
Math.Comput.Sci. (2021) 15:271–292
https://doi.org/10.1007/s11786-020-00482-0 Mathematics in Computer Science

Clustering Complex Zeros of Triangular Systems
of Polynomials

Rémi Imbach · Marc Pouget · Chee Yap

Received: 9 April 2019 / Revised: 15 September 2019 / Accepted: 23 September 2019 / Published online: 17 June 2020
© Springer Nature Switzerland AG 2020

Abstract This paper gives the first algorithm for finding a set of natural ε-clusters of complex zeros of a regular
triangular system of polynomials within a given polybox in C

n , for any given ε > 0. Our algorithm is based on a
recent near-optimal algorithm of Becker et al. (Proceedings of the ACM on international symposium on symbolic
and algebraic computation, 2016) for clustering the complex roots of a univariate polynomial where the coefficients
are represented by number oracles. Our algorithm is based on recursive subdivision. It is local, numeric, certified
and handles solutions with multiplicity. Our implementation is compared to with well-known homotopy solvers on
various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solvers that
often give correct answers, and sometimes faster than the ones that give sometimes correct results.

Keywords Complex root finding · Triangular polynomial system · Near-optimal root isolation · Certified
algorithm · Complex root isolation · Oracle multivariable polynomial · Subdivision algorithm · Pellet’s theorem

Mathematics Subject Classification 65H10 · 30C15 · 65G00

1 Introduction

This paper considers the fundamental problem of finding the complex solutions of a system f(z) = 0 of n polynomial
equations in n complex variables z = (z1, . . . , zn). The system f = (f1, . . . , fn) : Cn → C

n is triangular in the
sense that fi ∈ C[z1, . . . , zi] for 1 ≤ i ≤ n, where dzi (fi) ≥ 1. As in [7], we assume that the system is regular:

Rémi’s work is supported by the European Union’s Horizon 2020 research and innovation programme No. 676541, NSF Grants
CCF-1563942, # CCF-1564132 and # CCF-1708884. Chee’s work is supported by NSF Grants # CCF-1423228 and # CCF-1564132.

R. Imbach (B) · C. Yap
Courant Institute of Mathematical Sciences, New York University, New York, USA
e-mail: remi.imbach@nyu.edu

C. Yap
e-mail: yap@cs.nyu.edu

M. Pouget
Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
e-mail: marc.pouget@inria.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-020-00482-0&domain=pdf

272 R. Imbach et al.

this means that for each i , if (α1, . . . , αi−1) is a zero of fi−1 and ci (z1, . . . , zi−1) is the leading coefficient of zi
in fi , then ci (α1, . . . , αi−1) �= 0. Thus f is a 0-dimensional system. But unlike [7], we do not assume that the
system is square-free: indeed the goal of this paper is to demonstrate new techniques that can properly determine
the multiplicity of the root clusters of f , up to any ε > 0 resolution.

Throughout this paper, we use boldface symbols to denote vectors and tuples; for instance 0 stands for (0, . . . , 0).
We are interested in finding clusters of solutions of triangular systems and in counting the total multiplicity of

solutions in clusters. Solving triangular systems is a fundamental task in polynomial equations solving, since there
are many algebraic techniques to decompose the original system into triangular systems.

The problem of isolating the complex solutions of a polynomial system in an initial region-of-interest (ROI) is
defined as follows: let Zero(B, f) denote the set of solutions of f in B, regarded1 as a multiset.

Local Isolation Problem (LIP):
Given: a polynomial map f : Cn → C

n , a polybox B ⊂ C
n , ε > 0

Output: a set {�1, . . . ,�l} of pairwise disjoint polydiscs of radius ≤ ε where
- Zero(B, f) = ⋃l

j=1 Zero(� j , f).
- each Zero(� j , f) is a singleton.

This is “local” because we restrict attention to roots in a ROI B. There are two issues with (LIP) as formulated
above: deciding if Zero(� j , f) is a singleton, and deciding if such a singleton lies in B, are two “zero problems”
that require exact computation. Generally, this can only be decided if f is algebraic. Even in the algebraic case, this
may be very expensive. In [4,27] these two issues are side-stepped by defining the local clustering problem which
is described next.

Before proceeding, we fix some general notations for this paper. A polydisc � is a vector (�1, . . . ,�n) of
complex discs. The center of � is the vector of the centers of its components and the radius r(�) of � is the vector
of the radii of its components. If δ is any positive real number, we denote by δ� the polydisc (δ�1, . . . , δ�n) that
has the same center as � and radius δr(�). We also say r(�) ≤ δ if each component of r(�) is ≤ δ. A (square
complex) box B is a complex interval [�1, u1] + i([�2, u2]) where u2 − �2 = u1 − �1 and i := √−1; the width
w(B) of B is u1 − �1 and the center of B is u1 + w(B)

2 + i(u2 + w(B)
2). A polybox B ⊆ C

n is the set
∏n

i=1 Bi which
is represented by the vector (B1, . . . , Bn) of boxes. The center of B is the vector of the centers of its components;
the width w(B) of B is the max of the widths of its components. If δ is any positive real number, we denote by δB
the polybox (δB1, . . . , δBn) that has the same center than B and width δw(B). It is also convenient to identify � as
the subset

∏n
i=1 �i of Cn ; a similar remark applies to B.

We introduce three notions to define the local solution clustering problem. Let a ∈ C
n be a solution of f(z) = 0.

The multiplicity of a in f , also called the intersection multiplicity of a in f is classically defined by localization of
rings as in [28, Def. 1, p. 61], we denote it by #(a, f). An equivalent definition uses dual spaces, see [12, Def. 1,
p. 117]. For any set S ⊆ C

n , we denote by Zero(S, f) the multiset of zeros (i.e., solutions) of f in S, and #(S, f)
the total multiplicity of Zero(S, f). If S is a polydisc, we call Zero(S, f) a cluster if it is non-empty, and S is
an isolator of the cluster. If in addition, we have that Zero(S, f) = Zero(3 · S, f), we call Zero(S, f) a natural
cluster and call S a natural isolator. In the context of numerical algorithm, the notion of cluster of solutions is
more meaningful than that of solution with multiplicity since the perturbation of a multiple solution generates a
cluster. We thus “soften” the problem of isolating the solutions of a triangular system of polynomial equations while
counting their multiplicities by translating it into the local solution clustering problem defined as follows:

1 Amultiset S is a pair (S, μ)where S is an ordinary set called the underlying set andμ : S → N assigns a positive integerμ(x) to each
x ∈ S. Call μ(x) the multiplicity of x in S, and μ(S) := ∑

x∈S μ(x) the total multiplicity of S. Also, let |S| denote the cardinality of S.
If |S| = 1, then S is called a singleton. We can form the union S ∪ S′ of two multisets with underlying set S ∪ S′, and the multiplicities
add up as expected.

Clustering Complex Zeros of Triangular Systems 273

Local Clustering Problem (LCP):
Given: a polynomial map f : Cn → C

n , a polybox B ⊂ C
n , ε > 0

Output: a set of pairs {(�1,m1), . . . , (�l ,ml)} where:
- the � j s are pairwise disjoint polydiscs of radius ≤ ε,
- each m j = #(� j , f) = #(3� j , f)
- Zero(B, f) ⊆ ⋃l

j=1 Zero(� j , f) ⊆ Zero(2B, f).

In this (LCP) reformulation of (LIP), we have removed the two “zero problems” noted above: we output clusters
to avoid the first problem, and we allow the output to contain zeroes outside the ROI B to avoid the second one. We
choose 2B for simplicity; it is easy to replace the factor of 2 by 1 + δ for any desired δ > 0.

Overview In the remaining of this section we explain our contribution, summarize previous work and the local
univariate clustering method of [4]. In Sect. 2, we define the notion of tower of clusters together with a recursive
method to compute the sum of multiplicities of the solutions it contains. Section 3 analyzes the loss of precision
induced by approximate specialization. Our algorithm for solving the local clustering problem for triangular systems
is introduced in Sect. 4. The implementation and experimental results are presented in Sect. 5.

1.1 Our Contributions

We propose an algorithm for solving the complex clustering problem for a triangular system f(z) = 0 with a
zero-dimensional solution set. To this end, we propose a formula to count the sum of multiplicities of solutions
in a cluster. Our formula is derived from a result of [28] that links the intersection multiplicity of a solution of a
triangular system to multiplicities in fibers.

We define towers of clusters to encode clusters of solutions of a triangular system in stacks (or towers) of clusters
of roots of univariate polynomials.

Our algorithm exploits the triangular form of f = (f1, . . . , fn): the standard idea is to recursively find roots of
the form (α1, . . . , αn−1) of f1 = · · · = fn−1 = 0, then substituting them into fn to obtain a univariate polynomial
gn(zn) = fn(α1, . . . , αn−1, zn). If αn is a root of gn(zn), then we have have extended the solution to (α1, . . . , αn)

of the original f . The challenge is to extend this idea to compute clusters of zeros of f from clusters of zeros of
f1 = · · · = fn−1 = 0. Moreover, we want to allow the coefficients of each fi to be oracle numbers. The use of
oracle numbers allows us to treat polynomial systems whose coefficients are algebraic numbers and beyond.

To compute clusters of roots of a univariate polynomial given as an oracle, we rely on the recent algorithm
described in [4], based on a predicate introduced in [5] that combines Pellet’s theorem and Graeffe iterations to
determine the number of roots counted with multiplicities in a complex disc; this predicate is called soft because it
only requires the polynomial to be known as approximations. It is used in a subdivision framework combined with
Newton iterations to achieve a near optimal complexity.

We implemented our algorithm andmade it available as the Julia2 package Ccluster.jl.3 Our experiments
show that it advantageously compares to major homotopy solvers for solving random dense triangular systems in
terms of solving times and reliability (i.e. getting the correct number of solutions and the correct multiplicity
structures). Homotopy solving is more general because it deals with any polynomial system. We also propose
experiments with triangular systems obtained with elimination procedures.

2 https://julialang.org/.
3 https://github.com/rimbach/Ccluster.jl.

https://julialang.org/
https://github.com/rimbach/Ccluster.jl

274 R. Imbach et al.

1.2 Related Work

There is a vast literature on solving polynomial systems and we can only refer to book surveys and references
therein, see for instance [13,25]. On the algebraic side, symbolic tools like Groebner basis, resultant, rational uni-
variate parametrization or triangularization, find an equivalent triangular system or set thus reducing the problem
to the univariate case. Being symbolic, these methods handle all input, in particular with solutions with multi-
plicities, and are certified but at the price of a high complexity that limits their use in practice. Implementations
of hybrid symbolic-numeric solvers are available for instance in Singular4 via solve.lib or in Maple via
RootFinding[Isolate].

On the numerical side, one can find subdivision and homotopy methods. The main advantage of subdivision
methods is their locality: the practical complexity depends on the size of the solving domain and the number of
solutions in this domain. Their main drawback is that they are only practical for low dimensional systems. On
the other hand, homotopy methods are efficient for high dimensional systems, they are not local but solutions are
computed independently from one another. Numerical methods only work for restricted classes of systems and the
certification of the output remains a challenge. Multiprecision arithmetic, interval analysis, deflation and α-theory
are now classical tools to address this certification issue [6,15,22,26].

In the univariate case, practical certified algorithms are now available for real and complex solving that match
the best known complexity bounds together with efficient implementations [17,19]. For the bivariate case, the
problem of solving a triangular system can be seen as a univariate isolation in an extension field. The most recent
contributions in this direction presenting algorithms together with complexity analysis are [23,24].

Only a few work address the specific problem of solving triangular polynomial systems. The solving can then be
performed coordinate by coordinate by specialization and univariate solving in fibers. When the systems only have
regular solutions, extensions of classical univariate isolation algorithms to polynomial with interval coefficients
have been proposed [7,9,14]. In the presence of multiple solutions, one approach is to use a symbolic preprocessing
to further decompose the system in regular sub-systems. Another approach is the sleeve method with separation
bounds [8]. The authors of [28] propose a formula to compute the multiplicity of a solution of a triangular system:
the latter multiplicity is the product of the multiplicities of the components of a solution in the fibers. Then, by
using square free factorization of univariate polynomials specialized in fibers, they describe an algorithm to retrieve
the real solutions of a triangular system with their multiplicities. In [20], the method of Local Generic Position is
adapted to the special case of triangular systems with the advantage of only using resultant computations (instead
of Goebner basis), multiplicities are also computed.

1.3 Definitions and Notations

Convention for Vectors. We introduce some general conventions for vectors that will simplify the following
development. Vectors are indicated by bold fonts. If v = (v1, . . . , vn) is an n-vector, and i = 1, . . . , n, then the i-th
component vi is5 denoted vi and the i-vector (v1, . . . , vi) is denoted v(i). Thus v = (v(n−1), vn), and “v = v(n)” is
an idiomatic way of saying that v is an n-vector. Because of the subscript convention, we will superscript such as
v1, v2, etc, to distinguish among a set of related n-vectors.

Normed Vector Spaces. In order to do error analysis, we need to treat C[z] and C
n as normed vector spaces: for

f ∈ C[z] and b ∈ C
n , let ‖ f ‖ and ‖b‖ denote the infinity norm on polynomials and vectors, respectively. We use

the following perturbation convention: let δ ≥ 0. Then we will write f ±δ to denote some polynomial f̃ ∈ C[z]
that satisfies ‖ f − f̃ ‖ ≤ δ. Similarly, b±δ denotes some vector b̃ ∈ C

n that satisfies ‖b− b̃‖ ≤ δ. If δ ≤ 2−L then
b̃ and f̃ are called L-bit approximations of b and f , respectively.

4 https://www.singular.uni-kl.de/.
5 In general, vi �= vi since v and vi are independent variables. So our bold font variables v do not entail the existence of non-bold font
counterparts such as vi .

https://www.singular.uni-kl.de/

Clustering Complex Zeros of Triangular Systems 275

We define the degree sequence. of f ∈ C[z] to be d = d(f) where di is the degree of zi in f . If b ∈ C
k

(k = 1, . . . , n), let f (b) denote the polynomial that results from the substitution zi → bi (for i = 1, . . . , k). The
result is a polynomial f (b) ∈ C[zk+1, . . . , zn] called the specialization of f by b. Note that f (b) is a polynomial
in at most n − k variables. In particular, when n = k, then f (b) is a constant (called the evaluation of f at b). For
instance, suppose b ∈ C

n , then f (b(n−1)) is a polynomial in zn and f (b(n−1))(bn) = f (b).
If B ⊆ C is a box with center c and width w, we denote by �(B) the disc with center c and radius 3

4w. Note
that �(B) contains B. If B ⊂ C

n is a polybox, let �(B) be the polydisc where �(B)i = �(Bi).

Oracle Computational Model.We use two kinds of numbers in our algorithms: an explicit kindwhich is standard in
computing, and an implicit kind which we call “oracles”. Our explicit numbers are dyadic numbers (i.e., bigFloats),
D := {n2m : n,m ∈ Z}. A pair (n,m) of integers represents the nominal value of n2m ∈ D. However, we also want
this pair to represent the interval [(n − 1

2)2
m, (n + 1

2)2
m]. To distinguish between them, we write (n,m)0 for the

nominal value, and (n,m)1 for the interval of width 2m . Call (n,m)1 an L-bit dyadic interval if m ≤ −L (so the
interval has width at most 2−L). Note that (2n,m)1 and (n,m + 1)1 are different despite having the same nominal
value. As another example, note that (0,m)1 is the interval [−2m−1, 2m−1]. When we say a box, disc, polybox,
etc, is dyadic, it means that all its parameters are given by dyadic numbers. The set of closed intervals with dyadic
endpoints is denoted D. Also, let n

D denote n-dimensional dyadic boxes.
The implicit numbers in our algorithms are functions: for any real number x ∈ R, an oracle for x is a function

O : Z → D such that Ox (L) is an L-bit dyadic interval containing x . There is normally no confusion in
identifying the real number x with any oracle functionOx for x . Moreover, we write (x)L instead ofOx (L). E.g., if
x is a real algebraic number with defining polynomial p ∈ Z[X] and isolating interval I , we may define an oracle
Ox = O(p, I) for x in a fairly standard way. Next, an oracle Oz for a complex number z = x + i y is a function
Oz : Z → 2

D such thatOz(L) = Ox (L)+ iOy(L)whereOx ,Oy are oracles for x and y. Again, we may identify
z with any oracleOz , and write (z)L instead ofOz(L). For polynomials f ∈ C[z(n)] in n ≥ 2 variables, we assume
a sparse representation, f = ∑

α∈Supp(f) fα zα with fixed support Supp(f) ⊆ N
n , with coefficients fα ∈ C\ {0},

and zα := ∏n
i=1 z

αi
i are power products. An oracleO f for f amounts to having oracles for each coefficient fα of f .

Moreover O f (L) may be written (f)L is the interval polynomial whose coefficients are (fα)L . Call (f)L a dyadic
interval polynomial.

1.4 Oracles for Root Cluster of Univariate Polynomials

The starting point for this paper is the fundamental result that the Local Clustering Problem (LCP) has been solved
in the univariate setting:

Proposition 1 (See [4,5]) There is an algorithm Cluster(f, B, ε) that solves the Local Clustering Problem when
f : C → C is a univariate oracle polynomial.

In other words, the output of Cluster(f, B, ε) is a set {(�i ,mi) : i = 1, . . . , k} such that each �i is a natural
ε-isolator, and

Zero(B, f) ⊆
k⋃

i=1

Zero(�i , f) ⊆ Zero(2B, f).

To make this result the basis of our multivariate clustering algorithm, we need to generalize this result. In
particular, we need to be able to further refine each output (�i ,mi) of this algorithm. If (�i ,mi) represents the
cluster Ci of roots, we want to get better approximation of Ci , i.e., we want to treat Ci like number oracles.
Fortunately, the algorithm in [4,5] already contains the tools to do this. What is lacking is a conceptual framework
to capture this.

276 R. Imbach et al.

Our goal is to extend the concept of number oracles to “cluster oracles”. To support the several modifications
which are needed, we revise our previous view of “oracles as functions”. We now think of an oracle O as a
computational object with state information, and which can transform itself in order to update its state information.
For any L ∈ Z, recall that O(L) is a dyadic object that is at least L-bit accurate. E.g., if O is the oracle for x ∈ R,
O(L) is an interval containing x of width ≤ 2−L . But now, we say that oracle is transformed to a new oracle which
we shall denote by “(O)L” whose state information is O(L). In general, let σ(O) denote the state information in
O. Next, for a cluster C ⊆ C of roots of a univariable polynomial p(z) ∈ C[z], its oracle OC has state σ(OC)

that is a pair (�,m) where � ⊆ C is a dyadic disc satisfying C = Zero(�, p) = Zero(3�, p) and m is the
total multiplicity of C . Thus C is automatically a natural cluster. We say OC is L-bit accurate if the radius of � is
at most 2−L . Intuitively, we expect (OC)L to be an oracle for C that is L-bit accurate. Unfortunately, this may be
impossible unlessC is a singleton cluster. In general, we may have to splitC into two or more clusters. We therefore
need one more extension: the map L → (OC)L returns a set
{OC1 , . . . ,OCk

}
, (for some k ≥ 1)

of cluster oracles with the property that C = ∪k
i=1Ci (union of multisets), and each OCi is L-bit accurate. We

generalize Proposition 1 so that it outputs a collection of cluster oracles:

Proposition 2 (See [4,5,17])
LetO f be an oracle for a univariate polynomial f : C → C. There is an algorithm ClusterOracle(O f , B, L)

that returns a set
{OCi : i = 1, . . . , k

}
of cluster oracles such that

Zero(B, f) ⊆
k⋃

i=1

Ci ⊆ Zero(2B, f).

and each OCi is L-bit accurate.

2 Sum of Multiplicities in Clusters of Solutions

We extend in Sect. 2.2 a result of [28] to an inductive formula giving the sum of multiplicities of solutions of a
triangular system in a cluster. In Sect. 2.3, we introduce a representation of clusters of solutions of f called tower
representation, reflecting the triangular form of f . Section 2.1 presents two illustrative examples.

2.1 Two Examples

Let δ > 0 be an integer.We define the systems g(z) = (g1(z1), g2(z1, z2)) = 0 and h(z) = (h1(z1), h2(z1, z2)) = 0
as follows:

(g(z) = 0) :
{

(z1 − 2−δ)(z1 + 2−δ) = 0
(z2 − 22δz21)z2 = 0

(1)

(h(z) = 0) :
{

(z1 − 2−δ)2(z1 + 2−δ) = 0
(z2 + 2δz21)

2(z2 − 1)z2 = 0
(2)

g(z) = 0 has 4 solutions: a1 = (2−δ, 0), a2 = (2−δ, 1), a3 = (−2−δ, 1) and a4 = (−2−δ, 0). h(z) = 0 has 6
solutions: a1, a2, a3, a4, a5 = (−2−δ,−2−δ) and a6 = (2−δ,−2−δ). For 1 ≤ i ≤ 6, let ai = (ai1, a

i
2). The solutions

of both g = 0 and h = 0 are depicted in Fig. 1.

2.2 Sum of Multiplicities in a Cluster

We recall a theorem of Zhang [28] for counting multiplicities of solutions of triangular systems, based multiplicities
in fibers. We may rephrase it inductively:

Clustering Complex Zeros of Triangular Systems 277

Fig. 1 On the left (resp. right), the solutions of g(z) = 0 (resp. h(z) = 0) defined in Eq. 1 (resp. Eq. 2) with δ = 1. B1 (resp. B2) is the
polybox of C2 with center (0, 0) (resp. (0, 1)) and width 2 × 2−δ . The boxes in dashed lines are the real parts of �(B1) and �(B2). In
the frame, the multiplicities of solutions of each system are computed with the formula of Zhang (Proposition 3) and Theorem 1

Proposition 3 [28] Let n ≥ 2 and a ∈ C
n be a solution of the triangular system f(z) = 0. The multiplicity of a in

f is

#(a, f) = #(an, fn(a(n−1))) × #(a(n−1), f(n−1)).

We extend Proposition 3 to a formula giving the total multiplicity of a cluster Zero(�, f).

Theorem 1 Let Zero(�, f) be a cluster of solutions of the triangular system f(z) = 0. If there is an integer m ≥ 1
so that for any solution a ∈ Zero(�, f), one has m = #(�n, fn(a(n−1))), then

#(�, f) = m × #(�(n−1), f(n−1)).

where #(�(n−1), f(n−1)) = 1 when n = 1.

Let us apply Proposition 3 to compute the multiplicities of solutions of g(z) = 0 and h(z) = 0 (see Eq. 1
and Eq. 2). a1 has multiplicity 1 in g: #(a1, g) = #(a11, g1) × #(a12, g2(a

1
1)) = 1 × 1. a1 has multiplicity 2 in h:

#(a1, h) = #(a11, h1) × #(a12, h2(a
1
1)) = 2 × 1. The multiplicities of other solutions are given in Fig. 1.

Let B1 = (B1
1 , B

1
2) be the polybox centered in (0, 0) having width 2 × 2−δ . Zero(�(B1), g) = {a1, a4}

and #(�(B1), g) = 2. Since #(�(B1
2), gn(a1

(n−1))) = #(�(B1
2), gn(a4

(n−1))) = 1, applying Theorem 1 yields
#(�(B1), g) = 2 × 1.

Zero(�(B1), h) = {a1, a4, a5, a6} and #(�(B1), h) = 9. Again, one has #(�(B1
2), hn(a1

(n−1))) =
#(�(B1

2), hn(a4
(n−1))) = 3. Thus applying Theorem 1 yields #(�(B1), h) = 3 × 3.

LetB2 be the polybox centered in (0, 1) having width 2×2−δ . One can apply Theorem 1 to obtain #(�(B2), g) =
2 × 1 and #(�(B2), h) = 3 × 1. The real parts of �(B1) and �(B2) are depicted in Fig. 1.

Proof (of Theorem 1.) Remark that Zero(�, f) = {a ∈ �|f(a) = 0} can be defined in an inductive way as
Zero(�, f) = {(b, c) ∈ �|b ∈ Zero(�(n−1), f(n−1)) and c ∈ Zero(�n, fn(b))}. Using Proposition 3, we may

278 R. Imbach et al.

write

#(�, f) =
∑

(b,c)∈Zero(�,f)

#(b, f(n−1)) × #(c, fn(b))

=
∑

b∈Zero(�(n−1),f(n−1))

⎛

⎝#(b, f(n−1)) ×
∑

c∈Zero(�n ,fn(b))

#(c, fn(b))

⎞

⎠

=
∑

b∈Zero(�(n−1),f(n−1))

#(b, f(n−1)) × m

= m × #(�(n−1), f(n−1)).

��

2.3 Tower Representation

Definition 1 (Tower Representations) Let � ⊆ C
n be a polydisc and m a n-vector of positive integers. The pair

(�, m) is a tower (relative to f) if it satisfies: if n = 1, then (�, m) = (�1, m1) is a cluster representation relative
to f . Inductively, if n > 1 then:

(i) (�(n−1), m(n−1)) is a tower relative to f(n−1)

(ii) ∀b ∈ �(n−1), (�n, mn) is a cluster representation relative to fn(b).

The height of the tower (�, m) is n.

If we replace ‘cluster’ by ‘natural cluster’ in the above definition, then (�, m) is a natural tower. If B is a
polybox, and (�(B), m) is a tower relative to f , then we can also call (B, m) a (polybox) tower relative to f . Below,
we will only consider natural towers and will omit the word natural.

Let g, h be defined as in Eqs. 1 and 2 and B1 = (B1
1 , B

1
2), B2 = (B2

1 , B
2
2) be as defined in Sect. 2.2. The pair

(�(B1
1), 3) is a tower relative to h1. Moreover, if δ ≥ 3, (�(B1), (3, 3)) and (�(B2), (3, 1)) are towers relative to

h. Consider the polynomial h2(z1, z2) = (z2 + 2δz21)
2(z2 − 1)z2. If z2 ∈ 3�(B1

2) then |z2| < 3×3
16 < 1 and for

any z1 ∈ �(B1
1), h2 has 3 roots counted with multiplicity in �(B1

2) and in 3�(B1
2). Hence for any b ∈ �(B1

1),
(�(B1

2), 3) is a tower relative to h2(b) then (�(B1), (3, 3)) is a tower relative to h. Similarly, (�(B2), (3, 1)) is a
tower relative to h. (B1, (3, 3)) and (B2, (3, 1)) are (polybox) towers relative to h.

In contrast, although (�(B1
1), 2) is a tower relative to g1, there exist no tower relative to g having B1 or B2 as

box: −2−δ , 0 and 2−δ are three points of B1
1 = B2

1 ; consider the three polynomials g2(−2−δ), g2(0) and g2(2−δ).
g2(−2−δ) and g2(2−δ) have each 1 root of multiplicity 1 in B1

2 while g2(0) has 1 root of multiplicity 2 in B1
2 : there

is no m that satisfy condition (i i) of Def. 1. In the case of B2, g2(−2−δ) and g2(2−δ) have both 1 root of multiplicity
1 in B2

2 while g2(0) has no root in B2
2 .

An immediate consequence of the previous theorem is

Corollary 4 Let (�, m) be a tower relative to f of height n > 1. Then

#(�, f) = mn × #(�(n−1), f(n−1)).

Inductively, we have #(�, f) = ∏n
i=1 mi .

Remark finally that if (B, m) is a tower relative to f(n−1) and f is an oracle for fn(b) for any b ∈ �(B), one can
use Cluster , as specified in Prop. 1, to compute clusters of fn(b) for any b ∈ �(B) in a box B. If this returns a list
{(B j ,m j)|1 ≤ j ≤ l}, then for all 1 ≤ j ≤ l, ((�(B),�(B j)), (m,m j)) is a tower relative to f , and from corol-
lary 4, #((�(B),�(B j)), f) = m j × ∏n−1

k=1 mk . Moreover, Zero((B, B), f) ⊆ ⋃l
j=1 Zero((�(B),�(B j)), f) ⊆

Zero((2B, 2B), f). In other words, {((�(B),�(B j)),m j × ∏n−1
k=1 mk)|1 ≤ j ≤ l} is a solution for the clustering

problem in (B, B).
We show in Sect. 4 how to setup an oracle for fn(b) for any b ∈ �(B). This oracle may refine (B, m) and split

it into several clusters.

Clustering Complex Zeros of Triangular Systems 279

3 Error Analysis of Approximate Specializations

The proofs for this section are found in the “Appendix”.
Given f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ C

n , our basic goal is to bound the evaluation error

‖ f (b) − f̃ (̃b)‖
in terms of δ f := ‖ f − f̃ ‖ and δb := ‖b − b̃‖. This will be done by induction on n. Our analysis aims not just
to produce some error bound, but to express this error in terms that are easily understood, and which reveals the
underlying inductive structure. Towards this end, we introduce the following β-bound function: if d is a positive
integer and b ∈ C,

β(d, b) :=
d∑

i=0

|b|i . (3)

Let d = d(f), i.e., di = degzi (f) for each i . The support of f is Supp(f) ⊆ N
n where f = ∑

α∈Supp(f) cα zα

where cα ∈ C\ {0}. Here, zα := ∏n
i=1 z

αi
i . We assume that Supp(f̃) ⊆ Supp(f).

Our induction variable is k = 1, . . . , n. For α ∈ N
n , let πk(α) := (0, . . . , 0,αk+1, . . . ,αn). E.g., if k = n then

πk(α) = 0. Thus α − πk(α) = (α1, . . . ,αk, 0, . . . , 0). Next define Suppk(f) := {πk(α) : α ∈ Supp(f)}. With
this notation, we can write

f =
∑

α∈Suppk (f)
fα zα (4)

where each fα ∈ C[z(k)]. E.g., if k = n then Suppk(f) = {0} and so f0 = f .
Assume that we are given f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ C. Also the degree sequences satisfy
d(f̃) ≤ d(f), that is the inequality holds componentwise. Then wemay define these quantities for k = 1, . . . , n:

δkb := |bk − b̃k |,
δk f := ‖ f (b(k)) − f̃ (̃b(k))‖ (with δ0 f = ‖ f − f̃ ‖),
βk := β(dk, bk)
β̃k := β(dk, |bk | + δkb).

Note that δk is a operator that must attach to some function f or vector b to denote the “kth perturbation” of f or b.

Lemma 5 Let n ≥ 1 and k = 1, . . . , n:

(i) ‖ f (b(k)) − f (b(k−1))(̃bk)‖ ≤ δkb · ‖∂k f (b(k−1))‖ · β̃k .

(ii) ‖ f (b(k−1))(̃bk) − f̃ (̃b(k))‖ ≤ δk−1 f · β̃k .

(iii) δk f ≤
[
δkb · ‖∂k f (b(k−1))‖ + δk−1 f

]
· β̃k .

Wenowhave a recursive bound‖δn f ‖. Butweneed to convert the bound to only depend on the data‖b‖, ‖ f ‖, δkb.
In particular, we remove any occurrences of ∂k fα with the help of the next lemma:

Lemma 6 For k = 1, . . . , n:

(i) ‖ f (b(k))‖ ≤ ‖ f ‖ · ∏k
i=1 β i

(ii) For α ∈ Suppk(f),
∥
∥
∥∂k fα(b(k−1))

∥
∥
∥ ≤ dk · ‖ fα(b(k−1))‖.

(iii) ‖∂k f (b(k−1))‖ ≤ dk · ‖ f ‖ · ∏k−1
i=1 β i

Putting it all together:

280 R. Imbach et al.

Theorem 2 For k = 1, . . . , n,

δk f ≤
[
δ0 f + ‖ f ‖ ·

k∑

i=1

di · δi b
]

·
(k∏

i=1

β̃ i

)
.

The next lemma answers the question: given δL > 0, how can we ensure that

δn−1 f := ‖ f (b(n−1)) − f̃ (̃b(n−1))‖
is upper bounded by δL?

Lemma 7 Given δL > 0, f, f̃ ∈ C[z] and b, b̃ ∈ C
n−1 where n > 1.

Let d = maxi (degzi (f)) and M = ‖b‖ + 1.
If

δ f ≤ δL

2((d + 1)Md)n−1 (∗)

and

δb ≤ min(1,
δL

2d‖ f ‖(n − 1)((d + 1)Md)n−1), (∗∗)

then δn−1 f ≤ δL .

4 Clustering for Triangular Systems

We now present our algorithm for solving the LCP for a given triple (f, B0, ε), where ε > 0. Instead of ε, we use
L := �log2(1/ε)�. B0 = B0

(n) is the ROI (a polybox). f = f(n) is a triangular map with 0-dimensional set of zeros.
We give our algorithm in the case where each fi is known exactly; it can be generalized for oracle polynomials. It
is based on the one-dimensional clustering algorithm (see Prop. Proposition 2), that proceeds by subdividing the
initial ROI. The key stone in such a subdivision algorithm is a test that counts the number of roots with multiplicity
in a disk. In the one-dimensional case, it is done with the so-called Pellet’s test. Here we use this test with interval
polynomials to compute towers. The main objects manipulated in our algorithms are cluster oracles, and their
generalization when n > 1.

Cluster oracles in dimension n ≥ 1.
A polybox B ⊆ C

n is called an �-tower if there exists an �-vector m(�) such that (B(�), m(�)) is a tower. A cluster
oracle O in dimension n > 1 is defined to be a triple

O = 〈�, B, L〉 = 〈level(O), domain(O), precision(O)〉

where � ∈ {0, . . . , n} is called the level, B is a polybox called the domain and L is a vector of integers called the
precision. We will guarantee that if level(O) ≥ 1, domain(O) is an �-tower and r(�(domain(O)i)) ≤ 2−Li ,∀i =
1, . . . , �. The multiplicity information is implicitly carried out by a cluster oracle.

Clustering Complex Zeros of Triangular Systems 281

Cluster oracles at level 1. Wegeneralize theClusterOracle algorithm in Proposition 2 toClusterOracle1(f,O),
which returns a set

{O1, . . . ,Ok
}
of cluster oracles at level 1. If L = precision(O)1 and Bi is the domain of Oi ,

then (�(Bi))1 has radius at most 2−L , and Bi
j = (domain(O)) j for j = 2, . . . , n. Moreover, the domains of these

Oi ’s form a cover for the solution set of f in the domain of O. All our oracles are subsequently descended from
these Oi ’s.

Pellet test. Our goal is to “lift” a cluster oracleO = 〈�, B, L〉 to one or more at level �+1 (provided � < n) arising
from subdividing B. The fundamental tool for this purpose is the “Pellet test” and its variants (Graeffe-accelerated,
soft-version, etc. – see [4,5,17]). Without distinguishing among these variants, we may describe a generic Pellet
test denoted

T∗(f�+1, B(�), B�+1)

which returns an integer m ≥ −2. m ≥ 0 holds only if m = #(�(B�+1), f�+1(B(�))), where f�+1(B(�)) is the
univariate interval polynomial obtained by evaluating f�+1 on B(�). If m ≥ 1, then this implies that B is an (� + 1)-
tower. If m = 0, B does not contain zeros of f . If m = −1 or m = −2, we say that the T∗ test failed. These two
modes of failure are important to understand for efficiency. Informally6 m = −1 means the disc �(B�+1) is not
well-isolated (there are zeros near its boundary). In this case, the response is to subdivide Bl+1. On the other hand,
m = −2 means we need more accuracy in the evaluation f�+1(B(�)), which requires subdividing components Bi of
B with i < �.

Lift of a natural cluster. The lifting process is performed by a function

ClusterOracleN (f,O)

that takes in input a triangularmap and a cluster oracle and outputs a pair (f lag, S)where f lag ∈ {success, failure}
and S is a set of cluster oracles. It is essentially the clustering algorithm depicted in [4]; it uses the T∗-test described
above with � = level(O) to count the number of roots in a disc. It returns the pair (failure,O) when one T∗-test
returns −2. When ClusterOracleN (f,O) returns (success, S), then S is a list of pairwise disjoint cluster oracles
at level � + 1 so that any solution in O is in a cluster oracle in S.

Solving the LCP problem. We are ready to present our main algorithm, called ClusterT ri(f, B, L), described in
Algorithm 1. It uses a queue Q to hold the active cluster oracles and lift these clusters level by level to level n.
Let O be a cluster oracle in Q. If level(O) = 0, O is lifted with ClusterOracle1 which returns a set S of cluster
oracles at level 1 containing all the solutions inO. If level(O) > 0,O is lifted with ClusterOracleN , which may
fail; in that case, the asked precision for levels less that � ofO is doubled and it’s level is set to 0, this will force its
refining in later executions of the while loop. When the lift of O succeeds, one obtains a set S of cluster oracles at
level � + 1.

The correctness of ClusterT ri is a direct consequence of the correctness of ClusterOracle1 (see Prop. 2) and
ClusterOracleN , and Corollary 4.

The halting of ClusterT ri is a consequence of Lemma 7 (equation (**)) which shows that as long as the radius
of �(B(�)) approaches zero, Pellet test will eventually succeed; thus so does ClusterOracleN .

6 The two failure modes may be traced to our soft comparison of real numbers x : y (see [17,27]). It is reduced to the interval
comparison (x)L : (y)L for increasing L . If we can conclude x > y or x < y, it is a success, else it is a failure. There are two failure
modes: if we can conclude 1

2 x < y < 2x , this is a (−1)-failure (it is a potential “zero problem”). Otherwise it is a (−2)-failure (we
repeat the interval test with larger L).

282 R. Imbach et al.

Algorithm 1 ClusterT ri(f, B, L)

Input: A triangular map f = f(n), a ROI B0 = B0
(n) and a precision L > 1.

Output: A set of cluster oracles at level n, that solves the LCP for (f, B0, 2−L).
1: Q.push(〈0, B0, (L , . . . , L)〉) //initial cluster oracle at level 0
2: while Q contains cluster oracles at level less than n do
3: O = 〈�, B, L〉 ← Q.pop() //assume � < n
4: if � = 0 then
5: Q.push(ClusterOracle1(f,O))

6: else
7: { f lag, S} ← ClusterOracleN (f,O)

8: if f lag = success then
9: Q.push(S) //S is a set of cluster oracles at level � + 1
10: else
11: precision(O) ← (2L(�), L�+1, . . . , Ln)

12: level(O) ← 0
13: Q.push(O) //O will be refined later

14: return Q

5 Implementation and Benchmarks

We implemented in Julia7 our complex solution clustering algorithm and made it available through the package
Ccluster.jl. 8 It is named hereafter tcluster. It uses, as routine for clustering roots of univariate polynomials
given by approximations, the univariate solver ccluster described in [17] and available in Ccluster.jl. The
procedure for approximating a multivariate polynomial specialized in a cluster of fibers relies on the ball arithmetic
library arb (see [18]), interfaced in Julia through the package Nemo.9

Section 5.1 reports how tcluster performs on systems having clusters of solutions. Section 5.2 proposes
benchmarks for solving random dense triangular systems with only regular solutions, and with solutions with
multiplicities; tcluster is compared with three homotopy solvers. Section 5.3 is about using tcluster to
cluster solutions of system triangularized with regular chains. Unless specified, tcluster is used with ε = 2−53.
tcluster global (resp. local) holds for tcluster with initial box B centered in 0 with width 106 (resp. 2).

All the timings given below are sequential times in seconds on a Intel(R) Core(TM) i7-7600U CPU@ 2.80GHz
machine with linux.

5.1 Clustering Ability

Consider the triangular systems g = (f, g2) = 0 and h = (f, h2) = 0 where

f (z1) = zd11 − (2δz1 − 1)c

g2(z1, z2) = zd22 zd21 − 1
h2(z1, z2) = zd22 − zd21

(5)

with d1 = 30, c = 10, δ = 128 and d2 = 10. All the roots of f have multiplicity 1. A cluster S1 of 10 roots is in a

disk centered in 2−δ with radius 2−b = 2− d1δ+δ−1
c � 2−397 (see [21]). Since d1 > c > 1, roots in S1 have modulus

≤ 2−δ + 2−b ≤ 2−δ+1 = 2−127 = γ̂ . S2 denotes the set of d1 − c others roots of f , that have a modulus of the

order of γ = 2
cδ

d1−c = 264. The d2 roots of g2 are on a circle centered in 0 with radius ≥ γ̂ −1 when z1 ∈ S1, and
of order γ −1 when z1 ∈ S2. The d2 roots of h2 are on a circle centered in 0 with radius ≤ γ̂ when z1 ∈ S1, and of

7 https://julialang.org/.
8 https://github.com/rimbach/Ccluster.jl.
9 http://nemocas.org/links.html.

https://julialang.org/
https://github.com/rimbach/Ccluster.jl
http://nemocas.org/links.html

Clustering Complex Zeros of Triangular Systems 283

Table 1 Clustering the solutions of systems defined in Sect. 5.1 with d1 = 30, c = 10, δ = 128, d2 = 10 for four values of ε in box B
centered in 0 with width 1040

log2(ε) g = 0 h = 0

#Sols t (s) (m,M) #Sols t (s) (m,M)

−53 0 + 30 × 10 0.17 (−212, −424) 200 + 0 × 10 + 1 × 100 0.54 (−212, −212)

−106 200 + 10 × 10 0.64 (−212, −424) 200 + 0 × 10 + 1 × 100 0.57 (−212, −424)

−212 300 + 0 × 10 3.91 (−424, −848) 200 + 10 × 10 + 0 × 100 0.66 (−212, −848)

−424 300 + 0 × 10 3.87 (−848, −1696) 300 + 0 × 10 + 0 × 100 3.78 (−848, −848)

order γ when z1 ∈ S2. All the solutions of g = 0 and h = 0 are included in the box B centered in 0 with width
1040.

We computed clusters of solutions for the two systems with tcluster in B for four values of ε and reported
the cluster structure as a sum c1 + c2 × 10 + c3 × 100 where c1 (respectively c2, c3) stands for the number of
clusters with sum of multiplicities 1 (resp. 10, 100). Table 1 gives this structure in columns #Sols, the solving time
in columns t and the min and max precision required on clusters of f1 in columns M and m (i.e. the log2 of the
radius of the disk isolating the clusters).

(g = 0) has 20 clusters of 10 solutions above each root in S2, where solutions have pairwise distance � 2−64.
It has 10 clusters of 10 solutions above the cluster S1 where solutions have pairwise distance ≤ 2−b � 2−397. This
structure is found by tcluster with ε = 2−53. When ε = 2−106, the 20 clusters above roots in S2 are split, not
the ones above roots in S1. When ε = 2−212, the clusters above roots in S1 are split even if the pairwise distances
between solutions in these clusters are far smaller than 2−212; this is because isolating roots of g2 with error less
than ε = 2−212 requires more precision on roots of f , as shown is column (m,M). When ε = 2−424, all the clusters
are split.

(h = 0) has 200 solutions above roots in S2 and a cluster of 100 simple solutions above roots in S1. The first
(resp. second) components of the solutions in this cluster are in a disc of radius ≤ 2−b � 2−397 (resp. γ̂ = 2−127).
This cluster structure is found by tcluster with ε = 2−53 and ε = 2−106. When ε = 2−212, the cluster of 100
solutions is split in 10 clusters of 10 solutions. When ε = 2−424, the cluster is split in 100 solutions.

5.2 Benchmarks with Random Dense Systems

We present benchmarks for randomly generated triangular systemswithout andwithmultiple solutions.We compare
the efficiency and the robustness of tcluster and two homotopy solvers.

Homotopy solvers. Homotopy solving is a two-step process. First, an upper bound D (either the Bézout’s bound,
or a bound obtained with polyhedral homotopy, see [16]) on the number of solutions of the system is computed.
Then D paths are followed to find the solutions. Among available homotopy solvers,10 we used in our bench-
marks HOM4PS-2.0,11 Bertini12 (see [2]) and HomotopyContinuation.jl13 (hereafter, we denote it
HomCont.jl). HOM4PS-2.0 and HomCont.jl implement polyhedral homotopy, thus follow possibly less
paths. Bertini and HomCont.jl compute the multiplicity structure of solutions. Bertini can use an Adap-
tive Multi-Precision (AMP) arithmetic; below Bertini AMP refers to Bertini with AMP.

10 Other major homotopy solvers are NAG4M2 (for Macaulay2), PHCpack and HOM4PS-3. Bertini2 is still in development.
11 http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft.htm.
12 https://bertini.nd.edu.
13 https://www.juliahomotopycontinuation.org/.

http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft.htm
https://bertini.nd.edu
https://www.juliahomotopycontinuation.org/

284 R. Imbach et al.

Systems. We follow the approach of [8] to generate triangular systems with and without multiple solutions. The
type of a triangular system f(z) = 0 with n equations is the list (d1, . . . , dn) where di = degzi (fi).

A randomdense polynomial fi ∈ C[z1, . . . , zi] of degree di in zi is generated as follows. If i > 1, fi = ∑di
j=0 g j z

j
i

where g j ∈ C[z1, . . . , zi−1] is a random dense polynomial of degree di − j in zi−1. f1 is a random dense polynomial
in C[z1] of degree d1. A system f(z) = 0 of type (d1, . . . , dn) is obtained by generating successively random dense
polynomials fi of degrees di in zi . Triangular systems with multiple solutions are obtained by taking f1 as above,

and for i = 2, . . . , n, fi = a2i (bi zi + ci)�
di+1
2 �−� di

2 � where ai ∈ C[z1, . . . , zi] has degree � di
2 � in zi and bi , ci are in

C[z1, . . . , zi−1] and have degrees di in zi−1.

Benchmarks. In Table 2, we compare the three homotopy solvers and tcluster global and local on triangular
systems with integer coefficients without and with multiple solutions. Coefficients of systems without multiple
solutions are in [−29, 29], while coefficients of systems with multiple solutions are in [−234, 234]. In both cases,
we generated 5 systems of each type. Here tcluster global found all the solutions but in general this is not
guaranteed.

The columns #Sols give the average number of solutions counted with multiplicities found by each solver and
the columns t the average time. The columns #Clus give the average number of clusters found by tcluster. The
systems we generated have d1 × · · · × dn solutions which is the Bézout’s bound, and the homotopy solvers have to
follow this number of paths.

Systems with only simple solutions. For type (9,9,9,9,9), Bertini AMP has been stopped after 1 hour and
HOM4PS-2.0 terminates with a segmentation fault. Homotopy solvers should find all the solutions. Bertini
AMP failed in this task for one system of type (9, 9, 9, 9) and two systems of type (2, 2, 2, 2, 2, 2, 2, 2, 2, 2) but
acknowledged that solutions could be missing. HOM4PS-2.0 returns incorrect results without warnings. In con-
trast, tcluster global always finds the correct number of solutions. tcluster global is in general faster than
Bertini AMP and is faster than HOM4PS-2.0 for systems of types (6, 6, 6, 6, 6) and (9, 9, 9, 9). For systems
of highest degree polynomials, tcluster global and HomCont.jl present similar solving times. The timings
for systems of type (2, 2, 2, 2, 2, 2, 2, 2, 2, 2) emphasize that the efficiency of our solver is not penalized by high
dimensional systems since it performs inductively subdivisions in boxes in C. tcluster local is significantly
faster than the other approaches.

Systems with multiple solutions. A well isolated multiple solution is reported by tcluster in a cluster with its
multiplicity. In all cases, the number of clusters found by tcluster global is the number of distinct solutions
of each systems. HOM4PS-2.0 fails in finding all the solutions. Bertini AMP computes correctly the multi-
plicity of solutions. HomCont.jl fails in computing correctly the multiplicity structure of solutions. For type
(9,9,9), Bertini AMP has been stopped after 1 hour. tcluster global is faster than Bertini AMP and
HomCont.jl, and faster than HOM4PS-2.0 for systems of type (9, 9, 9) and (6, 6, 6, 6).

5.3 Systems Obtained by Triangularization

In this subsection,we report on usingtcluster for clustering the solutions of triangular systems f(z) = 0 obtained
from a non-triangular system g(z) = 0withRegular Chains (RC, see [1,10]). Algorithms for triangularizing systems
with RC produce a set of triangular systems {f1(z) = 0, . . . , fl(z) = 0} having distinct solutions whose union is
the set of distinct solutions of g(z) = 0. The multiplicities of solutions are not preserved by this process.

Clustering Complex Zeros of Triangular Systems 285

Table 2 Solving random dense triangular systems with tcluster, HOM4PS-2.0, Bertini AMP and HomCont.jl

tcluster local tcluster global HOM4PS-2.0 Bertini AMP HomCont.jl

Type #Sols, #Clus t (s) #Sols, #Clus t (s) #Sols t (s) #Sols t (s) #Sols t (s)

Systems with only simple solutions

(6,6,6) 34.2, 34.2 0.04 216, 216 0.35 216 0.06 216 1.17 216 2.77

(9,9,9) 149, 149 0.24 729, 729 1.43 713 0.47 729 29.3 729 4.21

(6,6,6,6) 63.4, 63.4 0.10 1296, 1296 2.21 1274 1.37 1296 24.2 1296 4.70

(9,9,9,9) 559, 559 1.06 6561, 6561 14.6 6036 111 6560 1605 6561 14.0

(6,6,6,6,6) 155, 155 0.37 7776, 7776 13.8 7730 28.6 7776 318 7776 11.5

(9,9,9,9,9) 1739, 1739 4.83 59049, 59049 130 – – – >3600 59049 116

(2,2,2,2,2,2,2,2,2,2) 0, 0 0.13 1024, 1024 2.92 1024 2.74 1023 8.63 1024 4.84

Systems with multiple solutions

(6,6) 10.8, 5.40 0.01 36, 18 0.06 36 0.00 18 3.63 17.4 1.74

(9,9) 23.8, 13.6 0.03 81, 45 0.17 67.4 0.06 45 218 33.6 3.27

(6,6,6) 35.2, 8.80 0.05 216, 54 0.26 210 0.16 54 47.9 53.2 2.75

(9,9,9) 113, 37.6 0.22 729, 225 1.10 357 18.9 – > 3600 159 28.4

(6,6,6,6) 81.6, 10.2 0.21 1296, 162 1.29 1010 4.46 162 662 134 8.06

Systems. We consider non-triangular systems g(z) = 0 both classical (coming from [7]), and sparse random where
g = (g1, . . . , gn) and each gi has the form gi (z) = zdii − g′

i (z) where g
′
i is a polynomial in Z[z] having total degree

di − 1, integers coefficients in [−28, 28] and 5 monomials. The type of such a system is the tuple (d1, . . . , dn). The
set of all the examples can be found at https://members.loria.fr/MPouget/files/IPY19/IPY19.txt.

The benchmark. For several types, we generated a system as described above and computed a triangular system
with the Maple function RegularChains[Triangularize] with option ’probability’=0.9. For the
classical systems, we used no option. In Table 3, column RC gives the time to compute the RCs. We solved
the triangular systems of the obtained regular chains with tcluster; columns tcluster global report the
number of solutions and solving time for tcluster. We also used the function RootFinding[Isolate] of
Maple with options digits=15, output=interval, method=’RC’ (i.e. using regular chains) to solve
our systems; columns Isolate RC report the number of real solutions and the solving time for Isolate. We also
used Bertini AMP to solve the original systems; columns Bertini AMP report the number of paths followed
(column #Paths), the solving time and the number of solutions with the multiplicity structure found by Bertini:
c1 + c2 ×m2 + c3 ×m3 means c1 (respectively c2, c3) solutions with multiplicity 1 (resp. m2, m3). We also tested
HOM4PS-2.0 and HomCont.jl for these systems. The running time of HOM4PS-2.0 is always less than 0.05s,
but the number of solutions reported is wrong. HomCont.jl always finds the correct number of solutions but is
slower than Bertini AMP except for two systems for which polyhedral homotopy allows to reduce the number
of paths to be followed. HomCont.jl solves Czapor-Geddes-Wang in 3.67 s and 5-body-homog in 3.44 s.

Random systems in Table 3. Here the number of solutions is the Bézout’s bound and Bertini AMP follows one
path per solution. Homotopy solving in these cases is much more efficient than triangularizing the system with RC.
The RC algorithm produces a triangular system of type (d, 1, . . . , 1) where d is the Bézout’s bound with a huge
bitsize: For the type (3, 3, 4, 4), the triangular system has type (144, 1, 1, 1) and each equation has bitsize about
738. tcluster has to isolate some solutions of the first equation at precision 2−424. Solving the first equation
with ccluster and ε = 2−424 takes 8.27s: tcluster spends most of the time in isolating roots of the first

https://members.loria.fr/MPouget/files/IPY19/IPY19.txt

286 R. Imbach et al.

Table 3 Solving non-triangular systems with regular chains and tcluster, and Bertini AMP

Bertini AMP Isolate RC RC tcluster global

Type/name #Sols #Paths t (s) #Sols t (s) t (s) #Sols t (s)

Random systems

(4,4,4) 64 64 0.06 6 7.53 3.82 64 0.80

(5,5,5) 125 125 0.30 – > 1000 24.2 125 6.89

(3,3,3,4) 108 108 0.13 – > 1000 52.4 108 3.42

(3,3,4,4) 144 144 0.26 – > 1000 68.7 144 8.59

Classical systems with only simple solutions

Arnborg-Lazard 20 120 0.80 8 3.09 0.08 20 0.07

Czapor-Geddes-Wang 24 720 28.6 2 1.87 0.17 24 0.38

Cyclic-5 70 120 0.35 10 1.92 0.55 70 0.71

Classical systems with multiple solutions

5-body-homog 45 + 2 × 3 + 2 × 24 224 7.63 11 8.30 0.16 49 0.38

Caprasse 24 + 8 × 4 144 0.25 18 1.49 0.24 32 0.12

Neural-network 90 + 18 × 2 162 0.36 22 5.82 0.13 108 0.56

polynomial. Any improvement of ccluster will directly benefit to tcluster. For three of these systems,
RootFinding[Isolate] has been stopped after 1000s.

Classical systems with only simple solutions in Table 3. These systems have few finite solutions compared to their
Bézout’s bounds, and Bertini AMP wastes time in following paths going to infinity. In contrast, tcluster is
sensitive to the number of solutions in the initial solving domain. This explains why computing triangular systems
and solving it with tcluster is faster than Bertini AMP for systems Arnborg-Lazard, Czapor-Geddes-Wang.

Classical systems with multiple solutions in Table 3. For these systems, Bertini AMP reports the multiplicity
structure of the solutions. The triangularization step removes the multiplicity, and the RCs obtained are easier to
solve; tcluster finds only clusters with one solution counted with multiplicity.

6 Future Work

We presented an algorithm for computing clusters of complex solutions, together with multiplicity information, of
triangular systems of polynomial equations. It is numerical and certified, it handles solutions with multiplicity and
works locally. It can deal with systems whose equations are given by oracle polynomials. An implementation is
publicly available and the experiments we carried out show the efficiency and robustness of our approach.

Our error analysis for the partial specialization of polynomials on algebraic numbers represented by oracle
numbers is a first step towards a complexity analysis of our algorithm, which constitutes our future work. We would
like to present such an analysis in terms of geometric parameters (e.g. separation of solutions) instead of only
syntactic parameters (bit-size and degree).

Appendix: Error Analysis

This Appendix contains all the proofs for our error analysis. Section 3 is an excerpt.

Clustering Complex Zeros of Triangular Systems 287

Given f, f̃ ∈ C[z] and b, b̃ ∈ C
n , our basic goal is to bound the evaluation error

‖ f (b) − f̃ (̃b)‖
in terms of δ f := ‖ f − f̃ ‖ and δb := ‖b − b̃‖. This will be done by induction on n. Our analysis aims not just
to produce some error bound, but to express this error in terms that are easily understood, and which reveals the
underlying inductive structure. Towards this end, we introduce the following β-bound function: if d is a positive
integer and b ∈ C,

β(d, b) :=
d∑

i=0

|b|i . (6)

A simple application of this β-bound is:

Lemma 8 Let b ∈ C and f ∈ C[z]. If d is the degree of f , then

| f (b)| ≤ ‖ f ‖ · β(d, b), | f ′(b)| ≤ d‖ f ‖ · β(d − 1, b).

Note that β(d, b) ≤ max
{
d + 1, |b|d+1−1

|b|−1

}
.

We first treat the case n = 1. It will serve as the base for the inductive proof. Its proof requires a complex version
of the Mean Value Theorem. Since this result is not well-known, we provide a statement and proof.

Theorem 3 (Complex mean value theorem) If f : C → C is holomorphic, then for any a, b ∈ C,

f (b) − f (a) = ω · (b − a) · f ′(ξ)

for some ξ in the line segment [a, b] and some ω ∈ C with |ω| ≤ 1.

Proof This is a simple application of a similarly little known theorem of Darboux [11] which gives a finite Taylor
expansion of f ; see Bünger’s formulation and proof in [3, Appendix]. For any k ≥ 1, the theorem says

f (b) =
k−1∑

i=0

(b − a)i

i ! f (i)(a) + ω
(b − a)k

k! f (k)(ξ)

for some ξ in the line segment [a, b] and ω ∈ C with |ω| ≤ 1. Choosing k = 1, f (b) = f (a) + ω(b − a) f ′(ξ) or
f (b) − f (a) = ω(b − a) f ′(ξ). ��
Corollary 9 (Complex mean value inequality) For all a, b ∈ C, there is some ξ ∈ [a, b] such that

| f (b) − f (a)| ≤ |b − a| · | f ′(ξ)|.
Lemma 10 (Case n = 1) Let f, f̃ ∈ C[z], b, b̃ ∈ C, and d(f̃) ≤ d(f) ≤ d. If f̃ = f ±δ f and b̃ = b±δb, then:

(i) | f (b) − f (̃b)| ≤ δb · ‖ f ′‖ · β(d, |b| + δb) where f ′ is the differentiation of f .
(ii) | f (̃b) − f̃ (̃b)| ≤ δ f · β(d, |b| + δb)

(iii) | f (b) − f̃ (̃b)| ≤
[
δ f + δb · ‖ f ′‖

]
· β(d, |b| + δb).

Proof (i) By the complex mean value inequality (Corollary 9):

| f (b) − f (̃b)| ≤ |b − b̃| · | f ′(b±δb)|

≤ δb ·
d∑

i=1

∣
∣
∣i fi (|b| + δb)

i−1
∣
∣
∣

≤ δb · ‖ f ′‖
d−1∑

i=0

∣
∣
∣(|b| + δb)

i
∣
∣
∣ .

288 R. Imbach et al.

(ii) Also

| f (̃b) − f̃ (̃b)| =
∣
∣
∣

d∑

i=0

(fi − f̃i)̃b
i
∣
∣
∣

≤ δ f ·
d∑

i=0

∣
∣
∣̃bi

∣
∣
∣

≤ δ f · β(d, |b| + δb).

(iii) This follows from the triangular inequality

| f (b) − f̃ (̃b)| ≤ | f (b) − f (̃b)| + | f (̃b) − f̃ (̃b)|.
and the bounds in parts (i) and (ii).

��
The appearance of ‖ f ′‖ in the above bound may be replaced by d‖ f ‖. Below, we develop similar bounds on

partial derivatives in the multivariate case. For a general n > 1, we need to generalize the notations:

f, f̃ ∈ C[z], b, b̃ ∈ C
n (7)

satisfying b̃ = b±δb (i.e., b̃i = bi±δbi for each i). Let d = d(f) (i.e., di = degzi (f) for each i). The support
of f is Supp(f) ⊆ N

n where f = ∑
α∈Supp(f) cα zα where cα ∈ C \ {0}. Here, zα := ∏n

i=1 z
αi
i . We assume that

Supp(f̃) ⊆ Supp(f).
Our induction variable is k = 1, . . . , n. For α ∈ N

n , let πk(α) := (0, . . . , 0,αk+1, . . . ,αn). E.g., if k = n then
πk(α) = 0. Thus α − πk(α) = (α1, . . . ,αk, 0, . . . , 0). Next define Suppk(f) := {πk(α) : α ∈ Supp(f)}. With
this notation, we can write

f =
∑

α∈Suppk (f)
fα zα (8)

where each fα ∈ C[z(k)]. E.g., if k = n then Suppk(f) = {0} and so f0 = f .

Running Example Consider

f = xy + (x3 − 1)y2z + (x2 − y2)z3 (9)

where z = (x, y, z). Then Supp(f) = {110, 321, 021, 203, 023}. We can represent f using the support
Supp1(f) = {010, 021, 003, 023} as follows: f = f010 · y + f021 · y2z + f003 · z3 f023 · y2z3 where f010 = x ,
f021 = x3 − 1, f003 = x2, f023 = −1. Alternatively, using the support Supp2(f) = {000, 001, 003}, we can write
f = f000 + f001 · z + f003 · z3 where f000 = xy, f001 = (x3 − 1)y2, f003 = (x2 − y2).
Using (8), the partial specialization f (b(k)) ∈ C[zk+1, . . . , zn] may be written

f (b(k)) =
∑

α∈Suppk (f)
fα(b(k)) · zα

It follows that

‖ f (b(k))‖ = max
α∈Suppk (f)

∣
∣
∣ fα(b(k))

∣
∣
∣. (10)

The k-th partial derivative is ∂k f := ∂ f
∂zk

= ∑
α∈Suppk (f)(∂k fα)zα. Upon evaluation at b(k), its norm is given by

‖∂k f (b(k))‖ = max
α∈Suppk (f)

∣
∣
∣∂k fα(b(k))

∣
∣
∣. (11)

Using our running example (8), let k = 2. Then f = f000 + f001 · z + f003 · z3 with f001 = xy, f001 = (x3 − 1)y2,
f003 = (x2− y2). Thus ∂2 f = x+ (x3−1)2y · z−2y · z3. If b(2) = (−1, 3), then ‖ f (b(2))‖ = max {3, 18, 8} = 18
and ‖∂2 f (b(2))‖ = max {1, 12, 6} = 12.

Clustering Complex Zeros of Triangular Systems 289

We are ready for the generalization of Lemma 10.
Assume that we are given f, f̃ ∈ C[z] = C[z(n)] and b, b̃ ∈ C. Also the degree sequences satisfies d(f̃) ≤ d(f),

that is the inequality holds componentwise. Then we may define these quantities for k = 1, . . . , n:

δkb := |bk − b̃k |,
δk f := ‖ f (b(k)) − f̃ (̃b(k))‖ (with δ0 f = ‖ f − f̃ ‖),
βk := β(dk, bk)
β̃k := β(dk, |bk | + δkb).

Note that δk is a operator that must attach to some function f or vector b to denote the “kth perturbation” of f or
b. We may restate Lemma 10(iii) using the new notations:

Corollary 11 For a univariate f ,

δ1 f ≤
[
δ0 f + δ1b · d1 · ‖ f ‖

]
β̃1. (12)

We now address the case of multivariate f :

Lemma 12 (=Lemma 5 in Text) For n ≥ 1 and each k = 1, . . . , n:

(i) ‖ f (b(k)) − f (b(k−1))(̃bk)‖ ≤ δkb · ‖∂k f (b(k−1))‖ · β̃k .
(ii) ‖ f (b(k−1))(̃bk) − f̃ (̃b(k))‖ ≤ δk−1 f · β̃k .

(iii) δk f ≤
[
δkb · ‖∂k f (b(k−1))‖ + δk−1 f

]
· β̃k .

Proof We note that (iii) amounts to adding the inequalities of (i) and (ii): specifically, δk f ≤ ‖ f (b(k)) −
f (b(k−1))(̃bk)‖ + ‖ f (b(k−1))(̃bk) − f̃ (̃b(k))‖. Thus we only have to verify (i) and (ii). This will be shown by
induction on k.

Suppose k = 1. This will be an application of Lemma 10(i) and (ii). We use the fact that f = ∑
α∈Supp1(f) fα zα ,

and f (b(k−1)) = f (b(0)) = f . Then (i) becomes

‖ f (b1) − f (̃b1)‖ = ‖∑
α∈Supp1(f)(fα(b1) − fα (̃b1))zα‖

= maxα∈Supp1(f) | fα(b1) − fα (̃b1)|
≤ maxα∈Supp1(f) δ1b · ‖ f

′
α‖ · β̃1 (by Lemma 10(i))

= maxα∈Supp1(f) δ1b · ‖∂1 fα‖ · β̃1
= δ1b · ‖∂1 f ‖ · β̃1.

Similarly, (ii) follows from

‖ f (̃b1) − f̃ (̃b1)‖ = ‖∑
α∈Supp1(f)(fα (̃b1) − f̃α (̃b1))zα‖

= maxα∈Supp1(f)
∣
∣
∣ fα (̃b1) − f̃α (̃b1)

∣
∣
∣

≤ maxα∈Supp1(f) δ fα · β̃1 (by Lemma 10(i i))
= ‖ f − f̃ ‖ · β̃1
= δ0 f · β̃1.

Suppose k > 1. We now prove (i). The left hand side (LHS) ‖ f (b(k)) − f (b(k−1))(̃bk)‖ is the maximum of

| fα(b(k)) − fα(b(k−1))(̃bk)| (A)

where α ranges over Suppk(f). We can rewrite (A) in the form | fα(b(k−1))(bk) − fα(b(k−1))(̃bk)|. Applying
Lemma 10(i), we can upper bound (A) by “δb · ‖ f ′‖ · β(d, |b| + δb)” where “δb” here is |bk − b̃k | = δk , “‖ f ′‖”
is ‖∂k fα(b(k−1))‖ and “β(d, |b| + δb)” is βk . This establishes (i). Finally (ii) is proved by a similar invocation of
Lemma 10(ii). ��

290 R. Imbach et al.

Wenowhave a recursive bound‖δn f ‖. Butweneed to convert the bound to only depend on the data‖b‖, ‖ f ‖, δkb.
In particular, we remove any occurrences of ∂k fα with the help of the next lemma:

Lemma 13 (= Lemma 6 in Text) For k = 1, . . . , n:

(i) ‖ f (b(k))‖ ≤ ‖ f ‖ · ∏k
i=1 β i

(ii) For α ∈ Suppk(f),

∥
∥
∥∂k fα(b(k−1))

∥
∥
∥ ≤ dk · ‖ fα(b(k−1))‖.

(iii) ‖∂k f (b(k−1))‖ ≤ dk · ‖ f ‖ · ∏k−1
i=1 β i

Proof (i) The LHS of the inequality is equal to the maximum of | fα(b(k))| where α ∈ Suppk(f).
First consider k = 1. In this case, fα is a univariate polynomial in z1 of degree at most d1, say fα(z1) =∑d1

i=0 ci z
i
1 where c is a coefficient of f . By Lemma 8,

| fα(b1)| ≤ ‖ fα‖β1 ≤ ‖ f ‖β1,

proving the result for k = 1. For k > 1, each fα is a polynomial in z(k), and we can write fα(b(k)) as
fα(b(k−1))(bk). By induction, the polynomial fα(b(k−1))(zk) has norm at most ‖ f ‖ · ∏k−1

i=1 β i . Moreover, its
degree is at most dk . So evaluating it at bk gives a value of size at most ‖ f ‖ · ∏k

i=1 β i .

(ii) Write fα(b(k−1)) = ∑dk
i=0 ci z

i
k where ci ∈ C satisfies |ci | ≤ ‖ fα(b(k−1))‖. Thus ∂k fα(b(k−1)) is a polynomial

with norm
∥
∥
∥∂k fα(b(k−1))

∥
∥
∥ ≤ dk‖ fα(b(k−1))‖.

(iii) Letting α range over Suppk(f),

‖∂k f (b(k−1))‖ = maxα ‖∂k fα(b(k−1))‖
≤ maxα dk · ‖ fα(b(k−1))‖ (from part (ii) second formula)
≤ dk · maxα ‖ fα(b(k−1))‖
≤ dk · ‖ f (b(k−1))‖
≤ dk · ‖ f ‖ · ∏k−1

i=1 β i (from part (i))

��

Putting it all together:

Theorem 4 (=Theorem 2 in Text) For k = 1, . . . , n,

δk f ≤
[
δ0 f + ‖ f ‖ ·

k∑

i=1

di · δi b
]

·
(k∏

i=1

β̃ i

)
.

Proof When k = 1, our formula is

δ1 f ≤
[
δ0 f + ‖ f ‖ · d1 · δ1b

]
β̃1.

Clustering Complex Zeros of Triangular Systems 291

follows from the case k = 1 of Lemma 12(iii). For k > 1, we use induction:

δk f ≤
[
δkb · ‖∂k f (b(k−1))‖ + δk−1 f

]
· β̃k (By Lemma 12(iii)

≤
[
δkb · ‖∂k f (b(k−1))‖ +

{
δ0 f + ‖ f ‖ ·

k−1∑

i=1

di · δi b
}

·
(k−1∏

i=1

β̃ i

)]
· β̃k (By induction)

≤
[
δkb · dk · ‖ f ‖ ·

(k−1∏

i=1

β i

)
+

{
δ0 f + ‖ f ‖ ·

k−1∑

i=1

di · δi b
}

·
(k−1∏

i=1

β̃ i

)]
· β̃k (By Lemma 13(iii))

≤
[
δkb · dk · ‖ f ‖ +

{
δ0 f + ‖ f ‖ ·

k−1∑

i=1

di · δi b
}]

·
(k∏

i=1

β̃ i

)
(since β i ≤ β̃ i)

=
[
δ0 f + ‖ f ‖ ·

k∑

i=1

di · δi b
]

·
(k∏

i=1

β̃ i

)
.

��

The next lemma answers the question: given δL > 0, how can we ensure that

δn−1 f := ‖ f (b(n−1)) − f̃ (̃b(n−1))‖
is upper bounded by δL?

Lemma 14 (=Lemma 7 in Text)
Given δL > 0, f, f̃ ∈ C[z] and b, b̃ ∈ C

n−1 where n > 1.
Let d = maxi (degzi (f)) and M = ‖b‖ + 1.
If

δ f ≤ δL

2((d + 1)Md)n−1 (∗)

and

δb ≤ min(1,
δL

2d‖ f ‖(n − 1)((d + 1)Md)n−1), (∗∗)

then

δn−1 f ≤ δL .

Proof Note that δ f := ‖ f − f̃ ‖ in (*) and δb := ‖b − b̃‖ in (**). Since δb ≤ 1, we conclude that ‖̃b‖ ≤ M . Using
the bounds βk ≤ β̃k ≤ (d + 1)Md , the bound of Theorem 4 for the case k = n − 1 becomes

δn−1 f ≤
(n−1∏

i=1

β̃ i

)[
δ f + ‖ f ‖ ·

n−1∑

i=1

(
di · δi b

)]

≤
(
(d + 1)Md

)n−1[
δ f + d‖ f ‖δb(n − 1)

]
.

The inequalities (*) on δ f , and (**) on δb, are designed to ensure that δn−1 f ≤ δL . ��

292 R. Imbach et al.

References

1. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb. Comput. 28(1), 105–124 (1999)
2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. Available at

bertini.nd.edu with permanent https://doi.org/10.7274/R0H41PB5
3. Batra, P.: Globally convergent, iterative path-following for algebraic equations. Math. Comput. Sci. 4(4), 507–537 (2010)
4. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root clustering for a complex polynomial. In:

Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation. pp. 71–78. ISSAC ’16, ACM,
New York, NY, USA (2016)

5. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on Pellet
test and Newton iteration. J. Symb. Comput. 86, 51–96 (2018)

6. Beltrán, C., Leykin, A.: Certified numerical homotopy tracking. Exp. Math. 21(1), 69–83 (2012)
7. Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real root isolation of regular chains. In: Feng, R., Lee, W.S., Sato, Y. (eds.)

Computer Mathematics, pp. 33–48. Springer, Berlin (2014)
8. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real roots in zero-dimensional triangular systems. J. Symb.

Comput. 44(7), 768–785 (2009)
9. Collins, G.E., Johnson, J.R., Krandick, W.: Interval arithmetic in cylindrical algebraic decomposition. J. Symb. Comput. 34(2),

145–157 (2002)
10. Dahan, X., Maza, M.M., Schost, E., Wu, W., Xie, Y.: Lifting techniques for triangular decompositions. In: Proceedings of the 2005

International Symposium on Symbolic and Algebraic Computation, pp. 108–115. ISSAC ’05, ACM, New York, NY, USA (2005)
11. Darboux, G.: Sur les développements en série des fonctions d’une seule variable. Journal de mathématiques pures et appliquées

(Liouville Journal) 3(II), 291–312 (1876)
12. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial systems. In: Proceedings of the 2005 Interna-

tional Symposium on Symbolic and Algebraic Computation, pp. 116–123. ACM (2005)
13. Dickenstein, A., Emiris, I. (eds.): Solving Polynomial Equations: Foundations, Algorithms, and Applications. Springer, Berlin

(2005)
14. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with

bit-stream coefficients. In: Ganzha, V., Mayr, E., Vorozhtsov, E. (eds.) CASC, LNCS, vol. 3718, pp. 138–149. Springer, Berlin
(2005)

15. Giusti,M., Lecerf,G., Salvy,B.,Yakoubsohn, J.C.:On location and approximation of clusters of zeros: case of embedding dimension
one. Found. Comput. Math. 7(1), 1–58 (2007)

16. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comput. 64(212), 1541–1555 (1995)
17. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers,

M., Labahn, G., Urban, J. (eds.) Mathematical Software—ICMS 2018, pp. 235–244. Springer, Cham (2018)
18. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius interval arithmetic. IEEE Trans. Comput. 66, 1281–1292 (2017)
19. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials ... and now for real! In: Proceedings of the ACM on

International Symposium on Symbolic and Algebraic Computation, pp. 303–310. ISSAC ’16, ACM, New York, NY, USA (2016)
20. Li, J., Cheng, J., Tsigaridas, E.: Local generic position for root isolation of zero-dimensional triangular polynomial systems. In:

Koepf,W., Vorozhtsov, E. (eds.) CASC 2012—14th InternationalWorkshop on Computer Algebra in Scientific Computing. Lecture
Notes in Computer Science, vol. 7442, pp. 186–197. Springer, Maribor (2012)

21. Mignotte, M.: On the distance between the roots of a polynomial. Appl. Algebra Eng. Commun. Comput. 6(6), 327–332 (1995)
22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)
23. Niang Diatta, D., Diatta, S., Rouillier, F., Roy, M.F., Sagraloff, M.: Bounds for polynomials on algebraic numbers and application

to curve topology. arXiv e-prints arXiv:1807.10622 (Jul 2018)
24. Strzebonski, A., Tsigaridas, E.: Univariate real root isolation in an extension field and applications. J. Symb. Comput. 92, 31–51

(2019)
25. Wampler, I.C.W., et al.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific,

Singapore (2005)
26. Xu, J., Burr, M., Yap, C.: An approach for certifying homotopy continuation paths: Univariate case. In: Proceedings of the 2018

ACM International Symposium on Symbolic and Algebraic Computation, pp. 399–406. ISSAC ’18, ACM, New York, NY, USA
(2018)

27. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm using soft zero tests. In: The Nature of Compu-
tation. Logic, Algorithms, Applications. LNCS, vol. 7921, pp. 434–444. Springer, Berlin (2013)

28. Zhang, Z., Fang, T., Xia, B.: Real solution isolation with multiplicity of zero-dimensional triangular systems. Sci. China Inf. Sci.
54(1), 60–69 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7274/R0H41PB5
http://arxiv.org/abs/1807.10622

	Clustering Complex Zeros of Triangular Systems of Polynomials
	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Definitions and Notations
	1.4 Oracles for Root Cluster of Univariate Polynomials

	2 Sum of Multiplicities in Clusters of Solutions
	2.1 Two Examples
	2.2 Sum of Multiplicities in a Cluster
	2.3 Tower Representation

	3 Error Analysis of Approximate Specializations
	4 Clustering for Triangular Systems
	5 Implementation and Benchmarks
	5.1 Clustering Ability
	5.2 Benchmarks with Random Dense Systems
	5.3 Systems Obtained by Triangularization

	6 Future Work
	Appendix: Error Analysis
	References

