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Abstract The theory of descriptive nearness is usually adoptedwhen dealingwith subsets that share some common
properties, even when the subsets are not spatially close. Set description arises from the use of probe functions to
define feature vectors that describe a set; nearness is given by proximities. A probe on a nonempty set X is an
n-dimensional, real-valued function that maps each member of X to its description. We establish a connection
between relations on an object space X and relations on the corresponding feature space. In this paper, the starting
point is what is known as P� proximity (two sets are P�-near or �-descriptively near if and only if their �-
descriptions intersect). We extend, elucidate and explain the connection between overlap and strong proximity in
a theoretical approach to a more visual form of proximity called descriptive proximity, which leads to a number
of applications. Descriptive proximities are considered on two different levels: weaker or stronger than the P�

proximity. We analyze the properties and interplay between descriptions on the one hand and classical proximities
and overlap relations on the other hand. Axioms and results for a descriptive Lodato strong proximity relation are
given. A common descriptive proximity is an Efremovič proximity, whose underlying topology is R0 (symmetry
axiom) and Alexandroff-Hopf. For every description �, any Čech, Lodato or EF �-descriptive proximity is at the
same time a Čech, Lodato or EF-proximity, respectively. But, the converse fails. A detailed practical application
is given in terms of the construction of Efremovič descriptive proximity planograms, which complements recent
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operations research work on the allocation of shelf space in visual merchandising. Specific instances of applications
of descriptive proximity are also cited.

Keywords Descriptive proximity · Descriptive nearness · Overlap · Probe functions · Proximity

Mathematics Subject Classification Primary 54E05; Secondary 37J05

1 Introduction

This article carries forward recent work on proximities [1–7]. Pivotal in this paper is the notion of a probe used to
represent descriptions and proximities. A probe on a nonempty set X is a real-valued function � : X → R

n , where
�(x) = (φ1(x), . . . , φn(x)) and each φi represents the measurement of a particular feature of an object x ∈ X [8]
(see also [9]). So, �(x) is a feature vector containing numbers representing feature values extracted from x . And a
probe�(x) is also called description or codification of x . We establish a connection between relations on the object
space X and relations on the feature space �(X). Usually, probe functions describe or codify physical features and
act like “sensors” in extracting characteristic feature values from the objects. The theory of descriptive nearness
[10] is usually adopted when dealing with subsets that share some common properties even though the subsets are
not spatially close.

We talk about non-abstract pointswhen points have locations and features that can bemeasured. The description-
based theory is particularly relevant when we want to focus on some distinguishing characteristics of sets of non-
abstract points. For example, if we take a picture element x in a digital image, we can consider grey-level intensity
or colour of x . Of course, nearness or apartness depends essentially on the selected features that are compared.

Each pair of ovals in Fig. 1a, b contain circular-shaped coloured segments. Each segment in the ovals corresponds
to an equivalence class, where all pixels in the class have matching descriptions, i.e., pixels with matching colours.
For the ovals in Fig. 1a, b, we observe that the sets are notspatially near, but they can be considered near viewed
in terms of colour intensities. Again, for example, the ovals in Fig. 1c, d contain segments that correspond to
equivalence classes containing pixels with matching greyscale intensities. The ovals in Fig. 1c, d are descriptively
near sets, since the equivalence classes contain matching greylevels. Moreover, we can also tell if they are more or
less near. In the sequel, we will express these ideas of resemblance in mathematical terms.

The first fusion of description with proximity occurs in [1, §3], by introducing the notion of the descriptive
intersection of two nonempty sets:

A∩
�

B = {x ∈ A ∪ B : �(x) ∈ �(A),�(x) ∈ �(B)},
and by declaring two sets descriptively near if and only if their descriptive intersection is nonempty or, equivalently,
if and only if their descriptions intersect. The introduction of descriptive intersection led to new forms of proximity
(see, e.g., [11, §4.3, pp. 84–85], [1, §3, p. 90]). That is the first step in passing from the classical spatial proximity

a b c d

Fig. 1 Descriptively near sets via colour or greysale intensity. a Descriptively very near colour sets, b descriptively minimally near
colour sets, c descriptively very near greyscale sets, d descriptively minimally near greyscale sets
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to the more visual descriptive proximity. The new point of view is a really different approach to proximity which
has a broad spectrum of applications. The P� proximity, two sets are P�-near or �-descriptively near if and
only if their �-descriptions intersect, is the �-pullback of the set-intersection. By replacing the set-intersection
with the descriptive intersection, we construct a theoretical approach to the more visual form of proximity, namely,
descriptive proximity (denoted by δ�). The notion and the formal structure of descriptive proximity had already been
introduced in [8] and used in [10,12–19], but lacked a more general vision of the connections and relations arising
from descriptive proximity. The focus in the previous papers was on applied descriptive proximity. We organize
descriptive proximities in two different levels: weaker (Aδ�B ⇒ A∩

�
B �= ∅) or stronger (A∩

�
B �= ∅ ⇒ Aδ�B)

than the P� proximity.
Since the set-intersection can be analyzed from the following two different perspectives: as the finest classical

proximity, the discrete proximity, but also as the weakest overlapping relation (also called a connection relation [20,
§1.2, p. 10]), we exhibit significant examples of descriptive proximities weaker than theP� proximity by following
two different options: the proximal approach and the overlapping approach. In the sequel we will denote weaker

descriptive proximities by
⩔

δ� , while stronger ones by
⩕

δ� .
In analogywith the classical case, we can introduce for any descriptive proximity, a “closure operator” associating

to any subset A the set of points cl(A)which are near to it. In theweak casewe obtain aKuratowski operator inducing
a natural underlying topology. Unfortunately, in the strong case that operator has a bad behaviour. It is not extensive.
In other words we can find points which are not near to themselves or “dislocated”. But, by adding to cl(A) the
subset A, then we have a Kuratowski operator and consequently an underlying topology.

The main contribution of this paper is the refinement and extension of the original form of descriptive proximity.

2 Preliminaries

In this section, we take as our starting point the work on proximities by Naimpally [21] and Di Concilio [22]
recalling the simplest example of proximities, namely, Lodato proximities [23–25], which guarantee the existence
of a natural underlying topology.

Definition 2.1 (Lodato) Let X be a nonempty set. A Lodato proximity δ is a relation on 2X , the collection of all
subsets of X, which satisfies the following properties for all subsets A, B,C of X :

P0): A δ B ⇒ A �= ∅ and B �= ∅

P1): A δ B ⇔ B δ A
P2): A ∩ B �= ∅ ⇒ A δ B
P3): A δ (B ∪ C) ⇔ A δ B or A δ C
P4): (A δ B and {b} δ C for each b ∈ B) ⇒ A δ C

Further, δ is separated if

P5): {x} δ {y} ⇒ x = y.

When we write A δ B, we read “A is near to B”, while when we write A � δB we read “A is far from B”. A relation
δ which satisfies only P0) − P3) is called a C̆ech [26] or basic proximity.

With any basic proximity one can associate a closure operator, clδ, by defining as closure of any subset A of X :
clδA = {x ∈ X : {x} δ A}.

Definition 2.2 An EF-proximity [27,28] is a relation on 2X which satisfies P0) through P3) and in addition the
property:

(EF) A � δB ⇒ ∃E ⊂ X such that A � δE and B � δX � E .
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Since the EF-property is stronger than the Lodato property, every EF-proximity is indeed a Lodato
proximity.

The following remarkable properties reveal the potentialities of Lodato proximity. When δ is a Lodato proximity,
then:

Property 1: The associated closure operator clδ is a Kuratowski operator [29,30], i.e.:

1. clδ∅ = ∅ (∅-preservation),
2. A ⊆ clδ(A), ∀A ⊂ X (extensivity),
3. clδ(A ∪ B) = clδA ∪ clδB, ∀A, B ⊂ X (

⋃
-distributivity),

4. clδ(clδA) = clδA, ∀A ⊂ X (idempotency).

Hence, every Lodato proximity space (X, δ) determines an associated topology τ(δ) whose closed sets are just the
subsets which agree with their own closures.

Furthermore:

Property 2: For each subsets A, B: A δ B iff clδA δ clδB, or, in other words, two sets are near iff their closures
are near.

If (X, τ ) is a topological space, we say that it admits a compatible Lodato proximity, provided there is a Lodato
proximity δ on X such that τ = τ(δ). A question arises when a topological space has a compatible Lodato
proximity. This happens iff the space satisfies the R0-separation property, i.e. x ∈ cl{y} ⇔ y ∈ cl{x}. In fact, every
R0 topological space (X, τ ) admits as a compatible Lodato proximity, δ0, given by:

A δ0 B ⇔ clA ∩ clB �= ∅ (fine Lodato proximity [21]).

In other words, A, B are δ0-near iff they are spatially near.
On the other hand, a topological space has a compatible EF-proximity if and only if it is a completely regular

topological space [22,31]. Recall that a topological space is completely regular if and only if, whenever A is a
closed set and x /∈ A, there is a continuous function f : X → [0, 1] such that f (x) = 0 and f (A) = 1 [31].

Property 3: Let T1, T2 denote separation spaces. Any Lodato T1 (EF + T2) proximity becomes spatial by a T1
(T2) compactification procedure. More specifically, any Lodato T1(EF + T2) proximity space (X, δ) can be
densely embedded in a compact T1(T2) space γ (X) so that two subsets A, B of X are δ-near iff their closures
in γ (X) intersect. For an introduction to the T1 = T0 + R0 Frechet-Riesz space (called an accumulation
[Häufungspunkte] T1 space [32, §4.2]) and Hausdorff T2 space, see [33, §1.4] and how a proximity can be
embedded in a separation space, see [21, §2].

2.1 Examples

• Discrete proximity on a nonempty set: From a spatial point of view, discrete proximity appears as a generalization
of the set-intersection, (see P3 in Definition 2.1). The set-intersection is an EF-proximity, named the discrete
proximity, just giving rise to the discrete topology, [§2.1][22]:

A δ B ⇔ A ∩ B �= ∅.

• Metric proximity: A pivotal EF-proximity is themetric proximity δd associated with a metric space (X, d) defined
by considering the gap between two sets in a metric space ( d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B} or ∞ if A or
B is empty ) and by putting:

A δd B ⇔ d(A, B) = 0.

That is, A and B are δd -near iff they either intersect or are asymptotic: for each natural number n there is a point
an in A and a point bn in B such that d(an, bn) < 1

n .• Fine Lodato proximity: The fine Lodato proximity δ0, a spatial proximity, on a topological space is defined as
follows:
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Fig. 2 Comparison

A δ0 B ⇔ clA ∩ clB �= ∅.

The proximity δ0 is the finest Lodato proximity compatible with a given topology.
Consider R

2 endowed with the Euclidean topology and the sets in Fig. 2. The set A is a closed disk while B is an
open disk. Touching on their boundaries, they are near in the fine Lodato proximity associated with the Euclidean
topology but, not overlapping, they are far in the discrete proximity.
• Functionally indistinguishable proximity: δF on a completely regular space [22, §2.1, p. 94].

A � δF B ⇔ There is a continuous function f : X → [0, 1] : f (A) = 0, f (B) = 1.

The functionally indistinguishable proximity on a completely regular space X is an EF-proximity, which is
further the finest EF-proximity compatible with X. Moreover, δF coincides with the fine Lodato proximity if and
only if X is normal.

2.2 Strong Inclusion

Any proximity δ on X induces a binary relation over the powerset 2X , usually denoted as�δ and named the natural
strong inclusion associated with δ, by declaring that A is strongly included in B, A �δ B, when A is far from
the complement of B, i.e., A � δX � B [22]. In terms of strong inclusion associated with an EF-proximity δ, the
Efremovič property for δ can be formulated as the betweenness property:

(EF2) IfA �δ B, then there exists someCsuch thatA �δ C �δ B.

We conclude by emphasizing that a topological structure is based on the nearness between points and sets and a
function between topological spaces is continuous provided it preserves nearness between points and sets, while a
function between two proximity spaces is proximally continuous, provided it preserves nearness between sets. Of
course, any proximally continuous function is continuous with respect to the underlying topologies.

3 Original Form: Descriptive Intersection and P�-Proximity

Peters [1, §3] made the first fusion of description with proximity, so passing from the classical spatial proximity to
the recent more visual descriptive proximity which has a number of applications [6,10,11,16,20,34,35].

The starting idea is that two sets are near when the feature-values differences are so small so that they can be
considered indistinguishable. The notion of descriptive intersection, playing a role similar to set-intersection in the
classical case, is crucial in our recent project to approach new forms of descriptive proximities. The mixture of
description with proximity reveals an advantageous augmentation.

The descriptive intersection or �-intersection is defined by

A∩
�
B = {x ∈ A ∪ B : �(x) ∈ �(A), �(x) ∈ �(B)}.

The descriptive intersection of two sets A, B is nonempty provided there is at least one element in A with a
description that matches the description of at least one element in B. The sets A, B could not share any point in
common but they could have a nonempty descriptive intersection.
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Fig. 3 Descriptive intersection

Example 3.1 Let X be R
2 and � : R

2 → R
3 be the probe that associates with each point its RGB-colour. In

Fig. 3, consider sets A, B,C and their subsets a, b, c, d, e, f, g, h, i . Observe that �(A) ∩ �(B) is given by
colours black and orange. So, �−1(�(A) ∩ �(B)) = a ∪ c ∪ d ∪ f ∪ i is done of all points coloured black
or orange, while descriptive intersection is obtained by taking, among these points, those belonging to A ∪ B:
A∩

�
B = �−1(�(A) ∩ �(B)) ∩ (A ∪ B) = a ∪ c ∪ d ∪ f . Also, B ∩

�
C = c ∪ f ∪ i, but B ∩ C = ∅. ��

The first natural descriptive proximity, which we denote as P�, declares two nonempty sets descriptively near if
and only if their descriptions intersect. Or, in other words: Let X be a nonempty set, A and B be nonempty subsets
of X, and � : X → R

n be a probe, then:

A P� B ⇔ �(A) ∩ �(B) �= ∅.

Namely, P� proximity is the �-pullback of the discrete proximity. It is easily seen that we can rewrite the
previous definition by using �-saturation of sets.

Remark 3.2 Recall that a set A is called�-saturated if and only if�−1(�(A)) = A. Furthermore, the complement
of a �-saturated set is in its turn �-saturated. ��
Remark 3.3 Recall that a topological space has the Alexandroff property iff any intersection of open sets is in turn
open [32].

Proposition 3.4 Let X be a nonempty set, A a subset of X, and � : X → R
n a probe. Then, A is closed in the

topology induced by P�, τ(P�), if and only if it is �-saturated. Moreover, whenever X is not a singleton and �

is not constant, then τ(P�) is disconnected.

Proof By observing that the τ(P�)-closure of any subset A of X coincides with �−1(�(A)), we simply derive
the first result. As a consequence of the previous remark, in the case X is not a singleton and � is not constant, the
τ(P�)- closure of any point of X and its complement give a disconnection of X. ��
Theorem 3.5 The P� proximity is an Efremovic̆ proximity, whose underlying topology is R0 and Alexandroff.
Furthermore, P� is T0, then T2, if and only if the probe � is injective.

Proof P0) through P3) in Definition 2.1 follow immediately from properties of the usual operations between sets
and �-pullback. The EF-property comes from:

A ⌝P� B ⇔ �(A) ∩ �(B) = ∅ ⇔ �−1(�(A)) ∩ �−1(�(B)) = ∅

that implies:

�−1(�(A))⌝P�B and A ⌝P��−1(�(B)).
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The symmetry of P� entails the R0-property:

y ∈ clP�
(x) ⇔ y P� x ⇔ x P� y ⇔ x ∈ clP�

(y).

Alexandroff property is obtained by observing that the union of saturated sets is in its turn saturated.
In the trivial case � is injective, then:

A P� B ⇔ �(A) ∩ �(B) �= ∅ ⇔ A ∩ B �= ∅.

So, P� is the discrete proximity. Giving rise to the discrete topology, P� is T2. Conversely, suppose � is not
injective. Then there exist two distinct points having the same image. Thus, having the same closure they cannot
be T0 separated. ��
If we consider the relation on X given by xR�y ⇔ �(x) = �(y), then we have an equivalence relation whose
classes are of type [x] = �−1(�(x)), where x ∈ X .
• Two subsets A and B of X are P�-near if and only if they intersect a same class of the partition induced byR�.

4 General Forms of Descriptive Proximities

This section introduces two forms of descriptive proximity. The P� proximity is a link between nearness or
overlapping of descriptions in the codomain R

n with relations on pairs of subsets on the domain of codification.
But P� proximity might be considered in some cases too strong or in some other ones too weak. So, by relaxing or
stressing P�, we obtain general forms of descriptive proximities, that can work better than it in particular settings.
Since, from a spatial point of view, classical proximity is a generalization of the set-intersection, in our treatment
we choose P� proximity as the unique separation element between two different broad classes of descriptive
proximities. If we entrust the descriptive intersection with the same role of the set-intersection in the classical case
we get the following two options: descriptive intersection versus descriptive proximity, i.e.,

First option: weaker form:

A∩
�
B �= ∅ ⇒ A

⩔

δ� B

Second option: stronger form:

A
⩕

δ� B ⇒ A∩
�
B �= ∅.

4.1 Weaker Form

This is the case in which two sets having nonempty descriptive intersection are descriptively near:

A∩
�
B �= ∅ ⇒ A

⩔

δ� B.

Definition 4.1 Let X be a nonempty set, A, B, C be subsets of X , and � : X → R
n be a probe. The relation

⩔

δ�

on P(X), the powerset of X, is a Čech �-descriptive proximity iff the following properties hold:

D0): A
⩔

δ� B ⇒ A �= ∅ and B �= ∅

D1): A
⩔

δ� B ⇔ B
⩔

δ� A
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D2): A∩
�
B �= ∅ ⇒ A

⩔

δ� B

D3): A
⩔

δ� (B ∪ C) ⇔ A
⩔

δ� B or A
⩔

δ� C
If, additionally:

D4): (A
⩔

δ� B and {b} ⩔δ� C for each b ∈ B) ⇒ A
⩔

δ� C holds, then
⩔

δ� is a Lodato�-descriptive proximity [10,
§4.15.2, p. 155].

Furthermore, if the following property holds:

EF�) A
⩔� δ� B ⇒ ∃E ⊂ X such that A

⩔� δ� E and B
⩔� δ� X � E,

then
⩔

δ� is an EF �-descriptive proximity.

We explicitly observe that descriptive axioms D0) through D4) plus EF�) are formally the same as in the
classical definition with the set-intersection replaced by the �-intersection. And, also, that:

Proposition 4.2 For every description �, any Čech, Lodato or EF �-descriptive proximity
⩔

δ� is at the same time
a Čech, Lodato or EF-proximity, respectively. But, the converse fails.

Proof It is enough to observe that A ∩ B ⊆ A∩
�
B. So, if A ∩ B �= ∅, then A∩

�
B �= ∅ in its turn. Hence, by D2)

it follows that A ∩ B �= ∅ implies A
⩔

δ� B. Consequently,
⩔

δ� satisfies property P2) in 2.1. The converse fails. We
produce a counterexample as follows. Let S be a proper subset of �(X). Say that A is δ-near B iff they intersect or
their codifications intersect in a point of S. To prove that δ does not satisfy D2), it is enough to exhibit two subsets
A and B which don’t intersect, whose codifications do intersect but outside of S. ��

4.2 The Underlying Topology in the Weaker Case

As in the classical case, for any descriptive proximity
⩔

δ� and for each subset A in X we define the
⩔

δ� -descriptive
closure of A as:

Cl ⩔
δ
�

(A) =: {x ∈ X : x ⩔

δ� A}

Corollary 4.3 Whenever
⩔

δ� is a Lodato �-descriptive proximity, then the closure operator Cl ⩔
δ
�

is a Kuratowski

operator. Moreover: A
⩔

δ� B ⇔ Cl ⩔
δ
�

A
⩔

δ� Cl ⩔
δ
�

B.

Proof It is an immediate consequence of the Proposition 4.2. ��

5 Approaches: Proximity and Overlap

The P� proximity is the �-pull back of the set-intersection. The set-intersection can be considered in two different
aspects. It is the finest proximity on one side and the weakest overlap relation on the other side. So, to construct
significant examples of descriptive proximities weaker than the P� proximity we have two possible approaches:
the proximal approach, which arises when looking at the the set-intersection as a proximity; the overlap approach,
when looking at the set-intersection as an overlap relation [22,36,37]. In this context, by overlapping we mean a
special intersection, that is intersection of some extension of descriptions.
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5.1 Proximity Approach

Let X be a nonempty set, A and B be subsets of X, � : X → R
n be a probe and δ be a proximity on �(X) ⊆ R

n .
Then, if we define δ� as follows:

A δ� B ⇔ �(A) δ �(B)

we get a descriptive proximity weaker than the P� proximity. Of course, the prototype is the P� proximity when
R
n is equipped with the discrete proximity. In this case, as we have seen in the previous paragraph, the ClP�

(A)

is the �-preimage of �(A).

Absorbing and transferring their own similar properties to the other one, the descriptive proximity δ� and the
standard proximity δ are very close to each other.

Theorem 5.1 Let X be a nonempty set, � : X → R
n be a probe and δ be a proximity on �(X). For each

description �, δ� is a C̆ech, Lodato or EF �- descriptive proximity iff the proximity δ is a C̆ech, Lodato or EF
proximity.

Proof By the definitions of both kinds of proximities, properties can be transferred from one side to the other one
by simply using properties of images and pull-back. Equivalences between P0 and D0 and between P1 and D1 are
easy and, as well, P2) implies D2). The vice versa follows from A∩

�
B �= ∅ that exactly means�(A)∩�(B) �= ∅.

And two sets that intersect are near in every proximity. To prove the equivalence between D3 and P3 we can limit to
consider �-saturated sets. In fact, from the definition of δ� (page 99), it follows that A � δ� B iff �−1(�(A)) � δ�

�−1(�(B)). Sonowweprove that, ifwe consider�-saturated sets, then A �δ� B is equivalent to�(A) �δ �(B).

Actually, when B is �-saturated, i.e. �−1(�(B)) = B, then A �δ� B entails �−1(�(A)) �δ� B. Further, since
�(X) � �(B) ⊆ �(X � B) for each B ⊆ X, it happens that A �δ� B implies �(A) �δ �(B). The vice versa
is also true when B is �-saturated. In fact, in this case �(X � B) = �(X) � �(B). By the premises we can limit
to consider �-saturated sets. By this observation it follows easily that P3 is equivalent to D3.

Finally, suppose δ� is EF. Let �(A) �δ �(B). That is equivalent to A �δ� B. But, then there exists C ⊂ X
so that A �δ� C ⊆ �−1(�(C)) �δ� B. Thus, �(A) �δ �(C) �δ �(B). And, consequently, δ is EF in its turn.
The vice versa can be acquired following a similar procedure. ��

Observe that, given a proximity δ on R
n ,
⩔

δ� is the coarsest proximity on X for which the probe � is proximally

continuous, i.e. A
⩔

δ� B ⇒ �(A) δ �(B) [11, §1.7, p. 16].
Another significant example of descriptive proximity is the fine Lodato descriptive proximity associated with a

given topology. When R
n is equipped with a topology τ , the fine Lodato descriptive proximity δ0�(τ) associated

with τ is obtained by putting:

A δ0�(τ) B ⇔ Clτ (�(A)) ∩ Clτ (�(B)) �= ∅,

where Clτ represents the τ -closure operator.

Theorem 5.2 The fine Lodato descriptive proximity δ0�(τ) is the finest one among all “general” Lodato descriptive
proximities whose underlying topology on X is the same as δ0�(τ).

Proof The proof follows analogous steps as in the classical case by using the results in Corollary 4.3 [21]. ��

5.2 Overlapping Approach

Suppose that for any subset A of X a specific enlargement, e(�(A)), i.e.,�(A) ⊆ e(�(A)), of �(A) in R
n can

be associated with A and moreover:

(∗) For each pair A, B ⊆ X : e(�(A)) ∪ e(�(B)) = e(�(A) ∪ �(B)) (additivity)
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and, also:

(∗∗) For each x ∈ X and A ⊆ X, e(�(x)) ∩ e(�(A)) �= ∅ ⇒ e(�(x)) ⊆ e(�(A)).

In this context, by overlapping we mean a special intersection, that is intersection of some extension of descrip-
tions.

Then, if we put:

A
e
δ� B iff e(�(A)) ∩ e(�(B)) �= ∅,

we have:

Proposition 5.3 The relation
e
δ� is a �-descriptive Lodato proximity.

Proof Properties D0, D1 are immediate. D3 comes fromadditivity. D2 follows fromextensivity andfinally, property
(∗∗) entails D4. ��

When choosing as ε > 0 as level of approximation and as enlargement for any subset A of R
n the ε-enlargement

Sε(A) = ∪{Sε(x) : x ∈ A}, we have a peculiar case in the overlapping approach where properties D0) through
D3) are satisfied, but, in general, Lodato property is not. Recall that the ε-enlargement of a point x is just the ball
of diameter ε around x . So arguing, the condition (∗∗) cannot be removed in general. But, in the case where �(X)

is equipped with an ultrametric, then the ε-enlargement operator satisfies also the property (∗∗). As a consequence,

the relation
e
δ� is a descriptive proximity for each codification �. As is well known, ultrametrics are characterized

as metrics for which if two balls intersect, then one of them has to be contained in the other one and then coincide
when the balls have the same radius. In general, an ultrametric is a metric which satisfies the strengthened (max)
version of the triangle inequality, i.e., for a map d : X × X −→ R, for all x, y, z ∈ X ,

d(x, z) ≤ max {d(x, y), d(y, z)} strengthened triangle inequality.

For the correspondence between dated, compact, rooted trees and ultrametrics, see Böcker and Dress [38].
It is not possible to remove the (∗)-condition of additivity as the following geometric example, involving the

affine structure of R
n , proves:

A
conv

δ� B ⇔ conv(�(A)) ∩ conv(�(B)) �= ∅,

where conv(�(A)) = minimal convex set containing �(A). The above relation
conv

δ� verifies the properties
D0, D1, D2, D4 but only one way in D3. This is due to the fact that, in general, the union of two convex sets
is not convex. This is a special case where the enlargement of any point reduces just to the same point.

5.3 Partial Matches

When requiring A P� B, we look at the match of the entire feature vectors on points of A and B. But, it can
be useful to consider a fixed part of the vector of feature values. In this way descriptive nearness of sets can be
established on a partial match of descriptions. To achieve this result, we introduce:

Example 5.4 (α�) Let X be a nonempty set, A and B be subsets of X , � : X → R
n be a probe, and �i =

pi ◦ �, i ∈ {1, . . . , n}, where pi is the i-th natural projection. We define:

A α� B ⇔ �i (A) ∩ �i (B) �= ∅, ∀i = 1, . . . , n

The nearness relation α� is an EF �-descriptive proximity intersection of the P� proximities associated with
the descriptions pi ◦ �, i ∈ {1, . . . , n}. Observe that P� is stronger than α�, that is AP�B ⇒ Aα�B.
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Fig. 4 P� ⇒ α�

Example 5.5 Let X be [0, 1]2 ⊂ R
2 endowed with the Euclidean topology and � : X → R

4, where
(�1,�2,�3)(x) represents the RGB-colour of x and �4(x) equals 1 if x is on the boundary of X , while �4(x)
equals 0 otherwise. In Fig. 4 AP�C but A⌝P�B because there is no point with the same colour and the same
position with respect to the boundary of X. Instead, Aα�B because there are points in A and B that have the same
colour and also points that have the same position with respect to the boundary of X.

Remark 5.6 The topology associated with α� is defined by the Kuratowski operator Clα� :

x ∈ Clα�(A) ⇔ x ∈
⋂

i=1,...,n

�−1
i (�i (A))

��
Example 5.7 (β�) Further, we generalize α� by composing the probe � with the projection πm forgetting the last
n − m coordinates:

πm ◦ � : x −→ (πm ◦ �)(x) = (φ1(x), . . . , φm(x)).

we have:

A β� B ⇔ πm(�(A)) ∩ πm(�(B)) �= ∅.

The nearness relation β� is an EF �-descriptive proximity being the P� proximity associated with πm ◦ �.

A third kind of descriptive nearness defined by probes and intersection is given as follows.

Example 5.8 (γ�) Let X be a nonempty set, A and B be subsets of X , and � : X → R
n be a probe. We define:

A γ� B ⇔ ∃i ∈ {1, . . . , n} : �i (A) ∩ �i (B) �= ∅.

Observe that β� is stronger than γ�, that is: Aβ�B ⇒ Aγ�B. Note that the relation γ� does not verify the
Lodato axiom D4) (see Definition 4.1). We illustrate this by the following example based on Fig. 5.

Example 5.9 Let A = {a, b}, C = {c, d}, B = {e, f, g}. In this figure we have �1(A) = {1}, �2(A) =
{2, 3},�1(C) = {2, 4}, �2(C) = {4, 1}, �1(B) = {1, 2, 5}. So Aγ�B because �1(A) ∩ �1(B) �= ∅, and
for each x ∈ B x γ� C . But A � γ�C because �1(A) ∩ �1(C) = ∅ and �2(A) ∩ �2(C) = ∅. In other words γ�

is not a Lodato proximity.

5.4 Second Option: Stronger Form

This is the case in which two sets that are descriptively near have a nonempty descriptive intersection:

A
⩕

δ� B ⇒ A∩
�
B �= ∅.

Definition 5.10 Let X be a nonempty set, A, B, C be subsets of X and � : X → R
n be a probe. The relation

⩕

δ�

on P(X) is a �-descriptive Lodato strong proximity iff the following properties hold:
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Fig. 5 γ� is not a Lodato proximity

(S0): A
⩕

δ� B ⇒ A �= ∅ and B �= ∅

(S1): A
⩕

δ� B ⇔ B
⩕

δ� A

(S2): A
⩕

δ� B ⇒ A∩
�
B �= ∅

(S3): A
⩕

δ� (B ∪ C) ⇔ A
⩕

δ� B or A
⩕

δ� C

(S4): A
⩕

δ� B and {b} ⩕δ� C for each b ∈ B ⇒ A
⩕

δ� C.

As an example, when we can distinguish a significant subset S ⊆ �(X),we can put: A
⩕

δ� B if and only if�(A)

shares some common point with �(B) belonging to S, thereby obtaining a strong �-descriptive proximity. This
means that A and B are �-descriptively strongly near iff �(A) and �(B) intersect on S. Looking at the domain, A
and B are �-descriptively strongly near when they intersect at the same element �−1(s) with s ∈ S.

This case looks particularly interesting when R
n is covered by a grid and S is done from the vertices of the given

grid, where the essential information in the description can be assumed to be concentrated.

5.5 The Underlying Topology in the Stronger Case

As in the weak case, for any strong �-descriptive proximity
⩕

δ� and for each subset A in X we can define:

cl ⩕
δ
�

(A) =: {x ∈ X : x ⩕

δ� A}.

In contrast with the weak case, the cl operator has a bad behaviour. There are points x “dislocated” with respect
to their own cl ⩕

δ
�

(x), i.e. not belonging to cl ⩕
δ
�

(x). But, if we add to cl ⩕
δ
�

(A) also the set A, then the operator

A → A ∪ cl ⩕
δ
�

(A) can be easily proved to be a Kuratowski operator, so inducing a topology underlying to the

strong �-descriptive proximity
⩕

δ� .

In the previous example, cl ⩕
δ
�

(x) is the empty-set when �(x) is not in S, while cl ⩕
δ
�

(x) = �−1(�(x)) when x

belongs to S. Moreover, any dislocated point is isolated in the underlying topology which is disconnected from the
set of dislocated points and its complement.
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Fig. 6 Sample EF-relationships. a EF relation, b EF display, c Thai display

6 Application: Descriptive Proximity in Visual Merchandising

This section briefly introduces an application of descriptive proximity in visual merchandising. It is common for
retailers to maintain planograms for the arrangement of the displays of their merchandise. A planogram is detailed
product-level map of a store layout [39]. A planogram provides retailers with a blueprint for how merchandise are
arranged visually on shelves to facilitate high visibility and price point options.

Example 6.1 ( Visual Descriptive EF-Proximity Relationships) The use of descriptive EF-proximity in visual mer-
chandising was introduced in [11, §3.3, pp. 75–78]. Let A,C ⊂ X, B ⊂ C and let Cc be the compliment of C . A
descriptive EF proximity (denoted by � δ�) has the following property:

A � δ� B ⇔ A � δ� C and B � δ� Cc.

A representation of this descriptive EF proximity relation is shown in Fig. 6a. The import of an EF-proximity
relation is extended rather handily to visual displays of products in a supermarket (see, e.g., Fig. 6c). The sets of
bottles that have an underlying EF-proximity to each other is shown conceptually in the sets in Fig. 6b. The basic
idea with this application of topology is to extend the normal practice in the vertical and horizontal arrangements of
similar products with a consideration of the topological structure that results when remote sets are also taken into
account, representing the relations between these remote sets with an EF-proximity. ��

The proposed descriptive proximity approach to visual merchandising holds promise, since it leads to highly
accurate measurements of the similarities between the visual content of displayed products. The high acuity of
descriptive proximities of visual products derives from the use of probe function-based product descriptions to
determine the descriptive proximities between pairs of sets of products. These descriptive proximities are then
carried over in the construction of planograms. Further, the descriptive proximity-based approach to planograms
complements recent operations research work on shelf space allocation, where the focus is on the shelf spatial
requirements of various products (see, e.g., [40]).

Example 6.2 (Descriptive EF Proximity Relationships in Planograms) A partial view of the allocation of space on
Thai shop shelves based on the EF description proximity of sets of bottles is shown in Fig. 7. Let X be a set of
bottles in a shelf space endowed with an EF descriptive proximity relation and A, B,C, E be subsets of X . To begin
constructing a planogram based on the appearance of the bottles, we consider descriptions of the members of these
sets derived from two probe functions



104 A. Di Concilio et al.

Fig. 7 EF-descriptive proximity-based visual display

Table 1 Partial EF-descriptive proximity-based planogram

ϕ1 : X −→ {red, yellow,white} (colour probe),

ϕ2 : X −→ {avg., tall} (height probe).

For simplicity in this example, the codomain of a probe function is a set of nominal (instead of numerical) values.
For example, the description of a bottle a in A is the feature vector �(a), defined by

�(a) = (ϕ1(a), ϕ2(a)) = (red, avg.) (feature vector describes a ∈ A).

So �(A) = ⋃
a∈A �(a). The components of the feature vectors for the set A as well as the sets B,C, E in Fig. 7

are given in the partial planogram in Table 1. The basic approach is to separate sets of bottles that are descriptively
remote, i.e., when the sets do not have matching descriptions. Sets with non-matching descriptions have unequal
feature vectors. So, for example,
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�(A) �= �(B), since

(ϕ1(A), ϕ2(A)) �= (ϕ1(B), ϕ2(B)) , i.e.

(red, avg.) �= (white, tall) (unequal feature vectors), so that

A � δ� B, resulting in

A being separated from B on the shelves in Fig. 7.

This approach to constructing a planogram is easily operationalized in real-time using a scanner or robotic vision
system programmed to probe feature values, compare descriptions of sets of shelf items and allocate shelf space
based on the nearness or remoteness of the descriptions. ��

Specific applications of descriptive proximity besides visual merchandising include: (i) proximitizing sets of
physical objects [10, §3.7, p. 119], (ii) description of qubits in an approach to solving the problem of quantum
entanglement [17, §3], (iii) proximal nearness of Voronoï regions in friendship networks [13], and (iv) descriptive
proximity of nerve complexes recently introduced in [15] leading to the study proximal object shapes [18,19].

7 Conclusions

In this article, the basic notion of descriptive proximity is extended and elucidated in terms of a number of different
descriptive proximities viewed in the context of classical spatial proximity. Descriptive intersection is a fundamental
structure underlying the descriptive proximities considered here. With the introduction of descriptive proximity,
it is a straightforward next step to consider nonempty sets that are spatially remote and yet descriptively close. A
paradigm for descriptive proximities is the visitor to a museum who observes the visual closeness of paintings,
which can be either side-by-side or in different locations.
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