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Abstract Weconsider the problem of on-line exact stringmatching of a pattern in a set of highly similar sequences.
This can be useful in caseswhere indexing the sequences is not feasible.We present a preliminary study by restricting
the problem for a specific case where we adapt the classical Morris-Pratt and Knuth-Morris-Pratt algorithms to
consider borders with errors. We give an original algorithm for computing borders at Hamming distance 1. We
exhibit experimental results showing that our algorithms are much faster than searching for the pattern in each
sequences with a very fast on-line exact string matching algorithm.
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1 Introduction

High-throughput sequencing or Next Generation Sequencing (NGS) technologies allow to produce a great amount
of DNA sequences with a high rate of similarity. For instance, the 1000 genomes project1 aimed at sequencing a
large amount of individual whole human genomes. This generates massive amounts of sequences (3 billion letters A,
C, G, T) which are identical more than 99% to the reference human genome. The generated data form a collection of
sequences where each differs from another by a few number of differences such as substitutions or single nucleotide
variants (SNVs), indels, copy number variations (CNVs) or translocations to name a few.

1 http://www.1000genomes.org.
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With the large mass of available data, storing, indexing and support for fast pattern matching have become
important research topics.

Pattern matching can be carried out in two ways: off-line by using an index or on-line when indexing is not
possible. Although the first kind of solutions seems to be more suitable, the index issue might not seem significant
in some cases even if it is compressed. The main problem we can face is to have insufficient storage space to build
the index. Thus one may have to scan the whole sequence rather than index it.

In this paper, we focus on offering a preliminary study that allows to find the exact occurrences of a given pattern
in a set of highly similar sequences. We propose two solutions that follows a tight analysis of the Morris-Pratt [16]
andKnuth-Morris-Pratt [6] algorithms.We point out occurrences of the pattern by performing a left to right traversal
over the reference sequence and at the same time we take into account variations contained in other sequences. Our
approach makes a simplistic assumption that sequences include variations only of type substitutions and that there
exists at most only one variation in a window of length m where m is the length of the pattern.

The rest of the paper is organized as follows. Section 2 presents related works. We set up notations and formalize
the problem in Sect. 3. We give an extension of the Morris-Pratt algorithm in Sect. 4. An extension of the Knuth-
Morris-Pratt algorithm is given in Sect. 5 while experimental results are exhibited in Sect. 6. Finally we give our
conclusions in Sect. 7.

2 Related Works

Storing genetic sequences of many individual of the same species is a major challenge in biological research. Basic
structures usually store redundant information which lead to a memory requirement proportional to the total length
of input data. Recently, several works focusing on indexing similar sequences were implemented to allow building
data structures taking advantage from high similarity between the considered data. These works aim to reduce the
memory requirement from the length of all input sequences to the length of a single sequence (reference sequence)
plus the number of variations.

Huang et al. [12] propose a solution which assumes that the input set of DNA sequences can be divided into
common segments and non-common segments. Their solution assumes that every sequence differs on m′ positions
from the reference and the designed data structure requires O(n log σ + m′ logm′) bits where n is the length of
the reference sequence and σ is the size of the alphabet. Though this data structure greatly reduces the memory
usage and allows fast pattern matching, the adopted model is restricted to a specific type of similar sequences. In
[2] a solution based on the use of word level operations on bit vectors is presented. In a similar way as in [12],
the general scheme of this technique stores the entire of a reference sequence with only differences between the
remaining sequences. The authors build a suffix array together with anAho-Corasick automaton [1] to store identical
segments and the non-common segments are converted into a binary word using 2 bits per base. Due to the use of
the Aho-Corasick the memory usage depends on a log n factor. In [7] a compressed index is proposed based on the
Lempel-Ziv compression scheme [15]. Both [4,13] propose two level indexes for highly repetitive sequences. In
[4] the authors implement an index based on suffix tree and traditional q-grams. The concept of the suffix tree of
alignment was proposed by [17]. It satisfies the same properties as the classical generalized suffix tree by adding
a new one: common suffixes of two sequences are stored in an identical leaf. This result has been extended to the
suffix array of an alignment [18].

All these results are concerned with off-line string matching. To the best of our knowledge there exists only
one recent solution for on-line string matching in a set of highly similar sequences, called journaled stirng tree
(JST) provided by Rahn et al. [21]. In brief, the approach: (1) extends on-line algorithms based on sequential
scans of sequences while exploiting the high similarity: all sequences are simultaneously scanned from left to right
instead of iterating them sequentially, (2) succinct representation that gives a referentially compressed version of
sequences so-called journaled strings: each reference position at which at least one sequence has a variation is
stored and a bitvector is used to denote which sequences contain the variation. The provided datatype JST can
be traversed similarly to a simple for-loop over all sequences. The search algorithm requires, as well as classical
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on-line algorithms, information about the length of a fixed-size window of last seen characters called context, i.e
when scanning a sequence its current state depends on the context. During the traversal the method constructs the
required sequence contexts using the bitvectors and respective journaled strings and presents them to the algorithm.
The algorithm can, in addition, signal after processing whether it needs the information for which sequences the
presented sequence context is valid, i.e. when a string matching algorithm found a match. The results showed a
better performance and memory consumptions compared with the sequential processing of the same number of
sequences.

3 Preliminaries

In what follows, we consider a finite alphabet � = {A,C,T,G} for DNA sequences. A string or a sequence is a
succession of zero or more symbols of the alphabet. The empty string is denoted by ε. The set of all non empty
strings over � is denoted by �+. All strings over the alphabet � are element of �∗ = �+ ∪ {ε}. The string w of
length m is represented by w[0 . .m − 1] where w[i] ∈ � and 0 ≤ i ≤ m − 1. The length of w is denoted by |w|.

A string x is a factor (substring) of y if there exist u and v such y = uxv, where u, v, x, y ∈ �∗. Let
0 ≤ j ≤ |y| − |x | + 1 be the starting position of x in y, thus x = y[ j . . j + |x | − 1]. A factor x is a prefix of y if
y = xv, v ∈ �∗. Similarly a factor x is a suffix of y if y = ux , for u ∈ �∗. A factor u is a border of x , if it is both
a prefix and a suffix of x , then there exist v,w ∈ �∗ such x = vu = uw. The reverse of the string x is denoted by
x∼. The longest common prefix between two strings u and v is denoted by lcp(u, v). The array pref 0x is the array
of prefixes of the pattern x such that pref 0x [i] stores the length of the longest prefix of x starting at position i , for
0 ≤ i ≤ m − 1: pref 0x [i] = |lcp(x, x[i . .m − 1])|.

The Hamming distance between two strings u and v of the same length, denoted by Ham(u, v), is the number
of positions where u and v have distinct symbols. Formally

Ham(u, v) = card{k | 0 ≤ k < |u| = |v| and u[k] �= v[k]}.

The exact pattern matching problem consists in finding all the occurrences of a pattern x of length m in a string
y of length n: that is, all possible 0 ≤ j ≤ n − m + 1 such that y[i + j] = x[i] holds for all 0 ≤ i ≤ m − 1.
This problem can be extended in a very interesting way by considering a set of sequences and find whether a given
pattern occurs distributed horizontally where different parts of the pattern can be located in consecutive positions of
different texts. More formally, given a set of sequences Y = {y0, . . . , yr−1} of equal length n, point out all positions
0 ≤ j ≤ n − m + 1, such that for 0 ≤ i ≤ m − 1 we have x[i] = yg[ j + i] for some g ∈ [0; r − 1]. This latter
problem is known as distributed pattern matching [14].

The problem we focus on in this paper is formally defined as follows. Let y0, y1, . . . , yr−1 be r highly similar
sequences with the same length n defined over the alphabet �. Let y0 be the reference sequence of length n. The
sequences y1, y2, . . . , yr−1 are represented by variations over y0. Thus, we consider the set Z = {(g, j, c)}, such that
c = yg[ j] �= y0[ j] for all 0 ≤ j ≤ n−1 where 1 ≤ g ≤ r−1 and c ∈ �. Furthermore, for (g, j, c), (g′, j ′, c′) ∈ Z
we have either that j = j ′ and g �= g′ or that | j− j ′| > M for some integer M . We wish to find all occurrences of an
arbitrary pattern x of length m ≤ M in yg where 0 ≤ g ≤ r − 1. This problem can be viewed as an hybrid between
distributed pattern matching and approximate string matching with k mismatches [3]. This is closely related to the
CRAM format reported in [11].

4 Extension of the Morris-Pratt

We offer an algorithm to solve the problem described above in the same fashion as the Morris-Pratt (MP) algo-
rithm [16] using a sliding windowmechanism to scan the sequences. Hence we need to preprocess the query pattern
before the searching phase. We adopt the same strategy of forward prefix scan presented by MP by extending the
problem to the search in highly similar data. For that we need to consider borders at Hamming distance 0 (as in
MP) and borders at Hamming distance 1.
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Given the pattern x of length m, we consider three cases when a prefix x[0 . . i] for 0 ≤ i ≤ m − 1, is recognized
when scanning the r sequences at position j :

Case 1 x[0 . . i] = y0[ j . . j + i] and �(g, k, c) ∈ Z such that j ≤ k ≤ j + i . This means that x[0 . . i] matches on
y0 and there is no variation in all the other sequences in the current window then x[0 . . i] matches equally
in all sequences.

Case 2 x[0 . . i] = y0[ j . . j + i] and ∃(g, k, c) ∈ Z such that j ≤ k ≤ j + i . This means that x[0 . . i] matches all
sequences except yg .

Case 3 x[0 . . i] = yg[ j . . j + i] and ∃(g, k, c) ∈ Z such that j ≤ k ≤ j + i . Then x[0 . . i] matches only
sequence(s) yg .

Borders at Hamming distance 0 are computed as in the MP algorithm and stored in an array called mpNext. For
borders at Hamming distance 1wewill use an array called B: for each 0 ≤ i ≤ m−1, B[i] contains the suffix starting
positions of borders of x[0 . . i]with one substitution.More formally B[i] = {i ′ | Ham(x[0 . . i−i ′], x[i ′ . . i]) = 1}.

4.1 Searching Phase

The searching phase consists in scanning the sequences from beginning to the end. A general situation is the
following: a prefix x[0 . . i] of the pattern matches at least one sequence of Z at right position j . Then position
i + j + 1 is scanned and a decision has to be made in accordance with the three cases (Fig. 1).

Case 1 If x[i + 1] = y0[ j + 1] then if there is no variation at position j + i + 1 in the other sequences we remain
in Case 1 otherwise we move to Case 2. If x[i + 1] �= y0[ j + 1] then if there is no variation in the other
sequences at position j +1 then a shift is performed as in the MP algorithm otherwise if the variant symbol

Fig. 1 Algorithm searching for a query pattern x in a set Z = {y0, . . . , yr−1}
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j i+ j + 1

y0 u b

x u a

x v c Case 1

y1 u b

Fig. 2 Shift in Case 1

j i+ j + 1

y0 u ba

x u aa

x b c Case 3

x a c Case 2

x v c Case 1

y1 bb

Fig. 3 Shift in Case 2

c is equal to x[i + 1] we move to Case 3 otherwise a shift has to be performed using mpNext and B (see
Fig. 2).

Case 2 If x[i + 1] = y0[ j + 1] then we remain in Case 2. If x[i + 1] �= y0[ j + 1] then a shift has to be performed
using B (see Fig. 3).

Case 3 If x[i + 1] = y0[ j + 1] then we remain in Case 3. If x[i + 1] �= y0[ j + 1] then a shift has to be performed
using B (see Fig. 4).

When a shift is performed using B, the case can change according to the length of the shift and the position of the
variation.

The algorithm Search given in Fig. 1 describes formally the searching phase and the transition from one case
to another. At the beginning the case is set to 1. When comparing x[i] with the facing character y0[ j], we check if
there exists (g, j, cp) ∈ Z where cp = yg[ j]. If this is true line 9 keeps the position of the variation in x in a variable
i p, then lines 10–12 update the case to 2 if cp �= x[i] or to 3 otherwise. The loop in lines 5–6 performs a shift by
mpNext[i] either if x[i] does not correspond to the current character in y0 or to the current variation cp or if the shift
by mpNext returns −1. If there is no variation in Z that contains the current position in y0 and y0[ j] �= x[i], then
we shift by mpNext[i] in lines 15–16. Once the value of the case is updated in lines 19–21 or if an occurrence of x
is reported in lines 24–26 we compute a new valid shift according to the values of i p, jp, cp (verify the condition
of Proposition 2 and the situation in Fig. 8 below, thus to verify if a new border can be computed). Note that we
consider the minimal position that satisfies the condition of Proposition 2, in order to perform a safe shift and to
avoid missing any occurrence of x .

Theorem 1 The algorithm Search runs in O(n) time.

Proof Assuming that elements of Z are stored in increasing order of the second components which are the positions
on the sequences and assuming that each shift is performed in constant time, the complexity of the algorithm Search
is dominated by the loops in lines 5, 15 and 19 that perform the symbol comparisons. Along the same line as for the
MP algorithm, when a symbol at position 0 ≤ j ≤ n of the sequences is processed it is either a match or a mismatch.
When it is a match it is never processed again. There can thus be at most n matches. When it is a mismatch a shift
is performed. There can be at most n shifts and thus at most n mismatches. Altogether this gives a linear bound on
the number of comparisons.
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j i+ j + 1

y0 u ba

x u ab

x b c Case 3

x a c Case 2

x v c Case 1

y1 u bb

Fig. 4 Shift in Case 3

4.2 Preprocessing Phase

The preprocessing phase consists in computing the arrays used for computing the shifts at the end of each attempt
during the searching phase. These computations only depend on the pattern x and can thus be performed prior to
the searching phase. These arrays store positions of borders for each prefix of the pattern. Borders at Hamming
distance 0 are computed as in the MP algorithm and stored in an array called mpNext. For computing borders at
Hamming distance 1 that are stored in the array B, we use the array pref 0x and the following pref ∼

x array.
The array pref ∼

x stores, for each position i , the length of the longest common prefix starting at position i when
reading the pattern from right to left at each position i ′ < i where

lcp(x[0 . . i]∼, x[0 . . i ′]∼) �= 0.

It is defined for all 0 ≤ i ≤ m − 1 and i ′ < i by

pref ∼
x [i] = {(i ′, �) | i ′ < i, x[i] = x[i ′] and 0 < � = |lcp(x[0 . . i]∼, x[0 . . i ′]∼|)}.

Then pref ∼
x [i + 1] can be easily computed from pref ∼

x [i] as follows (see Fig. 7):

pref ∼
x [i + 1] = {(i ′, � + 1) | x[i ′] = x[i + 1] and ∃(i ′ − 1) ∈ pref ∼

x [i]} ∪ {(i ′, 1) | �(i ′ − 1) ∈ pref ∼
x [i]}.

From the definition above one can notice that pref ∼
x is computed based on occurrences of letters. Along with

this need we use arrays where we store positions of occurrences of letters:

• last[c] stores the rightest occurrence of c in x , ∀c ∈ �;
• prev[k] stores the position of the previous occurrence of the letter x[k] on the left.

An example of arrays prev and last is given in Fig. 6. The algorithm ComputePrev given Fig. 5 computes array
last and prev.

Recall that 0 ≤ i ≤ m, B[i] contains the suffix starting positions of borders of x[0 . . i] with one substitution.
The next proposition shows how to compute the array B using arrays pref 0x and pref ∼

x (Fig. 7).
Proposition 2 For 1 ≤ i ≤ m − 1, if ∃(i − i ′, �) ∈ pref ∼

x [i] and i − i ′ = pref 0x [i ′] + � and i − i ′ < i ′ + pref 0x [i ′]
then x[0 . . i − i ′] is a border of x[0 . . i ′ + pref 0x [i ′] − 1]x[pref 0x [i ′]]x[i ′ + pref 0x [i ′] + 1 . . i].
Proof Since i − i ′ < i ′ + pref 0x [i ′] then x[0 . . i − i ′] is a prefix of x[0 . . i ′ + pref 0x [i ′] − 1] and thus of x[0 . . i ′ +
pref 0x [i ′] − 1]x[pref 0x [i ′]]x[i ′ + pref 0x [i ′] + 1 . . i]. By definition of pref 0x [i ′] we have x[i ′ . . i ′ + pref 0x [i ′] − 1] =
x[0 . . pref 0x [i ′]−1] and by definition of pref ∼

x [i] and by the fact that � = i− i ′ −pref 0x [i ′]we have x[i ′ +pref 0x [i ′]+
1 . . i] = x[pref 0x [i ′]+1 . . i−i ′]. Thus x[0 . . i−i ′] is a suffix of x[0 . . i ′+pref 0x [i ′]−1]x[pref 0x [i ′]]x[i ′+pref 0x [i ′]+
1 . . i]. Thus x[0 . . i − i ′] is a border of x[0 . . i ′ + pref 0x [i ′] − 1]x[pref 0x [i ′]]x[i ′ + pref 0x [i ′] + 1 . . i].
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Fig. 5 Algorithm computing arrays last and prev

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x[k] A T A A T A G A C A A T A C
prev[k] −1 −1 0 2 1 3 −1 5 −1 7 9 4 10 8

c A C G T
last[c] 12 13 6 11

Fig. 6 Arrays last and prev for x = ATAATAGACAATAC and � = {A,C,G,T}

ii0i1

1 0

c a

0 + 1

a

i+ 1

Fig. 7 Relation for computing pref ∼
x [i +1] from pref ∼

x [i]: (i0, �0), (i1, �1) ∈ pref ∼
x [i] | x[i0 +1] = x[i +1] and x[i1 +1] �= x[i +1],

then (i0 + 1, �0 + 1) ∈ pref ∼
x [i + 1]

0 i ii − i

v v
pref 0x [i ]

× u

w

× u

w

i− i + 1

Fig. 8 Situation of Proposition 2: v is the longest border at Hamming distance 0 of x[0 . . i] and w is a longer border at Hamming
distance 1

Figure 8 illustrates the situation of Proposition 2 and an example is shown in Fig. 9.
Then B[i] = {i ′ | ∃(i − i ′, �) ∈ pref ∼

x [i] and i − i ′ = pref 0x [i ′]+�}∪ {i | pref 0x [i] = 0}. An example is depicted
in Fig. 10.

Array B is computed by the algorithm ComputeB given in Fig. 11. Since elements of the array pref ∼
x can be

computed incrementally (pref ∼
x [i] can be computed only with pref ∼

x [i −1] and since B[i] depends on pref ∼
x [i] and

not on pref ∼
x [ j], for j < i with 1 ≤ i ≤ m − 1, elements of pref ∼

x are not stored only pref ∼
x [i − 1] and pref ∼

x [i]
are stored in variables P1 and P2 respectively. P1 and P2 are lists of pairs: p.pos gives the first element of a pair
p, p.length gives the second element of a pair p, first(P) returns the first element of the list P , next(P) removes
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x = A

0

T

1

A

2

A

3

T

4

A

5

G

6

A

7

C

8

A

9

A

10

T

11

A

12

C

13

v v

× ×

w w

Fig. 9 Example illustrating the result of Proposition 2: ATA is the longest border at Hamming distance 0 of ATAATAGACAATA and
ATAATA is a longer border at Hamming distance 1

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x[i] A T A A T A G A C A A T A C

pref 0x [i] 13 0 1 3 0 1 0 1 0 1 3 0 1 0

pref ∼
x [i] L2 L3 L4 L5 ∅ L7 ∅ L9 L10 L11 L12 L13

B[i] ∅ {1} ∅ ∅ {4} ∅ {6} {5} {8} {7} {7} {7, 11} {7} {13}

where
L2 = {(0, 1)}, L3 = {(2, 1)(0, 1)}, L4 = {(1, 2)}, L5 = {(3, 1), (2, 3), (0, 1)},

L7 = {(5, 1)(3, 1), (2, 1), (0, 1)}, L9 = {(7, 1), (5, 1)(3, 1), (2, 1), (0, 1)},
L10 = {(9, 1), (7, 1), (5, 1)(3, 2), (2, 1), (0, 1)}, L11 = {(4, 3), (1, 2)},
L12 = {(10, 1), (9, 1), (7, 1), (5, 4)(3, 1), (2, 3), (0, 1)}, L13 = {(8, 2)}.

Fig. 10 Arrays pref 0x , pref
∼
x and B for x = ATAATAGACAATAC

the next element of a list P and P.append(p) adds the pair p at the end of the list P . Lines 6–14 and 23 compute
elements of the array pref ∼

x [i] according to the relation described in Fig. 7. Lines 15-16 check if the condition of
Proposition 2 is verified for the position i . If it is then the corresponding position is added to B[i]. In the case where
pref 0x [i] = 0, i is added to B[i], since it is trivial that if we substitute x[i] to x[0] we obtain a new border of the
prefix x[0 . . i] at Hamming distance 1 of length 1 > pref 0x [i] = 0.
Proposition 3 The algorithm ComputeB computes the array B in O(m2) time.

Proof The loops in lines 6–22 scans all the elements in the array pref ∼
x . Since the total number of elements in the

array pref ∼
x is O(m2) the time complexity of the algorithm ComputeB is also O(m2).

The algorithm Shift can now be presented in Fig. 12. It operates in constant time.

5 Extension of Knuth-Morris-Pratt Algorithm

In the classical exact string matching problem when searching for all the occurrences of a single pattern x of
length m in a single sequence y of length n, in the case of a mismatch between pattern symbol x[i] and sequence
symbol y[i + j] when scanning the window from left to right, the Knuth-Morris-Pratt (KMP) algorithm performs
a shift according to the longest border of x[0 . . i − 1] followed by a symbol different from x[i]. For that it uses a
precomputed array kmp0x defined as follows:

kmp0x [i] = max{ j | x[0 . . j − 1] is a border of x[0 . . i − 1] and x[ j] �= x[i]} ∪ {−1}

(see Fig. 13).
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Fig. 11 Algorithm computing array B

Fig. 12 Algorithm computing a shift at the end of each attempt
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j i

x u b u a

Fig. 13 kmp0x [i] = max{ j | x[0 . . j − 1] is a border of x[0 . . i − 1] and x[ j] �= x[i]} ∪ {−1}

i

x u a

x u b

pref 0x [i]

Fig. 14 kmp0x [i + pref 0x [i]] ≥ pref 0x [i]

k j i

x d b c a

Fig. 15 kmp1x [i] = {(k, j) | x[0 . . j − 1] is a border at Hamming distance 1 of x[0 . . i − 1], x[k] �= x[i − j + k] and x[ j] �= x[i]}

i

x c a

x d b

pref 0x [i]

Fig. 16 (pref 0x [i], pref 0x [i] + 1 + �) ∈ kmp1x [i + pref 0x [i] + 1 + �] where � = |lcp(x[pref 0x [i] + 1], x[i + pref 0x [i] + 1])|

The values of the array can be easily computed with the help of the array pref 0x using the following relation:

kmp0x [i + pref 0x [i]] ≥ pref 0x [i]

(see Fig. 14).
For searching a pattern in a set of highly similar sequences we need to consider borders at Hamming distance

0 as in the KMP algorithm and borders at Hamming distance 1. For that we use an array called kmp1x defined as
follows:

kmp1x [i] = {(k, j) | x[0 . . j − 1] is a border at Hamming distance 1 of x[0 . . i − 1],
x[k] �= x[i − j + k] and x[ j] �= x[i]}

(see Fig. 15).
The values of this array can be computed using the following relation:

(pref 0x [i], pref 0x [i] + 1 + �) ∈ kmp1x [i + pref 0x [i] + 1 + �]

where � = |lcp(x[pref 0x [i] + 1], x[i + pref 0x [i] + 1])|.
According to the relation defined above and Fig. 16, we need to answer to Longest Common Prefix (LCP) queries.

These queries can be answered in constant time using:

• either a suffix tree of x and Lowest Common Ancestor queries;
• or a suffix array of x and Range Minimun Queries.

For our purpose, instead of building a costly data structure, we choose to extend the algorithm Prefixes(x,m)
of [5] to the case of prefixes at Hamming distance 1. We will built an array pref 1x that stores the length of the
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Fig. 17 Computation of pref 1x and pref 0x

longest common prefix at Hamming distance 1 starting at each position of the pattern x . The array pref 1x is defined
as follows, for each 0 < i ≤ m − 1:

pref 1x [i] = max{� | Ham(x[0 . . � − 1], x[i . . i + � − 1]) = 1}

or equivalently,

pref 1x [i] = pref 0x [i] + 1 + |lcp(x[pref 0x [i] + 1], x[i + pref 0x [i] + 1])|.

The reader is referred to [5] for details on Prefixes(x,m) algorithm for computing pref 0x . The algorithm Pre-
fixesBis(x,m) in Fig. 17 is an adaptation of Prefixes(x,m) that computes both the arrays pref 0x and pref 1x .

Then kmp1x can be computed using arrays pref 0x and pref 1x with the help of the following lemma.
Lemma 4 (pref 0x [i], pref 1x [i]) ∈ kmp1x [i + pref 1x [i]] for 1 ≤ i ≤ m.

Proof or 1 ≤ i ≤ m, by definition of pref 0x we have x[pref 0x [i]] �= x[i + pref 0x [i]] and by definition of
pref 1x [i] we have Ham(x[0 . . pref 1x [i] − 1], x[i . . i + pref 1x [i] − 1]) = 1 and x[pref 1x [i]] �= x[i + pref 1x [i]] thus
(pref 0x [i], pref 1x [i]) ∈ kmp1x [i + pref 1x [i]].
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Fig. 18 Computation of kmp1x using pref 1x

The algorithm PreKmpBis(x,m, pref 0x , pref 1x ) in Fig. 18 computes the arrays kmp1x .

Proposition 5 The algorithm PreKmpBis(x,m, pref 0x , pref 1x ) computes the array kmp
1
x in time and space O(m)

for a given string x of length m and arrays pref 0x and pref 1x ,

Proof The correctness comes from Lemma 4. The time complexity comes from the fact that the two loops run
O(m) times and that all the other instructions run in constant time. The space complexity comes from the fact that
apart from x and the arrays pref 0x , pref

1
x and kmp1x the algorithm only needs variable i .

We have the following result.
Theorem 6 The algorithm Search using kmp1x instead of mpNext, pref 0x and B runs in O(n) time.

Proof The proof is similar to the one of Theorem 1.

6 Experiments

We compared our solution with the FJS algorithm [10] which is one of the most efficient exact string matching
algorithm in this setting (see [9]) and with a naive algorithm performing shifts of length 1.

We performed experiments on two kinds of data: pseudo-random data and real data. For the patterns, we randomly
selected them from the reference text with varying length from 8 to 128. For each pattern length, we repeated tests
100 times and computed the average searching time. Experiments were conducted on a machine with 12 GB RAM
and 4-core CPU with 2.27GHz.

One input sequence of length 150MB have been pseudo-randomly built with the WELL [19] generator on DNA
alphabet {A,C,G,T}. Then variations have been pseudo-randomly generated every 500 positions with WELL. In
practice, the set Z is implemented as an array with 3 lines (position of the variation, symbol of the variation and
the set of sequences involving the variation). This array is sorted in increasing order of the variation positions.

For real data we used as a reference sequence the human chromosome 7 from the build hg19 (Human Genome
version 19). It has around 152Mbp. For the variations, we used all the SNV (homozygous and heterozygous) from
the exomes of five patients suffering from autosomal dominant early-onset Alzheimer disease [20] discarding indels.

As mentioned above our algorithm takes into account the reference sequence with positions of variations. We
ran the FJS algorithm on each sequence successively. Our goal is to demonstrate that from a certain number of
sequences, it is more efficient to use our solution than a classical exact string matching solution. Results are shown
in Figs. 19 and 20 only for pseudo-random data when searching for a pattern of length 8 and for real data when
searching for a pattern of length 64. The results in the other tested cases are similar. These results show that the
behaviour of the algorithms is similar between pseudo-random data and real date and that our solutions are faster



On-line String Matching in Highly Similar DNA Sequences 125

1

1.5

2

2.5

3

3.5

4

4.5

2 2.5 3 3.5 4 4.5 5 5.5 6
T
im

e(
s)

NBseq

naive

+
+

+

+
+

+
FJS

×

×

×

×

×

×
Ext MP

Ext KMP

◦ ◦ ◦ ◦ ◦

◦

Fig. 19 Experimental results on pseudo-random data when searching for a pattern of length 8
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Fig. 20 Experimental results on real data when searching for a pattern of length 64

(in our settings) when considering more that 3 highly similar sequences. These results also show that the extension
of the KMP algorithm is faster than the extension of the MP algorithm.

7 Discussion and Conclusions

We presented two new algorithms for searching a single pattern in a set of similar sequences. The design of the
algorithm follows a tight analysis of the Morris-Pratt and Knuth-Morris-Pratt algorithms. Recall that we use a
suitable representation of data such that we take into account a reference sequence with only positions of variations
of the other sequences. The searching time complexity of our algorithms depends on the size of the reference text.
However, our solutions work with a particular model, since we are limited to a certain gap between consecutive
variations. Further research directions include to overcome this limitation. On a practical point of view it would
be interested to use variants of the Backward-Oracle-Matching algorithm [8] for greater efficiency. The next steps
include to take into account any kind of variation between the reference sequence and the other sequences, to be able
to perform approximate pattern matching and to consider performing such pattern matching in similar sequences
in a compressed form.
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