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Abstract In this work we study a weak order ideal associated with the coset leaders of a non-binary linear code.
This set allows the incrementally computation of the coset leaders and the definitions of the set of leader codewords.
This set of codewords has some nice properties related to the monotonicity of the weight compatible order on the
generalized support of a vector in F

n
q which allows to describe a test set, a trial set and the set of zero neighbours

of a linear code in terms of the leader codewords.
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1 Introduction

As it is pointed in [5] it is common folklore in the theory of binary linear codes that there is an ordering on the
coset leaders chosen as the lexicographically smallest minimum weight vectors that provides a monotone structure.
This is expressed as follows: if x is a coset leader and y ⊆ x (i.e. yi ≤ xi for all i) then y is also a coset leader.
This nice property has been proved of great value, see for example [10], and it has been used for analyzing the
error-correction capability of binary linear codes [5]. In this last paper the authors introduce the concept of a trial
set of codewords and they provide a gradient-like decoding algorithm based on this set.
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Finding the weight distribution of coset leaders for a code C is a classic problem in coding theory. This problem
is still unsolved for many families of linear codes even for first-order Reed–Muller codes (see [7]). The set of
coset leaders is also related with the minimum distance decoding and bounded distance decoding problems as well
with the set of minimal support codewords [1,8,9]. Despite their interest no generalization of these ideas is known
by the authors of this communication to non-binary case. In this paper we provide such a (non straightforward)
generalization.

The outline of the paper is as follows, Sect. 2 introduces the idea of a generalized support of a vector. In Sect. 3
is defined the weak order ideal associated with the coset leaders O(C) and it is shown that can be computed
incrementally. Theorem 3.6 establishes that all the coset leaders of the code belong toO(C). Section 3.2 is devoted
to the study of the set of leader codewords of a code as a zero neighbour set and their properties. In Sect. 4 we
analyze the correctable and uncorrectable errors and we obtain a trial set for a linear code from the set of leader
codewords. Finally, in Sect. 5 we show an example.

The limitation from a practical point view of the results and properties studied in this paper are clear because
of the size and the complexity of computing the set of coset leaders. Anyway our main interest is the study and
characterizations of some objects related to the codes like zero neighbours, trial set, and the set of correctable and
uncorrectable errors.

2 Preliminaries

From now on we shall denote by Fq the finite field with with q = pm elements, p a prime. A linear code C over Fq

of length n and dimension k is a k-dimensional subspace of Fn
q . We will call the vectors v in F

n
q words and those

v ∈ C, codewords. For every word v ∈ F
n
q its support is defined as supp(v) = {i | vi �= 0} and itsHamming weight,

denoted by wH(v) as the cardinality of supp(v) and the Hamming distance dH(x, y) between two words x, y ∈ F
n
q

is dH(x, y) = wH(x − y). The minimum distance d(C) of a linear code C is defined as the minimum weight among
all nonzero codewords.

The words of minimal Hamming weight in the cosets of Fn
q/C is the set of coset leaders of the code C in Fn

q and
we will denote it by CL(C). CL(y) will denote the subset of coset leaders corresponding to the coset y + C. Given a
coset y + C we define the weight of the coset wH(y + C) as the smallest Hamming weight among all vectors in the
coset, or equivalently the weight of one of its leaders. It is well known that given t = � d(C)−1

2 � where �·� denotes
the greatest integer function then every coset of weight at most t has a unique coset leader.

Let f (X) be an irreducible polynomial over Fp of degree m and β be a root of f (X), then any element a ∈ Fq

can be represented as a1+a2β +· · ·+amβm−1 with ai ∈ Fp for i ∈ {1, . . . ,m}. For a word v = (v1, . . . , vn) ∈ F
n
q ,

such that the i-th component of v is vi = vi1 + vi2β + · · · + vimβm−1, then we introduce the following definition

Definition 2.1 We define the generalized support of a vector v as the support of the nm-tuple given by the con-
catenations of the p-adic expansion of each component vi of v, i.e.

suppgen(v) = (
supp

((
vi1 , . . . , vim

)) : i = 1 . . . n
)
,

and suppgen(v)[i] = supp((vi1 , . . . , vim )). We will say that i j ∈ suppgen(v) if the corresponding vi j is not zero.

From now on the set
{

ei j = β j−1ei : i = 1, . . . , n; j = 1, . . .m
}

will be denoted as Can(Fq , f ) and it represents the canonical basis of (Fn
q ,+), the additive monoid Fn

q with respect
to the “+” operation, where f is the irreducible polynomial used to define Fq .
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We state the following connection between F
n
q and N

nm :

� : Fn
q →N

nm

v 	→ (
ψ

(
vi j

) : i = 1, . . . , n, j = 1, . . . ,m
)
, where

ψ : Fp →N

k · 1Fp 	→ kmod p.

On the other hand,

∇ : Nnm →F
n
q

a 	→
((

am(i−1)+1 + am(i−1)+2β + · · · + am(i−1)+mβm−1
)

: i = 1, . . . , n
)

.

Definition 2.2 Given x, y ∈ (Fn
q ,+), x = ∑

i, j xi j ei j , y = ∑
i, j yi j ei j , we say x ⊂ y if ψ(xi j ) ≤ ψ(yi j ) for all

i ∈ [1, n], and j ∈ [1,m].
By using � it is possible to relate orders on F

n
q with orders on N

nm , and vice versa. An admissible order on
(Nnm,+) is a total order < on N

nm satisfying the following two conditions

1. 0 < x, for all x ∈ N
nm, x �= 0.

2. If x < y, then x + z < y + z, for all z ∈ N
nm .

In particular, Any admissible order on (Nnm,+), like the lexicographical, degree lexicographical, degree reverse
lexicographical orders, induces an order on (Fn

q ,+).
We will say that a representation of a word v as an nm-tuple over N is in standard form if �(∇(v)) = v. We

will denote the standard form of v as SF(v, f ) (note that ∇(v) = ∇(SF(v, f ))). Therefore, v is in standard form if
v = SF(v, f ) (we will also say v ∈ SF(Fn

q , f )).

Remark 2.3 From now on we will use Can(Fq) and SF(Fn
q) instead of Can(Fq , f ) and SF(Fn

q , f ) respectively,
since it is clear that different elections of f or β provide equivalent generalized supports.

Definition 2.4 A subset O of Nk is an order ideal if for all w ∈ O and v ∈ N
k s.t. vi ≤ wi , i = 1, . . . , k, then

v ∈ O.

In the same fashion we say that a subset S of Fn
q is an order ideal if �(S) is an order ideal in N

nm . It is easy to
check that an equivalent definition for the order ideal would be that for all w ∈ S, and for all i j ∈ suppgen(w), and
v ∈ F

n
q s.t. w = v + ei j we have v ∈ S. If instead of for all i j ∈ suppgen(w) the condition is satisfied at least for

one i j ∈ suppgen(w) we say that S is a weak order ideal.

Definition 2.5 A subset S of Fn
q is a weak order ideal if for all w ∈ S\0 there exists i j ∈ suppgen(w) s.t. for v ∈ F

n
q

s.t. w = v + ei j then v ∈ S.

Definition 2.6 The Voronoi region of a codeword c ∈ C is the set

D(c) =
{

y ∈ F
n
q | dH(y, c) ≤ dH

(
y, c′) , ∀c′ ∈ C\{c}

}
.

The set of all the Voronoi regions for a given linear code C covers the space Fn
q and D(0) = CL(C). However,

some words in Fn
q may be contained in several regions. For any subset A ⊂ F

n
q we define

X (A) =
{

y ∈ F
n
q | min {dH (y, a) : a ∈ A} = 1

}

as the set of words at Hamming distance 1 from A. The boundary of A is defined as δ(A) = X (A) ∪ X (Fn
q\A).

Definition 2.7 A nonzero codeword z ∈ C is called a zero neighbour if its Voronoi region shares a common
boundary with the set of coset leaders, i.e. δ(D(z)) ∩ δ(D(0)) �= ∅. The set of all zero neighbours of C is denoted
by Z(C) = {z ∈ C\{0} : δ(D(z)) ∩ δ(D(0)) �= ∅} .



342 M. Borges-Quintana et al.

Definition 2.8 A test-set T for a given linear code C is a set of codewords such that every word y

1. either y lies in D(0)

2. or there exists v ∈ T such that wH(y − v) < wH(y).

The set of zero neighbours is a test set, also from the set of zero neighbours can be obtained any minimal test set
according to the cardinality of the set [1].

3 The Weak Order Ideal of the Coset Leaders

The first idea that allows us to compute incrementally the set of all coset leaders for a linear code was introduced in
[2]. In that paper we used the additive structure of Fn

q with the set of canonical generators Can(Fq). Unfortunately
in [2] most of the chosen coset representatives may not be coset leaders if the weight of the coset is greater than t .

Theorem 3.1 ([6], Theorem 1.12.6.v) Assume that x is a coset leader of C. If x′ ∈ F
n
q and x′

i = xi for all
i ∈ supp(x′), then x′ is also a coset leader of C.

In order to incrementally generate all coset leaders starting from 0 adding elements in Can(Fq), we must consider
words with weight one more than the previous chosen coset leader. Next result is a byproduct of Theorem 3.1, we
may characterize which vectors we need to generate with weight one more than its coset leader in order to ensure
all coset leaders are generated.

Theorem 3.2 Let x ∈ SF(Fn
q) be an element in CL(C), let i ∈ supp(x). If x′ ∈ F

n
q and x′

j = x j for all j ∈
supp(x)\{i}, then wH(x′) ≤ wH(x′ + C) + 1.

Proof By Theorem 3.1, x − xi ∈ CL(C). The proof of the Theorem is analogous to the proof of Theorem 1.12.6.v
in [6]. Note that if we suppose that wH(x′) ≥ wH(x′ + C) + 2 it would imply that x is not a coset leader, which is a
contradiction. ��

Let w ∈ SF(Fn
q) be an element in CL(C), and i j ∈ suppgen(w). Let y ∈ SF(Fn

q) s.t. w = y + ei j then, as a
consequence of the previous theorem we have that

wH(y) ≤ wH(y + C) + 1. (3.1)

In the situation above we will say that the coset leader w is an ancestor of the word y, and that y is a descendant
of w. In the binary case this definitions behave as the ones in [6, §11.7] but in the case q �= 2 there is a subtle
difference, a coset leader could be an ancestor of another coset leader or an ancestor of a word at Hamming distance
1 to a coset leader (this last case is not possible in the binary case).

3.1 The set O(C)

Given ≺1 an admissible order on (Nnm,+) we define the weight compatible order ≺ on (Fn
q ,+) associated to ≺1

as the ordering given by

1. x ≺ y if wH(x) < wH(y) or
2. if wH(x) = wH(y) then �(x) ≺1 �(y).

I.e. the words are ordered according their weights and the order ≺1 break ties. These class of orders is a subset of
the class of monotone α-orderings in [5]. In fact we will need a little more than monotonicity, for the purpose of
this work we will also need that for every pair v, w ∈ SF(Fn

q)

if v ⊂ w, then v ≺ w. (3.2)
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Note that (3.2) is satisfied for a weight compatible order. In addition, for any weight compatible order ≺ every
strictly decreasing sequence terminates (due to the finiteness of the set Fn

q ). In the binary case the behavior of the
coset leaders can be translated to the fact that the set of coset leader is an order ideal of Fn

2; whereas, for non binary
linear codes this is no longer true even if we try to use the characterization of order ideals given in [4], where order
ideals do not need to be associated with admissible orders.

Definition 3.3 We define the weak order ideal of the coset leaders of C as the setO(C) of elements in Fn
q verifying

one of the following items:

1. 0 ∈ O(C).
2. If v ∈ O(C) and wH (v) = wH (v + C) then{

v + ei j | �(v) + �
(
ei j

) ∈ SF
(
F
n
q

)}
⊂ O(C).

3. If v ∈ O(C) and wH (v) = wH (v + C) + 1 then{
v + ei j | i ∈ supp(v), �(v) + �

(
ei j

) ∈ SF
(
F
n
q

)
, v − vi ∈ CL(C)} ⊂ O(C).

Remark 3.4 It is clear by the items 2 and 3 of the definition above that O(C) is a weak order ideal.

Theorem 3.5 Let w ∈ F
n
q . If there exists i ∈ 1, . . . , n s.t. w − wi ∈ CL(C) then w ∈ O(C).

Proof Wewill proceed by induction on Fn
q with respect to the order≺. The statement is true for 0 ∈ F

n
q . Now for the

inductive step, we assume that the desired property is true for any word u ∈ F
n
q such that there exists i ∈ 1, . . . , n

s.t. u − ui ∈ CL(C) and also u is smaller than an arbitrary but fixed w �= 0 with respect to ≺ and w − w j ∈ CL(C),
for some j ∈ 1, . . . , n. If u − ui ∈ CL(C), for some i ∈ 1, . . . , n, and u ≺ w then u ∈ O(C). We will show that
the previous conditions imply that w is also in O(C).

Let w = v + ei j , with i j ∈ suppgen(w) then v ≺ w by (3.2). As w − wi ∈ CL(C), the same is true for v, i.e,
v−vi ∈ CL(C) then by the induction hypothesis we have that v ∈ O(C). By Theorem 3.2, wH(v) ≤ wH(v+C)+1;
therefore, by items 2 and 3 in Definition 3.3 it is guaranteed that w ∈ O(C). ��
Theorem 3.6 Let w ∈ F

n
q and w ∈ CL(C) then w ∈ O(C).

Proof Let i j ∈ suppgen(w), since w ∈ CL(C), by Theorem 3.2, w−wi ∈ CL(C); then, by Theorem 3.5, w ∈ O(C).
��

The previous theorem has been shown that O(C) contains the set of coset leaders of the linear code C.

3.2 Zero Neighbours and Leader Codewords

Definition 3.7 The set of leader codewords of a linear code C is defined as

L(C) =
{

v1 + ei j − v2 ∈ C\{0} | �(v1) + �
(
ei j

) ∈ SF
(
F
n
q

)
,

v2 ∈ CL(C) and v1 − v1i ∈ CL(C)

}

.

Note that the definition is a bit more complex that the one for binary codes in [3], due to the fact that in the general
case not all coset leaders need to be ancestors of coset leaders. The name of leader codewords comes from the fact
that one could compute all coset leaders of a corresponding word knowing the set L(C) adapting [3, Algorithm 3].

Remark 3.8 The algorithm for computing L(C) is based on the construction of O(C). Theorem 3.5 guarantees that
w ∈ O(C) provided that w − wi ∈ CL(C) for some i , then the associated set of leader codewords may be computed
as {w − v : w ∈ O(C), w − wi ∈ CL(C), v ∈ CL(w) and v �= w}.
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Next theorem shows that any leader codeword is a zero neighbour (item 3). However, one of the differences with
the binary case is that it is not always true that a leader codeword w satisfies that X (D(0)) ∩ D(w) �= ∅, although
we have that w is a leader codeword provided this condition (item 4). Furthermore, (item 4) guarantees that the set
of leader codewords contains all the minimal test set according to its cardinality (see [1]). As a consequence of all
these properties in Theorem 3.9 we could say that the the set of leader codewords is a “good enough” subset of the
set of zero neighbours.

Theorem 3.9 (Properties of L(C)) Let C be a linear code then

1. L(C) is a test set for C.
2. Let w be an element in L(C) then wH(w) ≤ 2ρ(C) + 1 where ρ(C) is the covering radius of the code C.
3. If w ∈ L(C) then X (D(0)) ∩ (D(w) ∪ X (D(w))) �= ∅.

4. If X (D(0)) ∩ D(w) �= ∅ then w ∈ L(C).

Proof (1) Let y /∈ CL(C) and supp(y) = {ik : k = 1, . . . , l}, l ≤ n. Let s be such that 1 ≤ s < l,
v1 = ∑s

k=1 yik eik ∈ CL(C), v1 + yiS+1eiS+1 /∈ CL(C) and v2 = CL(v1 + yiS+1eiS+1).

Let yiS+1eiS+1 = ∑z
t=1 eiS+1 jt and v1′ = v1 + yiS+1eiS+1 − eiS+1 jZ . Then v1′ − v1′

iS+1
= v1 ∈ CL(C) implies

that w = v1′ + eiS+1 jZ − v2 ∈ L(C). In addition,

wH(y−w) = wH(v2+(y−v1′−eiS+1 jZ )) ≤ wH(v2)+wH(y−v1′−eiS+1 jZ ) andwH(v2)+wH(y−v1′−eiS+1 jZ ) <

wH(v1′ + eiS+1 jZ ) + wH(y − v1′ − eiS+1 jZ ).

Note that supp(v1′ + eiS+1 jZ ) ∩ supp(y − v1′ − eiS+1 jZ ) = ∅; consequently,

wH(y) = wH
(
v1′ + eiS+1 jZ

) + wH
(
y − v1′ − eiS+1 jZ

)
and wH(y − w) < wH(y).

Thus, L(C) is a test set.
(2) Let c ∈ L(C) then there exists v2 ∈ CL(C), v1 ∈ SF(Fn

q), 1 ≤ i ≤ n and 1 ≤ j ≤ m such that v1−v1i ∈ CL(C)

and c = v1 + ei j − v2. Applying the definition of covering radius we have that wH (v1 − v1i ) ≤ ρ and
wH (v2) ≤ ρ, thus wH (c) ≤ 2ρ + 1.

(3) Letw ∈ L(C), thenw = v1+ei j −v2, where v1, v2 are elements inFn
q such that v1+ei j ∈ SF(Fn

q), v2 ∈ CL(C)

and v1 − v1i ∈ CL(C).

• If v1+ei j /∈ CL(C), then v1+ei j ∈ X (D(0)) and (v1+ei j )−w = v2 ∈ CL(C) implies that v1+ei j ∈ D(w).
• If v1 + ei j ∈ CL(C) we define v′

1 = v′
1(0) = v1 + ei j . It is clear that v′

1, v2 ∈ CL(v2). Since w �= 0
let l be a number in the set {1, . . . , n} such that v′

1l − v2l �= 0. Let v2l = ∑T
j=1 eli j , for 1 ≤ h ≤ T ,

v1
′(h) = v′

1 + ∑h
j=1 eli j and v2(h) = v2 − ∑h

j=1 eli j .
If there exists an h (1 ≤ h < T ) such that v′

1(h) /∈ CL(C) and v′
1(h − 1) ∈ CL(C) then these two conditions

imply that v′
1(h) ∈ X (D(0)). On the other hand, v2(h) = v′

1(h) − w is either a coset leader (v′
1(h) ∈ D(w))

or dH(v2(h), v2) = 1 (v′
1(h) ∈ X (D(w))).

If there is no such and h (1 ≤ h < T ) satisfying the condition then wH(v′
1(T )) = wH (v2(T )) + 1, which

means that v′
1(T ) is not a coset leader and v′

1(T − 1) is a coset leader. Then using the same idea of the
previous paragraph we have that v′

1(T ) ∈ X (D(0)) and v′
1(T ) ∈ D(w) ∪ X (D(w)).

(4) If X (D(0)) ∩ D(w) �= ∅, let u ∈ X (D(0)) ∩ D(w). The first condition u ∈ X (D(0)) implies u = v1 + ei j for
some v1 ∈ SF(Fn

q) , i j ∈ suppgen(u) and v1 − v1i ∈ CL(C). On the other hand, v1 + ei j ∈ D(w) implies that
v2 = (v1 + ei j ) − w ∈ CL(C). Therefore, w = v1 + ei j − v2 ∈ L(C). ��
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4 Correctable and Uncorrectable Errors

We define the relation⊂1 in the additive monoid which describe exactly the relation⊂ in the vector space Fn
q . Given

x, y ∈ (Fn
q ,+)

x ⊂1 y if x ⊂ y and supp(x) ∩ supp(y − x) = ∅. (4.1)

Note that this definition translates to F
n
q the binary case situation in [5]. In this case given a y ∈ (Fn

q ,+) there
are more words x ∈ (Fn

q ,+) such that x ⊂ y than if we consider x, y as elements in the vector space Fn
q . Of course,

any relation x ⊂ y in F
n
q as a vector space it is also true in the additive monoid, but it is not necessarily true in the

other way round.
The set E0(C) of correctable errors of a linear code C is the set of the minimal elements with respect to ≺ in

each coset. The elements of the set E1(C) = F
n
q\E0(C) will be called uncorrectable errors.

Definition 4.1 A trial set T ⊂ C\{0} of the code C is a set which has the following property

y ∈ E0(C) if and only if y � y + c, for all c ∈ T .

Since≺ is amonotoneα-ordering onFn
q , the set of correctable and uncorrectable errors formamonotone structure.

Namely, if x ⊂1 y then x ∈ E1(C) implies y ∈ E1(C) and y ∈ E0(C) implies x ∈ E0(C). In the general case q �= 2
there is a difference with respect to the binary case, there may be words y′ ∈ F

n
q s.t. suppgen(y′) = suppgen(y),

y′ ⊂ y and y′ could be either a correctable error or an uncorrectable error, so, the monotone structure it is not
sustained by ⊂ in the additive monoid (Fn

q ,+).
Let the set of minimal uncorrectable errors M1(C) be the set of y ∈ E1(C) such that, if x ⊆1 y and x ∈ E1(C),

then x = y. In a similar way, the set of maximal correctable errors is the set M0(C) of elements x ∈ E0(C) such
that, if x ⊆1 y and y ∈ E0(C), then x = y.

For c ∈ C\{0}, a larger half is defined as a minimal word u ⊆1 c in the ordering � such that u − c ≺ u. The
weight of such a word u is such that

wH(c) ≤ 2wH(u) ≤ wH (c) + 2,

see [5] for more details. The set of larger halves of a codeword c is denoted by LH(c), and for U ⊆ C\{0} the set
of larger halves for elements of U is denoted by LH(U ). Note that LH(C) ⊆ E1(C).

For any y ∈ F
n
q , let H(y) = {c ∈ C : y − c ≺ y}, and we have y ∈ E0(C) if and only if H(y) = ∅, and y ∈ E1(C)

if and only if H(y) �= ∅.
In [5, Theorem 1] there is a characterization of the set M1(C) in terms of H(·) and larger halves of the set of

minimal codewords M(C) for the binary case. It is easy to proof that this Theorem and [5, Corollary 3] are also true
for any linear code.

Proposition 4.2 (Corollary 3 in [5]) LetC be a linear code and T ⊆ C\{0}. The following statements are equivalent:
1. T is a trial set for C.
2. If y ∈ M1(C), then T ∩ H(y) �= ∅.
3. M1(C) ⊆ LH(T ).

Now we will formulate the result which relates the trial sets for a given weight compatible order ≺ and the set
of leader codewords.

Theorem 4.3 Let C be a linear code and L(C) the set of leader codewords for C, then L(C) is a trial set for any
given ≺.
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Proof We will prove statement 2 of Proposition 4.2. Let y ∈ M1(C), let i such that suppgen(y)[i] �= ∅ and
v1 = y − yi . Since y ∈ M1(C) we have that v1 ∈ E0(C), thus it is a coset leader. On the other hand, let v2 ∈ E0(C)

such that v2 ∈ CL(y) and c = y − v2. It is clear that c is a leader codeword and y − c = v2 ≺ y. Therefore
c ∈ H(y). ��
Remark 4.4 Algorithm 2 in [3] can be adapted to compute a set of leader codewords which is a trial set T for a
given ≺ such that satisfies the following property

• For any c ∈ T , there exists y ∈ M1(C) ∩ LH(c) s.t. y − c ∈ E0(C).

In the algorithm, it is necessary to add to the function InsertNext the item 3 of the construction ofO(C), whose
elements are stored in Listing. On the other hand, in the steps of the construction of the leader codewords (Steps
11 - 13) it is enough to state the condition t − ti ∈ CL(C) for some i ∈ supp(t), taking all tk ∈ CL(t) and adding
the corresponding codewords t − tk to the set L(C).

5 An Example

Let F4 = {0, 1, a, 1 + a} be the finite field of four elements, where a is a root of the irreducible polynomial
f (x) = 1 + x + x2 over F2.
Let C be the linear code of length 8 (n = 8), dimension 5 (k = 5) defined by the parity check matrix

H :=
⎛

⎝
1 1 1 1 1 1 1 1
0 0 1 1 a a a2 a2

0 1 a a2 a a2 a a2

⎞

⎠ .

Then we compute the set L(C) of leader codewords of C and it results that there are 354 leader codewords among
1024 codewords. We have that c = {(1, 1, 1, 1, 0, 0, 0, 0), (a, a, 0, 0, 0, 0, a, a)} ⊂ L(C).

Let the vector y = (a, a, 1, 1, 0, 0, a, a), then the vectors of the set w = {e1 + e2, e3 + e4, e5 + e6, e7 + e8}
are the coset leaders of the coset of y. Since L(C) is a test set, a gradient descent decoding algorithm may be done
to compute a coset leader of y + C (see Definition 2.8). Then, taking c2 from the set L(C) we obtain w2 = y − c2,
whose weight can not be reduced by using the test set L(C), this means that w2 is a coset leader. In addition, L(C)

allows to compute all coset leaders corresponding to any vector. In this case, by taking c1 and computing w2 − c1
we get w1 which is also a coset leader corresponding to y.

Also if we choose ≺ as the weight compatible order associated to the degree reverse lexicographical order, we
have that w1 is the correctable error corresponding to y + C. Then as L(C) is also a trial set, by Definition 4.1 it is
possible to obtain from any vector y the corresponding correctable error in a finitely many steps as we have been
shown above.
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