qr 〉 w.r.t. �.
BEGIN
Q ← ∅;
q ← q1 + y2q2 + · · · + yr qr ;
F ← { f1 · e1, f2 · e1, . . . , fs · e1, q · e1 − e2};
G ← Compute a comprehensive Gröbner system of 〈F〉 w.r.t. �m in (C[t][x])2;
while G �= ∅ do
Select (A, G) from G; G ← G\{(A, G)};
H ← {h ∈ C[t][y, x]|h · e2 ∈ G};
Q ← Q ∪ {(A, H ∩ C[t][x])};
end-while
return Q;
END
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Let I, J be ideals in C[x]. Since
(

I : J
)

: J = I : J 2, I : J∞ can be obtained by utilizing the algorithm above.

Our implementation for saturation with parameters is given by the following algorithm.

Algorithm B (saturation with parameters)

Input: f1, . . . , fs, q1, . . . , qr ∈ C[t][x] (∀t̄ ∈ C
m , 1 ≤ ∃i ≤ s s.t. σt̄ ( fi ) �= 0).

� : a block term order with y � x on Term(x ∪ y).
Output: Q: a comprehensive Gröbner systems of 〈 f1, . . . , fs〉 : 〈q1, . . . , qr 〉∞ w.r.t. �.
BEGIN
Q ← ∅;
G ← Compute a comprehensive Gröbner system of 〈 f1, . . . , fs〉 : 〈q1, . . . , qr 〉 w.r.t. �;
while G �= ∅ do
Select (A, G) from G; G ← G\{(A, G)};
G′ ← Compute a comprehensive Gröbner system of 〈G〉 : 〈q1, . . . , qr 〉 on A w.r.t. �;
while G′ �= ∅ do
Select (A′, G ′) from G′; G′ ← G′\{(A′, G ′)};
if G = G ′ do
Q ← Q ∪ {(A′, G ′)};
else
G ← G ∪ {(A′, G ′)};
end-if
end-while
end-while
return Q;
END

As C[t][x] is a Noetherian ring and an algorithm for computing comprehensive Gröbner systems always termi-
nates, Algorithm B terminates.
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