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Abstract The aim of this paper is to investigate upper bounds for the maximum degree of the elements of any
minimal Janet basis of an ideal generated by a set of homogeneous polynomials. The presented bounds depend on
the number of variables and the maximum degree of the generating set of the ideal. For this purpose, by giving
a deeper analysis of the method due to Dubé (SIAM J Comput 19:750–773, 1990), we improve (and correct) his
bound on the degrees of the elements of a reduced Gröbner basis. By giving a simple proof, it is shown that this
new bound is valid for Pommaret bases, as well. Furthermore, based on Dubé’s method, and by introducing two
new notions of genericity, so-called J-stable position and prime position, we show that Dubé’s (new) bound holds
also for the maximum degree of polynomials in any minimal Janet basis of a homogeneous ideal in any of these
positions. Finally, we study the introduced generic positions by proposing deterministic algorithms to transform
any given homogeneous ideal into these positions.

Keywords Polynomial ideals · Gröbner bases · Hilbert functions · Exact cone decompositions · Degree upper
bounds · Involutive bases
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1 Introduction

The concept ofGröbner bases along with the first algorithm to compute themwere introduced by Bruno Buchberger
in his PhD thesis [3,4]. Since then many interesting applications of these bases have been found in Mathematics,
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science, and engineering. For example, we can point out their applications in the ideal membership problem,
computing the dimension of an ideal, solving polynomial systems and so on. It is worth noting that establishing
upper bounds for the degrees of the elements of a minimal Gröbner basis is very important for predicting the
practical feasibility of the computations as well as for the complexity analysis of Gröbner bases computations, see
[16].

To review the existing literature on degree upper bounds for Gröbner bases, let R be the polynomial ring
K[x1, . . . , xn] where K is a field of characteristic zero and let I ⊂ R be an ideal generated by homogeneous
polynomials of degree at most d. The doubly-exponential nature of degree upper bounds for Gröbner bases were
established by Bayer, Möller, Mora and Giusti, see [21, Chapter 38]. Möller and Mora [20] derived the degree
upper bound (2d)(2n+2)n+1

for any Gröbner basis of I. At the same time, Giusti [11] presented the upper bound
(2d)2

n−2
for the degree of the reduced Gröbner basis w.r.t. the degree reverse lexicographic ordering of I provided

that I is in generic position. Using a self-contained and constructive combinatorial argument, Dubé [6] proved
the degree bound 2(d2/2 + d)2

n−1
. Finally, Mayr and Ritscher [18], following the method by Dubé, improved his

bound to the dimension-dependent upper bound 2(1/2(dn−D +d))2
D−1

for every reduced Gröbner basis of I where
D = dim(I). It should be noted that in [14], dimension and depth depending upper bounds were exhibited for
the Castelnuovo-Mumford regularity and the degrees of the elements of the reduced Gröbner basis of an ideal in
generic position.

Since in this paper, we discuss degree upper bounds for involutive bases, let us step back and briefly review the
literature on these bases. Involutive bases (which may be considered as a particular kind of non-reduced Gröbner
bases) have their origin in the works by Janet [15] in the analysis of (linear) partial differential equations. By
developing the methods by Pommaret [22], Zharkov and Blinkov introduced the notion of involutive polynomial
bases [25]. Then, Gerdt and Blinkov [10] introduced the concepts of involutive division and involutive bases for
polynomial ideals, and the theory of involutive bases led to an alternative approach to Buchberger’s algorithm.

In this paper, by giving a deeper analysis of Dubé’s method [6], we improve first Dubé’s bound to O(1)d2n−2

for the degrees of the elements of a Gröbner basis. In addition, we point out two flaws in the proof of his main
result [6, Lemma 8.1]. We correct Dubé’s bound into the sharper bound (d + 1)2

n−2
. Finally, we investigate degree

upper bounds for Pommaret and Janet bases by introducing two new notions of genericity. It should be noted that
we discuss these notions in more details by showing how one can transform a given ideal into these positions.

The structure of the paper is as follows. Section 2 recalls the basic notations and definitions used throughout this
paper. Section 3 reviews the combinatorial approach proposed by Dubé [6] to provide a degree upper bound for a
Gröbner basis. In Sect. 4, an improvement of Dubé’s bound is presented. Section 5 is devoted to the study of degree
upper bounds for Pommaret bases. In Sects. 6 and 7, we introduce new generic positions, and show that any degree
upper bound obtained for a Gröbner basis by applying Dubé’s approach holds for the Janet basis of an ideal in any
of these generic positions. Finally, we discuss how one can transform a given ideal into any of these positions.

2 Preliminaries

In this section, we will briefly explain the basic notations and preliminaries that used in the subsequent sections.
Let R = K[X ] be the polynomial ring over an infinite field K where X = {x1, . . . , xn}. Furthermore, let M be
the set of all monomials in R (a monomial is a power product of the elements of X ). We consider a finite set of
homogeneous polynomials F = { f1, . . . , fk} ⊂ R and the ideal I = 〈F〉 generated by F . We denote the degree
w.r.t. a variable xi of a polynomial f ∈ R by degi ( f ) and the total degree of f by deg( f ). The maximum degree
of the polynomials in F is denoted by d. The Krull dimension of the factor ring R/I, denoted by D = dim(I), is
the number of elements of any maximal set S ⊆ X such that I ∩ K[S] = {0}. A prime ideal P is called a minimal
prime ideal of I, if I ⊆ P and P is minimal with this property.

A typical example of a monomial ordering that we use in this paper is the degree reverse lexicographical
ordering with xn ≺drl · · · ≺drl x1. More precisely, for two monomials xα and xβ we write xα ≺drl xβ if either
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deg(xα) < deg(xβ) or deg(xα) = deg(xβ) and the right-most non-zero entry of β − α is negative. The leading
monomial of a polynomial 0 	= f ∈ R, denoted by LM( f ), is the greatest monomial appearing in f w.r.t. ≺
and its coefficient is called the leading coefficient of f , denoted by LC( f ). The leading term of f is the product
LT( f ) = LC( f )LM( f ). For F ⊂ R, LM(F) stands for {LM( f ) | f ∈ F}. The leading monomial ideal of I is
the monomial ideal LM(I) = 〈LM( f ) | 0 	= f ∈ I〉. A finite set G ⊂ I is called a Gröbner basis for I w.r.t. ≺,
if LM(I) = 〈LM(G)〉. The remainder of division f by a Gröbner basis G w.r.t. ≺, is denoted by NFG( f ). For a
Gröbner basis G, we let NI = {NFG( f ) | f ∈ R} be the K-vector space generated by the set of all monomials
u with u /∈ 〈LM(G)〉. We refer to [5] for more details on the theory of Gröbner bases. Now, let us review some
definitions and results from the theory of involutive bases, see [9,24] for more information.

Definition 2.1 An involutive division L is defined on M, if for any nonempty finite set U ⊂ M and for any
monomial u ∈ U , we can partition the set of variables X into two disjoint subsets ML(u, U ) of multiplicative
variables and N ML(u, U ) of non-multiplicative variables such that for any u1, v1 ∈ U the following conditions
hold:

1. if u1L(u1, U ) ∩ v1L(v1, U ) 	= ∅ then either u1 ∈ v1L(v1, U ) or v1 ∈ uL(u1, U ),
2. if v1 ∈ u1L(u1, U ) then L(v1, U ) ⊆ L(u1, U ),
3. if u1 ∈ V and V ⊆ U then L(u1, U ) ⊆ L(u1, V ),

where for anymonomial u ∈ U ,L(u, U ) denotes the subset ofM consisting of allmonomials in terms of ML(u, U ).

As classical examples of involutive divisions, we recall the definitions of the Janet and Pommaret divisions.

Definition 2.2 For a given finite setU ⊂ M ofmonomials and a given sequence of non-negative integers d1, . . . , di

with 1 ≤ i ≤ n define

[d1, . . . , di ] = {u ∈ U | d j = deg j (u), 1 ≤ j ≤ i}.
x1 is Janet multiplicative (or shortly J -multiplicative) for u ∈ U , if deg1(u) = max{deg1(v) | v ∈ U }. For i > 1,
xi is J -multiplicative for u ∈ U , if degi (u) = max{degi (v) | v ∈ [deg1(u), . . . , degi−1(u)]}.
Definition 2.3 For u = xd1

1 · · · xdk
k with dk > 0, the integer k is called the class of u and is denoted by cls(u). The

variables xcls(u), . . . , xn are Pommaret multiplicative (or shortlyP-multiplicative) for u. For u = 1, all the variables
are Pommaret multiplicative.

In the next example, the separation of variables is shown for Janet and Pommaret divisions.

Example 2.4 For U = {x1x2, x3} ⊂ K[x1, x2, x3], we have

Monomial MJ N MJ MP N MP

x1x2 x1, x2, x3 x2, x3 x1
x3 x2, x3 x1 x3 x1, x2

Gerdt and Blinkov [10, Proposition 3.6] showed that both these divisions are involutive.

Definition 2.5 For a finite set U ⊂ M of monomials, the sets C(U ) = ⋃
u∈U uM and CL(U ) = ⋃

u∈U uL(u, U )

are called, respectively, the cone and the L-involutive cone generated by U .

Definition 2.6 For a finite set U ⊂ M of monomials, a set Ũ with U ⊆ Ũ ⊆ M is called an L-completion of U , if
C(U ) = CL(Ũ ). Furthermore, U is L-complete or L-involutive, if it holds CL(U ) = C(U ). An involutive division
L is said to be Nœtherian, if every finite set U possesses a finite L-completion.
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We are now in a position to introduce the concept of involutive bases. A finite set F ⊂ R is L-autoreduced, if
for any f ∈ F , no monomial occurring in f is L-divisible by LM(F) \ {LM( f )}.
Definition 2.7 Let I ⊂ R be an ideal and L an involutive division. Then an L-autoreduced subset G ⊂ I is
called an L-involutive basis (or shortly an involutive basis) for I, if for each f ∈ I there exists g ∈ G so that
LM(g)|LLM( f ).

According to the above definition, every involutive basis is a Gröbner basis for the ideal it generates. Furthermore,
in [10, Proposition 4.5], it was shown that the Janet division is Nœtherian and it follows immediately from this
property that every ideal has a (finite) Janet basis. Gerdt in [9] described an algorithmic approach to construct
involutive bases. We shall point out that this process terminates in finitely many steps only for Nœtherian divisions.
However, the following simple example illustrates that finite Pommaret bases do not exist in general.

Example 2.8 Let I = 〈x2〉 ⊂ K[x1, x2]. The Pommaret basis of I is the infinite set {xi
1x2 | i ≥ 0}.

The third author in [23] explicitly related the ideals with finite Pommaret bases to the notion of genericity. For this,
the notion of quasi stable position was introduced and it was shown that an ideal in such a position possesses a
finite Pommaret basis.

Definition 2.9 Amonomial ideal I ⊂ R is quasi stable, if for any monomial m ∈ I and all positive integers i, j, s
with 1 ≤ j < i ≤ n, if xs

i | m, there exists an integer t ≥ 0 such that xt
j (m/xs

i ) ∈ I. An ideal I ⊂ R is called in
quasi stable position, if LM(I) w.r.t. ≺ is quasi stable.

Proposition 2.10 ( [23, Proposition 4.4]) A homogeneous ideal I has a finite Pommaret basis, if and only if it is in
quasi stable position.

SinceK is infinite, then, for a given ideal, by applying a generic linear change of variables, one is able to transform
the ideal into quasi stable position and in consequence the new ideal has a finite Pommaret basis, see [23] for more
details.

3 Dubé’s Approach

In this section, we give a short review of Dubé’s [6] method which entails degree upper bound for Gröbner bases.
For this, let us first recall some basic definitions from [6]. Let us denote by indet(u) the set of all variables appearing
in the monomial u ∈ M. For a finite set F ⊂ R of monomials, we set indet(F) = ⋃

u∈F indet(u).

Definition 3.1 Let T ⊂ R. The family S1, . . . , St of subsets of T is said to be a direct decomposition of T if every
p ∈ T can be uniquely expressed of the form p = ∑r

i=1 pi where pi ∈ Si and r ≤ t . This property is indicated by
the notation T = S1 ⊕ S2 ⊕ · · · ⊕ Sm .

For example, ideal I = 〈x2〉 in Example 2.8 has a direct decomposition Si = {xi
1x j

2 | j ≥ 1}, i ≥ 0. Also,
for any ideal I we can decompose R = I ⊕ NI . For a homogeneous polynomial h and set u ⊆ X , the set
C(h, u) = {ah | a ∈ R and indet(a) ⊆ u} is also called the cone presented by h and u.

Definition 3.2 Let h1, . . . , ht be homogeneous polynomials in R, and u1, . . . , ut subsets of X . A finite set
P = {C(h1, u1), . . . , C(ht , ut )} is called a cone decomposition of T ⊂ R if the cones C(hi , ui )’s form a direct
decomposition for T .

If the set F = { f1, . . . , fk} is a Janet basis for a given ideal I then, from properties of a Janet basis it follows
that {C( f1, MJ (LM( fk),LM(F))), . . . , C( fk, MJ (LM( fk),LM(F)))} forms a cone decomposition for I. For a
cone decomposition P , we write P+ = {C(h, u) ∈ P | u 	= ∅}.
Definition 3.3 Let k be a non-negative integer and P a cone decomposition. Then, P is called k-standard if the
following conditions hold:
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1. There is no cone C(h, u) ∈ P+ with deg(h) < k.
2. For each C(g, u) ∈ P+ and k ≤ d ≤ deg(g), there exists C(h, v) ∈ P+ with deg(h) = d and |u| ≥ |v|.
By convention, if P+ is the empty set, then P is k-standard for all k.

Example 3.4 Let I = 〈x1x2x3, x1x23 , x1x4〉 ⊂ K[x1, x2, x3, x4]. Then C(1, {x2, x3, x4}) ⊕ C(x1, {x1, x2}) ⊕
C(x1x3, {x1}) is a 0-standard cone decomposition for NI .

Definition 3.5 A cone decomposition P is called exact if it is k-standard for some k, and in addition for each d,
there exists at most one C(h, u) ∈ P+ with deg(h) = d.

For example, one observes that the 0-standard cone decomposition in Example 3.4 is exact, as well.

Definition 3.6 The Macaulay constants of a k-exact cone decomposition P is defined to be:

bi = min{d ≥ k | ∀ C(h, u) ∈ P; |u| ≥ i �⇒ deg(h) < d}, i = 0, . . . , n + 1.

We note as a simple observation that b0 ≥ b1 ≥ · · · ≥ bn+1 = k. In Example 3.4, Macaulay constants for set
NI are b0 = 3, b1 = 3, b2 = 2, b3 = 1, b4 = 0 and b5 = 0.

Lemma 3.7 ( [6, Lemma 6.1]) Let P be an exact cone decomposition, and b0, . . . , bn+1 be the Macaulay constants
of P. Then for each i = 1, . . . , n and any given degree d with bi+1 ≤ d < bi , there is exactly one cone C(h, u) ∈ P+
such that deg(h) = d and in that cone |u| = i .

Now, we are ready to give the outline of the approach proposed by Dubé in [6].

1. Starting with a homogeneous generating set F for a given ideal I ⊂ R and assume that d is the maximum
degree of the polynomials in F .

2. Finding a 0-exact cone decomposition for NI and also a direct decomposition of the form I =
C( f, {x1 . . . , xn}) ⊕ S such that f ∈ F, deg( f ) = d and S is a d-exact cone decomposition.

3. Using Macaulay constants of these two exact cone decompositions to give a simple formulation for Hilbert
functions of NI and I.

4. Using these Hilbert functions and applying the equalityR = I⊕ NI to find a new upper bound for theMacaulay
constants.

5. It was shown that this upper bound can be generalized for an arbitrary ideal generated by a set of polynomials
of degree at most d.

Given an ideal, by applying the next algorithm, we are able to construct a 0-standard cone decomposition for NLM(I)

w.r.t. a fixed monomial ordering. In the next algorithm, we assume that I is a monomial ideal.

Algorithm 1 Split
1: Input: h ∈ M, u ⊆ X and F a minimal monomial basis for the monomial ideal I : h
2: Output: A pair of cone decompositions (P, Q) so that C(h, u) = P ⊕ Q, P ⊆ I and Q ⊆ NI
3: if 1 ∈ F then
4: return({C(h, u)},∅)

5: end if
6: if F ∩ K[u] = ∅ then
7: return(∅, {C(h, u)})
8: end if
9: Choose a maximal subset s ⊂ u such that F ∩ K[s] = ∅
10: Choose x j ∈ u \ s
11: (P0, Q0) :=Split(h, u \ {x j }, F)

12: F ′ := a minimal monomial basis for 〈F〉 : x j
13: (P1, Q1) :=Split(x j h, u, F ′)
14: return(P = P0 ∪ P1, Q = Q0 ∪ Q1)
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Example 3.8 As a simple example, Split(1, {x1, x2}, {x21 x2, x1x22 , x32 }) returns (P, Q) with

P = {
C(x32 , {x2}), C(x1x22 , {x2}), C(x21 x2, {x1, x2})

}

Q = {
C(1, {x1}), C(x2,∅), C(x22 ,∅), C(x1x2,∅)

}
.

It was proved in [6, Lemmata 4.3 and 4.4] that this algorithm terminates in finitely many steps and is correct.
In addition, it was shown in [6, Lemma 4.10, Theorem 4.11] that if we have (P, Q) =Split(h, u, F) then Q is a
deg(h)-standard cone decomposition. Now, given a homogeneous ideal I, we give a pair of cone decompositions
for I and NI . For this, let us assume that (P, Q) =Split(1, X,LM(G))where G is a Gröbner basis for I. It follows
that Q is a 0-standard cone decomposition for NI (note that here we use the fact that NI = NLM(I), see [5] for
more information). Furthermore, we can conclude that P can provide a standard decomposition for I. In [6], an
algorithm was described to transform a k-standard cone decomposition into an k-exact cone decomposition. All
together, we are able to construct a 0-exact cone decomposition for NI .

Let T be aK-vector space so that the homogeneous components of any element of T belong to T . The set of all
homogeneous polynomials in T of degree i is denoted by Ti . The Hilbert function of T at i , denoted by ϕT (i), is
the dimension of Ti as a K-vector space. Now, assume that P is an exact cone decomposition for a homogeneous
K-vector space T and b0, . . . , bn+1 are Macaulay constants of P . Then, the Hilbert function of T can be expressed
as follows:

ϕT (z) =
∑

C(h,u)∈P

ϕC(h,u)(z).

For any z ≥ b0, each of the cones in P+ has a Hilbert function described by the binomial coefficient

ϕC(h,u)(z) =
(

z − deg(h) + |u| − 1

|u| − 1

)

and in consequence for z ≥ b0, we can write

ϕT (z) =
∑

C(h,u)∈P+

(
z − deg(h) + |u| − 1

|u| − 1

)

.

By applying Lemma 3.7, for z ≥ b0 we have

ϕT (z) =
n∑

j=1

b j −1∑

d=b j+1

(
z − d + j − 1

j − 1

)

.

Then, using a combinatorial argument, it was shown in [6, page 768] that for z ≥ b0 it holds

ϕT (z) =
(

z − bn+1 + n

n

)

− 1 −
n∑

i=1

(
z − bi + i − 1

i

)

. (1)

The Hilbert function ϕT for z ≥ b0 can be represented by a unique polynomial, so-called the Hilbert polynomial
of T and is denoted by ϕ̄T (z). Hence for z ≥ b0, ϕT (z) = ϕ̄T (z).

In [6, Lemma 7.1], it was proved that the Macaulay constants b0, . . . , bn for T are uniquely determined if bn+1

has been fixed. Summarizing, the Split algorithm returns a 0-standard cone decomposition Q for NI where I is a
homogeneous ideal. Furthermore, in [6, Theorem 4.11] it was shown that t = 1+max{deg(h) | C(h, u) ∈ Q} is an
upper bound for the degrees of the polynomials in any reduced Gröbner basis of the ideal I. Finally, the construction
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of the exact cones shows that theMacaulay constant b0 is greater than t , and according to [6, Lemma 7.2] b0 remains
an upper bound for degree of any reduced Gröbner basis of I.

4 A New Upper Degree Bound for Gröbner Bases

In this section, by a deeper analysis of Dubé’s method, we give a more accurate upper bound for the degrees of the
polynomials in any reduced Gröbner basis of a homogeneous ideal I. For this, assume that we are given a 0-exact
cone decomposition Q with the Macaulay constants b0 ≥ b1 ≥ · · · ≥ bn+1 = 0 for NI . Then, the Hilbert function
of NI for z ≥ b0 equals

ϕNI (z) =
(

z + n

n

)

− 1 −
n∑

i=1

(
z − bi + i − 1

i

)

.

Furthermore, if d is the maximum degree of a generating set of I then I = C( f, X) ⊕ K ′ where deg( f ) = d and
K ′ is a d-exact cone decomposition with the Macaulay constants a0 ≥ a1 ≥ · · · ≥ an+1 = d. Then, for z ≥ a0 the
Hilbert function of I is:

ϕI(z) =
(

z − d + n − 1

n − 1

)

+
(

z − d + n

n

)

− 1 −
n∑

i=1

(
z − ai + i − 1

i

)

.

From the equality R = I ⊕ NI , for z ≥ max{a0, b0}, we can write

ϕR(z) =
(

z + n − 1

n − 1

)

=
(

z − d + n − 1

n − 1

)

+
(

z − d + n

n

)

+
(

z + n

n

)

− 2

−
n∑

i=1

[(
z − ai + i − 1

i

)

+
(

z − bi + i − 1

i

)]

. (2)

By considering both sides as polynomials in z and making equal the coefficients of the polynomials at the left and
right hand sides, we try to find the desired upper bound. For this, and following the notations of [6], the backward
difference operator ∇, for any function f (x) is defined as ∇ f (x) := f (x) − f (x − 1), and inductively, for any
j , ∇ j f (x) = ∇(∇ j−1 f (x)). It is seen that the degree of univariate polynomial in (2) is n − 1. Now to extract the
coefficients of the polynomial in (2), it is enough to apply the operator ∇ j to both sides of (2) for j = 0, . . . , n − 1.
Hence applying this operator to both sides of (2) and taking into account the identity∇ j

(z+k
n

) = (z+k− j
n− j

)
, for enough

large value of z, we obtain:
(

z + n − j − 1

n − j − 1

)

=
(

z − d + n − j − 1

n − j − 1

)

+
(

z − d + n − j

n − j

)

+
(

z + n − j

n − j

)

−
n∑

i= j

[(
z − ai + i − j − 1

i − j

)

+
(

z − bi + i − j − 1

i − j

)]

.

For i = j we have
(z−ai +i− j−1

i− j

) + (z−bi +i− j−1
i− j

) = 2 and in turn
(

z + n − j − 1

n − j − 1

)

=
(

z − d + n − j − 1

n − j − 1

)

+
(

z − d + n − j

n − j

)

+
(

z + n − j

n − j

)

− 2

−
n∑

i= j+1

[(
z − ai + i − j − 1

i − j

)

+
(

z − bi + i − j − 1

i − j

)]

. (3)
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For simplicity, we denote the constant coefficient of
(z+k

n

)
by:

l(k, n) =
⎧
⎨

⎩

1 if n = 0
k(k − 1) · · · (k − n + 1)

n! if n 	= 0.

So, comparing the constant coefficient of both sides of Equality (3), we get

1 = l(−d + n − j − 1, n − j − 1) + l(−d + n − j, n − j) − 1

−
n∑

i= j+1

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] . (4)

For j = n − 1, we have:

1 = l(−d, 0) + l(−d + 1, 1) − 1 − l(−an, 1) − l(−bn, 1) = 1 − d + 1 − 1 + an + bn .

Thus, an + bn = d. On the other hand, we have an ≥ d and bn ≥ 0 which implies that an = d and bn = 0. Using
these properties, we can simplify Equality (4) as follows:

1 = l(−d + n − j − 1, n − j − 1) + l(−d + n − j, n − j) − l(−d + n − j − 1, n − j) − 1

−
n−1∑

i= j+1

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] .

From the equality l(−d + n − j, n − j) − l(−d + n − j − 1, n − j) = l(−d + n − j − 1, n − j − 1), it follows
that:

1 = 2l(−d + n − j − 1, n − j − 1) − 1

−
n−1∑

i= j+1

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] .

Let for each j , c j denote the sum a j + b j . Then, we can conclude that:

c j+1 = −2l(−d + n − j − 1, n − j − 1) + 2

+
n−1∑

i= j+2

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] . (5)

For j = n − 2, one observes that cn−1 = −2l(−d + 1, 1) + 2 = 2d. For j = n − 3 we have:

cn−2 = −2l(−d + 2, 2) + 2 + l(−an−1 + 1, 2) + l(−bn−1 + 1, 2)

= −2
(d − 1)(d − 2)

2
+ 2 + an−1(an−1 − 1)

2
+ bn−1(bn−1 − 1)

2

= −d2 + 2d + a2
n−1 + b2n−1

2

≤ −d2 + 2d + c2n−1

2
= d2 + 2d.

Below, we state a simple helpful lemma which can be shown using calculus.

Lemma 4.1 Consider the function f (x, y) = xn + yn where n ∈ N, x + y = 2d , x ≥ d and y ≥ 0. Then, the
maximum and minimum values of f are 2ndn and 2dn, respectively.

Let us continue the above reasoning for j = n − 4 and j = n − 5. In fact, by studying different values of j , we
try to predict the desired degree upper bound. For j = n − 4, we have

cn−3 = 2 + 2
(d − 1)(d − 2)(d − 3)

6
+ a2

n−2 + b2n−2

2
+ −an−2 − bn−2

2

+−a3
n−1 − b3n−1

6
+ a2

n−1 + b2n−1

2
+ −an−1 − bn−1

3
By using Lemma 4.1 and this inequality, one gets −cn−2 ≤ −cn−1 = −2d and in consequence
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cn−3 ≤ 2 + 2
(d − 1)(d − 2)(d − 3)

6
+ (d2 + 2d)2

2
+ −2d

2

+−2d3

6
+ 4d2

2
+ −2d

3
= 1

2
d4 + 2d3 + 2d2 + 2d.

Finally, for j = n − 5 by a similar argument, we can obtain:

cn−4 ≤ 1

8
d8 + d7 + 3d6 + 5d5 + 85

12
d4 + 6d3 + 35

12
d2 + 2d.

We are now in a position to set up an induction to show that for each j = 1, . . . , n − 1, there exists a univariate
polynomial F j (d) ∈ Q[d] such that c j ≤ F j (d) and deg(F j ) = 2n− j−1.

Lemma 4.2 Under the above assumptions, for 1 ≤ t ≤ n − 1, it holds ct ≤ Ft (d) where Ft (d) ∈ Q[d] and
deg(Ft ) = 2n−t−1.

Proof The proof proceeds by an induction on t . By the above arguments, the assertion holds for n −4 ≤ t ≤ n −1.
Assume that the claim is true for any j + 1 < t ≤ n − 4 and we want to proof it for j + 1. Using Equality (5), we
have:

c j+1 = −2l(−d + n − j − 1, n − j − 1) + 2 + a2
j+2 + b2j+2

2
+ −a j+2 − b j+2

2

+
n−1∑

i= j+3

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)]

≤ −2l(−d + n − j − 1, n − j − 1) + 2 + c2j+2

2
− d

+
n−1∑

i= j+3

[l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] .

Note that to prove the last inequality, we used the fact that −a j+2 − b j+2 ≤ −an−1 − bn−1 = −2d. By applying
the inductive assumptions, we know that the polynomial F j+2(d) ∈ Q[d] exists such that c j+2 ≤ F j+2(d) and
deg(F j+2) = 2n− j−3. Hence (c j+2)

2 ≤ (F j+2(d))2 and deg((F j+2)
2) = 2n− j−2. On the other hand, from

deg(l(−d + n − j − 1, n − j − 1)) = n − j − 1 and j + 1 < n − 4, it yields that 2n− j−2 > n − j − 1. Therefore,
to prove the assertion, we must show that

∑n−1
i= j+3 [l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)] is less

than a polynomial in terms of d of degree less than 2n− j−2. We have

l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j)

= (−ai + i − j − 1) · · · (−ai )

(i − j)! + (−bi + i − j − 1) · · · (−bi )

(i − j)!

= 1

(i − j)!
i− j∑

t=1

qt (a
t
i + bt

i ), with qt ∈ Z

Now, if qt > 0 then qt (at
i + bt

i ) ≤ qt ct
i and if qt < 0 then qt (at

i + bt
i ) ≤ qt2dt . By the induction hypotheses, it

follows that

l(−ai + i − j − 1, i − j) + l(−bi + i − j − 1, i − j) ≤ 1

(i − j)!
[

i− j∑

qt >0,t=1

qt (Fi (d))t +
i− j∑

qt <0,t=1

qt2dt ].

For simplicity, define the polynomial Gi (d) = 1

(i − j)! [
∑i− j

qt >0,t=1 qt (Fi (d))t + ∑i− j
qt <0,t=1 qt2dt ]. It is easy to

check that deg(Gi ) ≤ (i − j)(2n−i−1). From j + 3 ≤ i ≤ n − 1, we have i − j ≥ 3 and in turn i − j < 2i− j−1.
This implies that (2n−i−1)(i − j) < 2n− j−2, which completes the proof. ��
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Dubé in [6, Lemma 8.1] showed that for 1 ≤ j ≤ n − 2, c j ≤ D j := 2(
d2

2
+ d)2

n− j−1
. However, the bound that

we presented here has the property deg(F j (d)) = 2n− j−1 < deg(D j ) = 2n− j . In addition, in loc. cit., it was shown
that an upper bound for c1 remains a degree upper bound for the Gröbner basis of the initial ideal. We summarize
the above discussion in the following theorem.

Theorem 4.3 Let n ≥ 2 and I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at
most d. Then, the maximum degree of the polynomials in any reduced Gröbner basis of I is bounded above by
F1(d) ∼ O(1)d2n−2

where O(1) is meant for fixed n and growing d.

Based on the above discussion, the construction of Fi (d) for any i is inductive1. In the following table, we give
an explicit representation of F1(d) for some values of n.

Number of variables F1(d)

n = 1 d
n = 2 2d
n = 3 d2 + 2d

n = 4
1

2
d4 + 2d3 + 2d2 + 2d

n = 5
1

8
d8 + d7 + 3d6 + 5d5 + 85

12
d4 + 6d3 + 35

12
d2 + 2d.

We continue this section by extending Theorem 4.3 to non necessary homogeneous ideals. It is well-known that
by considering a new variable xn+1, we can transform a given finite set of polynomials into a homogeneous one.
In addition, to compute a Gröbner basis of an ideal I ⊂ R, we can arrange first a new monomial ordering in
the extended polynomial ring and the desired Gröbner basis of I is obtained directly from the Gröbner basis of
the homogenized ideal. We shall note that, the homogenization process does not change the maximum degree of
the initial generating set, see [7] for more details on this subject. Based on this observation, we can state the next
theorem.

Theorem 4.4 Let n ≥ 1 and I ⊂ R be an ideal generated by a set of non necessary homogeneous polynomials
of degree at most d. Then, the maximum degree of the polynomials in any reduced Gröbner basis of I is bounded
above by O(1)d2n−1

where O(1) is meant for fixed n and growing d.

Remark 4.5 It is worth noting that in [14,18], new dimension and depth depending upper bounds for the degrees of
the elements of reduced Gröbner bases has been exhibited. However, since the approaches proposed in these papers
are different from the original method given in [6], then we can expect only a depth depending variant of the bound
presented in Theorems 4.3 and 4.4

Remark 4.6 Dubé in [6, page 771] claims that

2 + (−1)n− j
[

2

(
d − 1

n − j − 1

)

−
(

an−1

n − j − 1

)

−
(

bn−1

n − j − 1

)]

≤
(

cn−1

n − j − 1

)

However, unfortunately, this inequality is not in general true. For example if n − j −1 > cn−1 then all the binomial
coefficients appeared above are zero and in turn the inequality does not hold. Moreover, as already mentioned, Dubé

in [6, Lemma 8.1] proved that c j ≤ D j := 2(
d2

2
+ d)2

n− j−1
for 1 ≤ j ≤ n − 2. In his proof, he claimed that the

sum 1/2 − ∑n−1
i= j+3 2

i− j/(i − j + 1)! is positive. However, this holds only for n ≤ 5 and for each n > 5 this sum
is negative (it is less than −0.23). In the next theorem, we derive a correct version of Dubé’s bound.

1 The Maple code to calculate F1(d) for any n is available at http://amirhashemi.iut.ac.ir/softwares

http://amirhashemi.iut.ac.ir/softwares
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Theorem 4.7 Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at most d. Then, the
maximum degree of the polynomials in any reduced Gröbner basis of I is bounded above by (d + 1)2

n−2
if n > 2.

If n = 1, 2, then the upper bound becomes d, 2d, respectively.

Proof The bounds the corresponding to n = 1, 2, 3 have been already proved above. Now, let us assume that n > 4.
Keeping the above notations, we claim (by induction on j) that c j ≤ E j := (d+1)2

n− j−1
. For j = n−2, n−3, n−4,

we showed, respectively that cn−2 ≤ d2+2d ≤ (d +1)2
n−(n−2)−1

, cn−3 ≤ d4/2+2d3+2d2+2d ≤ (d +1)2
n−(n−3)−1

and cn−4 ≤ 1

8
d8 + d7 + 3d6 + 5d5 + 85

12
d4 + 6d3 + 35

12
d2 + 2d ≤ (d + 1)2

n−(n−4)−1
, proving the claim in these

cases. Now, assume inductively that the claim is true for each i with j < i ≤ n − 4. Now, we are willing to prove
the claim for j . Recall that

c j ≤ −2l(−d + n − j, n − j) + 2 + c2j+1

2
− c j+1

2

+
n−1∑

i= j+2

[l(−ai + i − j, i − j + 1) + l(−bi + i − j, i − j + 1)] .

Since d ≥ 1, ai ≥ d and bi ≥ 0 then l(−d + n − j, n − j) = (−1)n− j
(d−1

n− j

)
, l(−ai + i − j, i − j + 1) =

(−1)i− j+1
( ai

i− j+1

)
and l(−bi + i − j, i − j + 1) = (−1)i− j+1

( bi
i− j+1

)
. Thus, by substituting these relations, we

obtain

c j ≤ 2(−1)n− j+1
(

d − 1

n − j

)

+ 2 +
(

c j+1

2

)

+
n−1∑

i= j+2

(−1)i− j+1
[(

ai

i − j + 1

)

+
(

bi

i − j + 1

)]

.

Now two cases may arise: If 2|n − j + 1 then from an−1 ≥ d we have
(d−1

n− j

) ≤ (an−1
n− j

)
and so

c j ≤ 2

(
d − 1

n − j

)

+ 2 +
(

c j+1

2

)

−
(

an−1

n − j

)

−
(

bn−1

n − j

)

+
n−2∑

i= j+2

(−1)i− j+1
[(

ai

i − j + 1

)

+
(

bi

i − j + 1

)]

≤
(

d − 1

n − j

)

+ 2 +
(

c j+1

2

)

+
n−2∑

i= j+2
2|i− j+1

[(
ai

i − j + 1

)

+
(

bi

i − j + 1

)]

≤
(

d − 1

n − j

)

+ 2 +
(

c j+1

2

)

+
n−2∑

i= j+2
2|i− j+1

(
ci

i − j + 1

)

.

Otherwise, if 2 � n − j + 1 then

c j ≤ −2

(
d − 1

n − j

)

+ 2 +
(

c j+1

2

)

+
n−1∑

i= j+2

(−1)i− j+1
[(

ai

i − j + 1

)

+
(

bi

i − j + 1

)]

≤ 2 +
(

c j+1

2

)

+
n−1∑

i= j+2
2|i− j+1

[(
ai

i − j + 1

)

+
(

bi

i − j + 1

)]

≤ 2 +
(

c j+1

2

)

+
n−1∑

i= j+2
2|i− j+1

(
ci

i − j + 1

)

.
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To bound c j , we shall need some more inequalities. For each j + 3 ≤ i ≤ n − 2, i − j + 1 ≤ 2i− j−1 and therefore

(
Ei

i − j + 1

)

≤ Ei− j+1
i

(i − j + 1)! ≤ E2i− j−1

i

(i − j + 1)! ≤ E j+1

(i − j + 1)! .

Note that for i = n − 1, these inequalities hold, as well. Indeed, we have
(

2d

n − 1 − j + 1

)

≤ (2d)n− j

(n − j)! ≤ ((d + 1)2)n− j

(n − j)! ≤ E j+1

(n − j)! .

Let us consider again the case 2|n − j + 1. Using these inequalities, we can write

c j ≤ 2 +
(

d − 1

n − j

)

+
(

E j+1

2

)

+
n−2∑

i= j+2
2|i− j+1

(
Ei

i − j + 1

)

≤ 2 + (d − 1)n− j

(n − j)! +
(

E j+1

2

)

+
n−2∑

i= j+2
2|i− j+1

(
Ei

i − j + 1

)

≤ 2 + (d − 1)n− j

(n − j)! + E2
j+1 − E j+1

2
+

n−2∑

i= j+2
2|i− j+1

E j+1

(i − j + 1)!

≤ 2 + (d − 1)n− j

(n − j)! + E2
j+1 − E j+1

2
+ E j+1

∞∑

i= j+2
2|i− j+1

1

(i − j + 1)!

= 2 + (d − 1)n− j

(n − j)! + E2
j+1 − E j+1

2
+ E j+1

(

−3

2
+ cosh(1)

)

≤ 2 + (d − 1)n− j

(n − j)! − 45

100
E j+1 + E2

j+1 ≤ E2
j+1.

Indeed, to get the last inequality, we shall show that
45

100
E j+1 ≥ 2+ (d − 1)n− j

(n − j)! . Since n − j ≥ 5 and d ≥ 1 then

we can write
45

100
E j+1 = 45

100
(d +1)2

n− j−2 ≥ 45

100
[(d −1)2

n− j−2 +22
n− j−2 ]. In addition, from n − j ≥ 5, it follows

that (n − j)! ≥ 5! = 120 and 2n− j−2 ≥ n − j . These arguments imply that
45

100
(d − 1)2

n− j−2 ≥ (d − 1)n− j

(n − j)! and

45

100
22

n− j−2 ≥ 2, proving the claim. A similar argument works in the case 2 � n − j + 1. All in all, we conclude

that c j ≤ E2
j+1 which ends the proof. ��

Note that the results analogous to those in Theorem 4.4 are obtained if I is not necessary homogeneous.

Remark 4.8 In the above proof, we removed negative terms from F j to get an upper bound for c j , and this shows

that F j < E j . Indeed, one observes that LT(E j ) = d2n− j−1
, however LT(F j ) = 2(d2/2)2

n− j−2
.

Remark 4.9 We shall notice that in general the bound 2(1/2(dn−D + d))2
D−1

due to Mayr and Ritscher [18] is
sharper than the bound (d + 1)2

n−2
presented in Theorem 4.7. For example, if D = n − 2 then it is easily verified

that in general (d + 1)2 > 1/
√
2(d2 + d) and this shows that Mayr-Ritscher’s bound is sharper than the bound

given in Theorem 4.7. However, for the special case of D = n − 1 it is seen that for n = 3, 4, 5 if we take d > 11
then the bound obtained in Theorem 4.7 is sharper than their bound.
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5 Degree Upper Bounds for Pommaret Bases

In this section, show that the degree bounds that we discussed in Section 4 hold for Pommaret bases as well. Here
our attention is focused on the Split algorithm and on the conditions under which this algorithm returns a Janet
basis. More precisely, if F ⊂ R is a finite set of monomials and (P, Q) =Split(1, X, F), we look for the conditions
so that P is a Janet basis for the monomial ideal 〈F〉.

Below, when we refer to the Split algorithm, we shall address a variant of this algorithm as follows: In the lines
9 and 10, we select x j so that between all maximal subsets s ⊂ u with F ∩ K[s] = ∅ and x j ∈ u \ s, j has the
minimum index.

Corollary 5.1 Let the finite set U ⊂ R be a monomial Janet basis for the monomial ideal I. Then set E =
{C(h, u) | h ∈ U, u = MJ (h, U )} is a cone decomposition for I.

Proof Since U is a Janet basis for I, then from definition we have I = ∑
C(h,u)∈E C(h, u). Now assume that there

exists v ∈ I such that v ∈ C(h1, u1) ∩ C(h2, u2) with C(hi , ui ) ∈ E . Then according to Definition 2.1, either
h1 ∈ C(h2, u2) or h2 ∈ C(h1, u1). It follows that either C(h1, u1) ⊂ C(h2, u2) or C(h2, u2) ⊂ C(h1, u1) which
is impossible for a monomial Janet basis, and this implies that I = ⊕

C(h,u)∈E C(h, u). ��
We describe below a variant of the Split algorithm which returns a pair of decompositions so that one of the

decompositions is a Janet decomposition for its input ideal.

Algorithm 2 JanetDecomposition
1: Input: h ∈ M, u ⊆ X is a set of variables and F a minimal monomial basis for I : h
2: Output: A pair of cone decompositions (P, Q) so that C(h, u) = P ⊕ Q, P ⊆ I and Q ⊆ NI
3: if 1 ∈ F then
4: return({C(h, u)},∅)

5: end if
6: if F ∩ K[u] = ∅ then
7: return(∅, {C(h, u)})
8: end if
9: Choose x j ∈ u with j := min{i | ∃m ∈ F : indet(m) ⊆ u and xi ∈ indet(m)}.
10: (P0, Q0) :=JanetDecomposition(h, u \ {x j }, F)

11: F ′ := a minimal monomial basis for 〈F〉 : x j
12: (P1, Q1) :=JanetDecomposition(x j h, u, F ′)
13: return(P = P0 ∪ P1, Q = Q0 ∪ Q1)

Proposition 5.2 The JanetDecomposition algorithm terminates in finitely many steps and is correct.

Proof The termination of the algorithm is guaranteed by the lines 10 and 12. Indeed, since in the line 10, we consider
u \ {x j } then by each recursive call to the algorithm in this line, we reduce by one the number of the variables.
On the other hand, since the chosen variable x j appears in F , then 〈F〉 ⊂ 〈F ′〉, and from nœtherianity of R we
conclude that the total number of recursive call to the algorithm should be finite. The correctness proof is similar
to the proof of [6, Lemma 4.4]. ��
Remark 5.3 In contrary to the Split algorithm, to choose x j , we do not consider the maximal independent set
s ⊂ u, and this yields that Q is not generally a deg(h)-standard cone decomposition.

Theorem 5.4 Let F ⊂ M be a minimal monomial basis for I. If (P, Q) = is the output of JanetDecomposition
(1, X, F) then P is a Janet basis for I.

Proof We must show that U = {h | C(h, u) ∈ P} is a Janet basis for I. Since P generates I, then it is enough
to show that for any cone C(h, u) ∈ P , MJ (h, U ) = u. Assume that, for some h = xα1

1 · · · xαn
n , x j ∈ MJ (h, U )
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and it does not belong to u. Let m = xα1
1 · · · x

α j
j . This shows that at one stage, x j has been selected and two

branches JanetDecomposition(m, u′ \ {x j }, F) and JanetDecomposition(x j m, u′, F ′) are produced. Now, let
us consider the second branch. Since in this branch, F ′ is a monomial basis for I : x j m, then at the end by
multiplying xi m by some variables, a cone is added into P . It should be noted that, due the selection strategy in the
line 10, we are sure that x j m is multiplied by some variables with indices higher than j . Therefore, this implies
that x j is not Janet multiplicative for h, leading to a contradiction. Conversely, suppose that x j ∈ u. We must
show that x j ∈ MJ (h, U ). Using the above notations and by reductio ad absurdum, suppose that there exists a
monomial f ∈ U so that f ∈ [deg1(h), . . . , deg j−1(h)] and deg j ( f ) > deg j (h). We know that xα1

1 · · · x
α j−1
j−1 ∈

[deg1(h), . . . , deg j−1(h)]. Then, due to the structure of the algorithm, at one step of the algorithm, we reach the
branch JanetDecomposition(m, u′, F ′) with 〈F ′〉 = I : m and u ⊂ u′. From x j /∈ MJ (h, U ), we deduce that F ′
contains a monomial involving x j and in consequence in the construction of C(h, u), x j is excluded from u, giving
rise to a contradiction. ��
Example 5.5 JanetDecomposition(1, {x1, x2}, {x21 x2, x1x22 , x32 }) returns (P, Q) with

P = {
C(x32 , {x2}), C(x1x22 , {x2}), C(x21 x2, {x1, x2})

}

Q = {
C(1,∅), C(x2,∅), C(x1,∅), C(x22 ,∅), C(x1x2,∅), C(x21 , {x1})

}
. (6)

Lemma 5.6 If 〈F〉 is quasi stable and F is a minimal monomial basis for this ideal, then both Split(1, X, F) and
JanetDecomposition(1, X, F) output the same result.

Proof Since I = 〈F〉 is quasi stable then F consists of pure powers of the variables {x1, . . . , xn−D} where
D = dim(I), see [23, Proposition 4.4]. Thus, at any intermediate stage of both the algorithms, when we encounter
the triple (h, u, F ′), two cases may happen: If {x1, . . . , xn−D} ∩ u 	= ∅ then both the algorithms must choose the
same variable. Otherwise, {x1, . . . , xn−D} ∩ u = ∅. We may assume that u 	= ∅, F ′ ∩K[u] 	= ∅ and xt ∈ u has the
minimum index. We claim that a pure power of xt belongs to F ′, and therefore both the algorithms will select xt .
To prove the claim, note that from F ′ ∩K[u] 	= ∅, we conclude that there exists a monomial m in this intersection.
In addition, we know that 〈F ′〉 = I : h and in turn, mh ∈ I. Since m ∈ K[xn−D+1, . . . , xn] and mh ∈ I then from
quasi stability of I, it follows that xα

t h ∈ I for some integer α. This shows that xα
t ∈ F ′ which ends the proof. ��

According to [23, Proposition 4.4], we know that every quasi stable monomial ideal has a finite Pommaret basis.
Then, it follows immediately from the above lemma that both the algorithms return a finite Janet basis for its input
ideal. In the next proposition, we show that this basis is also a Pommaret basis.

Proposition 5.7 Let I = 〈F〉 be a quasi stable monomial ideal. Furthermore, assume that (P, Q) =
JanetDecomposition(1, X, F). Then, P forms a finite Pommaret basis for I.

Proof We shall show that for each C(h, u) ∈ P we have u = {xt | t ≥ cls(h)}. From the proof of Lemma 5.6, one
observes that at each step of the algorithm, when we consider the triple (h, u, F ′) then x j ∈ u with the minimum
index, is chosen and this implies that u is of the form {x�, . . . , xn}. Therefore, it remains only to prove that � = cls(h).
Assume that h = xα1

1 · · · x
αcls(u)

cls(u) . Since by the construction of the JanetDecomposition algorithm, each multiplied
variable in h, comes from the line 12 of the algorithm then it is clear to see that xcls(u) appears in u. Moreover, since
at this stage, xcls(u) is selected, then by the selection strategy in the Split algorithm (see Lemma 5.6), cls(u) should
be the minimum index in u, and this completes the proof. ��
Corollary 5.8 If 〈F〉 is quasi stable and (P, Q) =Split(1, X, F). Then, P represents the minimal Janet basis for
I. The same holds for the JanetDecomposition algorithm.

Proof From Proposition 5.7, we know that set P is a Pommaret basis and a Janet basis. Then, the assertion follows
from the fact that any finite Pormmaret basis is a minimal Janet basis, [8, Corollary 3]. ��
Remark 5.9 Let I = 〈F〉 be a monomial ideal. In [12, Theorem 5.7], it was shown that I is quasi stable ideal iff NI
has aRees decomposition, see loc. cit. for more information on Rees decomposition. Now, if (P, Q)=Split(1, X, F)

then, from the proof of Lemma 5.6, Q is a Rees decomposition for NI .
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Below, we state a generalization of [6, Lemma 7.2]. The next lemma allows us to deduce that if b0, . . . , bn+1

are the Macaulay constants for NI then any upper bound for b0 remains an upper bound for any basis constructed
by the Dubé’s approach. It should be noticed that in the previous section, we found an upper bound for c1 and by
[6, page 773], any bound for c1 is a bound for b0.

Lemma 5.10 Let F be a finite set of monomials and (P, Q) =Split(1, X, F). Then for every C( f, u) ∈ P, Q
contains a cone C(h, v) with deg( f ) = deg(h) − 1.

Proof Let I = 〈F〉 ⊂ R. Since I 	= R, then deg( f ) > 1. From the membership C( f, u) ∈ P , we conclude
that Split( f, u, F ′) = ({C( f, u)},∅) where I : f = 〈F ′〉 and 1 ∈ F ′. Therefore, f = x j h for some monomial
h and some variable x j . At the same time that we construct the branch Split( f, u, F ′), we produce the branch
Split(h, u \ {x j }, F ′′) for some set F ′′. Thus, we can see easily that after some recursive calls of the algorithm,
we arrive at Split(h, u′, F ′′) with u′ ⊂ u \ {x j } and in turn the cone C(h, u′) is added into Q, thereby ending the
proof. ��

As a consequence of Theorem 4.7, Proposition 5.7 and Lemma 5.10, we state the main result of this section.

Theorem 5.11 Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at most d. Assume
that I is in quasi stable position. Then, the maximum degree of the polynomials in the Pommaret basis of I is
bounded above by (d + 1)2

n−2
if n > 2. If n = 1, 2, then the upper bound becomes d, 2d, respectively.

Proof Let (P, Q) =Split(1, X,LM(F)) where F is a Gröbner basis of I. Since I is in quasi stable position then
LM(I) is quasi stable. Then, from Lemma 5.6 and Proposition 5.7, it follows that P is a Pommaret basis for LM(I).
In addition, the elements of P form the leading monomials of the elements of the Pommaret basis of I. Therefore,
from Lemma 5.10, we conclude that an upper bound for the degrees of the elements of P remains an upper bound for
the maximum degree of the elements of the Pommaret basis of I. Finally, the assertion is proved by Theorem 4.7.

��
Remark 5.12 From [23, Theorem 9.2], it follows that the maximum degree of the elements of the Pommaret basis
of an ideal in quasi stable position is the Castelnuovo-Mumford regularity. Therefore, the bound presented in
Theorem 5.11 remains an upper bound for the Castelnuovo-Mumford regularity of I. On the other hand, Bayer
and Stillman [2, Corollary 2.5] proved that in generic position the degree of the reduced Gröbner basis of a
homogeneous ideal w.r.t. ≺ is bounded by the Castelnuovo-Mumford regularity of the ideal. Finally, in generic
position, the Pommaret basis coincides with the reduced Gröbner basis [17, Theorem 2.15]. All these together
gives an alternative proof to Theorem 5.11.

6 J-stable Ideals

From the proof of [10, Proposition 4.5], we conclude that n(d + 1)2
n−2

is a degree upper bound for Janet bases of
homogeneous ideals. In this section, we introduce a new generic position in which the bound (d + 1)2

n−2
presented

in Theorem 4.7 remains a degree upper bound for Janet bases.

Definition 6.1 A monomial ideal I ⊂ R is J(anet)-stable if for any monomial m ∈ I and all positive integers
i, j, s with 1 ≤ j < i < n, if xs

i | m, there exists an integer t ≥ 0 such that xt
j (m/xs

i ) ∈ I. An ideal I ⊂ R is in
J-stable position if LM(I) w.r.t. ≺ is J-stable.

We shall emphasize that the difference between this definition and Definition 2.9 is that here we consider i < n
instead of i ≤ n. It is clear that any ideal in quasi stable position is in J-stable position, however, the converse does
not hold in general, see Example 6.6.

Theorem 6.2 Let I = 〈F〉 ⊂ R be J-stable where F is a finite set of monomials. Furthermore, let
(P, Q) =Split(1, X, F). Then P is a Janet basis for I.
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Proof We first show that in the construction of a cone C(h, u) ∈ P , the variables {x1, . . . , xn−1} are selected
in the order x1, . . . , xn−1. Note that in this claim, we ignore the last variable. Assume that in the course of the
construction of this cone the variable xt has been selected. Therefore, there exists a maximal independent set
s ⊂ u′ such that F ′ ∩ K[s] = ∅ and xt ∈ u′ \ s. Note that u ⊂ u′ and 〈F〉 ⊂ 〈F ′〉. Now, assume in contrary
that later on, and in the course of the construction of C(h, u) ∈ P , the variable x� with � < t is selected. Let
u′ \ s = {xt , xt1 , . . . , xtk } where t < t1 < · · · < tk . We claim that indet(m) ∩ {xt1 , . . . , xtk } 	= ∅ for any
m ∈ F ′. For any m ∈ F ′, two cases may happen: If xt � m then indet(m) ∩ {xt1 , . . . , xtk } 	= ∅. Otherwise, xt |m.

Since I is J-stable and t > l then there exists an integer α ≥ 0 such that xα
l m/xβ

t ∈ 〈F〉 where β = degt (m).
From these arguments, we conclude that indet(m) ∩ {xt1 , . . . , xtk } 	= ∅ and this proves the claim. This implies
that F ′ ∩ K[s ∪ {xt }] = ∅, leading to a contradiction with the maximality of s. To complete the proof, we
shall show that xn ∈ u. From the structure of the algorithm, u 	= ∅. Assume in contrary that xn /∈ u. Since
we start with X , then at one stage of the algorithm, xn would be selected. On the other hand, by the selection
strategy, a variable with the minimum index is chosen. Therefore, u′ \ s = {xn} for some u′ and s. In this case,
we make two calls Split(h′, u′ \ {xn}, F ′) and Split(xnh′, u′, F ′). The first call adds an element into Q and
we do not consider it. In the second call, xn ∈ u′ and therefore xn remains in u. In turn we do not need to
consider xn in our discussion. Thus, the proof is ended by using an argument similar to the proof of Theorem 5.4.

��
Example 6.3 Let I = 〈F〉 ⊂ R where F = {x21 , x22 , . . . , x2n−2, xn−1xn}. Then, it is easy to see that I is J-stable.
However, since xα

n−1 /∈ I for any α ≥ 0, then I is not quasi stable. Let (P, Q) =Split(1, X, F). Then, we have

P = {
C(vx2t , {xt , . . . , xn}) | 1 ≤ t ≤ n − 2, v = xα1

1 · · · xαt−1
t−1 , 0 ≤ αi ≤ 1

}
,

⋃{
C(vxn−1xn, {xn−1, xn}) | v = xα1

1 · · · xαn−2
n−2 , 0 ≤ αi ≤ 1

}
.

Q = {
C(v, {xn}) | v = xα1

1 · · · xαn−2
n−2 , 0 ≤ αi ≤ 1

}

⋃
{C(vxn−1, {xn−1}) | v = xα1

1 · · · xαn−2
n−2 , 0 ≤ αi ≤ 1

}
.

From Theorem 6.2, it follows that P is a Janet basis for I.

Based on Theorems 4.7 and 6.2 and Lemma 5.10, we present the main result of this section.

Theorem 6.4 Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at most d. Assume
that I is in J-stable position. Then, the maximum degree of the polynomials in the Janet basis of I is bounded above
by (d + 1)2

n−2
if n > 2. If n = 1, 2, then the upper bound becomes d, 2d, respectively.

Proof Assume that (P, Q) =Split(1, X,LM(F)) where F is a Gröbner basis of I. Since I is in J-stable position
then LM(I) is J-stable and from Theorem 6.2, it follows that P is a Janet basis for LM(I). Further, the elements
of P form the leading monomials of the elements of the Janet basis of I. Thus, from Lemma 5.10, we conclude
that an upper bound for the degrees of the elements of P remains an upper bound for the maximum degree of the
elements of the Janet basis of I. So, the assertion is proved by Theorem 4.7. ��

Now the main questions that we address at the end of this section are: How can we test whether or not a given
monomial ideal is J-stable? If a given ideal is not in such a position, how can we transform it into this position? The
next algorithm answers the first question.
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Algorithm 3 JStableTest
1: Input: A finite set F ⊂ R of monomials
2: Output: True if 〈F〉 is J-stable, and false otherwise. In the case of false, two related variables are returned too.
3: q := maximum degree of the elements of F
4: for u ∈ F do
5: if cls(u) = n and xq

k−1u/x
degk (u)

k /∈ 〈F〉 where k is the class of u|xn=1 then
6: return( f alse, xk , xk−1)

7: else if 1 < cls(u) = k < n and xq
k−1u/x

degk (u)

k /∈ 〈F〉 then
8: return( f alse, xk , xk−1)

9: end if
10: end for
11: return(true)

Theorem 6.5 The JStableTest algorithm terminates in finitely many steps and is correct.

Proof The finite termination of the algorithm is trivial. Let us deal with its correctness. If I = 〈F〉 is J-stable then
it is clear the algorithm returns true. Conversely, assume that the algorithm returns true. We must show that if xi | u

then xq
j u/x

degi (u)

i ∈ 〈F〉 when j < i < n. Since the output is true, we conclude that xq
k−1u/x

degk (u)

k ∈ I where

k < n is the largest index of the variables dividing u. Using an induction we can show that xq
j u/(x

α j+1
j+1 · · · xαn

k ) ∈ I
. This shows the desired claim and so I is J-stable. ��

By applying this algorithm and using the method presented in [23] (to find deterministically a linear change
of variables to transform an ideal into quasi stable position), we are able to present a deterministic and effective
approach to transform a given ideal into J-stable. We have implemented this algorithm in Maple, and in the next
example we apply this algorithm to a simple ideal.

Example 6.6 Let I1 = 〈x1x23 , x22 〉 ⊂ K[x1, x2, x3] and x3 ≺drl x2 ≺drl x1. Then, one sees readily that
JStableTest(F) returns ( f alse, x2, x1)where F = {x1x23 , x22 }. By applying the linear change [x2 = x2+x1]onI1,
we get the ideal I2 = 〈x1x23 , (x2+x1)2〉. Computing the reduced Gröbner basis G = {x21 +2x1x2+x22 , x1x23 , x22 x23 }
for I2, we obtain LM(G) = {x21 , x1x23 , x22 x23 }. Since JStableTest(LM(G)) outputs true then I2 is J-stable.

7 Ideals in Prime Position

In this section, we introduce a new notion of genericity and show that the degree of the minimal Janet basis of
an ideal in this position is bounded above by the degree bounds that we presented in Sect. 4. Below, we define
inductively the notion of prime position.

Definition 7.1 Let I ⊂ R be a monomial ideal and F be its minimal monomial generating set. If either I = {0}
or I = R then I is in prime position. Otherwise, I is called in prime position if the following conditions hold:

1. The variable x j with the minimum index in indet(F) appears in one of the minimal prime ideals of I having
dimension dim(I).

2. both the ideals I : x j and I|x j =0 are in prime position.

A polynomial ideal I ⊂ R is called in prime position if LM(I) w.r.t. ≺ is in this position.

Example 7.2 We see readily that the ideal I = 〈x1x2, x1x3〉 = 〈x1〉 ∩ 〈x2, x3〉 ⊂ K[x1, x2, x3] is in prime position.
However, the ideal I = 〈x21 , x2x3, x23 〉 is not in prime position, because ideal I|x1=0 = 〈x2x3, x23 〉 has only the
minimal prime P = 〈x3〉 which does not contain x2.

Example 7.3 The ideal I = 〈x21 , x1x2 · · · xn〉 ⊂ R is in prime position, however, it is not J-stable.
Indeed, we observe that xα

2 x1x2 · · · xn/x3 /∈ I for all α ∈ N. On the other hand, the ideal I =
〈x21 xn, x22 xn, . . . , x2n−2xn, xn−1xn〉 ⊂ R is J-stable, however it is not in prime position. We note that the mini-
mal prime of I with dimension n − 1 is 〈xn〉 which does not contain x1.
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Lemma 7.4 Every ideal in quasi stable position is in prime position.

Proof Assume that I is a monomial ideal in quasi stable position. Then, from [23, Proposition 4.4], every minimal
prime of I is of the form 〈x1, . . . , xi 〉 for some integer i ≥ n − dim(I). This shows that x1 appears in any minimal
prime ideal of I with the dimension dim(I). On the other hand, one observes that I : x1 and I|x1=0 remain quasi
stable and using an induction, we can conclude the assertion. ��

Example 7.2 shows that there exists an ideal in prime position which is not quasi stable. Further, from this lemma,
we infer that, given an ideal, any generic linear change of the variables transforms it into prime position. To prove
the main result of this section, we shall need the next lemma.

Lemma 7.5 Suppose that I = 〈F〉 and F ⊂ M. Then for any maximal independent set s ⊂ X with F ∩K[s] = ∅,
P = 〈X \ s〉 is a minimal prime of I with dim(I) = dim(P), and vice versa.

Proof First we shall note that any prime of I is of the form 〈xi1 , . . . , xik 〉. Now, let s be a maximal independent
set. Then, indet( f ) ∩ (X \ s) 	= ∅ for each f ∈ F . So I is contained in P and P is a prime ideal. Now, according
to the maximality of X \ s, P is a minimal prime of I. Clearly the converse implication holds. ��

Note that in the line 11 of the Split algorithm and in the line 10 of the JanetDecomposition algorithm, we can
replace F by F |x j =0. We establish now the main result of this section

Theorem 7.6 Let I ⊂ R be an ideal generated by a set of homogeneous polynomials of degree at most d. Assume
that I is in prime position. Then, the maximum degree of the polynomials in the Janet basis of I is bounded above
by (d + 1)2

n−2
if n > 2. If n = 1, 2, then the upper bound becomes d, 2d, respectively.

Proof From Lemma 7.5, it follows that the behaviour of both the algorithms Split and JanetDecomposition is
similar. Considering this along with Theorems 4.7 and 5.4, the assertion is proved. ��

We continue this section by giving an example (which is a generalization of an example from [1] to an arbitrary
number of variables) to illustrate that the maximum degree of a Janet basis may be higher than the Castelnuovo-
Mumford regularity of the ideal it generates.

Example 7.7 Let d be a positive integer. Let us define the monomial ideal I(d) = 〈F〉 ⊂ R where F = B1 ∪ B2

with

B1 = {
xα

n−1xβ
n | α ≥ 0, β ≥ 0, α + β = d

}
,

B2 = {
xα1
1 · · · xαn

n | αn > 0, α1 + · · · + αn−2 	= 0, α1 + · · · + αn = d
}
.

This ideal is a lex segement ideal which is interesting in combinatorial commutative algebra, see [19, Section 2.4]
for more details. The set H (d) is the minimal Janet basis for I(d) where H (d) = B1 ∪ B2 ∪ L1 ∪ L2 with

L1 = {
xα1
1 · · · xαn−2

n−2 xd
n−1 | 1 ≤ αi ≤ d − 1

}
,

L2 = {
vxλ

n−1 | v ∈ B2, λ > 0, degn−1(v) + λ < d
}
.

The maximum degree of this basis is (n −1)d − (n −2). On the other hand, considering the ordering x1 ≺ · · · ≺ xn ,
this ideal is quasi stable and F is the minimal Pommaret and Janet basis for I(d). This shows that the Castelnuovo-
Mumford regularity ofI(d) is d, see [23, Theorem9.2] (it should be noticed that theCastelnuovo-Mumford regularity
of an ideal remains stable after any change of the variables). Let (P, Q) =Split(1, X, F) where in the line 10 of
the Split algorithm, we select x j with the maximum index j . Then Q is a 0-standard cone decomposition for NI(d) .
Let us consider Q as the union Q = Q1 ∪ Q2 where

Q1 = {
C(xt

n−1, {x1, . . . , xn−2}) | 0 ≤ t ≤ d − 1
}
,

Q2 = {
C(u,∅) | xn|u, u /∈ I(d)

}
.
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Since Q1 is a 0-exact cone decomposition, then Q is also a 0-exact cone decomposition. Due to the definition, we
have b0 = 1 + max{deg(h) | ∃u ⊂ X, C(h, u) ∈ Q} and in consequence b0 = d. Summarizing, for the ideal
I(d), the maximum degree of the minimal Janet basis may become arbitrarily larger than its Castelnuovo-Mumford
regularity. For instance, if n = d = 3 we have:

I(3) = {
x21 x3, x1x23 , x1x2x3, x22 x3, x2x23 , x32 , x33

}
,

H (3) = {
x33 , x21 x3, x2x23 , x22 x3, x23 x1, x1x3x2, x32 , x32 x1, x3x1x22 , x32 x21 , x3x21 x2, x3x22 x21

}
,

P = {
C(x32 , {x1, x2}), C(x21 x3, {x1}), C(x1x2x3, {x1}), C(x22 x3, {x1, x2})

}

⋃{
C(x1x23 {x1}), C(x2x23 , {x1, x2}), C(x33 , {x1, x2, x3})

}
,

Q = {
C(1, {x1}), C(x2, {x1}), C(x22 , {x1}), C(x3,∅), C(x1x3,∅), C(x2x3,∅), C(x23 ,∅)

}
.

Furthermore, it should be remarked that for this example the difference between the degree of the Janet basis and
the Castelnuovo-Mumford regularity is O(nd) and thus gets larger for both increasing d and increasing n.

We conclude the paper by studying how we can test whether or not a given monomial ideal is in prime position.
In addition, if the ideal is not in such a position, how we can transform it into this position. Let us first deal with
the first problem. We shall note that in the next algorithm, we shall need the computation of minimal primes of a
monomial ideal which can be done relatively simply via Alexander duality, see [19, Chapter 5].

Algorithm 4 PrimePositionTest
1: Input: F ⊂ M
2: Output: true if 〈F〉 is in prime position and false, otherwise
3: if 1 ∈ F or F = {0} then
4: return(true)
5: end if
6: j1 = min{i | xi ∈ indet(F)}
7: j2 := min{i | xi ∈ P,P is a prime of 〈F〉 so that dim(〈F〉) = dim(P)}
8: if x j1 	= x j2 then
9: return( f alse, x j2 , x j1 )

10: end if
11: A :=Test(F |x j1=0)

12: B :=Test(F ′) where F ′ is the minimal generating set for 〈F〉 : x j1
13: if A = true and B = true then
14: return(true)
15: else if A 	= true and B = true then
16: return(A)

17: else if A = true and B 	= true then
18: return(B)

19: else
20: A := ( f alse, x j20 , x j10 )

21: B := ( f alse, x j21 , x j11 )

22: if j10 < j11 then
23: return(A)

24: else
25: return(B)

26: end if
27: end if
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Algorithm 5 PrimePosition
1: Input: A finite set F ⊂ R of homogeneous polynomials
2: Output: A linear change � so that 〈�(F)〉 is in prime position
3: � :=the identity linear change
4: G :=GröbnerBasis(F,≺)

5: A :=PrimePositionTest(LM(G))

6: while A 	= true do
7: φ := A[2] �→ A[2] + cA[3] where c ∈ K is a random number
8: T emp :=GröbnerBasis(� ◦ φ(G),≺)

9: B :=PrimePositionTest(LM(T emp))

10: if B 	= A then
11: � := � ◦ φ

12: A := B
13: end if
14: end while
15: return(�)

To prove the termination of the PrimePosition algorithm, we shall need the next lemma.

Lemma 7.8 If PrimePositionTest(F) returns ( f alse, x j2 , x j1), then u ∈ F exists with β = deg j2(u) such that

β 	= 0 and for every α ≥ 0, xα
j1

u/xβ
j2

/∈ 〈F〉.
Proof According to the structure of the PrimePositionTest algorithm, we have x j1 	= x j2 where j1 := min{i |
xi ∈ indet(F)} and j2 := min{i | xi ∈ P where P is a prime of 〈F〉, dim(〈F〉) = dim(P)}. Assume that P is a
prime of 〈F〉 so that P = 〈x j2 , x j3 , . . . , x jt 〉 and j2 < j3 < · · · < jt . Assume in contrary that for every u ∈ F that

x j2 |u with β = deg j2(u), there is α ≥ 0 with xα
j1

u/xβ
j2

∈ 〈F〉. We claim that the prime ideal P ′ = 〈x j3 , . . . , x jt 〉
contains I, leading to a contradiction. For every monomial m ∈ F , if x j2 � m, indet(v)∩ {x j3 , . . . , x jt } 	= ∅ and we
are done. Otherwise, assume that for a monomial m ∈ F we have x j2 |m and λ = deg j2(m). Since x j1 ∈ indet(F)

then an integer α ≥ 0 exists such that xα
j1

m/xλ
j2

∈ 〈F〉 then indet(xα
j1

m/xλ
j2
) ∩ {x j3, . . . , x jt } 	= ∅. It follows that

indet(m) ∩ {x j3 , . . . , x jt } 	= ∅ and this shows that P ′ includes a minimal prime ideal of I. ��
Theorem 7.9 The PrimePosition algorithm terminates in finitely many steps and is correct.

Proof Lemma 7.8 shows that if PrimePositionTest(F) returns ( f alse, x j2 , x j1) then we find an obstruction to
quasi stability of the ideal generated by F . On the other hand, the third author in [23] described a deterministic to
find an elementary linear change of variables to find and solve an obstruction to quasi stability of the givn ideal.
Thus the construction of the linear change to transform an ideal into the prime position is partially similar to the
transformation which is needed for the quasi stability. This shows both the correctness and finite termination of the
algorithm. ��
Remark 7.10 If in the PrimePosition algorithm we choose c = 1, then the algorithm becomes deterministic, see
[13,23]. Note that in the case that the characteristic ofK is positive, then by [13, Section 6] the algorithm terminates
as well, and returns the correct output.

Example 7.11 We illustrate the steps of the algorithm by an example. Let I1 = 〈x1x22 , x32 , x33 〉 ⊂ K[x1, x2, x3] and
x3 ≺drl x2 ≺drl x1. Let B1 = {x1x22 , x32 , x33}. Then PrimePositionTest(B1) returns ( f alse, x2, x1). We perform
the linear change [x2 = x2+x1]. By applying this change on I1, we get the ideal I2 = 〈x1(x2+x1)2, (x2+x1)3, x33 〉.
Computing the reduced Gröbner basis B2 = {x33 , x21 x2 + 2x1x22 + x32 , x31 − 3x1x22 − 2x32} for I2, we obtain
LM(B2) = {x31 , x21 x2, x33 }. Then PrimePositionTest(LM(B2)) = true and in turn I2 is in prime position.

We end this section by comparing the performance of our proposed algorithms to transform a given ideal into
J-stable and prime positions. We have implemented both these algorithms in Maple 182. In the following tables,

2 The Maple code of our implementations are available at http://amirhashemi.iut.ac.ir/softwares

http://amirhashemi.iut.ac.ir/softwares
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we compare only the number of the performed elementary linear changes for some well-known examples from
computer algebra literature3. All computations were done over the field of the rational numbers using the degree
reverse lexicographical ordering.

Name PrimePosition JStable Name PrimePosition JStable

Liu 1 6 Noon 0 6
Bermejo and Gimenez 0 0 Gerdt2 1 1
Weispfenning94 3 2 Cyclic 5 3 3
Sturmfels and Eisenbud 13 21 Cyclic 6 5 6
Lichtblau 1 0 Seiler 1 1
Green 2 1 Vermeer 5 4
Eco7 3 5 Katsura5 0 0
Eco8 3 6 Katsura6 0 0

As a simple observation, one sees that the PrimePosition algorithm needs less transformations than the JStable
algorithm. Finally, we shall remark that the 0 entry in the PrimePosition column indicates that the corresponding
ideal is already in this position. The same holds for the JStable column.
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