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Abstract The aim of this paper is to present the research book “The Gröbner Cover” Montes (The Gröbner Cover,
ACM-series, Springer, Berlin, 2019) recently published. This book is divided into two parts, one theoretical and
one focusing on applications, and offers a complete description of the Canonical Gröbner Cover, to the author’s
best knowledge, the most accurate algebraic method for discussing parametric polynomial systems. It also includes
applications to the automatic deduction of geometric theorems, loci computation and envelopes. The theoretical part
is a self-contained exposition on the theory of Parametric Gröbner Systems and Bases. It begins with Weispfenning
introduction of Comprehensive Gröbner Systems (CGS), a fundamental contribution made in 1992, and provides
a complete description of the Canonical Gröbner Cover (GC), which includes a canonical discussion of a set of
parametric polynomial equations developed inMontes, Wibmer (J Symb Comput 45:1391–1425, 2010). In turn, the
application part selects three problems for which theGröbner Cover offers valuable new perspectives. The automatic
deduction of geometric theorems (ADGT) becomes fully automatic and straightforward using GC, representing a
major improvement on all previous methods. In terms of loci and envelope computation, GC makes it possible to
introduce a taxonomy of the components and automatically compute it. The book also generalizes the definition of
the envelope of a family of hyper-surfaces, and provides algorithms for its computation, as well as for discussing
how to determine the real envelope. All the algorithms described in the book have also been included in the Singular
software library grobcov.lib implemented by the author and H. Schönemann, the book serving also as User Manual
for the library.
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1 Introduction

The index of the book “The Gröbner Cover” [1] is the following

Preface
1. Preliminaries
Part 1. Theory
2. Constructible sets
3. Comprehensive Gröbner Systems
4. I -regular functions on a locally closed set
5. The Canonical Gröbner Cover
Part 2. Applications
6. Automatic Deduction of Geometric Theorems
7. Geometric Loci
8. Geometric Envelopes
Appendix
Bibliography
Index

2 The Gröbner Cover

The existence of the Gröbner Cover of a parametric polynomial I ⊂ K [a][x] ideal is a consequence of Wibmer’s
Theorem. It was described in (2010) by Montes and Wibmer [2].

Wibmer’s theorem establishes that for an homogeneous parametric polynomial ideal I ⊂ K [a][x] ideal,
• There exists a canonical partition of the parameter space into locally closed segments Si = V(pi )\V(qi );
• Each segment accepts a set of I -regular functions Bi that specializes to the reduced Gröbner basis for every
point a ∈ Si ,

• Preserving the set of leading power products (lpphi ) of the basis,
• And each segment Si having a different set of lpphi .

The set of triplets (lpphi , Bi , Si ) constitutes the Gröbner Cover of the homogeneous ideal I .
For a non-homogeneous parametric ideal we proceed as follows:

• Homogenize the ideal,
• Determine its Gröbner Cover,
• And dehomogenize.

The result is the canonical Gröbner Cover of the non-homogeneous ideal. It can contain segments with the same
set of lppi , but deriving from different sets of lpphi of the homogenized ideal, it is still canonic.

2.1 Example: The Singular Points of a Conic

We give an example to show the reduced number of segments that GC generates, and the canonical character of the
output. We consider a conic

F := x2 + 2cxy + by2 + 2dx + 2ey + f = 0
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and determine their singular points, depending on the parameter values, by considering the system [F, ∂ F
∂x , ∂ F

∂y ]. We
can see that the result represents the canonical classification of a conic by its singular points. We consider the ideal
⎧
⎨

⎩

x2 + 2cxy + by2 + 2dx + 2ey + f = 0
2x + 2cy + 2d = 0
2cx + 2by + 2e = 0.

and apply the grobcov command of the Singular “grobcov.lib” library [3,4]. We use the option “showhom”,1
in order to show the lpphi that provides information about the behaviour of the singularities at infinity, which is
significant for this problem. The algorithm uses the auxiliary variable @t for homogeneizing. The Gröbner Cover
determines four distinct segments, depending on the parameter values. The result can be summarized in the following
table:

1. Generic case: lpp = {1}
Basis: {1}
Segment:C5\V(bd2 − b f + c2 f − 2cde + e2)
Description: Non-degenerate conic without singular points.
lpph=1

2. lpp = {y, x}
Basis:

{

y − d2 − f

cd − e
, x − c f − de

cd − e

}

Segment: V(bd2 − b f + c2 f − 2cde + e2)\V(cd − e, b − c2)
Description: A unique singular point: two intersecting lines.
lpph=y,x

3. lpp = {x}
Basis: {x + cy + d}
Segment: (V(d2 − f, c f − de, cd − e, b − c2)
Description: Singular double line.
lpph=x

4. lpp = {1}
Basis: {1}.
Segment: = V(cd − e, b − c2)\V(d2 − f, c f − de, cd − e, b − c2)
Description: Special case without singular points: two parallel lines.
lpph=@t,x

The above table gives a precise and complete discussion, classifying the conics by their singular points into 4
segments given as the difference between two varieties. The default option determines the P-representation (Prep)
of the segment, which in this example is almost the same as the C-representation (Crep), because the segments
have one single component with one single hole. (Using option “rep”,1 we would obtain the Crep). The lpph
represents the set of lpp of the homogenized ideal that uses the technical auxiliary homogenizing variable @t.

Even if segments 1 and 4 have the same basis {1}, showing that the system has no singular points, they correspond
to two different types of conics. In segment 1 there is no singular point even considering the points at infinity, as
shown by lpph=1, so that the homogenized ideal does not have any solution either. Thus the conic has no singular
point at infinity.

For segment 4 the basis is also 1, showing that the conic has no singular points. But lpph=@t,x shows that at
infinity it has a solution. Substituting the values of b = c2 and e = cd, determined by the segment, the variety
becomes

V = V(x2 + 2cxy + c2y2 + 2dx + 2cdy + f )

= V
(

(x + cy + d +
√

d2 − f )(x + cy + d −
√

d2 − f )

)
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Fig. 1 Orthic triangle C(x, y)

A(−1, 0) B(1, 0)

A (x1, y1)
B (x2, y2)

C (x, 0)

= V
(

x + cy + d +
√

d2 − f

)

∪ V
(

x + cy + d −
√

d2 − f

)

,

showing that, for d2 − f ≥ 0, it consists of two real parallel lines. The two lines intersect at infinity in the projective
space, thus the conic has a singular point at infinity. This is the reason why segments 1 and 4 are separated in the
Gröbner Cover, for which the different segments correspond to different lpph. (The segments are lpph-segments).

In the Application part, the book selects three problems for which the Gröbner Cover offers valuable new
perspectives: Automatic Deduction of Geometric Theorems, Geometric Loci and Geometric Envelopes.

3 Automatic Deduction of Geometric Theorems

Consider a geometric proposition of the form

(H ∧ ¬H1) ⇒ (T ∧ ¬T1).

The book provides an automatic algorithm (ADGT) for obtaining supplementary conditions for transforming the
proposition into a theorem. Consider as example the orthic triangle.

Let A(−1, 0), B(1, 0), C(x, y) be the vertices of a triangle, and let A′(x1, y1), B ′(x2, y2), C ′(x, 0) be the foots
of the heights. The orthic triangle of ABC is A′ B ′C ′. See Fig. 1.

Associated to the orthic triangle, consider the following ideals of hypothesis and thesis.
Hypothesis H : The triangle A′ B ′C ′ is the orthic triangle of ABC

H = −yx1 + (x − 1)y1 + y, (x − 1)(x1 + 1) + yy1,

− yx2 + (x + 1)y2 − y, (x + 1)(x2 − 1) + yy2

Hypothesis H1: The triangle ABC is degenerate (we shall deny it):

H1 = y

Thesis T : The orthic triangle A′B ′C ′ is isosceles (A′C ′ = B ′C ′):

T = (x1 − x)2 + y21 − (x2 − x)2 − y22

Thesis T1: The orthic triangle A′ B ′C ′ is degenerate (points aligned, we shall deny it):

T1 = x(y1 − y2) − y(x1 − x2) + x1y2 − x2y1

We consider now two propositions.



Presentation of the Book The Gröbner Cover 475

Fig. 2 Left: Complementary conditions for Proposition 3.1. Right: Complementary conditions for Proposition 3.2

Proposition 3.1 H ⇒ T . The orthic triangle is isosceles.
Calling sequence: ADGT(H, T, 1, 1); Result:

(x, y) ∈S1 ∪ S2 ∪ S3

S1 = V(x2 − y2 − 1)\V(y2 + 1, x)

S2 = V(x2 + y2 − 1)

S3 = V(x)\V(y2 + 1, x)

We obtain three components, except complex points that are irrelevant, for the supplementary conditions for
Proposition 3.1 to become a theorem (See Fig. 2, left). But part of the supplementary conditions correspond to
degenerate triangles ABC or degenerate orthic triangles A′B ′C ′. Thus we consider a new proposition, in which we
eliminate degenerate triangles.

Proposition 3.2 H ∧¬H1 ⇒ T ∧¬T1. The orthic triangle A′ B ′C ′ of a non-degenerate triangle ABC is isosceles
but non-degenerate.

Calling sequence: ADGT(H, T, H1, T1); Result:
(x, y) ∈ (S1\(A ∪ B)) ∪ (S3\O)

The result is that the points of the x-axis, which correspond to degenerate ABC are eliminated from the supple-
mentary conditions, as well as the component S2 which corresponds to degenerate A′ B ′C ′. (See Fig. 2, right).

4 Geometric Loci

Loci problems are usually considered in 2d or at most 3d, and are obtained by elimination techniques with unprecise
definition (See [5]).

Using the Gröbner Cover we are able to

• Generalize them for n-dimensional space,
• Precise their irreducible components,
• And assign a taxonomy to every component.
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A locus problem has

• A tracer point T (x) = T (x1, . . . , xn), corresponding to the coordinates x of the locus points.
• A set of auxiliary variables u = (u1, . . . , um) containing eventually a mover point M(w1, . . . , wn). Alterna-

tively we can consider as mover variables the set of all auxiliary variables u. Doing so, the taxonomy becomes
more precise.

• An ideal F[x, u] expected to have n − 1 degrees of freedom.

locus allows to define and determine the taxonomy of its components.
Consider the solution of the system:

V(F) = {(x, u) ∈ C
n+m : ∀ f ∈ F, f (x, u) = 0}.

Denote π1, π2 the projections onto the x and the u spaces respectively:

π1 : C
n+m → C

n π2 : C
n+m → C

m

(x, u) �→ x (x, u) �→ u

and the anti-image A(x) of a locus point x on the u space, and Am(x) on the w space of the mover variables.

A : C
n → C

m Am : C
n → C

n′

x �→ π2

(
V(F) ∩ π−1

1 (x)
)

x �→ π3(A(x))

We can give a formal generic definition of locus in algebraic terms.

Definition 4.1 (Algebraic locus) The locus L associated to the parametric polynomial system F(x, u), is the set

L = π1(V(F)) ⊂ C
n .

Definition 4.2 (Normal and non-normal locus) We define two class of locus points x ∈ C
n :

Normal point x if dim(Am(x)) = 0.
Non-normal point x if dim(Am(x)) > 0

The set of all normal points is called the normal locus and the set of all non-normal points is called the non-normal
locus.

Proposition 4.3 The normal locus Lnor and the non-normal locus Lnonor are disjoint constructible sets. We have
L = Lnor ⊕ Lnonor, and each of both subsets can be decomposed into irreducible components

Ci = V(pi )\
⎛

⎝
⋃

j

V(pi j )

⎞

⎠ (4.1)

where all the pi and all the pi j are prime ideals, being

Lnor =
⋃

j

Cnor, j , Lnonor =
⋃

j

Cnonor, j

We can assign a taxonomy to each component of a locus

Definition 4.4 (“Normal” and “Special” components) Let C be a component of the normal locus and let w be the
subset of the auxiliary variables u representing the mover coordinates (if they exist), or the last n′ auxiliary variables
u conveniently chosen. A component C of the normal locus is “Normal” if dim(C) = dim(Am(C)). But it can
happen that dim(C) > dim(Am(C)), and then the component is “Special”.
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Definition 4.5 (“Degenerate” and “Accumulation” components) A component of the non-normal locus is “Degen-
erate” if its dimension is n − 1. If its dimension is smaller than n − 1, then it is an “Accumulation” component.

Example 4.6 Richard Serra surfaces.
Richard Serra is an artist that has constructed very nice mathematical sculptures, and particularly in the Guggen-

heim museum of Bilbao. They are generated by two curves located in two parallel planes in the 3-dimensional
space, generating a surface. The surface is obtained in the following way:

Consider a parabola y1 = x21 on the plane z1 = −1 (floor) and a parabola x2 = y22 on the plane z2 = 1 (ceiling):
Determine the locus formed by the lines relying the points of both parabolas having parallel tangents. The tangent

vectors are respectively (−2x1, 1, 0) and (1,−2y2, 0). The condition of being parallel is 4x1y2−1 = 0. The system
is:

F = x21 − y1, z1 + 1,

y22 − x2, z2 − 1,

4x1y2 − 1,

x − x1 − λ(x2 − x1), y − y1 − λ(y2 − y1), z − z1 − λ(z2 − z1)

Applying locus we have the following calling sequence:

> LIB “grobcov.lib”;
> ring R = (0, x, y, z), (λ, x2, y2, z2, x1, y1, z1), lp;
> ideal F = x21 − y1, y22 − x2, 4x1y2 − 1, z1 + 1, z2 − 1,

x − x1 − λ(x2 − x1), y − y1 − λ(y2 − y1),

z − z1 − λ(z2 − z1);
> locus(F);

and obtain the result

S = V(2048x3z + 2048x3 − 4096x2y2 + 1152xyz2 − 1152xy

− 2048y3z + 2048y3 + 27z4 − 54z2 + 27)

\(V(z + 1, y) ∪ V(z − 1, x))

T = Special

Am = V(z1 + 1, x21 − y1)

We highlight two questions.

(1) locus obtains the equation of the surface and characterizes it as “Special” component. The “Special” taxon-
omy is the consequence of the 2-dimensional locus surface being generated by the parabolaV(z1+1, x21−y1) in
the mover variables (x1, y1, z1)which has dimension 1 (see Fig. 3). If we use instead as mover variables the set
of all auxiliary variables (λ, x2, y2, z2, x1, y1, z1), the taxonomy becomes “Normal”, because the anti-image
of C corresponds then to the parabolas and free value of λ, and so dim(C) = dim(Am(C)) = 2.

(2) locus also determines that the lines V(z + 1, x) and V(z − 1, x) do not form part of the affine locus. The
reason is that each of these lines, included in the top of the envelope, would be generated by the tangent to one
of the parabolas at the vertex, whose corresponding point in the second parabola is at infinity but not at any
real point of them.
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Fig. 3 Richard Serra surface

5 Envelopes

Usually the definition of Envelope concerns a family of curves or a family of surfaces with n − 1 degrees of
freedom (Fig. 3). We generalize the problem to an n dimensional space with higher degrees of freedom. We have
the following definitions and theorems.

Definition 5.1 (Family of hyper-surfaces) We say that

F(x, u) = F(x1, . . . , xn; u1, . . . , um) = 0

and the independent restrictions C = {g1, . . . , gs} (with s < m)
⎧
⎨

⎩

g1(u1, . . . , um) = 0
. . .

gs(u1, . . . , um) = 0

represent a family of hyper-surfaces of Cn , if F depends at least on 1 parameter u. Thus, if the gi are independent

d = dim(C) = m − s ≥ 1.

Definition 5.2 (Envelope) Given a family of hyper-surfaces F(x1, . . . , xn; u1, . . . , um) = 0 with m parameters u,
constrained by the s < m independent equations C = 〈g1(u), . . . , gs(u)〉, let

J =∂(F, g1, . . . , gs)

∂(u1, . . . , um)
; Jc = {minors(J ) of order (s + 1) × (s + 1)} .

The set of
( m

s+1

)
equations Jc, imply that the rank of the Jacobian is less than or equal than s. Consider the ideal S

S = 〈F, C, Jc〉,
The algebraic envelope of F, C , if it exists, is

L = locus(S).

Theorem 5.3 (Associated Tangent element) Let F(x1, . . . , xn; u1, . . . , um) = 0 be a family of hyper-surfaces with
m parameters u, constrained by the s < m equations C = 〈g1(u), . . . , gs(u)〉.
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Let E be the envelope, and Ei = V(pi (x))\V(qi (x)) the C-representation of a “Normal” standard (n − 1)-
dimensional component of E corresponding to a hyper-surface, and x(0) ∈ Ei be a regular point of pi (x) = 0.

Then there exists one Associated Tangent hyper-surface F(x, u(0)) of the family F (or more than one) that passes
at point x(0) (i.e. F(x(0), u(0)) = 0) and is tangent to V(pi (x)) at point x(0).

The Singular grobcov.lib library has incorporated the following algorithms and commands related to
envelopes:

1. envelop: Determines the envelope components and their taxonomies.
2. AssocTanToEnv: Determines the associated tangent element of the family passing at a regular point of a

“Normal” component.
3. FamElemsAtEnvComPoints Determines all the elements of the family passing at a point of the envelope.
4. discrim Determines the discriminant with respect to a variable, when an equation is of degree 2.

Example 5.4 Consider the family of spheres of radius 1, centered at point (x1, y1, z1) of a sphere of center (0, 0, t)
and radius

√
t . We have the following family and restrictions:

F = (x − x1)
2 + (y − y1)

2 + (z − z1)
2 − 1,

C = 〈x21 + y21 + (z1 − t)2 − t〉.

Applying envelop(F, C) we obtain 2 components:

E1 = V(16x6 + 48x4y2 + 16x4z2 − 32x4z − 56x4 + 48x2y4 + 32x2y2z2

− 64x2y2z − 112x2y2 − 32x2z3 − 24x2z2 + 29x2 + 16y6

+ 16y4z2 − 32y4z − 56y4 − 32y2z3 − 24y2z2 + 29y2

+ 16z4 − 24z3 − 15z2 + 38z − 15)\V(z − 1, x2 + y2)

Normal

E2 = V(z − 1, y, x)

Accumulation

The envelope has a “Normal” component E1, and an “Accumulation” point. As the restriction C has degree 2 in
t , we can compute its discriminant with respect to t

�t = 4z1 − 1 − 4x21 − 4y21 ,

which divides the space into two regions. On the region�t (x1, y1, z1) ≥ 0 there can exist centers of family spheres,
but they cannot exist on the region �t (x1, y1, z1) < 0. These regions also separate both parts of the envelope, Eext ,
for �t (x1, y1, z1) < 0 and Eint for �t (x1, y1, z)1 > 0 (Fig. 4).

In Fig. 5 left is represented a section at y = 0 of the envelope, the separating paraboloid, and a set of family
spheres with centers in the paraboloid. We observe that these spheres are tangent to both parts Eext and Eint of the
envelope. In Fig. 5 right are also represented circles of the family centered everywhere.

Considering a point P = (x, y, z) of the envelope component E1, AssocTanToEnv(F, C, E1) gives:

t = −12x4 + 24x2y2 − 4x2z2 − 28x2z − 31x2 + 12y4 − 4y2z2 − 28y2z − 31y2 − 16z4 − 28z3 − 3z2 + 10z + 10

16z3 + 24z2 + 12z − 25

z1 = −24x4 + 48x2y2 − 8x2z2 − 56x2z − 62x2 + 24y4 − 8y2z2 − 56y2z − 62y2 − 32z4 − 40z3 + 18z2 + 32z − 5

32z3 + 48z2 + 24z − 50
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Fig. 4 Envelope and surface �t = 0 2d-Section

Fig. 5 Section for y = 0

y1 = −6x4yz + 32x4y + 32x2y3z + 64x2y3 + 16x2yz3 − 16x2yz2 − 100x2yz − 116x2y + 16y5z + 32y5

32z4 + 16z3 − 24z2 − 74z + 50

− 16y3z3 − 16y3z2 − 100y3z − 116y3 − 48yz4 − 68yz3

32z4 + 16z3 − 24z2 − 74z + 50

x1 = −16x5z + 32x5 + 32x3y2z + 64x3y2 + 16x3z3 − 16x3z2 − 100x3z − 116x3 + 16xy4z + 32xy4

32z4 + 16z3 − 24z2 − 74z + 50

− 16xy2z3 − 16xy2z2 − 100xy2z − 116xy2 − 48xz4 − 68xz3 − 36xz2 + 36xz + 35x

32z4 + 16z3 − 24z2 − 74z + 50

determining the values of (t, x1, y1, z1) of the parameters of the associated tangent sphere to E1 at P(x, y, z).
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Fig. 6 Envelope E1 and the
associated tangent sphere at
point P1

For example, at point P1 = (−3.519505319, 0, 6), the associated tangent sphere has center (−2.538358523, 0.,
6.193264030). It is represented in red in Fig. 6. This sphere is also the associated tangent sphere of the family at
point P2 = (−1.557188274, 0, 6.386408905).

We can observe two disjoint real parts of the component E1. In order to obtain the true real envelope, we
determine all family elements passing at a point of E1, calling

FamElemsAtEnvComp Points(F, C, E1), we obtain:

lpp ={z21, t2}
B ={z21 − 2zz1 + y21 − 2yy1 + x21 − 2xx1 + x2 + y2 + z2 − 1,

t2 − 2t z1 − t + 2zz1 + 2yy1 + 2xx1 − x2 − y2 − z2 + 1},

and compute the discriminant of both polynomials. After some manipulation we obtain:

discrim(B[1], z1) = − (y − y1)
2 + (x − x1)

2 + (z − z1)
2 − 1)) + (z − z1)

2 = (z − z1)
2,

discrim(B[2], t) =(y − y1)
2 + (x − x1)

2 + (z − z1)
2 − 1)) − −

(

x21 + y21 − z1 − 1

4

)

= −
(

x21 + y21 − z1 − 1

4

)

The first discriminant is always positive, but the second is only positive when

z1 ≥ x21 + y21 − 1

4
.

Computing the envelope of the set of spheres F with the restriction of having their centers in the separating
paraboloid z1 = x21 + y21 − 1

4 , we obtain the same result as for the initial problem. This indicates that the real
envelope is the external part of E1, i.e.,

Real envelope = Eext =
{

(x, y, z) ∈ E1 : z < x2 + y2 − 1

4

}

.
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