
Math.Comput.Sci. (2021) 15:15–31
https://doi.org/10.1007/s11786-020-00468-y Mathematics in Computer Science

On a 2-Orthogonal Polynomial Sequence via Quadratic
Decomposition

Teresa Augusta Mesquita

Received: 10 June 2019 / Revised: 17 January 2020 / Accepted: 19 February 2020 / Published online: 13 March 2020
© Springer Nature Switzerland AG 2020

Abstract We apply a symbolic approach of the general quadratic decomposition of polynomial sequences—
presented in a previous article referenced herein—to polynomial sequences fulfilling specific orthogonal conditions
towards two given functionals u0, u1 belonging to the dual of the vector space of polynomials with coefficients in
C. The general quadratic decomposition produces four new sets of polynomials whose properties are investigated
with the help of the mentioned symbolic approach together with further commands which inquire relevant features,
as for instance, the classical character of a polynomial sequence. The computational results are detailed for a wide
range of choices of parameters and co-recursive type polynomial sequences are also explored.

Keywords Quadratic decomposition · d-Orthogonal polynomials · d-Symmetric polynomials · Symbolic
computations
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1 Introduction

The symmetry feature of a polynomial sequence {Wn(x)}n≥0 can be translated by the fact that every element of odd
degree W2n+1(x) is an odd polynomial function and every element of even degree W2n(x) is an even polynomial
function. This description is also equivalent to the splitting of a symmetric polynomial sequence into two new
polynomial sequences {Pn(x)}n≥0 and {Rn(x)}n≥0, such that

W2n(x) = Pn(x
2), (1)

W2n+1(x) = x Rn(x
2). (2)

This is called the quadratic decomposition (QD) of the symmetric polynomial sequence {Wn(x)}n≥0 and the most
famous example is given by the Hermite orthogonal polynomial sequence which QD has the Laguerre orthogonal

T. A. Mesquita (B)
Centro de Matemática da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
e-mail: teresa.mesquita@fc.up.pt

T. A. Mesquita
Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’
Álvares, 4900-347 Viana do Castelo, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11786-020-00468-y&domain=pdf
http://orcid.org/0000-0003-4714-926X


16 T. A. Mesquita

polynomial sequence, with parameters α = − 1
2 ,

1
2 , in the role of {Pn(x)}n≥0 and {Rn(x)}n≥0, respectively [1,3,24].

This simple QD has been generalised initially for all polynomial sequences (non-symmetric included) [18,21] and
later allowing the replacement both of x2 by any quadratic mapping x2 + px + q and the monomial x in (2) by a
generic monic polynomial of degree of one x − a [15]. In particular, it is worth mentioning a widely known QD
defined as in (1)–(2), though with the quadratic transformation x2 − 1, of the normalised Gegenbauer orthogonal
polynomial sequence that has two Jacobi orthogonal polynomial sequences as {Pn(x)}n≥0 and {Rn(x)}n≥0 [11]. In
brief, a QDof a symmetric orthogonal polynomial sequence provides two new orthogonal sequences, not necessarily
symmetric (e.g. [18, p.34]), and several further studies have showed the potencial of the quadratic decomposition in
the study of symmetric and non-symmetric orthogonal polynomial sequences (e.g. [12,13,22]).We should also refer
to several contributions regarding quadratic mappings considered in the study of orthogonal polynomials [4,10,16].

In this paper, we decompose quadratically 2-orthogonal polynomial sequences, following the wider set up of
the QD and we put in evidence a family for which the application of the symbolic implementation of the general
QD presented in [14] together with broad symbolic procedures introduced in [23] provides interesting results.
In particular, that 2-orthogonal family yields three further 2-orthogonal polynomial sequences through the most
general quadratic decomposition.

This approach has been applied to some 2-orthogonal polynomial sequences by means of the most simple cubic
decomposition, as we can read for instance in [7]. A generalised notion of symmetry of order d is equivalent to a
natural polynomial decomposition of order d+1which defines d+1 new polynomial sequences. In other words, the
most evident decomposition for a 2-orthogonal sequence and 2-symmetric would be the cubic decomposition and
this technique allowedDouak andMaroni to list already a considerable amount of classical 2-orthogonal polynomial
sequences in [7].

This article is organised as follows. In Sect. 2 we recall some notation and basic concepts about polynomial and
dual sequences, d-symmetry and d-orthogonality, for any positive integer d. Section 3 is devoted to the general
QD, firstly providing its definition and characterisation as given in [15], and secondly presenting the steps followed
in the symbolic implementation applied throughout our study. In Sect. 4 we describe the particular family chosen
as one of the main subjects of this paper and the corresponding output of that symbolic implementation. We also
show in Sect. 5 the potential of the computational support in the analysis of the changes produced in the QD by the
modification of a finite amount of initial parameters of the given 2-orthogonal polynomial sequence. In the final
section we prove some recurrence relations fulfilled by the four sets of polynomials investigated previously.

2 Notation and Basic Concepts

Let P be the vector space of polynomials with coefficients in C and let P ′ be its topological dual space. We denote
by 〈w, p〉 the action of the form or linear functional w ∈ P ′ on p ∈ P . In particular, 〈w, xn〉 := (w)n , n ≥ 0,
represent the moments ofw. In the following, we will call polynomial sequence (PS) to any sequence {Wn}n≥0 such
that degWn = n, ∀n ≥ 0. We will also call monic polynomial sequence (MPS) to a PS so that all polynomials
have leading coefficient equal to one.

If {Wn}n≥0 is a MPS, there exists a unique sequence {wn}n≥0, wn ∈ P ′, called the dual sequence of {Wn}n≥0,
such that,

〈wn,Wm〉 = δn,m, n,m ≥ 0. (3)

On the other hand, given a MPS {Wn}n≥0, the expansion of xWn+1(x), defines sequences in C, {βn}n≥0 and
{χn,ν}0≤ν≤n, n≥0, such that

W0(x) = 1, W1(x) = x − β0, (4)

xWn+1(x) = Wn+2(x) + βn+1Wn+1(x) +
n∑

ν=0

χn,νWν(x). (5)

This relation is usually called the structure relation of {Wn}n≥0, and {βn}n≥0 and {χn,ν}0≤ν≤n, n≥0 are called the
structure coefficients (SCs).
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Definition 1 [7] A PS {Wn}n≥0 is d-symmetric if

Wn(ξk x) = ξnk Wn(x), n ≥ 0, k = 1, 2, . . . , d,

where ξk = exp
(
2ikπ
d+1

)
, k = 1, . . . , d. If d = 1, then ξ1 = −1 and we meet the definition of a symmetric PS in

which we have the following property Wn(−x) = (−1)nWn(x), n ≥ 0.

Lemma 1 [7] A PS {Wn}n≥0 is d-symmetric if and only if it fulfils

Wm(x) = xμ
n∑

k=0

am,(d+1)p+μx
(d+1)p,

where m = (d + 1)n + μ, 0 ≤ μ ≤ d, n ≥ 0.

Lemma 2 [20] For each u ∈ P ′ and each m ≥ 1, the two following statements are equivalent.

(a) 〈u,Wm−1〉 	= 0, 〈u,Wn〉 = 0, n ≥ m.
(b) ∃λν ∈ C, 0 ≤ ν ≤ m − 1, λm−1 	= 0 such that u = ∑m−1

ν=0 λνwν .

Definition 2 [7,17] Given Γ 1, Γ 2, . . . , Γ d ∈ P ′, d ≥ 1, the polynomial sequence {Wn}n≥0 is called d-orthogonal
polynomial sequence (d-OPS) with respect to Γ = (Γ 1, . . . , Γ d) if it fulfils

〈Γ α,WmWn〉 = 0, n ≥ md + α, m ≥ 0, (6)

〈Γ α,WmWmd+α−1〉 	= 0, m ≥ 0, (7)

for each integer α = 1, . . . , d.
The conditions (6) are called the d-orthogonality conditions and the conditions (7) are called the regularity

conditions. In this case, the functional Γ , of dimension d, is said to be regular.

The d-dimensional functional Γ is not unique. Nevertheless, from Lemma 2, we have:

Γ α =
α−1∑

ν=0

λα
ν uν, λα

α−1 	= 0, 1 ≤ α ≤ d.

Therefore, since w = (w0, . . . , wd−1) is unique, we use to consider the canonical functional of dimension d,
w = (w0, . . . , wd−1), saying that {Wn}n≥0 is d-OPS (d ≥ 1) with respect to w = (w0, . . . , wd−1) if

〈wν,WmWn〉 = 0, n ≥ md + ν + 1, m ≥ 0,

〈wν,WmWmd+ν〉 	= 0, m ≥ 0,

for each integer ν = 0, 1, . . . , d − 1. It is important to remark that when d = 1 we meet again the notion of regular
orthogonality. Furthermore, the d-orthogonality corresponds to the generalisation of the well-known recurrence
relation fulfilled by the orthogonal polynomials, as the next result recalls.

Theorem 1 [17] Let {Wn}n≥0 be a MPS. The following statements are equivalent:

(a) {Wn}n≥0 is d-orthogonal with respect to w = (w0, . . . , wd−1).
(b) {Wn}n≥0 satisfies a (d + 1)-order recurrence relation (d ≥ 1):

Wm+d+1(x) = (x − βm+d)Wm+d(x) −
d−1∑

ν=0

γ d−1−ν
m+d−νWm+d−1−ν(x), m ≥ 0,

with initial conditions

W0(x) = 1, W1(x) = x − β0 and if d ≥ 2:

Wn(x) = (x − βn−1)Wn−1(x) −
n−2∑

ν=0

γ d−1−ν
n−1−ν Wn−2−ν(x), 2 ≤ n ≤ d,

and regularity conditions: γ 0
m+1 	= 0, m ≥ 0.
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In other words, when the MPS {Wn}n≥0 is d-orthogonal, most of the structure coefficients {χn,ν}0≤ν≤n, n≥0

vanish and the remaining d sequences are renamed as γ ’s. For example, while reading this latest theorem with
d = 1 we encounter the following well known recurrence relation fulfilled by an orthogonal MPS (MOPS), with
the habitual notation γm+1 := γ 0

m+1.

Wm+2(x) = (x − βm+1)Wm+1(x) − γm+1Wm(x),

W0(x) = 1, W1(x) = x − β0, γm+1 	= 0, m ≥ 0.

The classical orthogonal polynomials fulfill many important properties (e.g. [3]) and they are characterized by
the Hahn’s property, that is to say, the monic polynomial sequence obtained through the standard differentiation
D, {(n + 1)−1DWn+1(x)}n≥0, is also orthogonal. The d-orthogonal MPSs fulfilling this property are also called
d-classical MPSs in the Hahn’s sense and there are already several studies regarding these sequences [2,5–9] that
are still not known comprehensively.

Generally speaking, when we define the MPS of derivatives

W [1]
n (x) = (n + 1)−1DWn+1(x), n ≥ 0,

of any given MPS {Wn}n≥0 with structure relation (4)–(5), we easily get by differentiation the following recurrence
relation which is a helpful tool in the forthcoming computational definition of {W [1]

n }n≥0:

W [1]
n (x) = Wn(x)

n + 1
+ n

n + 1
(x − βn)W

[1]
n−1(x) − 1

n + 1

n−1∑

ν=1

ν χn−1,νW
[1]
ν−1(x),

n ≥ 2, W [1]
0 (x) = 1, W [1]

1 (x) = x − 1

2
(β0 + β1) . (8)

Moreover, we already know that any MOPS may define other MOPSs by a simple change of the initial structure
coefficients. This may be achieved either altering the structure coefficient (SC) β0 in which case we define a co-
recursive sequence, or perturbing the initial sets of SCs {β0, . . . , βr } and {γ1, . . . , γr } for any positive integer r , as
we read in the following definition.

Definition 3 [19] Let {Wn}n≥0 be an orthogonal MPS satisfying b) of Theorem 1 for d = 1 and let r ≥ 1.

Given μ0 ∈ C, μ = (μ1, . . . , μr ) ∈ C
r and λ = (λ1, . . . , λr ) ∈

(
C\{0}

)r
, where either μr 	= 0 or λr 	= 1, the

orthogonal MPS {W̃n(x)}n≥0 defined by
{
W̃0(x) = 1, W̃1(x) = x − β̃0,

W̃n+2(x) = (x − β̃n+1)W̃n+1(x) − γ̃n+1W̃n(x) , n ≥ 0 ,
(9)

with

β̃0 = β0 + μ0,

β̃n = βn + μn, γ̃n = λnγn , 1 ≤ n ≤ r ,

β̃n = βn, γ̃n = γn, n ≥ r + 1 ,

is called a perturbed sequence of order r of {Wn}n≥0 and is denoted by
{
Wn

(
μ0; μ

λ
; r; x

)}

n≥0
.

When a single change on the coefficient β0 is taken and thus μn = 0 and λn = 1 for 1 ≤ n ≤ r the resultant
MOPS is called a co-recursive sequence of {Wn}n≥0 and is notated by {Wn(μ0; x)}n≥0.

A perturbation on a specific set of the initial SCs can always be considered for any d-orthogonal MPS, through
its recurrence relation, if we assure the regularity conditions of the perturbed d-orthogonal MPS (γ̃ 0

n 	= 0). In this
work, we will describe characteristics obtained with the help of symbolic manipulations for a given 2-orthogonal
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MPS {Wn}n≥0 and regarding the 2-orthogonal MPS {W̃n}n≥0 defined initially as a co-recursive and secondly by
means of further perturbations. In brief, the recurrence relations fulfilled by each one are as follows, with coefficients
βn, γ 1

n+1, γ 0
n+1, n ≥ 0, with γ 0

n+1 	= 0, n ≥ 0, in view of Theorem 1.

Wn+1(x) = (x − βn)Wn(x) − γ 1
n Wn−1(x) − γ 0

n−1Wn−2(x), n ≥ 2,

W0(x) = 1, W1(x) = x − β0, W2(x) = (x − β1)W1(x) − γ 1
1 . (10)

It is often used a lighter notation for the 2-orthogonality by renaming the gammas as follows (cf. [6])

Wn+1(x) = (x − βn)Wn(x) − αnWn−1(x) − γn−1Wn−2(x), n ≥ 2,

W0(x) = 1, W1(x) = x − β0, W2(x) = (x − β1)W1(x) − α1. (11)

The co-recursive 2-orthogonal MPS {W̃n(x)}n≥0 or {Wn(μ; x)}n≥0 that later on we will consider is defined by the
next recurrence.

W̃n+1(x) = (x − βn)W̃n(x) − αnW̃n−1(x) − γn−1W̃n−2(x), n ≥ 2,

W̃0(x) = 1, W̃1(x) = x − β0 − μ, W̃2(x) = (x − β1)W̃1(x) − α1. (12)

Let us remark that in the next sections we will notate β̃0 = τ := β0 + μ.

3 Quadratic Decomposition and Symbolic Implementation

Given a MPS {Wn}n≥0, and fixing a monic quadratic polynomial mapping

ω(x) = x2 + px + q, p, q ∈ C (13)

and a constant a ∈ C, it is always possible to associate with it, two MPSs {Pn}n≥0 and {Rn}n≥0 and two other
sequences of polynomials {an}n≥0 and {bn}n≥0 through the unique decomposition

W2n(x) = Pn(ω(x)) + (x − a)an−1(ω(x)) (14)

W2n+1(x) = bn(ω(x)) + (x − a)Rn(ω(x)), n ≥ 0, (15)

where deg (an(x)) ≤ n , deg (bn(x)) ≤ n , and a−1(x) = 0 [15]. Thus, in this general QD, we have the three free
parameters p, q and a.

Thus, any MPS {Wn}n≥0 gives rise to further four sequences of polynomials by quadratic decomposition (QD),
being {Pn}n≥0 and {Rn}n≥0 MPSs, the so-called principal components. It is useful to assemble the four sequences
produced by any QD in a matrix format as follows.
(
Pn(x) an−1(x)
bn(x) Rn(x)

)
(16)

A QD is said diagonal when the often called secondary component sequences {an}n≥0 and {bn}n≥0 are zero. For
example, when a = p = q = 0, the QD produced by a symmetric MPS is diagonal.

Recently, in [14] it was presented the computational implementation of the following theoretical characterisation
of the four components of a QD, with applications on specific families of orthogonal polynomials.

Proposition 1 [15] A MPS {Wn}n≥0 defined by (4)–(5) fulfils (14)–(15) if and only if the following recurrence
relations hold.

b0(x) = a − β0 (17)
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Pn+1(x) = −
n∑

ν=0

χ2n,2ν Pν(x) + (x − ω(a)) Rn(x) + (a − β2n+1) bn(x)

−
n−1∑

ν=0

χ2n,2ν+1bν(x) (18)

an(x) = −
n∑

ν=0

χ2n,2νaν−1(x) − (a + p + β2n+1) Rn(x) + bn(x)

−
n−1∑

ν=0

χ2n,2ν+1Rν(x) (19)

bn+1(x) = −
n∑

ν=0

χ2n+1,2ν+1bν(x) + (a − β2n+2) Pn+1(x)

+ (x − ω(a)) an(x) −
n∑

ν=0

χ2n+1,2νPν(x) (20)

Rn+1(x) = −
n∑

ν=0

χ2n+1,2ν+1Rν(x) + Pn+1(x) − (a + p + β2n+2) an(x)

−
n∑

ν=0

χ2n+1,2νaν−1(x) (21)

The input data of such implementation is given by the coefficients a, p and r (if we decide to make them precise),
as well as the structure coefficients βn and χn,ν , 0 ≤ ν ≤ n, n ≥ 0.

In order to investigate the structure of each component we have gathered some short commands developed in
[23], namely a generic command that computes the structure coefficients of any previously definedMPS, and further
instructions that search for the possibility of defining a proper MPS from the secondary components.

The symbolic implementation used has the following structure.

Step 1 Input data (adapted to a 2-orthogonal MPS)

SCs of {Wn(x)}n≥0 Comments

βn = · · · n ≥ 0
χn,n = · · · χn,n = αn+1, n ≥ 0
χn,n−1 = · · · χn,n−1 = γn, n ≥ 1
χn,ν = 0, 0 ≤ ν < n − 1 n ≥ 1

Further parameters Comments

nmax = · · · Positive integer that indicates the higher degree of the polynomial sets that will be computed
a = · · · ; p = · · · ; q = · · · Only for specific cases of the QD

Step 2 Application of the symbolic implementation of the QD yielding the data set
(
Pi (x) ai−1(x)
bi (x) Ri (x)

)
i = 0, . . . , nmax

Step 3 Application of the routine SCζ that computes the initial SCs β
ζ
n and χ

ζ
n,ν of any given MPS {ζn}n≥0, to

the MPSs {Pn}n≥0 and {Rn}n≥0, using their initial data.
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Table 1 Structure Coefficients (SCs) of the 2-orthogonal MPS {Wn(x)}n≥0

β2n = −(p + β), β2n+1 = β, n ≥ 0,
χ2n,2n = α2n+1 = α1, χ2n+1,2n+1 = α2n+2 = α2, n ≥ 0,
χn,n−1 = γn = (−1)nγ, n ≥ 1,
χn,ν = 0, 0 ≤ ν < n − 1, n ≥ 1.

(22)

Table 2 Description of the general QD of the 2-orthogonal MPS defined by SCs (22) when p 	= −β − a

{Pn}n≥0 is 2-orthogonal with recurrence coefficients (23) In general, {P [1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

{Rn}n≥0 is 2-orthogonal with recurrence coefficients (24) {R[1]
n }n≥0 is 2-orthogonal with recurrence coefficients (26)

{Bn}n≥0 is 2-orthogonal with recurrence coefficients (25) In general, {B[1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

Step 4 Analysis of the secondary components {an}n≥0 and {bn}n≥0.When the obtained data issues deg(bn(x)) =
n− k for a fixed k, n ≥ k, and bn(x) = 0, 0 ≤ n < k, for example, it is possible to define the initial elements of
the corresponding MPS Bn(x) = 1

ηn+k
bn+k , n ≥ 0, where bn+k(x) = ηn+k xn + · · · , and apply the instruction

of the third step.
Step 5 Definition of the derivative sequence ζ

[1]
n (x) = 1

n+1D (ζn+1(x)) using recurrence (8) for ζ = P, R and
when possible for ζ = A, B, and subsequent computation of their SCs as in Step 3.

4 Results of a Case Study

The 2-orthogonal MPS that we are going to explore in the next sections is defined by structure coefficients (SCs)
that are either constants modulo two or have alternating behaviour, as next described in Table 1 using the constants
β, α1, α2 ∈ C and γ ∈ C\{0}, and we will consider a general QD with parameters a, p and q.

Taking into account that the polynomial sets {an}n≥0 and {bn}n≥0 may not have a MPS structure, when it
is confirmed computationally that {an}n=0,...,nmax or {bn}n=0,...,nmax span the vector space Pmax of polynomial
functions of degree lower than or equal to nmax , for a certain positive integer nmax , we will use the following
notation.

An(x) = (
la,n

)−1
an(x), an(x) = la,nx

n + (terms of degree less than n)

Bn(x) = (
lb,n

)−1
bn(x), bn(x) = lb,nx

n + (terms of degree less than n)

We must begin to clarify that we have concluded through the symbolic computation of the initial SCs of the MPS
{W [1]

n (x)}n≥0 that {Wn(x)}n≥0 defined by (22) is not a classical 2-orthogonal MPS.

4.1 Case I: p 	= −β − a

Let us assume that the parameters p and a fulfill p 	= −β − a. The initial results produced by the computational
implementation suggest that {an}n≥0 is zero, in particular, for all p and q,

W2n(x) = Pn
(
x2 + px + q

)
, n ≥ 0,

and the remaining three polynomial sets are also 2-orthogonal as indicated in Table 2.

βP
0 = q + α1 + (p + β) β, βP

n = q + α1 + α2 + (p + β) β, n ≥ 1 (23)
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Table 3 Description of the general QD of the 2-orthogonal MPS defined by SCs (22) when p 	= −β − a and α2 = 0

{Pn}n≥0 is 2-orthogonal and identical to {Rn}n≥0 {P [1]
n }n≥0 is 2-orthogonal and identical to {R[1]

n }n≥0

{Rn}n≥0 is 2-orthogonal with recurrence coefficients (27) {R[1]
n }n≥0 is 2-orthogonal with recurrence coefficients (29)

{Bn}n≥0 is 2-orthogonal with recurrence coefficients (28) In general, {B[1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

αP
n = α1α2 + γ (p + 2β), γ P

n = γ 2, n ≥ 1.

βR
n = q + α1 + α2 + (p + β) β, n ≥ 0 (24)

αR
n = α1α2 + γ (p + 2β), γ R

n = γ 2, n ≥ 1.

βB
0 = q + α1 + α2 + aβ (p + β) + β(p + β)2 − γ

a + p + β
(25)

βB
n = q + α1 + α2 + (p + β) β, n ≥ 1

αB
n = α1α2 + γ (p + 2β), γ B

n = γ 2, n ≥ 1.

βR[1]
n = q + α1 + α2 + (p + β) β, n ≥ 0 (26)

αR[1]
n = n(n + 3)

(n + 1)(n + 2)
(α1α2 + γ (p + 2β)) ,

γ R[1]
n = n(n + 5)

(n + 2)(n + 3)
γ 2, n ≥ 1.

4.1.1 Particular Case: p 	= −β − a and α2 = 0

Let us continue to assume that the parameters p and a fulfill p 	= −β − a. Some of the SCs obtained previously
indicated the presence of the factor α2, thus it seemed relevant to collect the same data when α2 = 0. As a
particular case of the previous one, most of the outlined features are maintained, as for instance, W2n(x) =
Pn

(
x2 + px + q

)
, n ≥ 0 . The summary can be checked in Table 3.

βR
n = q + α1 + (p + β) β, n ≥ 0 (27)

αR
n = γ (p + 2β), γ R

n = γ 2, n ≥ 1.

βB
0 = q + α1 + aβ (p + β) + β(p + β)2 − γ

a + p + β
(28)

βB
n = q + α1 + (p + β) β, n ≥ 1

αB
n = γ (p + 2β), γ B

n = γ 2, n ≥ 1.

βR[1]
n = q + α1 + (p + β) β, n ≥ 0 (29)

αR[1]
n = n(n + 3)

(n + 1)(n + 2)
γ (p + 2β),

γ R[1]
n = n(n + 5)

(n + 2)(n + 3)
γ 2, n ≥ 1.
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Table 4 Description of the general QD of the 2-orthogonal MPS defined by SCs (22) when p = −β − a

{Pn}n≥0 is 2-orthogonal with recurrence coefficients (30) In general, {P [1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

{Rn}n≥0 is 2-orthogonal with recurrence coefficients (31) {R[1]
n }n≥0 is 2-orthogonal with recurrence coefficients (32)

{B̄n}n≥0 is 2-orthogonal and identical to {Rn}n≥0 {B̄[1]
n }n≥0 is 2-orthogonal and identical to {R[1]

n }n≥0

4.2 Case II: p = −β − a

Let us now assume that the parameters p and a fulfill p = −β−a. The initial results produced by the computational
implementation continue to suggest that {an}n≥0 is null, in particular, W2n(x) = Pn

(
x2 + px + q

)
, n ≥ 0, and

the remaining information is indicated in Table 4. In this case, the polynomial set {bn(x)}n≥0 fulfils deg (bn(x)) =
n − 1, n ≥ 1 and b0(x) = 0, with bn(x) = γ xn−1 + (terms of degree less than n − 1), and therefore we define
the MPS

B̄n(x) = γ −1bn+1(x), n ≥ 0. (30)

βP
0 = q + α1 − aβ, βP

n = q + α1 + α2 − aβ, n ≥ 1

αP
n = α1α2 − aγ + βγ, γ P

n = γ 2, n ≥ 1. (31)

βR
n = q + α1 + α2 − aβ, n ≥ 0

αR
n = α1α2 − aγ + βγ, γ R

n = γ 2, n ≥ 1. (32)

βR[1]
n = q + α1 + α2 − aβ, n ≥ 0

αR[1]
n = n(n + 3)

(n + 1)(n + 2)
(α1α2 − aγ + βγ ) ,

γ R[1]
n = n(n + 5)

(n + 2)(n + 3)
γ 2, n ≥ 1.

More precisely, when p = −β − a we get the following general QD:

W2n(x) = Pn(x
2 + px + q)

W2n+1(x) = γ Rn−1(x
2 + px + q) + (x − a)Rn(x

2 + px + q)

where {Rn(x)}n≥0 is a 2-classical MPS and {Pn(x)}n≥0 is a co-recursive of {Rn(x)}n≥0.

4.2.1 Particular Case: p = −β − a and α2 = 0

Comparing the coefficients described in (30)–(31), we easily confirm that if α2 = 0, the principal components
{Pn}n≥0 and {Rn}n≥0 coincide and similarly to Sect. 4.1.1, we conclude that {P [1]

n }n≥0 is also 2-orthogonal. More-
over, {Pn}n≥0, {Rn}n≥0 and {B̄n}n≥0 are identical. The corresponding SCs can be obtained through (31) for {Rn}n≥0

and (32) for {R[1]
n }n≥0 replacing α2 by zero.

5 Results for a Co-recursive Sequence and for Higher Perturbations

Let us now consider a co-recursive sequence of the 2-orthogonal MPS with SCs (22) {Wn(x)}n≥0 as defined previ-
ously in (12) by a single change in the parameter β0. More precisely, we will perform the quadratic decomposition
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Table 5 Description of the general QD of the 2-orthogonal MPS defined by SCs (33) when τ 	= a and τ 	= −p − β

{Pn}n≥0 is 2-orthogonal with recurrence coefficients (34) In general, {P [1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

{Rn}n≥0 is 2-orthogonal with recurrence coefficients (24) {R[1]
n }n≥0 is 2-orthogonal with recurrence coefficients (26)

{An}n≥0 is 2-orthogonal and coincides with {Rn}n≥0 {A[1]
n }n≥0 is 2-orthogonal and coincides with {R[1]

n }n≥0

{Bn}n≥0 is 2-orthogonal with recurrence coefficients (35) In general, {B[1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

of a MPS defined by the SCs (33) and follow the same notation and definitions of the Sect. 4. Further, we assume
that τ 	= −p − β otherwise we would be facing the MPS {Wn(x)}n≥0 once more.

β0 = τ, β2n = −(p + β), n ≥ 1, (33)

β2n+1 = β, n ≥ 0,

χ2n,2n = α2n+1 = α1, χ2n+1,2n+1 = α2n+2 = α2, n ≥ 0,

χn,n−1 = γn = (−1)nγ, n ≥ 1,

χn,ν = 0, 0 ≤ ν < n − 1, n ≥ 1.

5.1 Case I: τ 	= a and τ 	= −p − β

Let us assume that the parameters τ and a fulfill τ 	= a besides the obvious restriction τ 	= −p − β. The initial
results produced by the computational implementation no longer suggest that {an}n≥0 is null and therefore we have
now the four components to analyse. The essential information is issued in Table 5.

βP
0 = ap + q + α1 + aβ + aτ − βτ, βP

n = q + α1 + α2 + (p + β) β, n ≥ 1, (34)

αP
1 = α1α2 + γ (β − τ), αP

n = α1α2 + γ (p + 2β)

γ P
n = γ 2, n ≥ 1.

βB
0 = q + α2 + pβ + β2 + α1 (a + p + β) − γ

a − τ
(35)

βB
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αB
n = α1α2 + γ (p + 2β),

γ B
n = γ 2, n ≥ 1.

5.2 Case II: τ = a and τ 	= −p − β

Let us finally assume that the parameters τ and a are identical. The secondary component {an}n≥0 is not zero and
therefore we have now the four components to analyse. Most of the information obtained in the previous case I is
kept. The difference lies in the sequence {bn}n≥0 for which we get deg (bn(x)) = n − 1, n ≥ 1, and b0(x) = 0,
with bn(x) = (γ − α1(a + p + β)) xn−1 + (terms of degree less than n − 1) and therefore we define the MPS

B̄n(x) = (γ − α1(a + p + β))−1 bn+1(x), n ≥ 0.

The essential information is indicated in Table 6.

βP
0 = a2 + ap + q + α1, βP

n = q + α1 + α2 + (p + β) β, n ≥ 1, (36)
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Table 6 Description of the general QD of the 2-orthogonal MPS defined by SCs (33) when τ = a and τ 	= −p − β

{Pn}n≥0 is 2-orthogonal with recurrence coefficients (36) In general, {P [1]
n }n≥0 is not d-orthogonal for d = 1, . . . , nmax

{Rn}n≥0 is 2-orthogonal with recurrence coefficients (24) {R[1]
n }n≥0 is 2-orthogonal with recurrence coefficients (26)

{An}n≥0 is 2-orthogonal and coincides with {Rn}n≥0 {A[1]
n }n≥0 is 2-orthogonal and coincides with {R[1]

n }n≥0

{B̄n}n≥0 is 2-orthogonal and coincides with {Rn}n≥0 {B̄[1]
n }n≥0 is 2-orthogonal and coincides with {R[1]

n }n≥0

αP
1 = α1α2 + γ (β − a), αP

n = α1α2 + γ (p + 2β)

γ P
n = γ 2, n ≥ 1.

5.3 Perturbation of Order Two (I)

The main structure of the results described in the previous sections holds when we consider a larger perturbation
of order two, given the non-zero constants η1, η2 and ξ , as follows.

β0 = τ, β2n = −(p + β), n ≥ 1, (37)

β2n+1 = β, n ≥ 0,

χ0,0 = α1η1, χ1,1 = α2η2,

χ2n,2n = α2n+1 = α1, χ2n+1,2n+1 = α2n+2 = α2, n ≥ 1,

χ1,0 = −γ ξ, χn,n−1 = γn = (−1)nγ, n ≥ 2,

χn,ν = 0, 0 ≤ ν < n − 1, n ≥ 1.

More precisely, the principal component sequences {Pn}n≥0 and {Rn}n≥0 are 2-orthogonal and

βP
0 = ap + q + aβ + α1η1 + (a − β) τ, βP

1 = q + α1 + (p + β) β + α2η2,

βP
n = q + α1 + α2 + (p + β) β, n ≥ 2,

αP
1 = aγ + α1α2η1η2 + γ ξ (β − a) − γ τ, αP

n = α1α2 + γ (p + 2β),

γ P
1 = γ (aα2 − aα2η2 + γ ξ − α2τ + α2η2τ) , γ P

n = γ 2, n ≥ 2;
βR
0 = q + (p + β) β + α1η1 + α2η2, βR

n = q + α1 + α2 + (p + β) β, n ≥ 1,

αR
1 = γ (p + 2β) + α1α2η2, αR

n = α1α2 + γ (p + 2β), n ≥ 2,

γ R
n = γ 2, n ≥ 1.

Concerning the sequences {an}n≥0 and {bn}n≥0 we get deg (an(x)) = n, n ≥ 0, with la,n = −p − β − τ

and deg (bn(x)) = n, n ≥ 0, with la,n = a − τ . Supposing τ 	= −p − β and τ 	= a, we define the MPSs
An(x) = l−1

a,nan(x) and Bn(x) = l−1
b,nbn(x), n ≥ 0, and we obtain

β A
0 = q + α1 + α2η2 + pβ (p + 2β) + β3 − γ + γ ξ + τ

(
pβ + β2

)

p + β + τ

β A
n = q + α1 + α2 + (p + β) β, n ≥ 1,
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αA
1 = α1α2 + γ

(
p2 − α2 + 3pβ + 2β2 + α2η2 + τ (p + 2β)

)

p + β + τ

αA
n = α1α2 + γ (p + 2β), n ≥ 2,

γ A
n = γ 2, n ≥ 1 ;

βB
0 = q + pβ + β2 + α2η2 + α1η1 (a + p + β) − γ ξ

a − τ

βB
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αB
1 = γ (p + 2β) + α1α2η2 + γα1 (η1 − ξ)

a − τ
,

αB
n = α1α2 + γ (p + 2β), n ≥ 2,

γ B
n = γ 2, n ≥ 1.

Finally, we remark that the data obtained allow us to assert that none of the four 2-orthogonal MPSs are in gen-
eral 2-classical. The alternative hypothesis τ = a was also treated with analogous conclusions, except for the
sequence {bn}n≥0 for which we get deg (bn(x)) = n − 1, n ≥ 0, with bn(x) = (γ ξ − α1 (a + p + β) η1) xn−1 +
(terms of degree less than n − 1) and thus further suppositions must be taken in order to define a MPS {B̄n}n≥0 as
we did before.

5.4 Perturbation of Order Two (II)

Let us now consider another perturbation of order two, where only the first two βs are altered by means of the
constants τ1 and τ2 assuming that τ1 	= −p − β and τ2 	= β.

β0 = τ1, β1 = τ2, β2n = −(p + β), β2n+1 = β, n ≥ 1, (38)

χ2n,2n = α2n+1 = α1, χ2n+1,2n+1 = α2n+2 = α2, n ≥ 0,

χn,n−1 = γn = (−1)nγ, n ≥ 1,

χn,ν = 0, 0 ≤ ν < n − 1, n ≥ 1.

We get for the sequences {Pn}n≥0 and {Rn}n≥0:

βP
0 = ap + q + α1 + a (τ1 + τ2) − τ1τ2,

βP
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αP
1 = α1α2 − aα2β + βγ + α2βτ1 − γ τ1 + α2τ2 (a − τ1) ,

αP
n = α1α2 + γ (p + 2β), n ≥ 2, γ P

n = γ 2, n ≥ 1;
βR
0 = q + α1 + α2 + β (p + τ1 + τ2) − τ1τ2,

βR
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αR
1 = α1α2 + γ (p + β + τ2),

αR
n = α1α2 + γ (p + 2β), n ≥ 2, γ R

n = γ 2, n ≥ 1.

Concerning the sequences {an}n≥0 and {bn}n≥0 we get deg (an(x)) = n, n ≥ 0, with la,n = −p − τ1 − τ2 and
deg (bn(x)) = n, n ≥ 0, with lb,0 = a − τ1 and lb,n = a + β − τ1 − τ2, n ≥ 1. Supposing also that τ1 	= a, and
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τ1 + τ2 	= a + β,−p, we define the MPSs An(x) = l−1
a,nan(x), n ≥ 0, and Bn(x) = l−1

b,nbn(x), n ≥ 0, and we
obtain

β A
0 = q + α1 + α2 (p + τ1 + β) + p2β + pβ2 + (τ1 + τ2)

(
pβ + β2

)

p + τ1 + τ2
,

β A
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αA
n = α1α2 + γ (p + 2β), n ≥ 1,

γ A
n = γ 2, n ≥ 1 ;

βB
0 = q + a (α1 + α2) + p (α1 + aβ) + βα1 − γ + aβ (τ1 + τ2) − τ1α2 − τ1τ2 (a + p + β)

a + β − τ1 − τ2

βB
n = q + α1 + α2 + (p + β) β, n ≥ 1,

αB
1 = (a − τ1) (α1α2 + γ (p + β + τ2))

a + β − τ1 − τ2
, αB

n = α1α2 + γ (p + 2β), n ≥ 2,

γ B
1 = γ 2 (a − τ1)

a + β − τ1 − τ2
, γ B

n = γ 2, n ≥ 2.

We finally conclude that none of the four 2-orthogonal MPSs is 2-classical.

6 Analytical Overview

Let us now rewrite Proposition (1) taking into account the particular SCsof a 2-orthogonalMPSχn,n = αn+1, n ≥ 0,
χn,n−1 = γn, n ≥ 1, and χn,ν = 0, 0 ≤ ν < n − 1, n ≥ 0.

b0(x) = a − β0, (39)

Pn+1(x) = −α2n+1Pn(x) + (x − ω(a)) Rn(x)

+ (a − β2n+1) bn(x) − γ2nbn−1(x), (40)

an(x) = −α2n+1an−1(x) − (a + p + β2n+1) Rn(x)

+ bn(x) − γ2n Rn−1(x), (41)

bn+1(x) = −α2n+2bn(x) + (a − β2n+2) Pn+1(x)

+ (x − ω(a)) an(x) − γ2n+1Pn(x), (42)

Rn+1(x) = −α2n+2Rn(x) + Pn+1(x) − (a + p + β2n+2) an(x)

− γ2n+1an−1(x),

with n ≥ 0 and R−1(x) = a−1(x) = b−1(x) = 0. (43)

Lemma 3 The general quadratic decomposition of any 2-orthogonal MPS is not diagonal.

Proof If we suppose a diagonal QD, identity (41) reads

0 = − (a + p + β2n+1) Rn(x) − γ2n Rn−1(x)

implying a + p + β2n+1 = 0 and γ2n = 0. Since this latest contradicts the regularity, the proof is complete. ��
Remarking that identities (41) and (43) allow us to express bn(x) and Pn+1(x) in terms of elements of {Rn}n≥0

and {an}n≥0:

bn(x) = an(x) + α2n+1an−1(x) + (a + p + β2n+1) Rn(x) + γ2n Rn−1(x)
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Pn+1(x) = Rn+1(x) + α2n+2Rn(x) + (a + p + β2n+2) an(x) + γ2n+1an−1(x)

we are able to transform (42) into the following relation:

an+1(x) −
(
x − ω(a) + (a − β2n+2) (a + p + β2n+2) − α2n+3 − α2n+2

)
an(x)

+
(
α2n+2α2n+1 + γ2n+1 (p + β2n+2 + β2n)

)
an−1(x) + γ2n+1γ2n−1an−2(x)

+ (p + β2n+3 + β2n+2) Rn+1(x)

+
(
γ2n+2 + γ2n+1 + α2n+2 (p + β2n+2 + β2n+1)

)
Rn(x)

+
(
α2n+2γ2n + γ2n+1α2n

)
Rn−1(x) = 0, n ≥ 1. (44)

Likewise, identity (40) implies the next relation:

Rn+1(x) −
(
x − ω(a) + (a − β2n+1) (a + p + β2n+1) − α2n+2 − α2n+1

)
Rn(x)

+
(
α2n+1α2n + γ2n (p + β2n+1 + β2n−1)

)
Rn−1(x) + γ2nγ2n−2Rn−2(x)

+ (p + β2n+2 + β2n+1) an(x)

+
(
γ2n+1 + γ2n + α2n+1 (p + β2n+1 + β2n)

)
an−1(x)

+
(
α2n+1γ2n−1 + γ2nα2n−1

)
an−2(x) = 0, n ≥ 1. (45)

On the other hand, identities (40) and (42) allow us to express (x − ω(a)) Rn(x) and (x − ω(a)) an(x) in terms of
elements of {Pn}n≥0 and {bn}n≥0:

(x − ω(a)) Rn(x) = − (a − β2n+1) bn(x) + γ2nbn−1(x) + Pn+1(x) + α2n+1Pn(x)

(x − ω(a)) an(x) = bn+1(x) + α2n+2bn(x) − (a − β2n+2) Pn+1(x) + γ2n+1Pn(x)

which provides a suitable replacement of each term of identity (41) when multiplied by (x − ω(a)), yielding:

bn+1(x) −
(
x − ω(a) + (a − β2n+1) (a + p + β2n+1) − α2n+2 − α2n+1

)
bn(x)

+
(
α2n+1α2n + γ2n (p + β2n+1 + β2n−1)

)
bn−1(x) + γ2nγ2n−2bn−2(x)

+ (p + β2n+2 + β2n+1) Pn+1(x)

+
(
γ2n+1 + γ2n + α2n+1 (p + β2n+1 + β2n)

)
Pn(x)

+
(
α2n+1γ2n−1 + γ2nα2n−1

)
Pn−1(x) = 0, n ≥ 1. (46)

Finally, when we multiply relation (43) by (x − ω(a)) and we substitute all terms by an equal expression given by
(40) and (42) we get:

Pn+2(x) −
(
x − ω(a) + (a − β2n+2) (a + p + β2n+2) − α2n+3 − α2n+2

)
Pn+1(x)

+
(
α2n+2α2n+1 + γ2n+1 (p + β2n+2 + β2n)

)
Pn(x) + γ2n+1γ2n−1Pn−1(x)

+ (p + β2n+3 + β2n+2) bn+1(x)
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+
(
γ2n+2 + γ2n+1 + α2n+2 (p + β2n+2 + β2n+1)

)
bn(x)

+
(
α2n+2γ2n + γ2n+1α2n

)
bn−1(x) = 0, n ≥ 1. (47)

The SCs defined in (22) guarantee that the coefficients of the three latest terms of identities (44)–(47) vanish,
because

p + β2n+3 + β2n+2 = 0, n ≥ 0,

p + β2n+2 + β2n+1 = 0, n ≥ 0,

γ2n+2 + γ2n+1 + α2n+2 (p + β2n+2 + β2n+1) = 0, n ≥ 0,

γ2n+1 + γ2n + α2n+1 (p + β2n+1 + β2n) = 0, n ≥ 1,

α2n+2γ2n + γ2n+1α2n = 0, n ≥ 1,

α2n+1γ2n−1 + γ2nα2n−1 = 0, n ≥ 1.

This proves that the four polynomial sequences that arise from a general QD of the 2-orthogonal MPS {Wn}n≥0

defined by (22) also fulfill recurrence relations of third orderwhose regularity is assured by the regularity of {Wn}n≥0.
More precisely, we obtain for n≥ 1:

an+1(x) =
(
x − ω(a) + (a − β) (a + p + β) − α2 − α1

)
an(x)

−
(
α2α1 + γ (p + 2β)

)
an−1(x) − γ 2an−2(x), (48)

Rn+1(x) =
(
x − ω(a) + (a − β) (a + p + β) − α2 − α1

)
Rn(x)

−
(
α2α1 + γ (p + 2β)

)
Rn−1(x) − γ 2Rn−2(x), (49)

bn+1(x) =
(
x − ω(a) + (a − β) (a + p + β) − α2 − α1

)
bn(x)

−
(
α2α1 + γ (p + 2β)

)
bn−1(x) − γ 2bn−2(x), (50)

Pn+2(x) =
(
x − ω(a) + (a − β) (a + p + β) − α2 − α1

)
Pn+1(x)

−
(
α2α1 + γ (p + 2β)

)
Pn(x) − γ 2Pn−1(x). (51)

In brief, once we have the initial elements of each polynomial sequence we are able to fully characterise the general
QD of {Wn}n≥0. We recall that these initial computations were already performed with the help of the symbolic
computational approach and thus we have now proved the 2-orthogonality of each polynomial sequence of the
general QD. In particular, having obtained the data aν(x) = 0, ν = 0, 1, 2 we easily conclude that {an}n≥0 is
trivial. In addition, we remark that

ω(a) − (a − β) (a + p + β) + α2 + α1 = q + α2 + α1 + (p + β) β.

When we consider the general QD of any 2-orthogonal MPS {W̃n}n≥0 defined as a perturbation of order r of
{Wn}n≥0, we also conclude that relations (48)–(51) are fulfilled at least for n ≥ nmax for a certain positive integer
nmax > r which leaves the final conclusion about the 2-orthogonality (and other aspects) to the specific data
computed for n = 0, . . . , nmax .

Finally, with respect to the classical character of each MPS obtained as a component sequence of the general
QD and examining the data obtained for the MPS {Wn(x)}n≥0 solely defined by SCs (22), we must remark that the
sequence {Rn(x)}n≥0 fulfils a recurrence relation of the following type, for given constants α and γ ,
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ζn+1(x) = xζn(x) − αζn−1(x) − γ ζn−2(x), n ≥ 2,

ζ0(x) = 1, ζ1(x) = x, ζ2(x) = x2 − α,

and therefore is 2-classical as it is proved in [9], p.31. In fact, being {βR
n }n≥0 a constant sequence, it is possible to

assume βR
n = 0, n ≥ 0, after applying an affine transformation on {Rn(x)}n≥0 that preserves the d-orthogonality.

Moreover, we read also in that reference that the MPS {ζn}n≥0 is 2-orthogonal and classical and the MPS {ζ [1]
n }n≥0

fulfils

ζ
[1]
n+1(x) = xζ [1]

n (x) − α
n(n + 3)

(n + 1)(n + 2)
ζ

[1]
n−1(x) − γ

(n − 1)(n + 4)

(n + 1)(n + 2)
ζ

[1]
n−2(x), n ≥ 2,

ζ
[1]
0 (x) = 1, ζ

[1]
1 (x) = x, ζ

[1]
2 (x) = x2 − 2

3
α.

7 Conclusions

The symbolic implementation of the quadratic decomposition (QD) on a specific 2-orthogonal MPS defined with
constant structure coefficients, modulo two, allowed us to easily infer which of the four sequences of polynomials
obtained through any QD are also 2-orthogonal. The analytical proof of those characteristics was also developed.

A co-recursive type 2-orthogonal MPS was inserted in the symbolic procedure, along with further initial pertur-
bations on the structure coefficients. The output asserts that the main results gathered initially are maintained when
those slight initial changes are performed. A further important characteristic was analysed strictly by computational
means and the results proved that in some cases the obtained polynomial sequences are not classical in Hahn’s
sense. The situations where the classical character was detected can be connected to a concrete family studied in
[9].

We should stress that the entire set of 2-orthogonal MPSs quadratically decomposed are not 2-classical as it was
demonstrated symbolically, nevertheless, the components of the resultant general QD hold the 2-orthogonality and
either are 2-classical or are perturbations of a 2-classical MPS.
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