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Abstract We present a survey of the literature on indexing and retrieval of mathematical knowledge, with pointers
to 77 papers and tentative taxonomies of both retrieval problems and recurring techniques.

1 Introduction

Retrieval of mathematical knowledge is always presented as the low hanging fruit of Mathematical Knowledge
Management, and it has been addressed in several papers by people coming either from the formal methods or from
the information retrieval community. The problem being resistant to classical content search techniques [35], it is
usually addressed combining a small set of new ideas and techniques that are recurrent in the literature. Despite
the amount of work, however, there is not a single solution that is clearly winning on the others, nor convincing
unbiasedbenchmarks to compare solutions. Someauthors like [32] also suggest that the community shouldfirst better
understand the actual needs ofmathematicians fromanunbiased perspective to improve themathematical knowledge
management (MKM) technology as a whole. In this paper we collect a hopefully comprehensive bibliography, and
we roughly classify the papers according to novel taxonomies both for the problems and the techniques employed.
The only other surveys on the same topic are [22], which is a short version of this article [10], now outdated and
focused mostly on (European) research projects that contributed to the topic in the 6th Framework Programme,
[73], which covers less literature in much greater detail without attempting a classification [41], which is focused
on evaluation of mathematics retrieval, and [40], which is written in Slovak.

We begin our discussion in Sect. 2 with a purpose driven taxonomymade of three different retrieval problems that
deal with mathematical knowledge. Each problem is characterised by its own set of expectations and constraints,
and adapting a solution to another problem may be infeasible or may yield poor results. Then we classify the papers
according to an encoding based taxonomy (presentation vs content vs semantics), presented in Sect. 3, and to a
taxonomy of techniques employed, presented in Sect. 4. In Sect. 5 we point to the rich literature relative to the
problem of ranking, and in Sect. 6 we summarise the previous chapters presenting a reference architecture for a
mathematical document retrieval system.
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The important topic of evaluation of systems has been addressed systematically in the literature only recently,
and we present the current state in Sect. 7.

The conclusions (Sect. 10) are preceded by some notes on the availability of math retrieval systems (Sect. 8) and
some hopefully insightful statistics on the productivity of the research community on the topic, which are presented
in Sect. 9.

2 Purpose Driven Taxonomy of Retrieval Problems

The following taxonomy is a categorisation of retrieval problems according to the constraints and expectations of
the agent—a human or a program—that issues the query. We will use the taxonomy in the rest of the paper when
we will discuss the applicability of the techniques we will propose, keeping in mind that most techniques work best
only when applied to one kind of retrieval problem.

When in doubt on the classification of a problem, matching the input, output and constraints should take prece-
dence over matching the general description. For example, the problem of a user that needs to recall some complex
formula only remembering an imprecise fragment of it is more likely to be an example of Document Retrieval than
of Formula Retrieval, even if it could fit both classifications.

2.1 Problem 1: Document Retrieval

Objective A human is interested in recalling a set of mathematical documents (or fragments) that are related to
a particular mathematical topic. Typically it is not the case that only one document provides the correct answer;
on the contrary the user may be interested in a corpus of different documents that yield different, only partially
overlapping information. In [31] and other papers there are attempts at a classification of the information needs of
users. However, at the moment only the system described in [77] tries to use the classification to improve the user
experience.

Input Thehuman composes a query combining keywords (e.g. for topics [1]), free text andmathematical formulae.
Often themathematical formulae are intended as examples of expressions related to the topic of interest. For example,
a user interested in trigonometric identities can just enter one identity to retrieve them all. Or a formula showing
a particular property of a special function can be used to disambiguate the special function among the ones with
similar names.

The query can be composed using a very simple, Google-inspired, single line interface, or written using an
ad-hoc query language (see [6,7,72] for some proposals), or by filling in some form. The first solution is the one
preferred in the literature. In [31] a comparison of the behaviour of mathematicians vs other users highlighted that
the professional mathematician is more interested in the precision of the output than the effort put into the input.
Therefore mathematicians may use and appreciate more complex interfaces. On the contrary, other users are likely
to prefer a simple, modern search interface.

Formulae can be entered in some textual syntax (e.g. LATEX, MathML), maybe with the help of on-the-fly for-
mulae rendering [44], or using graphical editors [52], or they can be acquired from hand-written snippets [2].
Some interfaces combine these input methods [74]. The formula is likely to contain errors and ambiguities, for
example if it is encoded at the presentational level (e.g. in Presentation MathML or LATEX), if it is acquired
from hand-written text, or if the user only remembers it partially or in a wrong way. Errors and ambiguities
are not a critical problem because formulae are just used to retrieve documents that contain similar formulae
according to some similarity criterion. In [2] the authors address the problem of combining and ranking results
from different queries generated from ambiguous formulae due to errors in the recognition process. See also [73]
for a survey on the interaction between mathematical information retrieval and mathematical document recog-
nition. Some authors [28] suggest that the visual presentation of the formula may sometimes be important in
the definition of similarity, whereas in other situations it is the mathematical content of the formula that mat-
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ters. Logically equivalent formulae whose content encoding is highly different are better considered less simi-
lar.

Once the search engine returns the result, the user may be given the opportunity to enhance the query by further
filtering.

Output The output is a ranked list of matching documents or document fragments (e.g. a chapter of a book, or a
section of an article). When the query involves mathematical formulae, the ranking is determined by the similarity
relation. The user must be given the possibility to quickly determine whether the matched document is interesting or
not. Therefore the problem of how to present summaries of the selected documents in the result list is of fundamental
importance [42,44,51,65,67–69,71]. Even highlighting correctly the bits of the summary that matches the query
can make a significant difference in the user experience [42,44,67,68]. The list of results must be the starting
point for further investigations by the user. At least, all results must contain hyperlinks or other ways to retrieve
the original document the summary points to. A study of user requirements in [77] suggests that results should be
presented after clustering them according to their resource type (research paper, tutorial, slides, course, book, etc.).
For example, a student may immediately decide to skip research papers, and a researcher may skip websites and
tutorials.

ConstraintsA balance must be obtained between precision (the fraction of retrieved documents that are relevant)
and recall (the fraction of relevant documents that are retrieved). To maximise recall, precision is affected and many
out of topic documents (false positives) are retrieved, penalising performance. Too many results are overwhelming
and the user is likely to give attention only to the first ones in the list. Therefore, the search engine does not have to
rank and produce summaries of documents with low scores. The ranking function is ultimately the one responsible
for the perceived quality of the search engine.

Since the query is intended to be issued by a human, the performance of the search engine is not a critical
requirement and up to a few seconds (or evenminutes in some particular situations)may be acceptable. Nevertheless,
modern textual search engines like Google are extremely fast, and the user is likely to expect the queries to be solved
in less than a second.

2.2 Problem 2: Formula Retrieval

Objective A program—more rarely a human—is interested in retrieving all formulae that are in some relation R
with a query formula E . Sometimes the formula E can actually be a set of formulae. For example, E can be a goal
to be proved automatically, and T R E holds when T is the conclusion of the statement of a theorem that can be
instantiated to prove E . More precisely, T contains metavariables to be instantiated andR is one-sided unification
up to some equational theory. The dual query is also used in the literature: E is a property (a statement containing
metavariables), R is unification and the query finds all operations that satisfy the property E . By using several
properties at once, the query can find all models of a given theory (e.g. all semirings in the library) [55], also up
to renaming of constants and properties. An interesting application presented in [20] that uses techniques similar
to [55], consists in matching concepts across libraries by first computing properties of an object in one library (i.e.
patterns like commutativity of a binary operator) and then looking for objects in the other library that satisfy the
same properties. To bemore effective, properties are extracted from all libraries and concepts are matched according
to a similarity measure to identify objects that satisfy a similar set of properties. A third example is obtained by
choosing logical implication for R. The query looks for all formulae that imply E .

Input One or more formulae E that may or may not contain metavariables to be instantiated. Rarely, additional
constraints can be expressed using keywords, classifications, free text, authors, etc. Formulae are not supposed to
be ambiguous or contain errors. In [8] ambiguity is resolved before performing the query using type checking and
interaction with the user.

Some dedicated query languages are proposed to specify the structure of the formulae E [11–13,23,29,57].
They are implemented on top of relational databases or ad-hoc in-memory indexes.
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Output The query is meant to retrieve a set of formulae that satisfy a certain property. When the search is
performed by a program, there is no need to present summaries of the document the formula occurs in. Even when
a human issued the search, a hyperlink to the document may be sufficient.

In many situations the relation R can be extended to a ternary relation T Rρ E meaning that T is related to E
with score ρ, and the results can be ranked according to ρ. For example, ifR reduces a proof of E to a proof of T ,
then the T s may receive a higher score if they are judged easier to prove.

ConstraintsMaximisation of the recall is fundamental. The query should return all formulae that satisfy the query,
even if they rank very lowly. Because searches are often basic operations of complex algorithms (e.g. automatic
provers), speed is also critical. In several situations, the searches need to be performed in milliseconds.

To speed up the searches or when the relation R is undecidable, the search engine may use a second decidable
relationR′ such thatR ⊆ R′. UsingR′, the query can return false positives, i.e. formulae T such that T R′ E but
not T R E . For example, when E is a pattern andR is unification,R′ may ignore the structure of the two formulae
E and T and conclude E R′ T when all symbols in E are also in T . Example: f (xz, y + z) R f (?, ?+ ?) and
f (y + z, xz) R′ f (?, ?+ ?), but not f (y + z, xz) R f (?, ?+ ?).

2.3 Problem 3: Document Synthesis

Objective Composing a new mathematical document assembling fragments to be retrieved from a library. The
most common occurrence is in educational software where a learning object must be assembled according to the
expertise of the user, the topic of interest, etc. [14,37,38]. An unrelated example is the automatic generation of
summaries and statistics for a mathematical library [12]. A final example is mining of formalised libraries, for
example to build visual representations of the graph of dependencies over an axiom (to understand its implications)
or a definition/statement (to understand the propagation of changes).

A variant is to solve a mathematical problem by composing mathematical (Web) services [16]. Each service
exposes metadata about the problem solved, the algorithm implemented, and its preconditions and postconditions.

Input The query is not likely to involvemathematical formulae, and it is usually expressed using a query language
over ontologies. A high level interface may hide the underlying query language. Sometimes the query is fixed once
and for all, and needs to be run at regular periods.

Output The expected output depends on the particular use case and it is usually made of a single result in place
of a ranked list. The result may consist of a graph of objects and relations between them, or it may consist of the
minimal information to build the expected document or solve the algorithmic problem.

Constraints The constraints depend on the particular use case.

2.4 Digression

After an initial screening of the literature, we decided to analyse only papers about the first two problems, where
formulae play a central role. Indeed, at a first glance most solutions to Document Synthesis employ standard query
languages for ontologies, and only the ontologies themselves are math-specific (e.g. [16,37]). Logic programming
languages are also employed to representwhat the user knows/ignores and the inference rules to assemble documents
[14].

Moreover, we did not find in the literature convincing examples for the need of very expressive query languages
to solve the Document Retrieval and the Formula Retrieval problems, where the kinds of queries are essentially
fixed a priori. Moreover, evaluation of queries expressed in these languages are reported to be too slow to be used
for Formula Retrieval. Sometimes additional techniques are employed for Document Synthesis, like semantic query
reduction to relax the user provided query by allowing additional topics close to the one specified by the user [36].
These techniques too seem to be very general and applicable to domains very different from that of mathematics.

Despite the strong interest of the community in the use of formulae in queries, studies on the behaviour of users
[32,77] conclude that the added value may be low, and the finding is confirmed in [38] (now 10 years old) and [46]
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where the logs of theDLMF and ofActiveMath search engines are analysed concluding that only few queries contain
mathematical formulae, most are very simple ones, and such queries do not yield satisfactory results. It would be
interesting to analyse the logs of the MathWebSearch engine that is now integrated in Zentralblatt Mathematik and
the related traffic to see if the negative conclusions are still relevant.

3 Encoding Based Taxonomy

Mathematical information can be encoded in a library at three different levels. The most shallow one is presentation.
Presentation markup uses a finitary language to express the bi-dimensional layout of a formula, useful to present it
to the reader. The standard XML language for presentation is Presentation MathML, and several tools can generate
Presentation MathML from LATEX(e.g. LaTeXML,1 Tralics2), PDF files (e.g. Maxtract3), handwritten text (e.g.
InfTy Reader4), digitised documents (e.g. InfTy Reader) or content markup (e.g. via XSLT stylesheets). We can
therefore assume that the totality of the documents to be indexed are available in Presentation MathML. Zanibbi
and Orakwue [74] contains a small survey on presentation-based math retrieval.

The next level is content. At the content level, the structure of the formula is described, and symbols and
operators appearing in it are linked to their entry in an ontology, called content dictionary in OpenMath5 ter-
minology. The markup language is finitary, but the ontology is not since new mathematical entities can always
be defined. The relation between content and presentation is many-to-many: the same presentation markup may
represent different content expressions (ambiguity), and a content expression can be given different presentations
according to the conventions of the community of readers, the language of the reader, but also for purely aes-
thetic reasons like constraints on the size of the formula. OpenMath and Content MathML are the two standard
XML languages for formulae at the content level. OMDoc6 is an attempt at standardising at the content level
whole mathematical documents, comprising proofs. Content markup is currently mostly used for the exchange of
formulae between systems, in particular Computer Algebra Systems. There are no significant examples of large
libraries of documents natively written using content markup. Nevertheless, there are tools like SnuggleTeX7 based
on heuristics to semantically enrich (annotated) LATEX documents or even MathML Presentation documents to
content.

The last level is semantics and it is specific to libraries of formalised mathematical knowledge. The semantics
level refines the content level by picking for every content level object one particular definition in a given logic.
The chosen definition embeds the object with additional properties, e.g. computational properties. For example,
addition over natural numbers can be defined in the Calculus of Inductive Constructions as a non-computable
ternary predicate in logic programming style, or as a recursive function on the first argument—such that 0+ x and
x become logically indistinguishable—or as a recursive function on the second argument—so that 0+ x and x are
not indistinguishable, but only provably equal. Interactive theorem provers often provide an XML dump of their
internal semantics representation.

Formula Retrieval is expressed either on semantics markup or on content markup. Even when the semantic
markup is available, it may be convenient to convert the library to content level by identifying alternative definitions
of the same mathematical notion. In this way, it becomes possible to retrieve useful theorems on mathematically
equivalent definitions, in the hope to reuse them after conversion to the definitions in use. One application of this
technique is reuse of libraries across different systems based on the same logic.

1 http://dlmf.nist.gov/LaTeXML.
2 http://www-sop.inria.fr/marelle/tralics/.
3 https://www.cs.bham.ac.uk/research/groupings/reasoning/sdag/maxtract.php.
4 http://www.inftyproject.org/en/software.html.
5 http://www.openmath.org.
6 http://www.omdoc.org.
7 http://www2.ph.ed.ac.uk/snuggletex/.

http://dlmf.nist.gov/LaTeXML
http://www-sop.inria.fr/marelle/tralics/
https://www.cs.bham.ac.uk/research/groupings/reasoning/sdag/maxtract.php
http://www.inftyproject.org/en/software.html
http://www.openmath.org
http://www.omdoc.org
http://www2.ph.ed.ac.uk/snuggletex/
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The Document Retrieval problem is expressed independently from the encoding. However, the user is likely
to enter formulae in the query using a presentation language (mostly LATEX, even if MathML starts to be used
[42,44,51]). Some authors have provided evidence that precision is improved when exploiting parallel markup,
even when the content part is automatically generated from the presentation part [53]. See [48] for motivations
against content/parallel markup and in favour of a more lightweight encoding of content information in Presentation
MathML. Other authors claim that precision can be lost by embracing content because sometimes the actual layout
used in a presentation or the name used for variables are significant. González Pinto [21] in retrospect also describes
the choice of using ContentMathML as a bad decision. Other authors dismiss indexing of ContentMathML because
of the non-availability of libraries or because of conversion from presentation to content being approximative and
unreliable. Finally, [53] reports that automatic conversion of large formulae from Presentation to Content may be
computationally unfeasible, and propose to limit the conversion to small ones.

Recently, the debate on presentation only vs parallel markup seems to be solved in favour of the latter. For
example, the system that scored better at the NTCIR-118 task reports better scores when applied to content markup
generated from LATEX as compared to presentation only markup [58]. The authors second this observation already
in [43].

Moreover, several works in the literature that deal with presentation markup enrich it—in the document itself
or in the indexes—with additional annotations to make explicit additional semantics that is latent in the library
[15] or in the text surrounding the formulae [21,34]. For example, in [34] artificial intelligence is applied to the
whole document to recover from the text surrounding the formulae the name associated to the mathematical entities
in the formula (e.g. “posterior probability”, “derivative of f ”). González Pinto [21] uses a cheaper approach by
considering only one sentence around a formula, but it later observes that one sentence is often not sufficient and
many relevant results are therefore missed. Another example is an analysis of co-occurrence of symbols in the
corpus to identify related ones. It is shown that these techniques are important to augment recall or, sometimes,
precision. In our view, like the heuristic based presentation-to-content translation, these are attempts to infer and
store partial semantics of mathematical expressions. It may be questioned (see for example [48]) if the current
content markups (OpenMath and Content MathML) are the right instruments to augment presentation markup with
partial, approximate semantics, and if such additional semantics makes only sense in the indexes of search systems,
or it may be serialised to an XML format for being reused by third parties.

Systems based on Content MathML, parallel markup or semantics appear in [11–13,20,24,25,33,41–44,50–
52,54,55,57,60,66,75,76]. The remaining ones use Presentation MathML only.

4 Taxonomy of Techniques for Mathematical Retrieval

Implementations of solutions to mathematical search problems can be obtained combining one of the main tech-
niques that will be presented in Sect. 4.2 with a choice of modular enhancement techniques from Sect. 4.1 used to
improve precision, recall or both.

4.1 Modular Enhancement Techniques

The following techniques are general enough to be applied to solve both the Document and the Formula Retrieval
problems, and by analysing the literature it seems that every system eventually applies all of them.

Segmentation A preliminary step to indexing is segmentation of documents into chunks. Chunks are the unit
of information to be returned to the user, with pointers to the parent document. Segmentation is trivial on formal
mathematical documents, hard on web-pages, and intermediate on other resources like books or papers [77]. Several

8 http://research.nii.ac.jp/ntcir/index-en.html.

http://research.nii.ac.jp/ntcir/index-en.html
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systems implement segmentation; however, the NTCIR-11 competition has provided a data set of already segmented
documents [4] and that may hinder the study of segmentation techniques in the future.

Normalisation To improve recall, both formulae in the query and the formulae in the library are put in normal form
before indexing them. Having the same normal form is an equivalence relation ≡, and the query retrieves formulae
up to ≡. For Formula Retrieval it is necessary that ≡R≡ ⊆ R. For Document Retrieval the ≡ relation must be
compatible with the similarity and ranking functions. If this is not the case, precision can be critically lowered.

Uses of normalisation include: repairing of broken XML/MathML generated by automatic conversion tools
[49] (e.g. when the structure imposed by <mrows> is not compatible with the mathematical structure); removal
of information that does not contribute to the semantics like comments, layout elements (spaces, phantoms and
line breaks), XML/MathML attributes (colour, font, elements in other namespaces) [18,27,49]; picking canonical
representations of the same presentation/content when different MathML encodings are possible (e.g. msubsup
vs msup and msub, mfenced vs use of two parentheses, applications of trigonometric functions with/without
using parentheses, etc.) [5,18,49]; replacing names of bound variables with unique numerical indexes (e.g. De
Bruijn indexes) to search up to α-conversion [49,55]; ignoring parentheses and ordering of arguments of asso-
ciative/commutative operators [5,50,51,55,62,63,70]; expressing derived notions exposing the derivation (e.g.
replacing x ≥ y with y ≤ x , x � y with ¬(x ≤ y), arcsin with sin−1, etc.) [5,49]; capturing logi-
cal equivalence/type isomorphisms (e.g. writing formulae in prenex normal form, currification of functions)
[17,20,55].

A normalised formula can be quite different from the original one, and that can be a symptom that the formula is
not significant. Therefore in [58] normalised formulae are weighted according to their similarity to the initial one,
and weights are considered during the ranking phase with great results.

Approximation Normalisation does not lose information, converting a document to an equivalent one. Many papers
call “normalisation an approximation phase where subformulae are replaced with constrained placeholders to allow
the formula to be matched by similarity. For example: names of variables or constants can be replaced by a single
name [19]; all numeric constants by a single identifier [19,49,63]; subformulae may be replaced by their type. For
example, in [25] type information is used to retrieve formulae by sorted unification, i.e. by constraints with type
placeholders in patterns. In [56,74], symbol layout trees are approximated by bags of tuples representing relative
positions of symbols. Approximation improves recall. To limit the loss of precision, systems that approximate index
both the original and the approximated formula (or even several instances at different levels of approximation).
The effects of approximation are similar to those of query reduction, but approximation is more efficient because
it works at indexing time.

Enrichment Enrichment works on the library or on the query to augment the information stored/looked for in
the index by inferring new knowledge from existing one. It can contribute to the solution of both the Document
Retrieval and the Formula Retrieval problems. Typical examples of enrichment are: heuristically generating and
storing content metadata from Presentation MathML [48]; automatic/interactive disambiguation of formulae in the
queries to perform a precise query at the content or semantics level [8,11–13]; automatic inference of metadata
from context analysis or usage analysis (latent semantics) [15,34,65]; automatic extraction of key phrases from
mathematical articles [59]. The latter example adapts a general technique to mathematical documents, but de-facto
ignoring all formulae.

The most impressive application of enrichment is presented in [26]. The aim is to search for geometrical con-
structions that are described using a procedural language (e.g. draw the segments connecting A with B, B with
C , and A with C). Enrichment consists in replacing the procedural with a declarative description (e.g. ABC is a
triangle). The same declarative description can be obtained by multiple procedural ones, and thus recall is greatly
improved. The technique can also be seen as a form of normalisation (see Sect. 4.1) where the normal form is not
unique (e.g. it may be the case that by analysing the hypothesis one could deduce that ABC is also an equilateral
triangle even if that is not stated in the procedural description).
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Query reduction Query reduction trades precision for recall by selectively dropping or weakening some of the
constraints present in the query. Results obtained from reduced queries can be ranked after results from precise
queries. In the literature it occurs in many forms in solutions to both the Formula Retrieval and the Document
Retrieval problems: keywords or whole formulae can be omitted from the search (e.g. [45]); a constant can be
weakened to other constants that co-occur frequently with the given one; constants that occur too frequently can be
dropped from the queries; a formula may be required to match only the toplevel structure of the formula given as a
query [9].

An evaluation of different query reduction and result merging strategies on the NTCR-11 dataset is presented
in [45].

4.2 Main Techniques

The following techniques are mutually exclusive. Moreover, each technique performs better on only one of the two
problems.

Reduction to full-text searches The technology to perform full-text searches is very advanced and there are popular
open software implementations with good performance like Apache Lucene9/Solr10 and ElasticSearch.11 The
benefits of reducing search for formulae to full-text searches are speedof executionof the queries and the combination
of formula based and textual searches almost for free. The main drawback is that the precise structure of a formula is
partially lost in the translations proposed in the literature, and that it is impossible or very hard to capture precisely the
kind of relationsR used for Formula Retrieval, unlessR is approximated by a much coarser relationR′. Therefore
the technique has been successfully applied so far only to Document Retrieval [1,19,21,27,34,38,42,44,46,47,49–
52,56,63,67,69,71,74].

All proposals approximate documents with (large) bags of index terms, whose multiplicity is the term frequency
(TF). Index terms can be keywords or “sentences” describing mathematical contents. A bag is represented by the
vector of the term frequencies weighted using some variation of inverse document frequency (IDF). This approach
assumes that terms appearing in fewer documents of the database are more informative and thus receive higher
weight. In particular, the weight ui of the term i in the document u can be computed with the help of the next
formula, where TF(u, i) is the frequency of the term i in the document u, and DF(i) is the number of documents
containing the term i out of n documents stored in the database.

ui = TF(u, i) · log n

DF(i)

The weights ui are known as the “features” of the document u.
Similarity of two documents u and v is most commonly measured by the cosine of the angle between the vectors

u and v. In some cases, the length of these vectors is normalised to speed up the computation of the similarity
measure. For example, in [34,64] a sentence is the set (ordered or not) of symbols found in either a path from the
root of the formula to a leaf, or as children of the same node. Matching is then performed by a disjunctive query
and results are ranked using the just mentioned TF-IDF method with normalised vectors. As the authors claim, the
system “is too flexible: it is difficult to say where the relevant results stop and randommatches begin; thus we predict
higher recall but lower precision rates than exact match systems”. Other authors extract sentences or n-grams that
capture the formula more precisely. As a general remark, the clear impression we got from the literature is that
the fewer features extracted, the lower the precision. All kinds of techniques can be used to extract the features,
comprising regular expressions [1] and finite state automata [54].

9 https://lucene.apache.org/.
10 http://lucene.apache.org/solr/.
11 https://www.elastic.co/products/elasticsearch.

https://lucene.apache.org/
http://lucene.apache.org/solr/
https://www.elastic.co/products/elasticsearch
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In order to reduce the number of comparisons made for a query, some systems cluster similar documents
hierarchically at indexing time (e.g. [1]), and retrieve documents comparing the feature vector of the query with
the centroids of the clusters. For example, documents about trigonometric functions are likely to be automatically
clustered together. However most systems do not seem to cluster in advance, and prefer the flexibility of weights to
capture similarity of features (e.g. similarity of occurrences of trigonometric functions).

According to the set of features extracted, the weighting function used, and the other modular techniques used
in combination, the accuracy achieved by systems based on this technique range from extremely low to extremely
high (see, for example [4]).

Structure-Based Indexing via Tries/Substitution Trees Formula Retrieval can be solved with the data structures
developed for automatic theorem proving to store libraries of lemmas and quickly retrieve formulae up to instantia-
tion/generalisation. In its simplest form, pointers to all the statements are stored in the leaves of a tree that precisely
encodes in its paths the statements. To match a formula, the tree is recursively traversed using the formula to drive
the descent. Many variants of this basic approach have been proposed in the Artificial Intelligence literature. They
provide different space/time trade-offs, but they are essentially interchangeable in the formula retrieval context.

The relations R that can be captured are only instantiation and generalisation of whole formulae. These two
relations, however, allow to specify more high level queries like searching for all elimination principles for a given
data type (the elim query of Whelp [8]). MathWebSearch [25,33] and [29] are based on this approach. Retrieval
of formulae is very fast, assuming that the index can be entirely stored in main memory.

This approach consistently maximises precision but presents poor recall. To accept larger relations, or to be
applied to Document Retrieval, or to cope with too rigid queries, the technique needs to be integrated with other
ideas. For example: to match subtrees of formulae in the library, every subtree of a lemma needs to be stored as
well in the index; to solve unification problems up to an equational theory that admits normal forms, all formulae
are normalised; to allow queries that use keywords or free text, a free-text search engine must be run in parallel and
the results need to be combined in the ranking phase [25,37].

Reduction to SQL or Ad-hoc Queries The third approach consists in approximating formulae via relations to be
stored in a relational DB [9,23]. An alternative consists in storing the relations in ad-hoc indexes in memory, and
it is employed when the indexes already exists for other purposes (typically in libraries of formalised knowledge)
[11–13]. The technique is applied to Formula Retrieval and the database can be reused for Document Synthesis
without modifications. Approximated queries up to generalisation/instantiation can be made efficient [9] without
requiring an index stored in main memory for structure-based indexing. Recall can be maximised by relaxing the
representation of formulae as relations or by employing normalisation. Ad-hoc inverted indexes for paths and to
map each Content MathML node to its parent have also been used in [24]: the search engine is very fast, but the
precision obtained is low.

Reduction to XML-Based Searches Some systems [6,7,72] that index MathML documents at the content level,
base their searching capabilities on the existing XPath/XQuery technology. The system described in [60], which
is based on Stratosphere, is batch oriented, trades flexibility with performance, and it is essentially math-unaware
(for example, it does not normalise the input in any way). Other systems [16,37] that deal with ontologies indexed
in the Ontology Web Language, rely on third-party OWL search engines implementing graph matching.

5 Ranking

Because users only inspect the first results returned by a query, precision when solving Document Retrieval is
strongly determined by the ranking function. Ranking is also of paramount importance for Formula Retrieval: when
the search retrieves the candidates for progressing in a proof, correctly ranking the results may dramatically cut
the number of wrong proof attempts and backtracks. The ranking criterion for the two problems is, however, very
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different: for the first problem similarity of formulae in the query and in the results should contribute significantly
to the score; for the second problem the score should be determined by the intended use of the results. For example,
a lemma L1 that exactly matches the goal to prove and has no premise should always score better than a lemma L2

that also exactly matches the goal, but that has hypotheses to be proved later.
Ranking according to the intended use for Formula Retrieval has received very little interest in the literature

we examined. On the other hand, several papers explicitly address ranking for Document Retrieval. The consensus
seems to be that a good ranking function needs to be sophisticated and that the usual metrics induced by reduction
to textual searches are completely inadequate (see, for example [69]). All the proposed ranking techniques are
strongly based on heuristics and, unfortunately, most of them are incomparable and hard to combine.

One class of metrics takes into consideration also the structure of the formulae involved and the enriched
semantics, when available. For example [75] heavily exploits Content MathML to rank results by considering the
taxonomic distance of constants (where close is approximated to being defined in the same content dictionary), the
data type hierarchical level (matching a function is more significant than matching a numerical constant), matching
depth (partially matching the formula at the top level is more significant than matching a deeply nested subformula),
coverage (percentage of formulamatched), kind ofmatched expression (formula vs term). All this information needs
to be computed and amalgamated employing a heuristic algorithm that depends on a set of parameters optimised
in [76]. A second paper [61] confirmed that each one of the listed similarity feature factors significantly improves
the ranking, but the last one that still contributes, has lower relevance.

In [63] ranking is determined by the weights used during matching, and the authors claim that each document
base and scientific field should have its own weighting function. Nevertheless, they “tried to create a complex and
robust weighting function that would be appropriate to many fields”.

In [69] the author proposes a parametrised ranking function that works on mathematical documents (not only
formulae) that seems applicable to enriched presentation and that weights a lot of additional information including
keywords, the number of cross-references and their kind (e.g. definitional vs propositional). Ranking employs a
hybrid of scalarisation and vectorisation.

In [30] the authors propose to adopt tree edit distance to measure similarity of formulae. Most of the paper is
about optimisations to improve efficiency of ranking because tree edit distance is hard to compute. The final proposal
combines some clever memorisation and a procedure to quickly prune documents bounding their similarity scores
with a lightweight computation. The paper also shows benchmarks comparing the processing time and success rate
of most search and ranking algorithms in the literature, reimplemented by the authors and run on the same dataset.
From the benchmarks the method proposed seems to be superior, but the implementations do not exploit relevant
enriched information like cross-references, semantic proximity of definitions, etc. The benchmarks are therefore
non conclusive.

In [54] the authors employ a continuous learning ranking model after having extracted features from Content
MathML mathematical formulae using a finite state automata. Benchmarks show their ranking to be superior than
the ones used in classical ranking of textual documents. However, they do not compare with [30] or [69] (that work
on Presentation MathML).

Simpler approaches to ranking can be found in [66] (based on Subpath Set, reported to work well only on
“simplified” Content MathML) and [28] that works on Presentation MathML and measures similarity as a function
of the size of subtrees in common. The ranking metric used in [1] is a TF-IDF modified with weights to assign more
importance to some operators, but the details given to determine the weights are insufficient.

Ranking algorithms can be too complex to be incorporated in the search phase, for example when using Lucene
technology. Moreover, they are typically slower than the search phase. Therefore several authors suggest to re-rank
only the first results of the query that employs a simpler ranking measure to determine the interesting candidates to
be ranked more accurately [30,69].

An algorithm to automatically categorise documents is presented in [77], where it is argued that clustering
documents according to their category greatly improves the usefulness of the tool for the user.
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6 Architecture of a Mathematical Document Retrieval System

Figures 1 and 2 showa reference architecture for the document retrieval system that adopts all themodular techniques
of Sect. 4.1 and reduction to full text search as the main technique (see Sect. 4.2). The architecture is essentially
shared by all the systems that are built around the Lucene/Solr or ElasticSearch.

Transformations are grouped into boxes when they can be re-ordered or applied zero or multiple times. Trans-
lations between presentation languages in Fig. 1 are subsumed by normalisation; the possible translations from
presentation to content or parallel markup is subsumed by semantic enrichment. Disambiguation is the counterpart
of semantic enrichment for queries. Therefore the architecture can accommodate all kind of encodings.

The indexing phase ends with the creation of the feature vectors that are stored in the full-text-search database.
The indexer and retrieval engines can just be off-the shelf, customised popular implementations like Lucene. The
remaining components can be stand-alone, but some of them, like the feature extractors or the re-rankers, are better
implemented as customisations of the Lucene-like software.

It seems to us premature to propose a reference architecture for formula retrieval. Interactive theorem provers
that directly integrate formula retrieval heavily exploit their existent, sometimes ad-hoc data structures. It is unclear
if they could benefit from a generic implementation. The general purpose systems that have been well developed

Fig. 1 Document retrieval via reduction to full text searches: indexing
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Fig. 2 Document retrieval via reduction to full text searches: retrieval
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do not share the same main technique: MathWebSearch [33] employs structure-based indexing, Whelp [9] reduces
the queries to SQL. Both approaches benefit from the modular techniques we identified, but the techniques are
integrated at different times. For example, approximation is an optional pre-processing step for structure-based
indexing, and it integrates the computation of all sub-formulae. It is instead an intrinsic step of feature extraction in
the work of Asperti et al. [9,23]. In the latter case, no computation of sub-formulae is required. However, the second
approach requires a mandatory refinement step on the approximated results of the query, while the refinement step
may be skipped in structure-based indexing.

7 Evaluation of Math Information Retrieval

Several papers present benchmarks on the systems proposed, and rarely (e.g. [30]) compare them with reimplemen-
tations of the algorithms found in the literature. The significance of most of these benchmarks is unclear, because
conflicting results are found in the literature, most techniques are not presented in sufficient details in the papers to
be exactly reproduced, and systems are very sensitive to the kind of queries examined. The only alternative is to
compare different tools on unbiased, standard benchmarks that are currently lacking.

The main issue is not to come up with large corpora of documents: at least for Document Retrieval on enriched
Presentation MathML documents, a large corpus can be easily obtained converting documents from ArXiV, DLMF,
PlanetMath, Wikipedia, etc. For Formula Retrieval, the existing libraries of interactive theorem provers, like Mizar
and Coq, can be directly used after conversion. The problem is to determine large sets of real world, interesting
queries, and to evaluate the results. Automatic evaluation is particularly hard in the domain of mathematics, whereas
manual evaluation is limited to a tiny number of queries and runs. Formulating good sets of queries is also complex,
because users with different mathematical background and motivations are likely to issue different queries. More-
over, what makes a query hard can just be the use of non standard mathematical notations, errors in the encoding of
formulae, or formulation at the wrong level of abstraction. Líška [41] discusses the problem at length and reviews
the state of the art of evaluation of Math Information Retrieval before 2013, including the experience of the MIR
workshop at CICM 2012 were two systems were compared on about ten hard queries proposed by the judges, and
the conclusion was that the systems were too sensitive to the formulation of the query.

The situation is improving since 2013 with the creation of a math oriented task in the NTCIR initiative [3,4]
that is attracting a small, but increasing number of participants [19,21,24,25,33–35,39,43,56,58,60,61,64]. The
initiative is too young to come to definite conclusions and the current choice of tasks and queries is not granted
yet to have significant coverage and to be unbiased. For example, in [34] the authors report that despite several
improvements to the tool (quantified via NTCIR-11 runs), their tool scored lower than in NTCIR-10. They justify
the phenomenon by noticing that “in NTCIR-11, query variables get much bigger emphasis, most topics feature
complete and very particular formulae, and sub-formulae matching is not nearly as useful as before”. Indeed, as
reported in [4] “the design decision …to exclusively concentrate on formula/keyword queries and use paragraphs
as retrieval units …has also focused research away from questions like result presentation and user interaction.
…few of the systems have invested into further semantics extraction from the data set. …We feel that this direction
should be addressed more in future challenges”. An effect of the bias towards search up to unification w.r.t. search
up to similarity is observable in [56,74] too: the system proposed works very well even if it works on Presentation
MathML only and the set of features extracted is very simple (bag-of-symbol-pairs model, where a pair is made
of two symbols in a father-son relation). The reason why it works well is that the authors also index approximated
pairs where the child is a wildcard, and in future works they are thinking at improving even more the handling of
wildcards to score better. In comparison, most other systems based on feature vectors just replace wildcards in the
query with <m:ci> identifiers. The emphasis on formula queries is also to be evaluated considering the already
cited works that conclude that users do not see (yet?) much value in them [32,77].

Finally, the NTCIR task does not cover distinctly the Document Retrieval and the Formula Retrieval problems,
but onlyDocument Retrieval with an emphasis on exact patternmatching of formulae that should bemore distinctive
of Formula Retrieval.
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8 Availability of Math Retrieval Systems

Most of the systems described in the literature are research prototypes, and the majority of them are no longer
working or no longer accessible. At the time this paper was written, the only ones for Document Retrieval with a
runningWeb interface or code that can be downloaded are: (1)Design Science’sMathDex12 (formerlyMathFind) (2)
NIST DMLF13 (3) MathWebSearch,14 which is also used by the Zentralblatt Mathematik15 repository (4) MiAS16

(Math Indexer and Searcher), also used to search the EuDML17 (5) Tangent18 In addition to those, the following
commercial systems are also accessible: (a) Springer LaTeXSearch19 (b) Wolfram Alpha20 Systems (a) and (2)
index LATEX directly; (1) and (5) are based on PresentationMathML; systems (3) and (4) can use either Presentation
MathML or Content MathML/parallel markup, but work better on the latter; finally system (b) actually generates
on the fly most of the result of the query, for example by plotting functions, computing their Taylor expansion, etc.
It does not really qualify then as a search engine.

The two most comprehensive reviewing services for mathematics, namely Zentralblatt Mathematik and Math-
SciNet,21 integrate a search engine. While the former has integrated MathWebSearch to mix formulae, keywords
and text in the queries, the latter has no support for formulae.

Most interactive theorem provers also have their own implementation of a search engine to solve Formula
Retrieval. Most of the time, the implementation is embedded in the system and does not work on the whole library
at once, with the exception of MML Query22 for Mizar.

9 Productivity of the Research Community

The still unsatisfactory performance of math retrieval systems in terms of accuracy and precision can be puzzling
if compared with the large number of publications. The same for the low number of available research systems. In
this Section we try to shed some light on the phenomenon running some statistics on the papers.

Our first analysis aims at determining if the problem is still under investigation, and also if research on mathe-
matical retrieval is sustained or it occurs in bursts. Figure 3 plots the cumulative number of publications per year.
The curve growths almost linearly up to 2008, decreases its slope from 2008 to 2012, and finally becomes steep
again after 2012. The latest speed up is certainly due to the NTCIR competition that has attracted new interest
and new research groups. The intermediate slow-down is also quite understandable, even if worrisome. On the one
hand it is due to a relatively sufficient level of maturity reached for formula retrieval queries issued by humans:
most developers of interactive theorem provers addressed the problem and stopped working on it when they found
a solution that was performing well enough. On the other hand, many people working on document retrieval have
initially explored techniques that did not perform well, and abandoned the field. Significant recent progress after
2008 is mostly due to the steady work of a very few groups that keep improving their own software.

To collect evidence for our last claim we have performed a second analysis, whose result is shown in Fig. 4. We
have taken the papers in the literature and we have clustered them according to co-authorship: we initialise each

12 http://www.mathdex.org.
13 http://dlmf.nist.gov.
14 http://search.mathweb.org.
15 https://zbmath.org/.
16 https://mir.fi.muni.cz/mias.
17 http://eudml.org.
18 https://www.cs.rit.edu/~dprl/Software.html#tangent.
19 http://latexsearch.com.
20 https://www.wolframalpha.com/.
21 http://www.ams.org/mathscinet.
22 http://mmlquery.mizar.org.

http://www.mathdex.org
http://dlmf.nist.gov
http://search.mathweb.org
https://zbmath.org/
https://mir.fi.muni.cz/mias
http://eudml.org
https://www.cs.rit.edu/~dprl/Software.html#tangent
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https://www.wolframalpha.com/
http://www.ams.org/mathscinet
http://mmlquery.mizar.org
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Fig. 3 Cumulative number of publications per year

Fig. 4 Analysis of the productivity of research groups

cluster with only one paper andwe keepmerging two clusters when there are two papers—one per cluster—that have
at least one author in common. Before performing the clustering we manually excluded the papers that describe the
NTCIR task that are clearly co-authored by people that belong to research groups that did not collaborate otherwise
so far. To each cluster we assign its productivity, i.e. the number of papers collectively published. Finally, we plot
the number of clusters that reached a certain productivity.

The Figure shows that 16 papers have had no follow up by the authors that seem to have lost interest in the
problem after writing a single paper. Similarly, only 3 clusters have co-authored 2 papers and 4 clusters 3 papers,
showing a moderate continuous interest in the topic. At the other side of the spectrum there is the research group
of Abdou Youssef that has authored 17 papers, mostly on the topic of document retrieval. The second larger cluster
is the research group of Michael Kohlhase that has authored 8 papers, moving its focus from formula retrieval to
document retrieval. It is closely followed by the group of Martin Líška with 7 papers, again mostly on document
retrieval, and by the one of the authors with 5 papers on formula retrieval only.

Table 1 quantifies the number of authors of papers in the field. It shows that the majority of papers have two
authors only, despite the topic being an applied one. Only 10 papers have more than 3 authors. Combined with the
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Table 1 Number of authors
per paper

Number of authors Number of papers

1 13

2 34

3 13

4 6

5 3

6 1

Table 2 Average number
of authors per paper and
average size of a cluster as a
function of the productivity
of the cluster

Productivity of
the cluster

Number of clusters Average number
of members

Average number
of authors per
paper

17 1 10.0 1.9

8 1 7.0 2.0

7 1 4.0 2.4

5 1 7.0 2.6

3 4 4.8 1.6

2 3 3.0 2.8

1 16 2.4 2.4

previous analysis, this one suggests that developing a math retrieval system does not require a lot of manpower at
once, but a sustained effort to progressively refine the solution.

To further sustain our claim, we refine the analysis in Table 2 by focusing on the productivity of research groups.
The table shows both the average size of clusters that have a given productivity and the average number of authors
per paper published by the cluster. More productive clusters are likely to have more members, but the average
numbers of authors per paper seems independent from the productivity. Note that the first two columns of Table 2
are the data plotted in Fig. 4.

According to the previous analyses, the NTCIR and similar initiatives that promote continuous refinement
of a system are the most likely to have a positive impact on the field. However, we also expect some of the
groups that participated in the competition and that achieved bad results to retire in future ones. Regarding projects
funding, local funding that can sustain long term refinements are the most likely to have a positive impact. The
outcome of large collaborative projects, on the other hand, is more dubious: while different groups could con-
tribute expertise in the modular techniques of Sect. 4.1, the average number of authors per paper suggests that
there is no issue of manpower, and that we are still in a phase where competition is to be preferred to standardisa-
tion.

10 Conclusions

Mathematical knowledge retrieval, the low hanging fruit of Mathematical Knowledge Management, is still far
from being grasped. Despite the significant amount of work dedicated to the topic in the last 12 years, only a few
systems are still available, and their precision and recall scores compared to other knowledge retrieval fields are
low. Moreover, usability and user requirement studies suggest that queries containing formulae—the main focus of
the majority of papers—are perceived by users as not very useful (yet?).



A Survey on Retrieval of Mathematical Knowledge 425

Themain contributions of this paper have been providing a hopefully comprehensive bibliography on the subject,
and presenting taxonomies for both mathematical retrieval problems and techniques. We believe that our purpose
driven taxonomy can be useful in classifying papers, in clarifying the scope of application of techniques and in the
much needed development of unbiased benchmarks for mathematical retrieval.
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