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Abstract The existence of a central configuration of 2n bodies located on two concentric regular n-gons with
the polygons which are homotetic or similar with an angle equal to π

n and the masses on the same polygon, are
equal, has proved by Elmabsout (C R Acad Sci 312(5):467–472, 1991). Moreover, the existence of a planar central
configuration which consists of 3n bodies, also situated on two regular polygons, the interior n-gon with equal
masses and the exterior 2n-gon with masses on the 2n-gon alternating, has shown by author. Following Smale
(Invent Math 11:45-64, 1970), we reduce this problem to one, concerning the critical points of some effective-type
potential. Using computer assisted methods of proof we show the existence of ten classes of such critical points
which corresponds to ten classes of central configurations in the planar six-body problem.
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Mathematics Subject Classification Primary 70F10; Secondary 70F15

1 Introduction

One of the main aims concerning central configurations in the N -body problem is to determine parameters of the
bodies for which such configuration exists. The well known list of classical central configurations of Euler and
Lagrange [1] has been completed by Elmabsout [2] and Grebenikov [3]. They have added configurations consisting
of 2n equal point-masses, located at the vertices of two regular, concentric n-gons. They also have proved that such
configuration exists if and only if these two polygons are homothetic or differ by an angle of π/n. Recently, the
existence of the bifurcations in central configurations became an important problem studied by many researchers.
The authors which have dealt with bifurcations in the n-body problem are Sekiguchi [4], Lei and Santoprete [5].
They have analyzed a highly symmetrical rosette configuration of (2n+1) point-masses; Sekiguchi has considered
2n point-masses, each with mass m and situated at the vertices of two different coplanar and concentric regular
n-gons, whilst Lei and Santoprete have analyzed 2n point-masses, n particles of which with mass m1 each are
located at the vertices of a n-gon and the rest of n particles with mass m2 lie at the vertices of another n-gon. Both
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n-gons are regular, concentric and rotated of an angle π
n . Finally, the mass m0 lies at the center of masses of such

configuration. The second configuration corresponds to those ones considered by Elmabsout and Grebenikov.
Sekiguchi has established that for n ≥ 3 there is a critical mass μc such for μ < μc, there exist three central
configurations, and only one for μ ≥ μc. Lei and Santoprete, in their article, have shown that, if n ≥ 3, then there
exists a degenerate central configuration. The authors describe a bifurcation scenario near this configuration.
In this paper, we deal with a new family of planar twisted configurations in N -body problem, more precisly, we
study a configuration which contains 3n point-masses; we assume that n equal point-masses m1,m2, . . . ,mn are
located at the vertices of a n-gon, whereas the other 2n point-masses withm

′
1,m

′
2, . . . ,m

′
2n are located at the vertices

of a 2n-gon, both polygons being concentric. The existence of such configuration has been shown numerically by
Grebenikov [6] and for n = 2 it was established rigorously by Siluszyk [7].
The paper is organized as follows. In the Sect. 2 we recall general definitions, theorems and equations for central
configurations, i.e. we recall important relations between the homographic solutions, relative equilibria and critical
points in the N -body problem. In the Sect. 3 we present the main theorem. Here, we investigate the critical points
of the function IU 2. We show that there are ten different critical points which correspond to ten classes of central
configurations.

2 Equations of Central Configurations: Theoretical Background

The equations of the motion of N point-masses under the influence of the Newton’s gravitational law can be written
as (see, e.g., [1])

mi · q̈i = −∂U

∂qi
, i = 1, . . . , N , (2.1)

where U = ∑
1≤i< j≤N

mi m j|qi−q j | is the Newton potential. In order to avoid collisions we assume that the potential is

defined on R2N except the collision set � = {
q : qi = q j , i �= j

}
. Here, qi ∈ R2 − � is the radius-vector of the

position in the plane of the i th body. We also consider the barycentric frame of reference, so we assume that the
center of mass is located at the origin, i.e.

∑N
i=1 miqi = 0.

Definition 2.1 [1] We call qi (t), (i = 1, 2, . . . , N ) a homographic solution of the N -body problem if there exist

a function s(t) > 0 and an orthogonal matrix-function �2(t) =
(
cos ω(t) −sin ω(t)
sin ω(t) cos ω(t)

)

such that for each

i = 1, . . . , N and t

qi (t) = s(t) · �2(t) · q0i . (2.2)

This means that the configuration of the bodies remains similar to itself at all times t ; here q0i denotes qi at some
initial instant t0.

There are two limiting types of homographic solutions. If �2(t) is the identity matrix (the configuration is
dilating without rotation) then this solution is named homothetic, i.e. qi (t) = s(t) · q0i , (i = 1, 2, . . . , N ), or if
the configuration is rotating without dilatation, i.e. if s(t) = 1 for all t ∈ R. Such motion is the simplest possible
motion in the plane, when the whole system of N point-masses rotates as a rigid body about its center of mass. In
general, the rotation velocity ω may depend on t . The following result is taken from [1] (see also [8,9]):

Theorem 2.2 [1] A homographic solution q(t) is a relative equilibrium if and only if it is planar and the configu-
ration rotates with constant angular velocity.

Wintner gives also the following criterion:
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Theorem 2.3 [1] A set of N material points (qi ,mi ), (i = 1, . . . , N ) forms a central configuration if and only if
at each such point the following equalities hold true

∂U

∂qi
= σ

∂ I

∂qi
, (i = 1, . . . , N ), (2.3)

where the multiplier σ is a function that does not depend on i , and I = ∑N
i=1 mi |qi |2 is the polar moment of

inertia.

Remark 2.4 It is worth noticing that many authors take the equation (2.3) as definition of a central configuration
(see, e.g., [8]).

Remark 2.5 Since I is a (first) integral of the equation (2.1), we can interpret (2.3) as the equation for a conditional
extremum of the potential U under the condition I = const., (say, I = 1).

It is more convenient to identify central configurations with some usual critical points of an appropriately chosen
function. Doing that we follow [8]. More precisely, both functionsU and I are homogeneous of the degrees -1 and
2, respectively. Applying Euler’s formula for homogeneous functions to U and I , we have

N∑

i=1

qi
∂U

∂qi
= −U,

N∑

i=1

qi
∂ I

∂qi
= 2I.

Multiplying both sides of (2.3) by qi and summing, one obtains the following equality

−U = 2σ I,

which implies σ = − U
2I . If one substitutes this value of σ in the equations (2.3), one obtains that I ∂U

∂qi
= − 1

2U
∂ I
∂qi

,
(i = 1, . . . , N ). After multiplying both sides of the last equalities by U we obtain the following result

Theorem 2.6 [8] The configuration of point-masses {(qi ,mi ) : i = 1, . . . , N } represents a central configuration
if and only if (q1, q2, . . . , qN ) ∈ R2N is a critical point of the function IU2.

In what follows, we are concerned with a class of central configurations in the six-body problem by identifying
them with the corresponding critical points of the function IU 2. Such configuration consists of N -point-masses
(qi ,mi ), (i = 1, ..., N ) situated at the vertices of p regular polygons. In the article [10], Elmabsout has suggested
that a relative equilibrium configuration exists when the bodies are located at the vertices of p regular polygons
centered at a given mass m0, with the bodies on the same polygon having equal masses. We denote this type
of configurations by (p, pn), where p denotes the number of polygons and n is the number of points on each
polygon, so that the total number N of point-masses equals pn. The existence of a central configuration of the
type (2, 2n) has been established by Elmabsout and Grebenikov (see, e.g., [2,3]). This configuration was named
by Sekiguchi, Lei and Santoprete as symmetric rosette configuration. Central configurations of the type (p, pn)

represent a particular case of the general type (p, N ), where different masses on the same polygon are allowed. For
example, the configuration of the type (2, 1) means Newton’s 2-body problem. For (3, 1) we obtain Euler’s central
configuration or the configuration as a collinear case. For N = 4 we get the following cases: (1, 4) as a square with
four equal masses at the vertices [1], (2, 2) as a rhombus with two bodies having equal masses and located at the
vertices of two segments [11], (4, 1) as the collinear case. We add here also the case (1, 3) as an equilateral triangle
with mass m0 �= 0 located at its center of gravity ([3,10,12]). An interesting configuration of the type (p, N ) can
be (2, 8), where eight point-masses are situated at the vertices of an equilateral triangle and a pentagon, which are
concentric, (see, for example [13]).



460 A. Siluszyk

Fig. 1 Configuration (2, 3n)

In our paper we deal with a special class of central configurations of the type (2, 3n), consisting of 3n bodies
located at the vertices of two regular concentric polygons: the “interior” one of the radius q and with n equal
point-masses, and other 2n bodies located at the vertices of the second regular 2n-gon of the radius, say, q

′
, with

point-masses of two categories: one half, i.e., n masses, all equal to, saym2, and another half, i.e. n masses, all equal
to, say,m3. Moreover, the point-masses on the “2n-gon” alternate: a point of massm2 is followed by a point of mass
m3, and so on (see Fig. 1). It is worth noticing [8], that if {(qi ,mi ), i = 1, 2, . . . , N } is a central configuration,
then instead of studying the Eq. (2.1) we can consider the point-masses which satisfy the following condition:

− U

2I
qi = −

N∑

j=1

m j
qi − q j

∣
∣qi − q j

∣
∣3

, i = 1, . . . , N (2.4)

Due to symmetry of the problem, the potential U does not depend on the coordinates of the bodies, but only
on the number of bodies, their masses, and the distances q and q ′. More precisely, for a configuration of the type
(2, 3n) with any natural n and reals m1 > 0, q, q ′ > 0, we have (see [7]) that the potential U in the planar N -body
problem with a central configuration of the type (2, 3n) is reducible to the following form:

U = n

4
A

(
m2

1

q
+ m2

2

q ′ + m2
3

q ′

)

+ n

q
m1m2B + n

q
m1m3C + n

2q ′m2m3D, (2.5)

where the coefficients A, B,C, D are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
n−1∑

j=1

1
∣
∣
∣sin π j

n

∣
∣
∣
,

B =
n∑

j=1

q
√
q2 + q ′2 − 2qq ′ cos( 2π j

n + π
n )

,

C =
n∑

j=1

q
√
q2 + q ′2 − 2qq ′ cos 2π j

n

,

D =
n∑

j=1

1
∣
∣
∣sin( 2π j

n + π
2n )

∣
∣
∣
.

(2.6)
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In the same paper [7] the author has established the following result:

Theorem 2.7 [7] Given the natural n and real positive numbers m1,m2,m3, q, q ′ > 0, a central configuration of
type (2, 3n) exists if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m2 = r2

(κ1 − κ6)(κ1 − 4r3(κ2 + κ4) + 4r4(κ3 + κ5) + κ6)
(−16r5(κ2 − κ4)κ5

+16r4(κ2κ4 − κ2
4 + κ5(κ3 − κ5)) − 16r3κ4(κ3 − κ5)

−r(−κ2
1 − 4κ4κ6 + κ1(4κ2 + κ6)) + 4κ1κ3 − 4κ5κ6)m1,

m3 = r2

(κ1 − κ6)(κ1 − 4r3(κ2 + κ4) + 4r4(κ3 + κ5) + κ6)
(16r5κ3(κ2 − κ4)

−16r4(κ2(κ2 − κ4) + κ3(κ3 − κ5)) + 16r3κ2(κ3 − κ5)

+r(κ1(κ1 − 4κ4 − κ6) + 4κ2κ6) + 4(κ1κ5 − κ3κ6))m1,

(2.7)

where r = q ′
q , s = 1, . . . , 6, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ1 =
n∑

j=1

1
∣
∣
∣
∣sin

π(k − j)

n

∣
∣
∣
∣

,

κ2 =
n∑

j=1

1
(
1 + r2 − 2r cos

(
2π( j−k)

n + π
n

)) 3
2

,

κ3 =
n∑

j=1

cos
(
2π( j−k)

n + π
n

)

(
1 + r2 − 2r cos

(
2π( j−k)

n + π
n

)) 3
2

,

κ4 =
n∑

j=1

1

(1 + r2 − 2r cos( 2π( j−k)
n + 2π

n ))
3
2

,

κ5 =
n∑

j=1

cos
(
2π( j−k)

n + 2π
n

)

(
1 + r2 − 2r cos

(
2π( j−k)

n + 2π
n

)) 3
2

,

κ6 =
n∑

j=1

1
∣
∣
∣sin

(
2π( j−k)

2n + π
2n

)∣
∣
∣
.

(2.8)

Easily seen, that the sums on the right hand side do not depend on k. The masses m2,m3 in the Theorem 2.4
were obtained from the Eq. (2.4) where, instead of the expression U

2I we have taken the value ω2, with ω as the
angular velocity of the rotation around the Oz axis of the orthonormal frame Oxyz. We describe the motion of N
point-masses in these coordinates by the differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi
dt2

− 2ω
dyi
dt

= ω2xi −
N∑

j=1, j �=i

m j
xi − x j

∣
∣qi − q j

∣
∣3

,

d2yi
dt2

+ 2ω
dxi
dt

= ω2yi −
N∑

j=1, j �=i

m j
yi − y j

∣
∣qi − q j

∣
∣3

,

d2zi
dt2

= −
N∑

j=1, j �=i

m j
zi − z j

∣
∣qi − q j

∣
∣3

.

(2.9)
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Denoting qi = (xi , yi ) (i = 1, 2, ...N ), the Eq. (2.4) of a central configuration can be rewritten as follows:

ω2qi =
N∑

j=1, j �=i

m j
qi − q j

∣
∣qi − q j

∣
∣3

. (2.10)

Taking into the account the relations (2.7) and (2.8), the following equation of the central configuration we are
looking for:

ω2 = m1

r q3
(r κ2 − κ3) + m2

4r3q3
κ1 + m3

4r3q3
κ6. (2.11)

3 The Case of Six-Body Problem

In this section we are looking for a configuration of six point-masses, where two of them with equal masses m1 are
situated at the ends of a segment having length 2q, while other two pairs of equal masses m2 and m3, respectively,
are located at the vertices of a square whose side is q ′√2. Moreover, the vertices of this square are on the axis of
symmetry of the segment.

Below we give necessary and sufficient conditions for such a configuration to exist in terms of critical points
of the function IU 2. In this case the Newton potential from (2.5) and the polar moment of inertia for all values
q, r > 0, r �= 1 and m1 > 0 take the forms:

U = m2
1

q

((
1

2
+ μ2 + ν2

2r

)

+ 4
μ√

1 + r2
+ 2ν

(
1

√
(r − 1)2

+ 1
√

(r + 1)2

)

+ 2
√
2
μ ν

r

)

, (3.1)

and

I = 2m1q
2(1 + r2(μ + ν)), (3.2)

respectively, where μ = m2
m1

and ν = m3
m1

. Both function U and I depend on variables m1, μ, ν, r, q. U 2 gets the

expressionU 2 = m4
1

q2
(∗)2, where (∗) is remaining part of the formulas (3.1), moreover the fact that ∂ I

∂μ
�= 0, ∂ I

∂ν
�= 0,

∀r > 0, r �= 1 means that I U 2 is the function only of r . The function U has a pole at r = 1, so we divide the
domain r > 0 into two intervals and then we can obtain the following theorem

Theorem 3.1 Consider the configuration, consisting of six mass-points, two of which of the commonmass m1 being
located at the ends of the segment of the length 2q, and other two pairs of equal masses m2 and m3, respectively,
being located at the vertices of a square whose side is q ′√2 (the segment and the square have the same axis of
symmetry, see Fig. 2). There exist ten classes of central configurations, corresponding to the following values of the
parameter r:

1. There are six distinct central configurations corresponding, to the following values of the parameter r from the
interval (0;1)
r1 = 0.072255500985496 ± ε1, r2 = 0.187400673520093 ± ε2, r3 = 0.425321919060473 ± ε3,
r4 = 0.455866590203477 ± ε4, r5 = 0.460152407511265 ± ε5, r6 = 0.580685227755403 ± ε6,

2. There exist four central configurations for r7 = 3.514134674303432 ± ε7,
r8 = 4.077744508561068 ± ε8, r9 = 4.949764128835926 ± ε9, r10 = 5.153295885139827 ± ε10.

Here, ε1, . . . , ε10 ∈ {
10−16, 9 · 10−16

}
.
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Fig. 2 A configuration of the type (2, 6)

Proof Consider the function I U 2. Denote g : R+ − {1} −→ R, g(r) ≡ IU 2(r), where

g(r) = 1

2
m5

1(1 + r2(μ + ν))

(

1 + 4

(
2μ√
r2 + 1

+ ν

(
1

r + 1
+ 1

√
(r − 1)2

))

+ μ2 + 4
√
2μν + ν2

r

)2

.

(3.3)

Introducing the masses μ = μ(r) and ν = ν(r) (see Theorem [7]), the equation for the zeros of the gradient of the
function IU 2 can be reduced to the zeros of the derivative g’(r) , where

g′(r) = 1

2
m5

1

(

1 + 4

(
2μ√
r2 + 1

+ ν

(
1

r + 1
+ 1

√
(r − 1)2

))

+ μ2 + 4
√
2μν + ν2

r

)

×
(

(2r(μ + ν) + r2(μ′
r + ν′

r ))

(

1 + 4

(
2μ√
r2 + 1

+ ν

(
1

r + 1
+ 1

√
(r − 1)2

))

+ μ2 + 4
√
2μν + ν2

r

)

+ 2(1 + r2(μ + ν))

(
8(μ′

r (r
2 + 1) − μr)

(r2 + 1)
√
r2 + 1

+ 4ν′
r

(
1

√
(r − 1)2

+ 1

r + 1

)

+ 4ν

(

− 2

r − 1
− 1

(r + 1)2

)

+ r(2μμ′
r + 4

√
2(μ′

rν + μν′
r ) + 2νν′

r ) − (μ2 + 4
√
2μν + ν2)

r2

))

.

(3.4)

Mathematica [14] is a tool that can help us to calculate a derivative of the function IU 2 moreover it helps to solve
non algebraic equations such as (IU 2(r))

′
r = 0. Presentation of the function g′(r) we can see by using powerful

facilities ofMathematica as the built-in functionsManipulate and Animate. Both these functions make possibility
to vary the parameters r and m1, and to observe the behavior of the function g′(r). Thus we can understand better
the simulated system of parameters. This can be done with the functionManipulate, which allows for an interactive
manipulation of the value of m1 (see, Fig. 3), i.e.,
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Fig. 3 The functions g
′
(r) for r ∈ (0, 0.2) and m1 = 0.3

In the procedure Manipulate, instead of the mass m1 we take m.
I. Assume that r ∈ (0, 1). Then limr→0+g′(r) = 0, limr→1−g′(r) = ∞. Numerical calculations show, that for
m1 > 0 and 0 < r < 0.5 the function g′(r) has minimum and maximum (see Fig. 4a, c, e and 4b, d, f), whereas for
0.5 < r < 1 the function g′(r) is increasing. At this moment, there doesn’t exist the analytical methods to solve the
equation g′(r) = 0, where g′(r) is complicated irregular function. These solutions can be obtained only by using
numerical methods. In theMathematica we can apply the procedure FindRoot, which searches a numerical root of
the function, starting from the point r = r0, i.e., where after checking precision of our calculations we have

Here, we give a set of solution of the equation g′(r) = 0, i.e.,

0.0722555009854966 ± ε1, 0.187400673520093 ± ε2, 0.425321919060473 ± ε3,

0.455866590203477 ± ε4, 0.460152407511265 ± ε5, 0.580685227755403 ± ε6.

The number of zeros of the function g′(r) do not depend on m1, so the same results we have obtained for values of
the parameter m1 > 0.
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Fig. 4 The functions g
′
(r) and g

′′
(r) for r ∈ (0, 1) and m1 = 0.05

II. Assume that r ∈ (1,∞). We claim that there exist at most four critical points of the function g(r) which
correspond to four critical points of the function IU 2. Easily seen that limr→1+g′(r) = ∞, and limr→∞g′(r) = ∞.
Independently of m1 we can see (Fig. 5g, h) that the number of critical points is equal to 4. Numerical analysis of
the Fig. 5 gives two local minima and one local maximum, note them r∗

min = 3.714499977675438 ± δ1, r∗∗
min =

5.06001856651343 ± δ2 and r#max = 4.456337830721095 ± δ3, respectively, here δ1, δ2, δ3 ∈ {
10−16, 9 · 10−16

}
.

Studying the derivative of the function g′(r) it follows that for 1 < r < r∗
min , g

′(r) is monotonically decreasing,
whereas if r∗

min < r < r#max , g
′(r) is a monotonically increasing and g′(r∗

min) < 0, whilst g′(r) is monotonically
decreasing on the interval r#max < r < r∗∗

min , and increasing for r∗∗
min < r < +∞. Consequently, the function g′(r)

has four zeros in (1,∞) i.e.,

{3.514134674303432 ± ε7, 4.077744508561068 ± ε8, 4.949764128835926 ± ε9, 5.153295885139827 ± ε10} .
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Fig. 5 The functions g
′
(r) and g

′′
(r) for r ∈ (1,∞) and m = 0.05

Table 1 The values of r , g
′
(r) and g

′′
(r) for m1 = 0, 0001

r g
′
(r) g

′′
(r)

0.0722555009854966 ± ε1 1.87315 · 10−35 −4.45959 · 10−19

0.187400673520093 ± ε2 −1.16033 · 10−32 7.72416 · 10−18

0.425321919060473 ± ε3 7.88861 · 10−30 −5.11395 · 10−14

0.455866590203477 ± ε4 −3.51536 · 10−29 2.6649 · 10−13

0.460152407511265 ± ε5 9.82308 · 10−29 −5.99538 · 10−13

0.580685227755403 ± ε6 −4.43479 · 10−25 1.65081 · 10−10

3.514134674303432 ± ε7 −5.51073 · 10−26 −1.77279 · 10−15

4.077744508561068 ± ε8 7.51883 · 10−31 4.83647 · 10−16

4.949764128835926 ± ε9 −5.48505 · 10−31 −1.91338 · 10−16

5.153295885139827 ± ε10 −2.19532 · 10−28 2.68523 · 10−16

We call a relative equilubrium degenerate, if the corresponding critical point of the function I U 2 is degenerate.
From numerical analysis we can put in evidence some degenerated critical points which are degenerated (see,
Figs. 4, 5 and the Table1).

4 Conclusion

Presented here the relative equilibrium of the type (2, 3n) belongs to the general model of the type (2, N ) of
the N -body problem in the barycentric system. We reduce the problem of finding central configurations to the
corresponding problem concerning the critical points of an appropriately chosen function. In the case of the six-
body problem we prove the existence of ten central configurations, depending on the proportion between the radii
of the concentric regular polygons, on which the central configuration is located.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes
were made.
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