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Abstract In this paper we consider compositions of n as bargraphs. The depth of a cell inside this graphical
representation is the minimum number of horizontal and/or vertical unit steps that are needed to exit to the outside.
The depth of the composition is the maximum depth over all cells of the composition. We use finite automata to
study the generating function for the number of compositions having a depth of at least r .
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1 Introduction

A composition σ = σ1 · · · σm of n ∈ N is an ordered collection of one or more positive integers whose sum is
|σ | = σ1 + · · · + σm = n. For instance, the compositions of 3 are 3, 21, 12 and 111. The number of summands,
namely m, is called the number of parts of the composition and n is called the weight of σ . It is well known that
the number of compositions of n is given by 2n−1 and the number of compositions of n with m parts is given by(n−1
m−1

)
. Compositions have been studied extensively in recent years (for example, see [4]).
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Fig. 1 The composition
34,543

xx

Fig. 2 The 3 consecutive
“peelings” of the inner
site-perimeter of the
composition 34543

Compositions can be represented as bargraphs where the lower edge lies on a horizontal axis (for instance,
see [6,10,11]). They are drawn on a regular planar lattice grid and are made up of square cells. So a composition is
uniquely defined by the size of each part. The size of the composition is the total number of cells in the representing
bargraph. We will study the depth of compositions, which are presented as bargraphs. Let σ be any composition and
let c be any cell of σ . The depth of the cell c, denoted by depth(c), is the minimum number of horizontal or vertical
steps to exit σ starting from c. The depth of σ is defined as depth(σ ) = maxc depth(c), where the maximum is
over all cells c of σ . For example, the cell that is indicated by x in Fig. 1 of the composition σ = 34543, needs three
steps to exit σ . Moreover, depth(σ ) = 3 since all other cells require fewer than three steps to exit. An alternative
conception of the depth of a composition is given by the size of its Durfee square, see [2].

Equivalently, the depth of a composition can be understood as the number of times the inner site-perimeter can
be recursively removed or “peeled” from the composition until nothing remains, as shown below. The inner site-
perimeter is defined as all cells in the compositionwhose depth is one, see [3,7]. Each successive inner site-perimeter
is coloured in Fig. 2.

The aim of this paper is to study the generating function for the number of compositions having a depth of at
least r . To achieve our goals, we use finite automata technique (for such technique in enumerative combinatorics,
for instance, we refer the reader to [1,5,8,9,12]).

2 Main results

We say that the composition σ = σ1σ2 · · · σs contains the composition τ = τ1τ2 · · · τm if there exist j such that
0 ≤ j ≤ s − m and σ j+i ≥ τi for all i = 1, 2, . . . ,m. For instance, the composition 4534 contains 234 but does
not contain 144. For all r ≥ 2, define

τ (r) := r(r + 1) · · · (2r − 2)(2r − 1)(2r − 2) · · · (r + 1)r.

In Fig. 1, the illustration is for r = 3.
From the definitions, we can state the following fact.

Proposition 1 A composition σ satisfies depth(σ ) ≥ r if and only if it contains τ (r).

In order to enumerate the compositions that avoid (i.e., do not contain) τ (r), we need the following notation and
definitions. A prefix of a composition σ is a sub-composition σ ′ (possible empty) such that there exists a nonempty
sub-composition σ ′′ with σ = σ ′σ ′′. LetVr be the set of all prefixes of τ (r). For example,V3 = {ε, 3, 34, 345, 3454}
when τ (3) = 34543 and ε is the empty composition.
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Fig. 3 The graph G2
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Fig. 4 The graph G3

For given σ = σ1σ2 · · · σm and k ∈ N, we define the reduction red(σk) of σk to be σ ′ = σ ′
1σ

′
2 · · · σ ′

m′ if σ ′ ∈ Vr ,
m′ is maximal and σm+1−m′+ j ≥ σ ′

j for all j = 1, 2, . . . ,m′, where σm+1 = k. Otherwise, we say the reduction of
σk is not defined. For instance, if r = 3 then red(245) = 34 and red(613445) = 345.

Now let us define a directed graph (finite automata, for example, see [1,5]) Gr on the vertices Vr with edges
between σ = σ1σ2 · · · σm ∈ Vr and red(σk) with weight x |σk|−|red(σk)|, where red(σk) is defined. For simplicity,
if there are two edges between σ and σ ′ with weights w,w′ then we just write as one edge with weight w + w′.

Example 1 Let r = 2 (τ (2) = 232). The graph Gr has three vertices ε, 2, 23. Note that

• red(εk) = ε for k = 1 and red(εk) = 2 for all k ≥ 2. Thus, there is an edge between ε and ε with weight x
and there is an edge between ε and 2 with weight x2 + x3 + · · · = x2

1−x . This corresponds to the generating
function for adding a part k of size 2 or more.

• red(21) = ε, red(22) = 2 and red(2k) = 23 for all k ≥ 3. So there is an edge between 2 and ε with weight x ,
there is an edge between 2 and 2 with weight x2, and there is an edge between 2 and 23 with weight x3/(1− x).

• red(231) = ε and for k > 1 red(23k) is not defined. So there is an edge between 23 and ε with weight x .

Summarizing this information, we obtain the graph G2 as presented in Fig. 3.

Example 2 Let r = 3 (τ (2) = 34543). The graph Gr on its five vertices ε, 3, 34, 345, 3454 is presented in Fig. 4.

To state our next observation, we define a weight of a path in the graph Gr to be the product of the weights of
all the edges. For example, the weight of the path ε, 3, 3, 34, 345, ε, 3 is

x3

1 − x
· x3 · x4

1 − x
· x5

1 − x
· (x + x2) · x3

1 − x
= x19(1 + x)

(1 − x)4
.

Proposition 2 Set r ≥ 2. Then the generating function for the number of compositions of n with exactly m parts
that avoid τ (r) is given by the total weight of all paths of length m starting from ε in Gr .
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Proof Let σ = σ1σ2 · · · σm be any composition that avoids τ (r) with exactly m parts. From the definition of red,
we find that the path corresponding to σ in Gr is given by

ε −→σ1σ
(1) −→σ2σ

(2) · · · −→σmσ (m),

where σ ( j) = red(σ ( j−1)σ j ) with σ (0) = ε. On the other hand, for each σ ( j), j = 0, 1, . . . ,m, we can use the
graph Gr and the above path to define unique elements σ j , j = 1, 2, . . . ,m such that σ ( j) = red(σ ( j−1)σ j ). Thus
if σ follows from a path (as described above), then σ is a composition that avoids τ (r) with m parts. Thus, for each
composition that avoids τ (r) there exists a unique path in Gr with weight x |σ |. ��

Let Ar be the adjacency matrix of the directed graph Gr . By Proposition 2, we have that the generating function
for the number of compositionswith exactlym parts that avoid τ (r) is given bywTAm

r v, wherew = (1, 0, 0, . . . , 0)T

and v = (1, 1, . . . , 1)T are vectors with |Vr | = 2r − 1 coordinates. Thus, the generating function for the number
of compositions that avoid τ (r) is given by, see [4]
∑

m≥0

wTAm
r v = wT (I − Ar )

−1v.

Hence, we obtain our main result,

Theorem 1 Let r ≥ 2, the generating function for the number of compositions of n that avoid τ (r) is given by
wT (I − Ar )

−1v, where I is the unit matrix and w = (1, 0, . . . , 0)T and v = (1, 1, . . . , 1)T are vectors of 2r − 1
coordinates. Moreover, this generating function is a rational function in x.

Example 3 From Examples 1 and 2, we obtain

A2 =
⎛

⎜
⎝
x x2

1−x 0

x x2 x3
1−x

x 0 0

⎞

⎟
⎠ and A3 =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

x + x2 x3
1−x 0 0 0

x + x2 x3 x4
1−x 0 0

x + x2 x3 x4 x5
1−x 0

x + x2 x3 0 0 x4
1−x

x + x2 0 0 0 0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

Hence, the generating function for the number of compositions of n that avoid τ (2) = 232 is given by

(1 − x)2 + x3(1 − x) + x5

(1 − 2x)(1 − x) + x3(1 − 2x) + x5 − x6
,

and the generating function for the number of compositions of n that avoid τ (3) = 34,543 is given by

(1 − x)4 + x5(1 − x)3 + x9(1 − x)2 + x13 − x14 + x16

(1 − 2x)(1 − x)3 + x5(1 − 2x)(1 − x)2 + x9(1 − 2x)(1 − x) + x13(1 − 2x) + x16 − x17 − x18
.

Actually, from the definition of the graph Gr , we can state an explicit formula for the matrix Ar .

Proposition 3 Let r ≥ 2 and Ar = (ai j )1≤i, j≤2r−1. Then

ai j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑r−1
k=1 x

k, j = 1,
xr−1+i

1−x , j = i + 1, i = 1, 2, . . . , r,
x3r−1−i

1−x , j = i + 1, i = r + 1, r + 2, . . . , 2r − 2,

xr−2+ j , 2 ≤ j ≤ r, j ≤ i ≤ 2r − j,

0, otherwise.
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Define fs = x+x2+· · ·+xs and define δX to be 1 if X holds and 0 otherwise. LetLr = (�i j )1≤i, j≤2r−1 be a lower
triangular matrix and Ur = (ui j )1≤i, j≤2r−1 be a upper triangular matrix such that �11 = · · · = �(2r−1)(2r−1) = 1,
u11 = 1 − fr−1, ui j = 0 for all j ≥ i + 2, and

�i j = − fr−1

1 − fr−1

x(
r+ j−1

2 )−(r2)

(1 − x) j−1
∏ j

s=2 uss
−

j−2∑

k=0

x(
r+ j−1

2 )−(r+ j−2−k
2 )δi≤2r− j+k

(1 − x)k
∏ j

s= j−k uss
,

for j + 1 ≤ i ≤ 2r − 1, 2 ≤ j ≤ r + 1, (2.1)

�i j = x(
2r−1
2 )−(3r− j

2 )

(1 − x) j−r−1
∏ j

k=r+2 ukk
�i(r+1), for j + 1 ≤ i ≤ 2r − 1, r + 2 ≤ j ≤ 2r − 2, (2.2)

ui(i+1) =
{

− xr−1+i

1−x , i = 1, 2, . . . , r,

− x3r−1−i

1−x , i = r + 1, r + 2, . . . , 2r − 2.
(2.3)

uii =
{
1 − xr−2+i + �i(i−1)

xr−2+i

1−x , i = 2, 3, . . . , r,

1 + �i(i−1)
x3r−i

1−x , i = r + 1, . . . , 2r − 1.
(2.4)

For instance,

L2 =
⎛

⎜
⎝

1 0 0
− x

1−x 1 0

− x
1−x

x3

x4−x3+2 x−1
1

⎞

⎟
⎠

and

U2 =

⎛

⎜⎜⎜
⎝

1 − x − x2
1−x 0

0 −x4+x3−2 x+1
(1−x)2

− x3
1−x

0 0 −x6+x5−2 x4+x3+2 x2−3 x+1
(−x4+x3−2 x+1)(1−x)

⎞

⎟⎟⎟
⎠

.

Theorem 2 For all r ≥ 2, I − Ar = LrUr , where I is the unit matrix.

Proof Define bi j = ∑2r−1
k=1 �ikuk j . By Proposition 3, we have to show that bi j = δi= j −ai j . Clearly, by (2.1)–(2.4),

we have b11 = �11u11 = 1 − fr−1 = 1 − a11, b12 = �11u12 = −a12, and b1 j = �11u1 j = 0 = a1 j for all
j = 3, 4, . . . , 2r − 1. Moreover, bi1 = �i1u11 = − fr−1 = −ai1, for all i = 2, 3, . . . , 2r − 1.
Now let us show that bii = 1− aii : note that bii = uii + �i(i−1)u(i−1)i , so by (2.1)–(2.4), we have bii = 1− aii ,

as required.
Now we show that bi j = −ai j for all 2 ≤ i < j ≤ 2r − 1: note that bi j = �i( j−1)u( j−1) j + �i j u j j , so by

(2.1)–(2.4), we have bi(i+1) = ui(i+1) = −ai(i+1) and bi j = 0 = −ai j for all j ≥ i + 2.
Thus, it remains to show that bi j = −ai j for all 2 ≤ j < i ≤ 2r − 1. We show only the cases 2 ≤ j ≤ r and

j + 1 ≤ i ≤ 2r − 1 since the other cases are similar. By (2.1)–(2.4) and bi j = �i( j−1)u( j−1) j + �i j u j j , we see that

bi j =
⎛

⎝ fr−1

1 − fr−1

x(
r+ j−2

2 )−(r2)

(1 − x) j−2
∏ j−1

s=2 uss
+

j−3∑

k=0

x(
r+ j−2

2 )−(r+ j−3−k
2 )δi≤2r− j+k+1

(1 − x)k
∏ j−1

s= j−1−k uss

⎞

⎠ xr+ j−2

1 − x

−
⎛

⎝ fr−1

1 − fr−1

x(
r+ j−1

2 )+(r2)

(1 − x) j−1
∏ j

s=2 uss
+

j−2∑

k=0

x(
r+ j−1

2 )−(r+ j−2−k
2 )δi≤2r− j+k

(1 − x)k
∏ j

s= j−k uss

⎞

⎠ u j j

= fr−1

1 − fr−1

x(
r+ j−1

2 )−(r2)

(1 − x) j−1
∏ j−1

s=2 uss
+

j−2∑

k=1

x(
r+ j−1

2 )−(r+ j−2−k
2 )δi≤2r− j+k

(1 − x)k
∏ j−1

s= j−k uss
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− fr−1

1 − fr−1

x(
r+ j−1

2 )+(r2)

(1 − x) j−1
∏ j−1

s=2 uss
−

j−2∑

k=0

x(
r+ j−1

2 )−(r+ j−2−k
2 )δi≤2r− j+k

(1 − x)k
∏ j−1

s= j−k uss

= −x(
r+ j−1

2 )−(r+ j−2
2 ) = −xr+ j−2 = −ai j ,

as required. ��
Moreover, by using similar techniques (but more complicated) as in the Proof of Theorem 2, we can state the

following explicit formulas for uss and �s(s−1).

Proposition 4 Let r ≥ 2. Then u j j = α j+1
(1−x)α j

for all j = 1, 2, . . . , 2r − 1, where

αi = x(
r+i−1

2 )−(r+1
2 )(1 − fr−1)

+
i−3∑

k=0

x(
r+i−1

2 )−(r+i−1−k
2 )(1 − 2x)(1 − x)i−3−k, 2 ≤ i ≤ r + 1,

αr+i = (1 − 2x)(1 − x)r+i−3 +
i∑

k=1

x2r(2k−1)−k2−k+1(1 − 2x)(1 − x)r+i−2k−2

+
i−1∑

k=1

x4rk−k2−2k(1 − 2x)(1 − x)r+i−2k−3

+
r−i−2∑

k=1

x2r(2i−1+k)−i(i+1+k)−k(k+1)/2−1(1 − 2x)(1 − x)r−2−i−k

+ xr(3r+4i−7)/2+1−i(i+1)/2(1 − fr−1), r + 2 ≤ i ≤ 2r.

Moreover,

�i(i−1) =
(

αi+1

(1 − x)αi
− 1 + xr−2+i

)
1 − x

xr−2+i
, 2 ≤ i ≤ r,

�i(i−1) =
(

αi+1

(1 − x)αi
− 1

)
1 − x

x3r−i
, r + 1 ≤ i ≤ 2r − 1.

Theorem 3 Set r ≥ 2. Let x = (x1, . . . , x2r−1)
T and w = (1, 1, . . . , 1)T be two vectors with 2r − 1 coordinates.

The solution of the system of equation (I − Ar )x = w is given by

xi = (1 − x)
2r−1∑

k=i

ykαi

αk+1

k−1∏

s=i

(
xr−1+sδs≤r + x3r−1−sδs≥r+1

)
,

where yi = 1 − ∑i−1
j=1 �i j y j for all i = 1, 2, . . . , 2r − 1.

Proof By Theorem 2, we have that I −Ar = LrUr . Let Lr y = w and Ur x = y. Then, for all i = 1, 2, . . . , 2r − 1,
we have yi = 1 − ∑i−1

j=1 �i j y j and xi = yi
uii

− ui(i+1)
uii

xi+1 with z2r = 0. Thus, by induction on i , we see that

xi =
2r−1∑

k=i

(−1)k−i yk

∏k−1
s=i us(s+1)
∏k

s=i uss
,

which, by Proposition 4 and (2.3), completes the proof. ��
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By Theorems 1–3 and the fact that (1 − x)α1 = 1, we obtain the following result.

Theorem 4 The generating function for the number of compositions of n that avoid τ (r) is given by

2r−1∑

k=1

yk
αk+1

k−1∏

s=1

(
xr−1+sδs≤r + x3r−1−sδs≥r+1

)
,

where yi = 1 − ∑i−1
j=1 �i j y j for all i = 1, 2, . . . , 2r − 1 and �i j and ui j are given by (2.1)–(2.4).

Theorem 4 has already been illustrated for r = 2 and 3 in Example 3. Here we illustrate Theorem 4 for r = 4 and
5.

Example 4 The generating function for the number of compositions that avoid τ (4) = 4,567,654 is s(x)
t (x) where

s(x) = 1 − 6x + 15x2 − 20x3 + 15x4 − 6x5 + x6 + x7 − 5x8 + 10x9 − 10x10

+ 5x11 − x12 + x13 − 4x14 + 6x15 − 4x16 + x17 + x19 − 3x20 + 3x21

− x22 + x24 − 2x25 + x26 + x29 − x30 + x33,

and

t (x) = 1 − 7x + 20x2 − 30x3 + 25x4 − 11x5 + 2x6 + x7 − 6x8 + 14x9 − 16x10

+ 9x11 − 2x12 + x13 − 5x14 + 9x15 − 7x16 + 2x17 + x19 − 4x20 + 5x21

− 2x22 + x24 − 3x25 + 2x26 + x29 − 2x30 + x33 − x34 − x35 − x36,

Thus as a series expansion, the generating function for the number of compositions of depth r ≥ 4 is

1 − x

1 − 2x
− s(x)

t (x)
= x37 + 9x38 + 47x39 + 187x40 + · · · .

For example the nine compositions of 38 that contain 4,567,654 are: 14,567,654, 5,567,654, 4,667,654, 4,577,654,
4,567,754, 4,568,654, 4,567,664, 4,567,655 and 45,676,541. Similarly:

Example 5 For r = 5, the generating function for the number of compositions that avoid τ (5) = 5,678,765 is u(x)
v(x)

where

u(x) = 1 − 8x + 28x2 − 56x3 + 70x4 − 56x5 + 28x6 − 8x7 + x8 + x9 − 7x10 + 21x11

− 35x12 + 35x13 − 21x14 + 7x15 − x16 + x17 − 6x18 + 15x19 − 20x20 + 15x21

− 6x22 + x23 + x25 − 5x26 + 10x27 − 10x28 + 5x29 − x30 + x32 − 4x33 + 6x34

− 4x35 + x36 + x39 − 3x40 + 3x41 − x42 + x45 − 2x46 + x47 + x51 − x52 + x56,

and

v(x) = 1 − 9x + 35x2 − 77x3 + 105x4 − 91x5 + 49x6 − 15x7 + 2x8 + x9 − 8x10 + 27x11

− 50x12 + 55x13 − 36x14 + 13x15 − 2x16 + x17 − 7x18 + 20x19 − 30x20 + 25x21

− 11x22 + 2x23 + x25 − 6x26 + 14x27 − 16x28 + 9x29 − 2x30 + x32 − 5x33 + 9x34

− 7x35 + 2x36 + x39 − 4x40 + 5x41 − 2x42 + x45 − 3x46 + 2x47 + x51 − 2x52 + x56

− x57 − x58 − x59 − x60.
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As before the series expansion for generating function for the number of compositions of depth r ≥ 5 is

1 − x

1 − 2x
− u(x)

v(x)
= x61 + 11x62 + 68x63 + 312x64 + 1186x65 + · · · .
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