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Abstract Constructing quantum codes with large minimum distance plays a significant role in quantum com-
putation and communication. Quantum maximum-distance separable (MDS) codes have important place among
quantum codes since they are optimal with regard to the maximality of their minimum distances. In this paper,
by making use of constacyclic codes over Fq2 and Hermitian construction for quantum codes, we give different
constructions for some classes of quantum MDS codes.
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1 Introduction

Quantum codes have been intensively studied by researchers to detect and correct the errors occurring in quantum
channels during quantum information transfer since the discovery of the first quantum code, introduced by Shor in
[22], showing the possibility of dealing with the decoherence destroying the information of qubits having a superpo-
sition. A q-ary quantum code of length n is a subspace of qn-dimensional Hilbert space H = Cq ⊗ Cq ⊗ · · · ⊗ Cq

︸ ︷︷ ︸

n times
where Cq is the q-dimensional complex vector space and the bar ⊗ denotes the tensor product. The notation
[[n, k, d]]q denotes a quantum code having the parameters length n, dimension qk and minimum distance d, where
the parameter d indicates the error detecting and correcting capability, i.e., a quantum code with minimum distance
d can detect up to d−1 errors and correct up to

⌊ d−1
2

⌋

errors. One of the main problems in quantum error-correction
is to construct quantum codes having large minimum distance. At the same time, it is also important for a quantum
code to have large dimension. However, the following bound, which is called the quantum Singleton bound, gives
a restriction on the dimension and minimum distance for a fixed length.
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Proposition 1 (Quantum Singleton bound) [1,15] For an [[n, k, d]]q quantum code, k ≤ n − 2d + 2.

An [[n, k, d]]q quantum code is called quantummaximum-distance separable (MDS) code if it meets the quantum
Singleton bound. Recently, the constructions of quantumMDS codes have had much attention [3–14,17–21,23,25–
27]. In [17], La Guardia constructed a family of quantum MDS codes with parameters

[[

q2 + 1, q2 − 2d + 3, d
]]

q
where q = 2t , t ≥ 1 and 3 ≤ d ≤ q + 1. In [3], Chen et al. constructed four classes of quantum MDS codes for
odd prime power q.

Moreover, they tabulated the parameters of quantum MDS codes which had been derived by that time. In [23],
Wang et al. derived two classes of quantum MDS codes for odd prime power q; for 2 ≤ d ≤ q−1+2λ

2 and

q + 1 = λr , r even, [[λ (q − 1) , λ (q − 1) − 2d + 2, d]]q and for 2 ≤ d ≤ q−1+λ
2 and q + 1 = λr , r odd,

[[λ (q − 1) , λ (q − 1) − 2d + 2, d]]q . More recently, in [21], Qian et al. developed two families of quantum MDS

codes,
[[

q2−1
3 ,

q2−1
3 − 2d + 2, d

]]

q
, q = 2t , where 2 ≤ d ≤ q−1

3 if 3|q + 2 and 2 ≤ d ≤ 2q−1
3 if 3|q + 1; and

[[

q2+1
10 ,

q2+1
10 − 2d + 2, d

]]

q
, q = 10m + 7 where 3 ≤ d ≤ 4m + 1. They also improved the construction given by

Chen et al. in [3]. In this paper, by using the same construction and ideas as the construction in [12] and [14], we
construct the following families of quantum MDS codes in different ways.

1. For 3 ≤ d(odd) ≤ q,
[[

q2 + 1

2
,
q2 + 1

2
− 2d + 2, d

]]

q
. (1)

2. For 2 ≤ d (even) ≤ 5m + 2 if q = 13m + 5 and 2 ≤ d (even) ≤ 5m + 3 if q = 13m + 8,
[[

q2 + 1

13
,
q2 + 1

13
− 2d + 2, d

]]

q
. (2)

3. For 2 ≤ d (even) ≤ 5m + 1 if q = 17m + 4 and 2 ≤ d (even) ≤ 5m + 4 if q = 17m + 13,
[[

q2 + 1

17
,
q2 + 1

17
− 2d + 2, d

]]

q
. (3)

4. Let m ≥ 2. If 2m + 1 is a prime, then for 2 ≤ d ≤ 2m−1,
[[

2m − 1, 2m − 2d + 1, d
]]

2m . (4)

5. Let m ≥ 2. If 2m + 1 is not a prime, then for each prime p dividing 2m + 1 and 2 ≤ d ≤ 2m−1
2 + 2m+1

2p ,
[[

22m − 1

p
,
22m − 1

p
− 2d + 2, d

]]

2m
. (5)

The parameters given in (1) were also obtained by Kai et al. in [13]. The parameters in (2) and (3) were further
derived by Jin et al. in [10]. The family of quantum MDS codes in (4) were also gotten by Grassl et al. in [5]. The
parameters of quantum MDS codes obtained in (5) were further by He et al. in [7].

The organization of this paper is as follows: In Sect. 2, we present the fundamental concepts which are needed
in the rest of the paper. In Sect. 3, we construct some families of quantum codes from constacyclic codes over Fq2 .
In Sect. 4, by summarizing our findings, we conclude this paper.

2 Preliminaries

In this section, we give some basic notions and results regarding constacyclic codes and quantum codes. Let Fq2 be
a finite field of q2 elements where q is a prime power and let Fn

q2
be n-dimensional vector space of n-tuples on Fq2 .

A subspace of the vector space Fn
q2

is a linear code of length n over Fq2 . The Hamming distance d (x, y) between



A Different Construction for Some Classes of Quantum MDS Codes 37

two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is the number of their distinct components. The elements of
a linear code are called codewords. The smallest Hamming distance of distinct elements in a linear code is the
minimum distance of that linear code, denoted by d. A linear code of length n and minimum distance d over Fq2 is
denoted by [n, k, d]q2 , where k is the dimension of the linear code over Fq2 and n, k and d are called the parameters
of the linear code.

One of the most important linear code families is constacyclic codes. Denote F×
q2

as the multiplicative group

of Fq2 and let α ∈ F×
q2
. A linear code of length n over Fq2 is an α-constacyclic code of length n over Fq2 if

(αcn−1, c0, . . . , cn−2) is a codeword whenever (c0, c1, . . . , cn−1) is also a codeword. It is well-known fact that an

α-constacyclic code of length n over Fq2 can be viewed as an ideal in the quotient ring
Fq2 [x]

〈xn−α〉 since there is a one-

to-one correspondence between α-constacyclic codes of length n over Fq2 and the ideals of
Fq2 [x]

〈xn−α〉 . This enables us
to describe an α-constacyclic code of length n over Fq2 by a monic divisor g (x) of xn − α, i.e., an α-constacyclic

code of length n over Fq2 is an ideal generated by g (x) in
Fq2 [x]

〈xn−α〉 , where g (x) is called the generator polynomial.

Let r be the multiplicative order of α in F×
q2
. If (n, q) = 1, then there exists an rnth root β of unity over Fq2 such

that βn = α and so all roots of xn − α over Fq2 are β, β1+r , …, β1+r(n−1). Set Or,n = {1 + r j, 0 ≤ j ≤ n − 1}.
Let (n, q) = 1. Since xn − α divides xrn − 1, the q2-cyclotomic coset modulo rn containing 1 + r j is given as
C1+r j = {

(1 + r j) q2i mod (rn) , i ∈ N
}

. Then, the union of some q2-cyclotomic cosets gives the set Or,n . The
defining set of an α-constacyclic code generated by g (x) is a subset Z of Or,n satisfying g (x) = ∏

j∈Z
(

x − β j
)

.
Note that the dimension of an α-constacyclic code of length n over Fq2 with the defining set Z is n − |Z |. The
following bound is a useful tool to determine the minimum distance of some classes of constacyclic codes, which
has been proven in [2] and [16].

Theorem 1 (BCH bound for constacyclic codes) [2,16] Let (n, q) = 1. Let β be an rnth root of unity with βn = α

where α ∈ F×
q2

and r is the multiplicative order of α in F×
q2
. Then, the minimum distance of an α-constacyclic code

of length n over Fq2 with the defining set including the set {1 + r j, l ≤ j ≤ l + d − 2} is at least d.
The following bound is a well-known upper bound for the dimension of linear codes, which is called the Singleton

bound.

Proposition 2 (Singleton bound) If there exists a linear code with the parameters [n, k, d]q2 , then k is at most
n − d + 1.

A linear code with the parameters [n, k, d]q2 satisfying the Singleton bound, i.e. k = n − d + 1, is called
maximum-distance separable (MDS) code. By Theorem 1, an α-constacyclic code of length n over Fq2 with the
defining set Z = {1 + r j, l ≤ j ≤ l + d − 2} hasminimum distance at least d. Hence, since such an α-constacyclic
code has the dimension n−d+1, by Proposition 2, this α-constacyclic code is an MDS code having the parameters
[n, n − d + 1, d]q2 .

The Hermitian inner product 〈x, y〉h of the vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) in Fn
q2

is 〈x, y〉h := ∑n−1
i=0 xi y

q
i . Given a linear code C over Fq2 , the Hermitian dual C⊥h of C is the set C⊥h =

{

y ∈ Fn
q2

: 〈x, y〉h = 0, ∀x ∈ C
}

. The following lemma characterizes the Hermitian dual of an α-constacyclic

code of length n over Fq2 .

Lemma 1 [24] The Hermitian dual of an α-constacyclic code of length n over Fq2 with the generator polynomial

g (x) is an α−q-constacyclic code of length n over Fq2 with the generator polynomial g
⊥h (x) = ∑k

i=0 h
q
i h

−q
0 xk−i .

Lemma 1 implies that C⊥h is an α−q -constacyclic code over Fq2 with the defining set −q
(

Or,n − Z
)

if C is an
α-constacyclic code over Fq2 with the defining set Z .

It is given in [3] that if an α-constacyclic code over Fq2 contains its Hermitian dual, then r | q + 1. A necessary
and sufficient condition for an α-constacyclic code to contain its Hermitian dual is given in [14] as:
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Lemma 2 [14] Let α ∈ F×
q2
. Then, an α-constacyclic code with the defining set Z contains its Hermitian dual if

and only if Z ∩ −qZ = ∅.
One of the considerable applications of linear codes over finite fields is to be used to construct quantum codes

in an efficient way. The following method is mostly used to construct quantum codes from linear codes over Fq2
containing their Hermitian dual.

Theorem 2 [1,15] If there exists an [n, k, d]q2 linear code C such that C⊥h ⊆ C, then there exists an
[[n, 2k − n,≥ d]]q quantum code.

Note that if a linear code over Fq2 containing its Hermitian dual is MDS according to Proposition 2, then the
quantum code obtained from this linear code by using Theorem 2 is also MDS with respect to Proposition 1.

3 Some Classes of Quantum MDS Codes

We devote this section for deriving some families of quantum MDS codes from constacyclic codes over Fq2 . We
focus on how the defining sets of an α-constacyclic code of certain length should be so that it contains its Hermitian
dual. The trick is as follows: These defining sets consist of consecutive terms as mentioned in Theorem 1 and so
these constacyclic codes becomeMDS. Hence, we give the parameters of quantumMDS codes obtained from these

constacyclic codes via Theorem 2. We begin with the length n = q2+1
p .

3.1 Quantum MDS Codes of Length n = q2+1
p

Let q be an odd prime power with p| q2 + 1, where p is an arbitrary prime and let r = q + 1. Then, α is a primitive

(q + 1)st root of unity over Fq2 . Let n = q2+1
p . It is easy to see that the multiplicative order of q2 modulo rn is at

most 2. Note that q2 + 1 = 2t , 2  |t for any odd prime power q. Hence we divide this subsection into two cases:
p = 2 and p > 2.

3.1.1 The Case p = 2

Let p = 2, that is, n = q2+1
2 . Then, n is odd and the multiplicative order of q2 modulo rn is 2 since q2 < rn. We

characterize all q2-cyclotomic cosets modulo rn in the following lemma.

Lemma 3 All q2-cyclotomic cosets modulo rn containing 1 + r j are as follows:

1. C1+(q+1) j = {1 + (q + 1) j, 1 + (q + 1) (q − 1 − j)} for 0 ≤ j <
q−1
2 .

2. C1+(q+1) j =
{

1 + (q + 1) q−1
2

}

for j = q−1
2 .

3. C1+(q+1) j = {1 + (q + 1) j, 1 + (q + 1) (n + q − 1 − j)} for q − 1 < j ≤ q−1
2 + n−1

2 .

Proof Let 0 ≤ j <
q−1
2 . Since (q + 1) q2 ≡ − (q + 1) mod rn, we have that q2 (1 + (q + 1) j) ≡ q2 −

(q + 1) j ≡ 1 + (q + 1) (q − 1 − j) mod rn.

Let j = q−1
2 . Then, q2 (1 + (q + 1) j) = q2 q

2+1
2 = q2+1

2

(

q2 − 1
) + q2+1

2 ≡ q2+1
2 mod rn.

Let q−1 < j ≤ q−1
2 + n−1

2 . Then, q−1− j < 0 and so q2 (1 + (q + 1) j) ≡ 1+(q + 1) (n + q − 1 − j) mod
rn.

It is easy to see that the union of the cyclotomic cosets presented here gives the set Or,n and so proof is completed.
��
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Set t = q−1
2 + n−1

2 and δ = q−1
2 − 1. Define the subset Z of Or,n to be Z = ⋃t

j=t−δ C1+(q+1) j . Since
C1+(q+1) j = {1 + (q + 1) j, 1 + (q + 1) (n + q − 1 − j)} for t − δ ≤ j ≤ t , by Lemma 3, we have Z =
⋃t+δ+1

j=t−δ {1 + (q + 1) j}, that is, Z comprises exactly q − 1 consecutive terms. We need the following to derive a

class of MDS α-constacyclic codes and quantum MDS codes of length n = q2+1
2 .

Lemma 4 Z ∩ −qZ = ∅.
Proof Suppose Z ∩ −qZ = ∅. Then, there exists some t − δ ≤ j, k ≤ t + δ + 1 such that −q (1 + (q + 1) j) ≡
1 + (q + 1) k mod rn. This implies 1 + k + q j ≡ 0 mod n. Since t − δ = n+1

2 and t + δ + 1 = n+1
2 + q − 2, it

follows from t−δ ≤ j, k ≤ t+δ+1 that q+1
2 (n + 1)+1 ≤ 1+k+q j ≤ q+1

2 (n + 1)+(q + 1) (q − 2)+1. Since
q+1
2 + (q + 1) (q − 2)+1 < 2n and 1+ k+q j ≡ 0 mod n, we get 1+ k+q j = q+3

2 n. Since 1+ k ≡ n+1
2 mod q

for all t − δ ≤ k ≤ t + δ + 1, there is no solution of the equation 1 + k + q j = (q + 1) n+1
2 + lq for any integer l

and t − δ ≤ j, k ≤ t + δ + 1. Since q+3
2 n = (q + 1) n+1

2 + q−1
2 q, i.e. l = q−1

2 , we get 1+ k + q j = q+3
2 n for all

t − δ ≤ j, k ≤ t + δ + 1. This is a contradiction. ��
Theorem 3 Suppose that q is an odd prime power. Then, there exists a family of MDS α-constacyclic codes

containing their Hermitian duals and having the parameters
[

q2+1
2 ,

q2+1
2 − d + 1, d

]

q2
, where 3 ≤ d ≤ q and d

is odd.

Proof Define the set Si = ⋃t
j=t−i C1+(q+1) j for each 0 ≤ i ≤ δ. Then, Si is a subset of Z containing 2i + 2

consecutive terms and |Si | = 2i . Let Ci be an α-constacyclic code having the defining set Si . Theorem 1 and
Proposition 2 imply that Ci is an MDS code with the desired parameters. Since Si is a subset of Z , by Lemma 4
−qSi ∩ Si = ∅. Therefore, C⊥h

i ⊆ Ci by Lemma 2. ��

We now construct a family of quantumMDS codes with length q2+1
2 which was also proved by Kai et al. in [13].

Theorem 4 Suppose that q is an odd prime power. Then, there exists a family of quantum MDS codes with the

parameters
[[

q2+1
2 ,

q2+1
2 − 2d + 2, d

]]

q
, where 3 ≤ d ≤ q and d is odd.

Proof Using Theorem 2, one can derive the quantum codes with the desired parameters from MDS α-constacyclic
codes given in Theorem 3. By Proposition 1, these quantum codes are MDS. ��

3.1.2 The Case p > 2

Let p be an odd prime dividing q2+1. In this case, n = q2+1
p is even since q2+1 = 2t and p is odd. We investigate

the case q2 < rn. It follows that p < q and the multiplicative order of q2 modulo rn is 2. The following lemma
determines all q2-cyclotomic cosets modulo rn.

Lemma 5 All q2-cyclotomic cosets modulo rn containing 1 + r j are as follows:

1. C1+(q+1) j = {1 + (q + 1) j, 1 + (q + 1) (q − 1 − j)} for 0 ≤ j <
q−1
2 .

2. C1+(q+1) j =
{

1 + (q + 1) q−1
2

}

for j = q−1
2 .

3. C1+(q+1) j = {1 + (q + 1) j, 1 + (q + 1) (n + q − 1 − j)} for q − 1 < j <
q−1
2 + n

2 .

4. C1+(q+1) j =
{

1 + (q + 1)
(

q−1
2 + n−1

2

)}

for j = q−1
2 + n

2 .

Proof It is enough to prove just (4) since the others are similar to Lemma 3. Let j = q−1
2 + n

2 . It is seen by

a simple computation that q2 (q + 1) n
2 ≡ (q + 1) n

2 mod rn and q2 + q2 q
2−1
2 ≡ 1 + q2−1

2 mod rn. Hence,
q2 (1 + (q + 1) j) ≡ 1 + (q + 1) j mod rn. Since the union of the cyclotomic cosets presented here gives the set
Or,n , we complete the proof. ��
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In addition to initial assumptions, let q be an odd prime power of the form 13m+5 or 13m+8 and let p = 13, that

is, n = q2+1
13 . Then, clearlym ≥ 2 and q2 < rn. Define the subset Z of the set Or,n to be Z = ⋃

q−1
2

j= q−1
2 − 5m

2

C1+(q+1) j

if q = 13m + 5 and Z = ⋃
q−1
2

j= q−1
2 − 5m+1

2

C1+(q+1) j if q = 13m + 8. By Lemma 5, Z comprises exactly 5m + 1

consecutive terms if q = 13m + 5 and 5m + 2 consecutive terms if q = 13m + 8. We have the following for both
cases.

Lemma 6 Z ∩ −qZ = ∅.
Proof Suppose that q = 13m+5. If Z∩−qZ = ∅, then there exits some q−1

2 − 5m
2 = 4m+2 ≤ j, k ≤ q−1

2 + 5m
2 =

9m + 2 such that −q (1 + (q + 1) j) ≡ 1+ (q + 1) k mod rn. This implies that 1+ k + q j ≡ 0 mod n. It follows

from q−1
2 − 5m

2 ≤ j, k ≤ q−1
2 + 5m

2 that q2+1
2 − (q + 1) 5m

2 ≤ 1 + q j + k ≤ q2+1
2 + (q + 1) 5m

2 . Since
q = 13m + 5, we have 52m2 + 50m + 13 ≤ 1 + q j + k ≤ 117m2 + 80m + 13 and n = 13m2 + 10m + 2. Since
4n < 52m2 + 50m + 13 < 5n and 8n < 117m2 + 80m + 13 < 9n, possible values of 1 + q j + k are nz, where
5 ≤ z ≤ 8. Since 4m + 3 ≤ 1 + k ≤ 9m + 3 < 13m + 5 = q, the remainder when 1 + k + q j is divided by q
should be 1 + k. Observe that these remainders for 5n, 6n, 7n and 8n are 12m + 5, 4m + 2, 9m + 4 and m + 1,
respectively, none of which are in the interval [4m + 3, 9m + 3]. This is a contradiction.

Suppose now that q = 13m + 8. If Z ∩ −qZ = ∅, then there exits some q−1
2 − 5m+1

2 = 4m + 3 ≤ j, k ≤
q−1
2 + 5m+1

2 = 9m + 4 such that −q (1 + (q + 1) j) ≡ 1 + (q + 1) k mod rn. This implies that 1 + k + q j ≡
0 mod n. Similar to above argument, we have that possible values of 1 + q j + k are nz, where 5 ≤ z ≤ 8. Since
4m + 4 ≤ 1 + k ≤ 9m + 5 < 13m + 5 = q, the remainder when 1 + k + q j is divided by q should be 1 + k.
Observe that these remainders for 5n, 6n, 7n and 8n are m + 1, 9m + 6, 4m + 3 and 12m + 8, respectively, none
of which are in the interval [4m + 4, 9m + 5]. This is a contradiction. ��
Theorem 5 Suppose that q is an odd prime power of the form q = 13m + 5 or q = 13m + 8. Then,
there exists a family of MDS α-constacyclic codes containing their Hermitian duals and having the parame-

ters
[

q2+1
13 ,

q2+1
13 − d + 1, d

]

q2
, where 2 ≤ d(even) ≤ 5m + 2 if q = 13m + 5 and 2 ≤ d(even) ≤ 5m + 3 if

q = 13m + 8.

Proof Suppose that q = 13m + 5 and define the set Si = ⋃
q−1
2

j= q−1
2 −i

C1+(q+1) j for each 0 ≤ i ≤ 5m
2 . Then, Si is

a subset of Z containing 2i + 1 consecutive terms and |Si | = 2i + 1. Let Ci be an α-constacyclic code having the
defining set Si . Then,Ci is anMDS code with the desired parameters by Theorem 1 and Proposition 2. By Lemma 6
−qSi ∩ Si = ∅ since Si is a subset of Z and so C⊥h

i ⊆ Ci by Lemma 2. The case q = 13m + 8 is similar. ��
We now construct a family of quantum MDS codes with length n = q2+1

13 which was also derived by Jin et al.
in [10].

Theorem 6 Suppose that q is an odd prime power of the form q = 13m + 5 or q = 13m + 8. Then, there exists a

family of quantum MDS codes with the parameters
[[

q2+1
13 ,

q2+1
13 − 2d + 2, d

]]

q
, where 2 ≤ d(even) ≤ 5m + 2 if

q = 13m + 5 and 2 ≤ d(even) ≤ 5m + 3 if q = 13m + 8.

Proof The quantum codes with the desired parameters are obtained from MDS α-constacyclic codes derived in
Theorem 5 via Theorem 2 and also are MDS by Proposition 1. ��

In addition to initial assumptions, now let q be an odd prime power of the form 17m + 4 or 17m + 13 and

let p = 17, that is, n = q2+1
17 . Then, clearly m ≥ 2 and q2 < rn. Define the subset Z of the set Or,n to be

Z = ⋃
q−1
2

j= q−1
2 − 5m−1

2

C1+(q+1) j if q = 17m + 4 and Z = ⋃
q−1
2

j= q−1
2 − 5m+2

2

C1+(q+1) j if q = 17m + 13. By Lemma 5,

Z consists of exactly 5m consecutive terms if q = 17m + 4 and 5m + 3 consecutive terms if q = 17m + 13. We
also have the following for both cases.
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Lemma 7 Z ∩ −qZ = ∅.
Proof Suppose that q = 17m+4 and Z∩−qZ = ∅. Then, there exists some q−1

2 − 5m−1
2 = 6m+2 ≤ j, k ≤ q−1

2 +
5m−1

2 = 11m+1 such that−q (1 + (q + 1) j) ≡ 1+ (q + 1) k mod rn. This implies that 1+k+q j ≡ 0 mod n. It

follows from q−1
2 − 5m−1

2 ≤ j, k ≤ q−1
2 + 5m−1

2 that q2+1
2 − (q + 1) 5m−1

2 ≤ 1+ q j + k ≤ q2+1
2 + (q + 1) 5m−1

2 .
Since q = 17m + 4, we have 102m2 + 64m + 11 ≤ 1 + q j + k ≤ 187m2 + 72m + 6 and n = 17m2 + 8m + 1.
Since 6n < 102m2 + 64m + 11 < 7n and 10n < 187m2 + 72m + 6 < 11n, possible values of 1 + q j + k are nz,
where 7 ≤ z ≤ 10. Since 6m + 3 ≤ 1 + k ≤ 11m + 2 < 17m + 4 = q, the remainder when 1 + k + q j is divided
by q should be 1 + k. Observe that these remainders for 7n, 8n, 9n and 10n are 11m + 3, 15m + 4, 2m + 1 and
6m + 2, respectively, none of which are in the interval [6m + 3, 11m + 2]. This is a contradiction.

Suppose now that q = 17m + 13 and Z ∩ −qZ = ∅. Then, there exists some q−1
2 − 5m+2

2 = 6m + 5 ≤ j, k ≤
q−1
2 + 5m+2

2 = 11m + 7 such that −q (1 + (q + 1) j) ≡ 1 + (q + 1) k mod rn. This implies that 1 + k + q j ≡
0 mod n. Similar to above argument, we have that possible values of 1 + q j + k are nz, where 7 ≤ z ≤ 10. Since
6m + 6 ≤ 1 + k ≤ 11m + 8 < 17m + 13 = q, the remainder when 1 + k + q j is divided by q should be 1 + k.
Observe that these remainders for 7n, 8n, 9n and 10n are 6m + 5, 2m + 2, 15m + 12 and 11m + 9, respectively,
none of which are in the interval [6m + 6, 11m + 8]. This is a contradiction. ��
Theorem 7 Suppose that q is an odd prime power of the form q = 17m + 4 or q = 17m + 13. Then,
there exists a family of MDS α-constacyclic codes containing their Hermitian duals and having the parame-

ters
[

q2+1
17 ,

q2+1
17 − d + 1, d

]

q2
, where 2 ≤ d(even) ≤ 5m + 1 if q = 17m + 4 and 2 ≤ d(even) ≤ 5m + 4 if

q = 17m + 13.

Proof Suppose that q = 17m + 4 and define the set Si = ⋃
q−1
2

j= q−1
2 −i

C1+(q+1) j for each 0 ≤ i ≤ 5m−1
2 . Then, Si is

a subset of Z containing 2i + 1 consecutive terms and |Si | = 2i + 1. Let Ci be an α-constacyclic code having the
defining set Si . Then,Ci is anMDS code with the desired parameters by Theorem 1 and Proposition 2. By Lemma 7
−qSi ∩ Si = ∅ since Si is a subset of Z and so C⊥h

i ⊆ Ci by Lemma 2. The case q = 17m + 13 is similar. ��

We now construct a class of quantum MDS codes with length n = q2+1
17 which was also derived by Jin et al. in

[10].

Theorem 8 Suppose that q is an odd prime power of the form q = 17m + 4 or q = 17m + 13. Then, there exists

a family of quantum MDS codes with the parameters
[[

q2+1
17 ,

q2+1
17 − 2d + 2, d

]]

q
, where 2 ≤ d(even) ≤ 5m + 1

if q = 17m + 4 and 2 ≤ d(even) ≤ 5m + 4 if q = 17m + 13.

Proof The quantum codes with the desired parameters are obtained from MDS α-constacyclic codes derived in
Theorem 7 via Theorem 2 and also are MDS by Proposition 1. ��

3.2 Quantum MDS Codes of Length q2−1
p , q Even

Let q = 2m , m ≥ 2 and p be a prime dividing q + 1. Let n = q2−1
p and r = p. Then, rn = q2 − 1 and α = ω

q+1
p

where ω is a primitive (q + 1)st root of unity over Fq2 . It is immediate that each q2-cyclotomic coset modulo rn
consists of just one element, that is, C1+pj = {1 + pj} for all 0 ≤ j ≤ n − 1. We first deal with the case in which
q + 1 is a prime.

3.2.1 The Case q + 1 is a Prime

Suppose that q + 1 is a prime and let r = q + 1. Then, n = q − 1 and α = ω. We also have the following.
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Lemma 8 For all 0 ≤ j ≤ q−2
2 , −q (1 + r j) ≡ 1 + r (n − 1 − j) mod rn.

Proof Since −q ≡ 1 + r (n − 1) mod rn, −q (1 + r j) ≡ 1 + r (n − 1 − q j) mod rn. Since r j ≡ qr j mod rn,
we get −q (1 + r j) ≡ 1 + r (n − 1 − j) mod rn for all 0 ≤ j ≤ q−2

2 . ��

We define the subset Z of the set Or,n to be Z = ⋃
q−4
2

j=0 C1+(q+1) j . Then, Z comprises exactly q−2
2 consecutive

elements. The following is crucial to construct a family of quantum MDS codes of length q − 1.

Lemma 9 Z ∩ −qZ = ∅.
Proof It follows from Lemma 8 that for all 0 ≤ j ≤ q−4

2 , we have q
2 ≤ k ≤ n−1 when−qC1+(q+1) j = C1+(q+1)k

and so Z ∩ −qZ = ∅. ��
We are ready to derive a class of ω-constacyclic codes of length q − 1 over Fq2 containing their Hermitian duals

and quantum MDS codes of length q − 1.

Theorem 9 Let q = 2m, m ≥ 2 and suppose that q + 1 is a prime. Let ω be a primitive (q + 1)st root of unity
over Fq2 . Then there exists a family of MDS ω-constacyclic codes containing their Hermitian duals and having the
parameters

[

2m − 1, 2m − d, d
]

22m , where 2 ≤ d ≤ 2m−1.

Proof Define the set Si = ⋃i
j=0 C1+(q+1) j for each 0 ≤ i ≤ q−4

2 . Then, Si is a subset of Z containing i + 1
consecutive terms. Let Ci be an ω-constacyclic code having the defining set Si . Then, Ci is an MDS code with the
desired parameters by Theorem 1 and Proposition 2. By Lemma 9, −qSi ∩ Si = ∅ since Si is a subset of Z and so
C⊥h
i ⊆ Ci by Lemma 2. ��
We now are ready to give a construction for a class of quantum MDS codes with length 2m − 1 that was also

derived by Grassl et al. in [5].

Theorem 10 Let m ≥ 2. If 2m + 1 is a prime, then there exists a family of quantum MDS codes having the
parameters

[[

2m − 1, 2m − 2d + 1, d
]]

2m where 2 ≤ d ≤ 2m−1.

Proof Using Theorem 2, one can derive the quantum codes with the desired parameters from MDS ω-constacyclic
codes given in Theorem 9. By Proposition 1, these quantum codes are MDS. ��

3.2.2 The Case q + 1 is Not a Prime

Suppose that q + 1 is not a prime. Let r = p = q+1
t , t ≥ 3 and α = ωt . Define the subset Z of Or,n as

Z = ⋃q−2

j= (p−1)(q+1)
2p

C1+pj . We then have the following.

Lemma 10 Z ∩ −qZ = ∅.
Proof Suppose that Z ∩ −qZ = ∅. Then, there exists some (p−1)(q+1)

2p ≤ j, k ≤ q − 2 such that −q (1 + pj) ≡
1+ pk mod rn. Letting q + 1 = pt , we get t + q j + k ≡ 0 mod n. It follows from (p−1)(q+1)

2p ≤ j, k ≤ q − 2 that

t + (q + 1) (p−1)(q+1)
2p ≤ t + q j + k ≤ t + (q + 1) (q − 2). Since t + (q + 1) (q − 2) = (p − 1) n + t (q − p)

and t + (q + 1) (p−1)(q+1)
2p = p−1

2 n + pt , the possible values of t + q j + k are nz, where p+1
2 ≤ z ≤ p − 1.

Note that (p−1)(q+1)
2p < t z − 2 < q − 2 for all p+1

2 ≤ z ≤ p − 1. Observe that for all p+1
2 ≤ z ≤ p − 1,

nz = t + q j + k + 1 + (p − 1 − z) t , where j = t z − 2 and k = q − 2. However, since t + q j + k <

t + q j + q − 1 + (p − 1 − z) t < t + q ( j + 1) + (p−1)(q+1)
2p ≤ t + q ( j + 1) + k for all p+1

2 ≤ z ≤ p − 1, for

j = t z − 2 and any k with (p−1)(q+1)
2p ≤ k ≤ q − 2, it is impossible to provide the equation nz = t + q j + k for

all p+1
2 ≤ z ≤ p − 1 and (p−1)(q+1)

2p ≤ j, k ≤ q − 2. This is a contradiction. ��
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We now derive a family of ωt -constacyclic codes of length 22m−1
p over F22m containing their Hermitian duals,

which is needed to construct quantum MDS codes of length 22m−1
p .

Theorem 11 Let q = 2m, m ≥ 2 and ω be a primitive (q + 1)st root of unity over F22m . Suppose that q + 1 = pt,
where p is a prime and t ≥ 3. There exists a family of MDS ωt -constacyclic codes containing their Hermitian duals

and having the parameters
[

22m−1
p , 22m−1

p − d + 1, d
]

22m
, where 2 ≤ d ≤ q−1

2 + q+1
2p .

Proof Define the set Si = ⋃q−2
j=q−2−i C1+pj for each 0 ≤ i ≤ q−5

2 + q+1
2p . Then, Si is a subset of Z containing

i + 1 consecutive terms and |Si | = i + 1. Let Ci be an ωt -constacyclic code having the defining set Si . Then, Ci is
an MDS code with the desired parameters by Theorem 1 and Proposition 2. By Lemma 10 −qSi ∩ Si = ∅ since Si
is a subset of Z and so C⊥h

i ⊆ Ci by Lemma 2. ��

The following is a generalization of Theorem 3.3 presented by Qian et al. in [21].

Theorem 12 Let m ≥ 2. If 2m + 1 is not a prime, then for each prime p dividing 2m + 1 there exists a quantum

MDS code having the parameters
[[

22m−1
p , 22m−1

p − 2d + 2, d
]]

2m
where 2 ≤ d ≤ q−1

2 + q+1
2p .

Proof Using Theorem 2, one can derive the quantum codes with the desired parameters fromMDS ωt -constacyclic
codes given in Theorem 11. By Proposition 1, these quantum codes are MDS. ��

The parameters presented in Theorem 12 were obtained by He et al. in [7].

4 Conclusion and Discussion

We have given constructions of five families of quantumMDS codes and we summarize them here as follows. Note
that p is an odd prime and q is an odd prime power in the first three constructions.

1. For 3 ≤ d(odd) ≤ q,
[[

q2 + 1

2
,
q2 + 1

2
− 2d + 2, d

]]

q
. (6)

2. For 2 ≤ d (even) ≤ 5m + 2 if q = 13m + 5 and 2 ≤ d (even) ≤ 5m + 3 if q = 13m + 8,
[[

q2 + 1

13
,
q2 + 1

13
− 2d + 2, d

]]

q
. (7)

3. For 2 ≤ d (even) ≤ 5m + 1 if q = 17m + 4 and 2 ≤ d (even) ≤ 5m + 4 if q = 17m + 13,
[[

q2 + 1

17
,
q2 + 1

17
− 2d + 2, d

]]

q
. (8)

4. Let m ≥ 2. If 2m + 1 is a prime, then for 2 ≤ d ≤ 2m−1,
[[

2m − 1, 2m − 2d + 1, d
]]

2m . (9)

5. Let m ≥ 2. If 2m + 1 is not a prime, then for each prime p dividing 2m + 1 and 2 ≤ d ≤ 2m−1
2 + 2m+1

2p ,

[[

22m − 1

p
,
22m − 1

p
− 2d + 2, d

]]

2m
. (10)
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