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Abstract A generalized model of the Atwood machine when one body is constrained to move along a vertical
axis while the other one can swing in a plane is considered. Combining symbolic and numerical calculations, we
have obtained equations of motion of the system and analyzed their solutions. We have shown that oscillation can
completely modify a motion of the system while the simple Atwood machine demonstrates only the uniformly
accelerated motion of the bodies. The validity of the results obtained is demonstrated by means of the simulation
of motion of swinging Atwood’s machine with the computer algebra system Wolfram Mathematica.
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1 Introduction

An Atwood machine is a well-known device that is usually used in the course in physics to demonstrate the uniformly
accelerated motion of a system (see [1]). It consists of two bodies, having masses m| and m» (my > m1), attached
to opposite ends of a massless inextensible thread wound round a massless, frictionless pulley. It is assumed that
each body can move only along a vertical, and the thread doesn’t slip on the pulley. Such Atwood’s machine is
a simple mechanical system with one degree freedom and, using Newton’s second law, one can easily obtain its
equation of motion and show that acceleration of each body is given by

_ o (1.1)

my + mq

where g is a gravity acceleration.

Obviously, any real Atwood’s machine is much more complicated in comparison with the simplest device
described above because there are at least two significant features of the system which have been neglected for
simplicity. First, a pulley has some mass and, therefore, its nonzero moment of inertia about axis of rotation may
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influence noticeably on motion of the system. Second, in addition to translational motion, the bodies being hung
on a flexible thread, can oscillate under an influence of the force of gravity. Therefore, real system has more than
one degree of freedom and its behaviour is described by a complex system of differential equations whose general
solution can not be found in symbolic form. Nevertheless, such equations can be solved numerically and influence
of the mass of the pulley and oscillations of the bodies on system’s motion can be investigated.

It should be noted that swinging Atwood’s machine has been a subject of a number of papers (see [2-8]) and its
mechanical behaviour has been studied quite well. In particular, it has been proven that the system of differential
equations describing dynamics of swinging Atwood’s machine is not integrable, in general. It has been shown also
that, depending on the mass ratio my/m1, the system can demonstrate different types of motion, namely, periodic,
quasi-periodic, or chaotic motion but physical reasons of such behaviour of the system and significance of oscillation
is not usually discussed.

The main purpose of the present paper is to analyze the terms appearing in the equations of motion owing
to oscillations, and to demonstrate their crucial role for the system behaviour. And the computer algebra system
system Wolfram Mathematica (see [9]) turns out to be a very good tool to do all necessary symbolic and numerical
calculations and to visualize the results.

2 Equations of Motion

Let us consider the simplest generalization of Atwood’s machine when moment of inertia of the pulley about axis
of rotation is taken into account, and the body of mass m is allowed to swing in a plane while the other body
of mass m is constrained to move only along vertical axis Oy (see Fig. 1). The corresponding system has two
degrees of freedom and its geometrical configuration can be described in terms of two variables, namely, an angle ¢
determining deviation of the thread from a vertical, and a length » of the thread between the body m and the point,
where the thread departs from the pulley in case of ¢ = 0. Then Cartesian coordinates x1, y;, y2 of the bodies can
be determined as

x1(1) = Reos (1) + (r(1) + Re(1)) sin (1),

yi(t) = Rsing(r) — (r(r) + Ro(1)) cos (1),

»() =r@)—L+7nR,

where L is a length of the thread, R is a radius of the pulley, and we have taken into account that the thread is a
tangent to the pulley.

Doing standard symbolic calculation, we can write the Lagrangian function of the system as (see, for exam-
ple, [10])

1 I
L= <m1 +m2+R—()2>f2+%(r+R<p)2gb2
—m1g (Rsing — (r + Ry) cos ¢) — mogr, 2.1)

where [ is a moment of inertia of the pulley, and the dot in 7 denotes the time derivative of the function r(¢). It is
assumed also that the thread doesn’t slip on the pulley and angular velocity of the pulley is completely determined
by the velocity y» of the body m>.

Using the Lagrangian (2.1), we obtain the equations of motion of the system in the form

KF = —g( — cos @) + (r + Rp)@?, 2.2)
(r + Rp)§ = —gsing — 27 — R¢?, (2.3)
where
Iy + (m + ma)R? my
K = >1, p=—.

m R? mi
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Fig.1 Swinging Atwood’s y
machine

Y1 my

2
o -

m

Note that in the absence of oscillations when ¢ = 0, Eq. (2.3) is satisfied identically while Eq. (2.2) is easily
solved and its solution is given by

2
r(t) =ro + vot — M 2.4)
2K
where ro = r(0) and vy = r(0) are initial distance and velocity, respectively. Obviously, in case of u # 1
solution (2.4) determines a uniformly accelerated motion of the bodies, and Atwood’s machine was devised just to
demonstrate this type of motion.
One can readily see from (2.4) that nonzero moment of inertia of the pulley results in decreasing the acceleration

_ 81 glmy—my)
K Io/R?> +my +my’

in comparison with the case of massless pulley (see (1.1)). Therefore, taking into account a mass of the pulley
in Atwood’s machine without oscillations makes the system more inertial but doesn’t change its behaviour in a
qualitative sense.

3 Motion of Swinging Atwood’s Machine

Taking into account planar oscillation of the body m| complicates the equations of motion significantly (see (2.2),
(2.3)) and their general solution cannot be found in symbolic form. However, choosing some realistic values of the
system parameters, we can obtain the corresponding numerical solution for different initial conditions and analyze
motion of the system.

3.1 Equal Masses

In case of equal masses (i = 1) the bodies in the simple Atwood’s machine can either move uniformly or rest,
depending on the initial conditions. Let us consider the case when the system rests and we impart a small horizontal
initial velocity to the body of mass m 1. As both bodies have the same mass and are initially in equilibrium, it seems
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Fig. 2 Motion of the system in case of equal masses and k = 2.5
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Fig. 3 Motion of the system in case of u = 0.97, k = 2.5

to be quite natural to assume that the system will move in the neighbourhood of its equilibrium position. However,
using the Mathematica built-in function NDSolve (see [9]) and obtaining numerical solution of the equations of
motion (2.2), (2.3), we observe completely different behaviour of the system (see Fig. 2). It turns out that small
oscillation of the body of mass m causes an unbounded growth of the function r () while amplitude of oscillation
of the function ¢ () decreases with time. It would be nothing strange if initial velocity of the body 1 had a vertical
component but is was directed horizontally.

3.2 Unequal Masses (u # 1)

Now let us consider the case when one body has a little bit greater mass than another one. Just such a case is usually
realized experimentally when the corresponding demonstration is shown at lectures in physics.

In case of oscillation of the body having greater mass (1 < 1) qualitative behaviour of the system doesn’t change
too much in comparison to the simple Atwood machine, the corresponding solutions »(¢) and ¢(t) of the system
(2.2), (2.3) are shown in Fig. 3, where a dashed curve visualizes the function (2.4) for vg = 0. As we could expect
the more massive body m| moves down and the function r(¢) deviates only a little bit from the solution (2.4). An
amplitude of its oscillation decreases as the function r(¢) grows up similarly to the previous case of equal masses
of the bodies.

In case of m; < my(u > 1) and zero initial velocity of the bodies simple Atwood’s machine demonstrates a
motion in opposite direction and the function r(#) decreases with time (see (2.4)). If we impart a small horizontal
initial velocity to the body of smaller mass m an initial stage of motion of the swinging Atwood machine looks
similarly (see Fig. 4). But later behaviour of the swinging Atwood machine becomes completely different. The
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Fig. 4 Motion of the system in case of u = 1.02, k = 2.5
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function r () decreases first but after reaching some minimum it starts to increase what is not possible in case of
the simple Atwood machine. One can readily see that decrease of the function r(¢) is accompanied by increase of
an amplitude and frequency of the body m oscillation while they decrease again when the system starts to move
in opposite direction. As a result we observe a quasi-periodic motion of the system and it would be very difficult to
predict such strange its behaviour without solving the equations of motion.

One can easily check also that for large enough difference of masses m and my(m; < mj) quasi-periodic
motion of the system disappears and the function r () decreases with time until the body m; reaches the pulley.
But the question remains why oscillation of the body 7 can modify the system motion so dramatically in case of
small difference of masses of the bodies?

4 Influence of Oscillation on the System Motion

Obviously, the body of mass m; being hung on a flexible thread (see Fig. 1) may be treated as a pendulum of
variable length (r(#) + Re(t)). Numerical solutions of the equations of motion (see Figs. 2, 3, 4, where R = 0.05
m) show that the condition |R¢(7)| < r(¢) is fulfilled in all the considered cases. Therefore, one can assume that a
change of the pendulum length R¢(¢) being a result of the thread winding on the pulley during oscillation doesn’t
influence on the system motion essentially and may be neglected. From the other side, replacing the pulley of finite
radius by two separated small pulleys (see Fig. 5), one can obtain the Atwood machine, where the pendulum length
changes only due to rotation of the pulleys. Equations of motion of such machine are obtained from Egs. (2.2), (2.3)
by substitution R — 0 and are given by

ki = —g(u — cos @) + r¢?, (4.1)
.. g . e
O =—=sing —2-¢. “4.2)
r r
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Note that numerical solutions of these equations differ only slightly from the solutions shown in Figs. 2, 3 and 4
while qualitative behaviour of the system remains the same. It means that oscillation of the body m1 is a main factor
determining dynamical behaviour of the system. And to clarify a role of oscillation it makes sense to investigate
the simplified system (4.1), (4.2) first.

To explain a possibility for the body of smaller mass m; to move down and to pull the body of larger mass m,
let us consider an equation of motion of a mathematical pendulum of length r, it is well-known and reads as (see,
for example, [10])

¢ =—2sing. 4.3)
,
Integrating this equation gives

., 2g
@° = —(cos ¢ — cos ¢p), “4.4)
,

where ¢ is an amplitude of oscillation.
Using Newton’s second law, one can easily obtain an expression for the thread tension

Fien = my (g cos ¢ + rqbz) . 4.5)

Comparing Egs. (4.1) and (4.5) shows that in fact the bodies acceleration 7 is determined by a difference of the
gravity force myg and the thread tension F;,, given by (4.5). Parameter « takes into account moments of inertia of
the pulleys and decreases the acceleration 7 but it doesn’t influence on its sign. In absence of oscillation (¢ = 0) the
tension F}., reduces to the gravity force mg and, therefore, the acceleration 7 should be negative in case of u > 1
or my > m1. During oscillation the first term m g cos ¢ in the right-hand side of (4.5) becomes even smaller than
the gravity force m1g but the centrifugal force mr¢?> arises and due to this the thread tension may become even
greater than the gravity force mg.
Indeed, taking into account (4.4), we can rewrite Eq. (4.5) in the form

Fien = m1g (3¢0s ¢ — 208 ¢p) . (4.6)
It means that the tension is an oscillating function of the angle ¢ and its values belong to the interval

-2 90
migcos gy < Frop <mig (1 + 4 sin ?) .

Therefore, its average value may exceed the gravity force m g even for small amplitude ¢g.
Actually, in case of g9 < 1 when sin ¢ = ¢ Eq. (4.3) describes harmonic oscillation of the pendulum. Expanding
the cosine function in power series in terms of ¢ up to the second order, we can rewrite Eq. (4.6) in the form

3
Fren = mig (1 - 5902 +(P(%> .

Then averaging the tension Fj,, over the period of oscillation T = 27 /r/g gives

1 [T m %0 3 d 2
Fien = 7/0 Fiondt = 28 <1 — 07+ <p§) = (1 + ‘0—‘)) : “.7)

= mlg
_ 2 4
T e N
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Fig. 6 Approximate solution (dashed blue curves) and numerical solution of the equations of motion (4.1), (4.2) (solid red curves) in
case of u = 1, k = 2.5 (colour figure online)

where Eq. (4.4) has been taken into account. Thus, the averaged tension Fy.!, is greater than the gravity force mg
even for small amplitude of oscillation and it increases as the amplitude grows up. For larger amplitude ¢( the
calculation of F}} becomes more complicated but a final result £} > mg remains valid.

Now it is quite evident that in case of equal masses of the bodies (i = 1) the oscillating body should move down
and pull up the second body. Actually, for small amplitude of oscillation the sine function in (4.2) may be replaced
by the corresponding linear term: sin ¢ & ¢. Besides, it follows from Fig. 2 that the ratio 7 /r remains small during
the system motion and so the second term in the right-hand side of Eq. (4.2) may be neglected. As a result this

equation reduces in zero approximation to the equation of harmonic oscillation and its solution can be written as

o(t) = gbo\/E sin (\/E,) , 4.8)
ro ro

where ¢q is an initial angular velocity of the body m, while its initial coordinates are ¢(0) = 0, r(0) = rp.
Comparing the approximate solution (4.8) with the corresponding numerical solution of the system (4.1)—(4.2)
shows (see Fig. 6) that during the first two periods of oscillations both solutions are very close to each other.

Replacing the cosine function in (4.1) by its power series expansion in terms of ¢ up to the second order and
substituting expression (4.8), we can rewrite Eq. (4.1) in the form

1 ) 3 )
F= _g(,u ) + 10% + "0% cos |2 /ﬁt , 4.9)
K 4k 4k ro

where again the function r (¢) in the right-hand side of (4.1) was replaced by its initial value ry. Differential equation
(4.9) can be easily solved and the corresponding solution is given by

1 2\ 2 37252
r) = ro (8B =D v ) 7 Sae (o (8, (4.10)
K 4k 2 16gk ro

where initial conditions 7(0) = 0, r(0) = ro have been taken into account. Visualization of this solution in case of
equal masses of the bodies (u = 1) shows (see Fig. 6) that it describes correctly the first stage of the system motion.
However, due to increase of the velocity 7(¢) with time the second term 27¢/r in the right-hand side of Eq. (4.2)
becomes essential and its action may be treated as damping. As a result the amplitude of oscillation decreases (red
curve in the right-hand side of Fig. 6). Besides, an increase of the pendulum length r results in increase of the
period of oscillation. Thus, one has to take into account the higher order terms in the power series expansion of the
sine and cosine functions in Eqs. (4.1), (4.2) to obtain more accurate symbolic solution of the equations of motion.
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Fig. 7 Harmonic oscillations of the body m near equilibrium, u = 1.01, k = 2.5
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Fig. 8 Motion of the Atwood machine in case of ¢y > /4(u — 1), u = 1.02,k = 2.5

Nevertheless, solutions (4.8), (4.10) give correct description of the first stage of the system motion in case of equal
masses of the bodies.

Note that increasing the mass m; of the second body (or parameter (), one can reach a state of equilibrium when
the averaged tension balances the gravity force m5g and the coefficient of £% in Eq. (4.10) becomes equal to zero. The
corresponding value of parameter  and the amplitude ¢( are connected by the relationship ¢y = /4(u — 1). Of
course, it should be a state of dynamical equilibrium because both functions ¢(¢) and r(¢) determined by Eqs. (4.8)
and (4.10), respectively, oscillate near equilibriums. It should be emphasized that comparing these functions (blue
dashed curves in Fig. 7) with the corresponding numerical solutions of Egs. (4.1), (4.2) (solid red curves in Fig. 7)
demonstrates their coincidence. As the amplitude of the function r(¢) is very small in comparison to the equilibrium
length rg the period of oscillation of the function ¢(#) doesn’t change noticeably and is equal to the period of
mathematical pendulum of the length ry, namely, T = 27 4/ro/g (see Eq. (4.8)). Obviously, period of the function
r(¢) oscillation is two times less (see Eq. (4.10)).

If initial angular velocity ¢ is small enough and the corresponding amplitude ¢y < +/4( — 1) then the gravity
force myg is greater than the averaged tension F;! and the oscillating body m will start to move up and the length
of the pendulum r will decrease. As the derivative 7 is negative in this case the term 27¢/r in the right-hand side of
Eq. (4.2) will increase the amplitude of oscillation. When the amplitude becomes quite large the averaged tension
exceeds the gravity force m,g and the acceleration 7 changes its sign. As a result the bodies will stop and then start
to move in opposite direction and the system will demonstrate quasi-periodic motion (see Fig. 4).

In case of greater angular velocity ¢o when g9 > +/4(11 — 1) the averaged tension F/! is greater that the gravity
force m;g and the body m starts to move down first. Then the derivative 7 is positive and the term 2r¢/r in the
right-hand side of Eq. (4.2) acts like damping and decreases the amplitude of oscillation. When the amplitude will
become small enough the gravity force m»g exceeds the averaged tension. As a result the bodies will stop and then
start to move in opposite direction, and the system will demonstrate quasi-periodic motion again (see Fig. 8).
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5 Conclusion

In the present talk we have analyzed an influence of oscillation on the Atwood machine motion in the simplest case
when only one body is permitted to oscillate in a plane. We have shown that even such oscillation can completely
modify a motion of the system, while the simple Atwood machine demonstrates only the uniformly accelerated
motion of the bodies. Of course, a mass and size of the pulley and changing the length (r + R¢) between the body
m1 and pulley owing to winding the thread on the pulley affect on the system motion, as well. Doing necessary
calculation, we have shown that these factors only change an inertness of the system and modify oscillation of the
body m but cannot change qualitatively the system behaviour.

It should be noted that there are many physical problems which seem to be quite simple although the corresponding
mathematical models are rather complicated to be solved and analyzed by hand. But application of the modern
computer algebra systems such as Wolfram Mathematica, for example, helps a lot in analyzing such problems and
promotes development of physical intuition and better understanding of the subject.
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