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Abstract The Hough transform is a standard pattern recognition technique introduced between the 1960s and
the 1970s for the detection of straight lines, circles, and ellipses with several applications including the detection
of symmetries in images. Recently, based on algebraic geometry arguments, the procedure has been extended to
the automated recognition of special classes of algebraic plane curves. This allows us to detect curves of symmetry
present in images, that is, curves that recognize midpoints maps of various shapes extracted by an ad hoc symmetry
algorithm, here proposed. Further, in the case of straight lines, the detection of lines of symmetry allows us, by
a pre-processing step of the image, to improve the efficiency of the recognition algorithm on which the Hough
transform technique is founded, without loss of generality and additional computational costs.

Keywords Symmetry detection · Algebraic plane curves · Pattern recognition · Hough transform
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1 Introduction

In pattern recognition domain the Hough transform [9,15] is a well known technique to find shapes in images. In its
basic formulation the Hough transform allows one to extract straight lines in an image on the basis of the following
easy mathematical principle: choosing points in the equation of a straight line defined in the indeterminates x , y
and following the usual slope-intercept parametrization (or the so called normal parametrization) corresponds to
draw lines (or sinusoidal curves) in the space of parameters a, b (or θ , ρ) that all intersect in exactly one point.
This point uniquely identifies the original straight line in the image space. Analogously, circles and ellipses can be
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extracted in an image by searching for a unique intersection point in a 3D or 4D parameter space respectively [9]
(see also [17] for more references).

Recently, a formal result based on algebraic geometry arguments has extended the definition of Hough transform
to the case of special classes of curves [2,17]. More precisely, a key lemma in [2] (see Lemma 3.3 in the present
paper) characterizes those families F of irreducible algebraic plane curves that share the degree and for which the
following general Hough-type correspondence between the image space and the parameter space holds true: each
point P of a curve from the family in the image space is transformed into a hypersurface �P (F) in the parameter
space in such a way that all hypersurfaces �P (F) meet in one and only one point uniquely identifying the original
curve in the image space. Such families of curves are also called Hough regular (see Sect. 3).

From a computational point of view an intrinsic problem of the Hough transform technique consists in the
fact that its complexity is exponential with respect to the dimension of the parameter space, i.e. to the number of
parameters, which, however, are needed to represent the curves of a given family with due generality.

In this paper, we develop a Hough-type technique able to identify axes of symmetry present in images having
in mind a specific application: the knowledge of any symmetry present in the image allows a preliminary roto-
translation of the image under investigation, then reducing the number of parameters in the family of curves without
loss of generality.

Three types of symmetry can be found in an image: reflection symmetry (also called mirror symmetry or line
symmetry), when an axis of symmetry divides an object into halves that are mirror image, rotation symmetry, when
an object can be turned around its center point to positions in which it looks the same as it does in its original
position (note that often rotation symmetry includes reflection symmetry), and translation symmetry, when a basic
pattern is regularly repeated in a given direction. We are mainly interested in reflection symmetry.

Several methods for detecting symmetries in images have been developed in computer vision and shape analysis,
some of them based on the use of the Hough transform. For example, we refer to [16] and [7] for characterizations
of symmetries by using the Hough transform for lines detection (the first one uses local feature keypoints, generates
mirrored features using arbitrary mirroring axis and then uses the Hough transform to detect symmetric matches,
while the second one uses the Hough transform just as initialization step for a more complex algorithm); we refer
to [5] for detection of 3D mirror symmetries by using a 3D formulation of the Hough transform for the search of
symmetry planes; to [26] for detection of rotational symmetries by using theHough transform for ellipses. In [27] two
methods for detecting skewed and rotational symmetries are presented. In particular, the first method hypothesizes
all possible directions for the transverse axis normal to the axis of symmetry. For each possible direction and for
each pairs of points in that direction, midpoints are then found and the Hough transform is used to investigate their
collinearity. We finally call the attention to the nice survey paper [14] for a wide up to date research literature (132
items) on the Hough transform technique and its applications.

The symmetry algorithm we propose (presented in Sect. 6 of the paper) differs from those used in the above
quoted papers. More precisely,

• we make use of standard edge detection algorithms to select points in the image where the intensity rapidly
changes (i.e., edge points),

• we define a symmetry criterion involving the direction of the gradient computed at those points,
• we compute the midpoints of the pairs of edge points meeting such a symmetry criterion, and
• we detect the axis of symmetry, via Hough transform, as the line best approximating the midpoints.

Indeed, by using the extended definition of Hough transform [2] recalled above, our technique easily generalizes
to the detection of curves of various shapes as curves of symmetry in images (see Sect. 6 for explicit examples).

The paper is organized as follows. The first four sections consist of a detailed, unified survey of the Hough
technique to detect curves in 2D images. This surveying part also contains significant expository improvements of
known results in the literature. Sections 6 and 7 are the innovative part of the paper. More precisely, in the first two
sections we survey the mathematical foundations, based on algebraic geometry arguments, on which the Hough
transform pattern recognition technique is nowadays founded. Section 2 contains the formal definition and basic
set-up of Hough transform with respect to a given family of algebraic plane curves. Special emphasis is given to
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the fact that the Hough transform concept generalizes the usual duality of lines and points in projective geometry,
leading to a curves and points duality notion. Section 3 is focused on special families of curves meeting the Hough
regularity property highlighted above, a feature that plays a crucial role in pattern recognition problems. In Sect. 4
we provide several illustrative examples of classes of curves of interest in astronomical and medical imaging. We
will recover some of them in Sects. 6 and 7, which are the core of the paper. In Sect. 5 we present the recognition
algorithm on which the Hough transform technique is founded. We devoted Sect. 6 to a detailed description and
test of the symmetry algorithm we propose. In Sect. 7 we present some applications of the Hough-based symmetry
algorithm to medical imaging problems as a pre-processing step for the Hough transform recognition algorithm.
In fact, a challenging research topic in medical imaging is the recognition of bone profiles in X-ray Computed
Tomography (CT) images, where a priori symmetry analyses of bone structures can be very useful to reduce the
number of parameters occurring in the equations of the curves used for recognition purposes. This way one finds a
good compromise between generality and computational cost of the recognition algorithm. Finally, our conclusions
will be offered in Sect. 8.

2 Hough Transform Via Algebraic Curves

The Hough transform is a standard pattern recognition technique, introduced between the sixties and the seventies,
for the detection of straight lines, circles and ellipses. Here we offer a mathematical foundation, based on algebraic-
geometry arguments, of an extension of this approach to the automated recognition of special algebraic plane curves
of higher degree. We refer to [2,3] and [17] for applications and further developments.

Most of the results in this section hold over an infinite integral ring K (see [11, Section 28]). However, let us
restrict to the classical cases where either K = R or K = C, the fields of real or complex numbers, respectively.

For every t-tuples of independent parameters λ := (λ1, . . . , λt ), varying in an Euclidean open set U ⊆ K t , and
indeterminates x , y, let P be a family of non-constant irreducible polynomials

fλ(x, y) =
d∑

i, j=0

xi y j gi j (λ1, . . . , λt ), i + j ≤ d, (2.1)

in K [x, y], of a given degree d (not depending on λ), whose coefficients gi j (λ) are the evaluations in the parameters
λ of polynomials gi j (�) ∈ K [�] in the variables � = (�1, . . . , �t ). Let F be the corresponding family of the
zero loci Cλ := fλ(x, y) = 0, and let assume that Cλ is a curve in the affine plane A2

(x,y)(K ), for each λ (of course,
this is always the case if K = C). Clearly, if K = C, the curves are irreducible, that is, they consist of a single
component, since the polynomials of the family P are assumed to be irreducible in K [x, y]. If K = R, the case of
interest in the applications, we assume that Cλ is an irreducible real affine plane curve, that is, a curve irreducible
over C with infinitely many points in the affine plane A2

(x,y)(R) (see also [23, Section 7.1]). Such a real curve may
contain a finite set of isolated points; to this purpose, see also Remark 2.4 below. So, we want F to be a family of
real irreducible curves (up to possibly a finite set of points) which share the degree.

We need to take into account, and exclude from our context, obvious exceptions to the above basic assumptions,
as the following example shows.

Example 1 Consider the family of real conics

Ca,b : x2 + ay2 − b = 0,

with λ = (a, b) ∈ R
2. Then C1,0 is defined by the polynomial x2 + y2 = 0 and consists of the single point (0, 0) in

A
2
(x,y)(R). While C−1,0 is defined by the polynomial x2 − y2 = 0 and consists of two distinct lines. Therefore C1,0

is strictly contained in C−1,0. But clearly such a family of conics does not satisfy the basic assumptions made (to
be a family of irreducible curves sharing the degree) unless a �= 0 and b > 0. Moreover, in the case of the family
of conics

Ca,b : a2x2 + by − 1 = 0,

with a, b ∈ R, note that C0,0 = ∅, and we need a �= 0 for the degree to be preserved.
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Definition 2.1 Let F be a family of curves Cλ as above, and let P = (xP , yP ) be a point in the image space
A
2
(x,y)(K ). Let �P (F) be the locus defined in the affine t-dimensional parameter space A

t
(�1,...,�t )

(K ) by the
polynomial equation

fP (�) :=
d∑

i, j=0

xiP y
j
P gi j (�1, . . . , �t ) = 0, i + j ≤ d, (2.2)

in the indeterminates �1, . . . , �t . We say that �P (F) is the Hough transform of the point P with respect to the
family F . If no confusion will arize, we simply say that �P (F) is the Hough transform of P .

Remark 2.2 If K = C, or more generally K is algebraically closed, the Hough transform �P (F) is a hypersurface
in the parameter space.

If K = R, the locus �P (F) is a hypersurface if and only if the polynomial fP (�) ∈ R[�1, . . . , �t ] has a non-
singular zero in R

t (see [4, Theorem 4.5.1] for details and equivalent conditions). This is in fact the general case
since one can show that, for P varying in an Euclidean open set of the image space, �P (F) is (t − 1)-dimensional.
Here is an example. Consider the family of conics Cλ : λ21 + λ22 + λ3y2 = 2x2 − y2, with λ3 > 0. Then the Hough
transform of the origin O is defined by the equation �2

1 + �2
2 = 0, so that it is the line �1 = �2 = 0 in the

parameter space 〈�1,�2,�3〉, or even the empty set whenever we assume the parameters λ1, λ2 to be positive.
While, as soon as the point P varies in the Euclidean open set of the image planeA2

(x,y)(R) defined by the condition

2x2 − y2 > 0, the Hough transform �P (F) is a real quadric in the parameter space.
Indeed, as a special case of a more general result (see [22, Proposition 2.25]), the following fact holds true. LetF

be a family of curves in A2
(x,y)(K ) as in our setting. Then, for a generic point P ∈ A

2
(x,y)(K ), the Hough transform

�P (F) is (t − 1)-dimensional.

Summarizing, the polynomials family defined by (2.1) gives rise to a polynomial F(x, y;�1, . . . , �t ) in
K [x, y;�1, . . . , �t ] such that, when evaluated at each point λ = (λ1, . . . , λt ) ∈ K t and at each point
P = (xP , yP ) ∈ A

2
(x,y)(K ), gives back the equations

Cλ : fλ(x, y) = F(x, y; λ1, . . . , λt ) = 0 and �P (F) : F(xP , yP ;�1, . . . , �t ) = 0

of the curve Cλ and the Hough transform �P (F), respectively. And, clearly, the “duality condition” (see also Fig. 1)

P ∈ Cλ ⇐⇒ fλ(xP , yP ) = F(xP , yP ; λ1, . . . , λt ) = 0 ⇐⇒ λ ∈ �P (F) (2.3)

holds true, allowing us to conclude that

• the Hough transform �P (F) of a point P = (xP , yP ) of the image plane contains a point λ = (λ1, . . . , λt ) if
and only if the curve Cλ from the family passes through P .

Fig. 1 The Hough transform �P (F) of the point P lying on the curve Cλ passes through the point λ in the parameter space, while the
Hough transform �Q(F), with Q /∈ Cλ, does not
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Let us point out in the following remarks some “patologies” coming out in our context (for instance, actually
occurring in Example 6).

Remark 2.3 Notation as above. Of course, it may happen that �P (F) = �Q(F) for different points P , Q in the
image plane, so that the Hough operator is not injective. Moreover, if P is a base point of the family F = {Cλ}, that
is, all curves Cλ pass through P , the duality condition (2.3) clearly implies �P (F) = U ⊆ A

t
(�1,...,�t )

(K ), where
U denotes the variance set of the parameters λ. To this purpose, work to better understand properties of the Hough
transform is in progress.

Remark 2.4 (Occurrence of isolated points). Assume K = R, and letF = {Cλ} be a family of real curves as above.
Further assume that, for a given λ = (λ1, . . . , λt ), the curve Cλ contains an isolated point, say P . It then follows
that P has to be singular of even multiplicity (otherwise the curve would have a real tangent line at P).

We claim that, if the given curve Cλ contains an isolated point P , then, up to restricting to a suitable Euclidean
open subset U ′ of the variance set U ⊆ A

t
(�1,...,�t )

(K ) of the parameters λ, then P is an isolated (singular) point
of the general curve Cλ from the family, as λ varies in U ′. Hence, in particular, P is a base point of the family F
when restricted to U ′.

To see this, note that the point P is isolated in a curve Cλ if and only if the minimum

d(P, Cλ) := min
{||P − Q||2 | Q ∈ Cλ\{P}}

exists and is positive, where ||P − Q||2 denotes the usual Euclidean distance, and, moreover, the distance d(P, Cλ)

is attained at finite number of m points, for some m ≥ 1. We refer to [8] for a detailed argument. We can then
interpret the set of points {λ ∈ R

t | d(P, Cλ) > 0} as
{λ ∈ R

t | d(P, Cλ) > 0} = d−1
P

(
(0,∞)

)
,

where the operator dP : Rt →R is the continuousmap defined byλ �→ d(P, Cλ). Therefore, {λ ∈ R
t | d(P, Cλ)>0}

is an open Euclidean set in the parameter space Rt , showing the claimed assertion. Recalling Remark 2.3, we thus
conclude that:

(�) Up to restricting to an Euclidean open subset U ′ of the variance open set U of the parameters λ, we can always
assume that an isolated point P of a curve Cλ from the family F is a base point of the family, so that the Hough
transform �P (F) coincides with the whole set U ′.

This fact allows us to forget about isolated points when considering intersections of Hough transforms and their
properties. We refer to Example 6 for an explicit instance.

3 Hough Regularity

Let F = {Cλ}, λ ∈ U ⊆ K t , be a family of irreducible curves of Eq. (2.1), as in Sect. 2. One main natural question
raising from what precedes is:

When the zero loci equality Cλ = Cλ′ implies λ = λ′?

Remark 3.1 Before to proceed any further, let’s pose our attention on what the equality Cλ = Cλ′ means. If K = C,
there is nothing to say. If K = R, we mean that the curves Cλ, Cλ′ coincide over C as irreducible real curves, so that
they coincide all over their infinitely many real points (a finite set of which may be isolated points). Also, recall that
every irreducible real curve has a real defining polynomial (see [23, Lemma 7.2]). Thus, in both cases, Cλ = Cλ′
expresses as fλ(x, y) = k fλ′(x, y) for some non-zero k ∈ K .

This section is devoted to discuss the above question (this way also polishing the proof, in the real case, of [2,
Theorem 2.2 and Lemma 2.3] and [17, Lemma 1]). Let us stress the fact that, in the real case, in both Theorem
3.2 and Lemma 3.3 below, when we consider P varying on a curve Cλ, and up to restricting the variance set of
parameters as in (�), we may assume P to be not an isolated point. However, such an assumption is not strictly
necessary in our setting.
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Theorem 3.2 Consider in A
2
(x,y)(K ) a family Fof irreducible curves as above, and let Cλ be a curve of F . Then

one has:

1. The Hough transforms �P (F), when P varies on Cλ, all pass through the point λ = (λ1, . . . , λt ).
2. Assume that the Hough transforms �P (F), when P varies on Cλ, have a point in common other than λ, say

λ′ = (λ′
1, . . . , λ

′
t ). Then Cλ = Cλ′ .

Proof The first statement immediately follows from the duality condition (2.3).
The assumption in the second statement says that ∩P∈Cλ

�P (F) � λ′. Then, by using (2.3) again, we conclude
that P ∈ Cλ′ for each P ∈ Cλ. This implies Cλ ⊆ Cλ′ . If K = C, it follows Cλ = Cλ′ since Cλ, Cλ′ are supposed to
be irreducible curves of the same degree in the image plane. If K = R, then Cλ, Cλ′ coincide as real affine plane
curves (see Remark 3.1), so we are done. ��

The following is an immediate consequence of the above theorem.

Lemma 3.3 (Key Lemma). Let F = {Cλ} be a family of irreducible curves in A
2
(x,y)(K ) as above. Then the

following conditions are equivalent.

1. For any curves Cλ, Cλ′ in F , the equality Cλ = Cλ′ implies λ = λ′;
2. For each curve Cλ in F , one has ∩P∈Cλ

�P (F) = λ, where, for K = R, the point P runs all over the real points
of the curve Cλ.

Proof Let K = R. Assume (1) to be true. If λ′ ∈ ∩P∈Cλ
�P (F), then Theorem 3.2(2) yields Cλ = Cλ′ , so that

λ = λ′ by the present assumption. Thus condition (1) implies condition (2). To show the converse, let Cλ = Cλ′ .
Therefore

λ =
⋂

P∈Cλ

�P (F) =
⋂

P∈Cλ′
�P (F) = λ′.

If K = C the same argument works. ��
Remark 3.4 The property that a familyF of curves Cλ satisfies the equivalent properties as in Lemma 3.3 expresses
as “the Hough transforms �P (F) of the points P varying on Cλ intersect in the parameter space in exactly one point
which uniquely identifies the curve Cλ”. Let us stress that this fact plays a crucial role in the pattern recognition
problem (see [2, Section 6], [17, Section 4]). In principle, this uniqueness result has just a formal (although elegant)
significance, since the presence of more than one point in the parameter space identifying the curve should not
prevent the recognition method to properly work. However, in practical applications, the problem of finding such
an intersection point becomes a problem of optimization of a matrix (the so called accumulator, see Sect. 5 for a
detailed description) and the presence of noise on the image pixels often makes the identification of this maximum
more ambiguous. Such an ambiguitymay be stressed by the presence ofmore than onemaximum in the accumulator.

Clearly, the equivalent properties in Lemma 3.3 are not true in general. For instance, in the case of the family of
real conics

Ca,b : a2x2 + by − 1 = 0,

one has Ca,b = C−a,b. Thus, in this case, for the Hough regularity to be true, we need the parameters λ = (a, b)
vary in a open set U contained in the half-plane of R2 defined by a > 0 (or a < 0).

It is then of special interest to find families of curves which satisfy the equivalent conditions of Lemma 3.3.
Indeed, let Cλ, Cλ′ be curves from the family, and let

fλ(x, y) =
d∑

i, j=0

xi y j gi j (λ1, . . . , λt ), fλ′(x, y) =
d∑

i, j=0

xi y j gi j (λ
′
1, . . . , λ

′
t )
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be the equations of Cλ, Cλ′ , respectively. The equality Cλ = Cλ′ reads fλ(x, y) = k fλ′(x, y) for some k ∈ K ∗ :=
K − {0}, that is,
d∑

i, j=0

xi y j (gi j (λ1, . . . , λt ) − k gi j (λ
′
1, . . . , λ

′
t )

)

is identically zero on A2
(x,y)(K ) as polynomial in K [x, y]. Thus, for each pair of indices i , j , it must be

gi j (λ1, . . . , λt ) = k gi j (λ
′
1, . . . , λ

′
t ), k ∈ K ∗, (3.1)

see [11, Theorem 1, p. 365]. For the classes of curves discussed in Sect. 4 we will use relations (3.1) to show the
needed equality λ = λ′.

Let us first recall the well-known cases of lines and circumferences of positive ray (e.g., see [9]) for which the
conditions as in Lemma 3.3 clearly hold true.

Example 2 (Lines). Consider in the real projective plane P2[x,y,z](R), where x , y, z are homogeneous coordinates,
the family F of lines �u,v,w : ux + vy + wz = 0. The space of parameters is now P

2[U,V,W ](R), where U , V , W
are homogeneous coordinates. Let P = [xP , yP , zP ] be a point of �u,v,w. Then the Hough transform �P (F) is the
line of equation UxP + V yP + WzP = 0. Clearly, when P varies on �u,v,w, such lines belong to the pencil of
center [u, v, w], that is, ∩P∈�u,v,w�P (F) = [u, v, w].

Note that, in this special case, the notion of Hough transform �P (F) of P may be rephrased in terms of the usual
duality of the projective plane.

It is just the case to note that the family F = {ux + vy + w = 0} in A
2
(x,y)(R) is not Hough regular, since

�u,v,w = �ku,kv,kw for non-zero constants k. Of course, F will be Hough regular as soon as one of the parameters
u, v, w is a constant.

In practice, passing to affine coordinates, and also to include the lines x = k (not contained, for instance, in the
family of lines {�a,b : y − ax − b = 0}), the most convenient representation is the normal parametrization of a line
� in A2

(x,y)(R). That is, the equation in polar coordinates ρ, θ of the form

� : x cos θ + y sin θ = ρ, (3.2)

where θ is the angle from the x-axis to the perpendicular from the origin O to the line, and ρ is the distance of O
to the line. By using this expression, the Hough transform is classically studied and its basic properties hold true in
this case as well (see [19]). Clearly, letting λ = (ρ, θ), Eq. (3.2) is not of the polynomial form (2.1). Recall that an
equation of a line in the general algebraic form

� : ax + by = c,

where a, b, c are real parameters, with ab �= 0 and c > 0, can be changed to the normal form by dividing by√
a2 + b2, where

cos θ = a√
a2 + b2

, sin θ = b√
a2 + b2

, ρ = c√
a2 + b2

. (3.3)

Example 3 (Circles) In the affine plane A2
(x,y)(R) consider a family F of circumferences

γa,b : (x − a)2 + (y − b)2 = r2,

where the center (a, b) varies and the radius r (> 0) is supposed to be fixed. For each given point P = (xP , yP ) ∈
γa,b, the Hough transform is the circumference �P (F) of center (xP , yP ) and radius r in the parameter plane
A
2
(A,B)(R). Clearly one has ∩P∈γa,b�P (F) = (a, b). Note that as r varies, then the Hough transform is a quadric

cone of vertex (a, b, r) = (xP , yP , 0) in the parameter space A3
(A,B,R)(R).

We give few more comments to clarify the use of relations (3.1).
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Example 4 Consider the one-parameter family of real conics Ca = x2 + a2y = 0. Assuming Ca = Ca′ , relations
(3.1) become

1 = g20(a) = kg20(a
′) = k, a2 = g01(a) = kg01(a

′) = ka′2,

giving k = 1 and a = ±a′. Then a = a′ as soon as a (a′) is assumed to be positive.

Remark 3.5 Consider the three-parameter family of conics

Cλ = (λ1 + λ2)x
2 + (λ1 − λ2 + λ3)y + x = 0,

where λ1 �= −λ2, λ1 �= λ2 − λ3. Then relations (3.1) give 1 = g10(λ) = kg10(λ′) = k, and therefore λ1 + λ2 =
λ′
1 + λ′

2, λ1 − λ2 + λ3 = λ′
1 − λ′

2 + λ′
3. In particular, C1,1,5 = C3,−1,1.

To this purpose, we observe the following useful general fact. Assume that each (non-constant) polynomial
gi j (λ1, . . . , λt ) is linear. Further suppose that for a given pair of indices, say i , j , the corresponding coefficient is
a constant, e.g., gi j (λ1, . . . , λt ) = 1. Hence relations (3.1) lead to a homogeneous linear system in the t variables
λ1 − λ′

1, . . . , λt − λ′
t . Moreover, Cλ = Cλ′ implies λ = λ′ provided that the rank of the matrix associated to the

system equals t .

Remark 3.6 It is worth noting that most of all the above formally extends if we consider a family of multivariate
degree d polynomials

fλ(x1, . . . , xn) =
∑

i1,...,in

xi11 . . . xinn gi1...in (λ1, . . . , λt ), i1 + · · · + in ≤ d,

defining a family of irreducible hypersurfaces in A
n
x(K ) sharing the degree, where λ := (λ1, . . . , λt ) varies in an

Euclidean open set U ⊆ K t , gi1...in (�1, . . . , �t ) ∈ K [�1, . . . , �t ], and x := (x1, . . . , xn) are affine coordinates.
We omit the details since we don’t essentially use here such a generalization. We refer for this to [3] and [22], where
all the theory has been extended even in the more general case of families of affine varieties defined by a system of
polynomial equations.

4 Basic Examples

In this section we discuss few illustrative examples belonging to classes of curves of interest in astronomical and
medical imaging, and widely used in recent literature to best approximate bone profiles and typical solar structures
such as coronal loops (for instance, see [2,6,17,18,21]). Two of them will be exploited in Sect. 7. These families
of curves mainly come from atlas of plane curves as [24], as well as from knowledge of classical tools in algebraic
geometry.

Example 5 (Elliptic curve). Consider the family F = {Ca,b,m,n} of unbounded cubic curves of equation

Ca,b,m,n : y2 = m(x − n)3 − a(x − n) − b, (4.1)

for some real parameters λ = (a, b,m, n), with m �= 0. Non-singular curves from the family are elliptic curves,
that is, of genus one. Equation (4.1) is a slight modification of the so calledWeierstrass form, and allows us to better
pattern after a vertebrae profile (see [20,21] and Example 13).

To show that the family is Hough regular, assume Ca,b,m,n = Ca′,b′,m′,n′ . Then conditions (3.1) read

an − b − mn3 = g00(λ) = kg00(λ
′) = k(a′n′ − b′ − mn3),

−1 = g02(λ) = kg02(λ
′) = −k,

m = g30(λ) = kg30(λ
′) = km′

−3mn = g20(λ) = kg20(λ
′) = −3km′n′

3n2m − a = g10(λ) = kg10(λ
′) = k(3n′2m′ − a′).
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Fig. 2 Shapes of conchoid of Slüse with parameter value b = 1

The second, third and fourth relations clearly give m = m′ and n = n′. Then a = a′ by the last relation. Thus the
first one yields b = b′.

For any point P = (xP , yP ) in the image plane A2
(x,y)(R), the Hough transform of P with respect to F is the

quartic hypersurface in the parameter space A4
(A,B,M,N )(R) of equation

�P (F) : M(xP − N )3 − A(xP − N ) − B − y2P = 0.

Example 6 (Conchoid of Slüse). In the affine plane A
2
(x,y)(R) consider the family F = {Ca,b} of rational cubic

curves defined by the equation

Ca,b : a(x − a)(x2 + y2) = b2x2, (4.2)

for some positive real numbers a, b. Such a cubic is classically known as conchoid of Slüse of parameters a, b (see
Fig. 2).

The curve has a double nodal point at the origin O , with complex conjugate tangent lines of equation a2(x2 +
y2) + b2x2 = 0, so that O is an isolated point of the curve. By intersecting with the pencil of lines y = t x , we find
the parametric rational representation

Ca,b :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = a + b2

a(1 + t2)

y =
(
a + b2

a(1 + t2)

)
t

For any point P = (xP , yP ) in the image space A2
(x,y)(R), the Hough transform is an ellipse in the parameter

plane A2
(A,B)(R) of equation

�P (F) : (x2P + y2P )A2 + x2P B
2 − xP (x2P + y2P )A = 0.

Assume now Ca,b = Ca′,b′ . Relations (3.1) give

−a = g30(a, b) = kg30(a
′, b′) = −ka′

a2 = g02(a, b) = kg02(a
′, b′) = ka′2

a2 + b2 = g20(a, b) = kg20(a
′, b′) = k(a′2 + b′2)

for some k ∈ R
∗. From the two first relations we infer that k2 = k, whence k = 1, and therefore a = a′. Then the

third relation yields b2 = b′2, so that b = b′ since b, b′ are positive. Thus the conditions of Lemma 3.3 hold true.
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Example 7 (Curve with m convexities). The curve with m convexities is defined by the polar equation

Ca,b,m : ρ = a

1 + b cos(mθ)
, (4.3)

where a, b are real positive numbers such that b < 1, and m ≥ 2 is an integer.
Such a curve is bounded. In fact, computing the derivative with respect to θ in Eq. (4.3) we find

ρ′ = abm sin(mθ)

(1 + b cos(mθ))2
.

Therefore ρ′ = 0 if and only if θ = k
mπ for some integer k. For such values of θ , Eq. (4.3) gives

ρmin := a

1 + b
, ρmax := a

1 − b
according to whether k is even or odd, respectively. Thus, the graph of the curve is contained in the circular crown
of radii a

1+b ,
a

1−b .
The case m = 3 looks of interest in some application to medical imaging (see [17,18] and Example 11). In this

case, the curve has degree 6 and a direct computation yields the cartesian equation

Ca,b : (x2 + y2)3 =
(
a(x2 + y2) − b(x3 − 3xy2)

)2
. (4.4)

A direct numerical check shows that the origin O = (0, 0) is the only singular point, of multiplicity 4, of the
curve Ca,b. The tangent cone at O is made up of two complex and conjugate lines, each one counted twice, of total
equation

(x2 + y2)2 = 0.

In particular, over the reals, O is an isolated point. Letting �1 : x + iy = 0, �2 : x − iy = 0 be the two distinct
tangent lines at O , one sees that the intersection multiplicity mO(Ca,b, � j ) of Ca,b with � j , j = 1, 2, equals six
(one unity bigger than the general case). We say in this case that O is a biflecnode (see e.g. [1, Sections 4.2 and
9.2.5]). In fact, such a singularity forces the curve to be rational. By using Maple 16 algcurves package, we find
for the curve with 3 convexities Ca,b a (rather complicate) rational parametric expression. For instance, in the case
a = b = 1, it becomes

C1,1 :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x = −t6 − t4 + t2 + 1

18t4 − 12t2 + 2

y = t5 + 2t3 + t

9t4 − 6t2 + 1

Moreover, for each m ≥ 2, the curve is symmetric with respect to the origin and to the m lines of equations

x sin

(
kπ

m

)
− y cos

(
kπ

m

)
= 0, k = 0, 1, . . . ,m − 1.

The shape of the curve with 3 convexities strongly depends on the values of the parameters. In particular, a is a
sort of scale factor, while, as much as the value of b increases as much the convexities of the curve are sharpened.
Figure 3 shows the curve for three different values of b with a fixed to 1.

As far as the Hough transform is concerned, fix a point P = (xP , yP ) in the image space A2
(x,y)(R). Then the

Hough transform of P with respect to the familyF = {Ca,b} is a degenerate conic �P (F) : r− ∪r+ in the parameter
plane A2

(A,B)(R), i.e., the union of the parallel lines

r∓ : A(x2P + y2P ) − B(x3P − 3xP y
2
P ) ∓

√
(x2P + y2P )3 = 0.

The fact that �P (F) is a degenerate conic could make the maximization of the accumulator function particularly
challenging. It is then worth noting that the line

r+ : A(x2P + y2P ) − B(x3P − 3xP y
2
P ) +

√
(x2P + y2P )3 = 0
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Fig. 3 Three curves with 3 convexities with a = 1 and, from left to right, b = 0.1, b = 0.3, and b = 0.6

doesn’t cross the region of interest to be discretized, defined by the conditions a > 0, 1 > b > 0 (see [18, Paragraph
2.1]). Therefore, in practice, the Hough transform of P can be assumed to be the single line of equation

r− : A(x2P + y2P ) − B(x3P − 3xP y
2
P ) −

√
(x2P + y2P )3 = 0.

The usual numerical check, by using conditions (3.1), shows that the family F is Hough regular.

Example 8 (Curve of Lamet). Consider the family F = {Ca,b} of curves of degree m of equation xm
am + ym

b = 1 or,
in polynomial form (2.1),

Ca,b : bxm + am ym = amb, (4.5)

for positive real numbers a, b. Clearly, the curve Ca,b is non-singular. By using standard facts about p-norms in Rn

(e.g., see [12]), we easily study the variance of the curve of Lamet, which is bounded for even values of m. Note
that, for instance, the case m = 3 leads to the unbounded Fermat cubic curve. Indeed, consider the diagonal matrix

W =
( 1

a 0

0 m
√

1
b

)
,

and compute the norm of the matrix product Wv, where v is the column vector

(
xP
yP

)
. Since a, b > 0 and m is

even, we find

||Wv||m := m

√ |xP |m
am

+ |yP |m
b

= m

√
xmP
am

+ ymP
b

,

where P = (xP , yP ) is a point in the image plane. Thus, P ∈ Ca,b if and only if ||Wv||m = 1. Since

||Wv||∞ := max

{ |xP |
a

,
|yP |
m
√
b

}
≤ ||Wv||m

for m ≥ 1, one then has max
{ |xP |

a ,
|yP |
m√b

}
≤ 1. In conclusion, the curve of Lamet is contained in the rectangular

region
{
P = (xP , yP ) ∈ A

2
(x,y)(R)

∣∣ − a ≤ xP ≤ a, −b1/m ≤ yP ≤ b1/m
}

.

For each point P = (xP , yP ) in the image plane, the Hough transform is the (m + 1)-degree curve in the
parameter plane A2

(A,B)(R) of equation

�P (F) : BxmP + Am ymP = AmB.
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Fig. 4 Curve of Lamet with m = 6 and a = 1, b = 0.01

The curve �P (F) has a singular point at the infinity; indeed [0, 1, 0] is a point of multiplicity m, showing that
�P (F) is a rational curve. A simple rational parametric representation is given by

�P (F) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = u

B = um ymP
um − xmP

, u ∈ R.

Finally, assume Ca,b = Ca′,b′ . Regularity conditions (3.1) rewrite in this case gi j (λ) = kgi j (λ′), (i, j) =
(m, 0), (0,m), (0, 0), leading to

b = kb′, am = ka′m, −amb = −ka′mb′

for some k ∈ R\{0}, respectively. Then ka′mb′ = amb = k2a′mb′, so that k2 = k, whence k = 1. Therefore b = b′
and am = a′m ; since a > 0 it follows a = a′. Thus, the family F is Hough regular.

In Fig. 4 we show the graph of a curve of Lamet.

5 The Recognition Algorithm

The technique which implements the Hough transformmethod is based on a suitable discretization of the parameter
space. We briefly describe here the algorithm on which such a technique is founded. Let F = {Cλ} be a family of
curves satisfying one of the two equivalent regularity conditions as in Lemma 3.3. From now on, throughout the
paper, we will assume K = R.

1. Consider a discretization in a region T of the parameter space A
t
(�1,...,�t )

(R), as follows. First, choose an
initializing point λ∗ = (λ∗

1, . . . , λ
∗
t ) in T and let dk be the sampling distance with respect to the component λk .

Then set

λk,nk := λ∗
k + nkdk, k = 1, . . . , t, nk = 0, . . . , Nk − 1, (5.1)

where Nk ∈ N denotes the number of considered samples for each component, and nk the index of the sample.
Then denote by

C(n) :=
{
λ = (λ1, . . . , λt ) ∈ T

∣∣ λk ∈ [
λk,nk − dk

2
, λk,nk + dk

2

)
, k = 1, . . . , t

}
(5.2)

the cell with center in the sampling point λn := (λ1,n1, . . . , λt,nt ) of the parameterized region T , where n
denotes the multi-index (n1, . . . , nt ). We refer to C(n) as the cell represented by the point λn, and we also
denote by C(λ) the cell containing the point λ ∈ T .
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Let us stress the fact that the discretization is defined by relation (5.1), that is, by the choice of the initial-
izing point λ∗ ∈ T and the discretization step d := (d1, . . . , dt ). We will also denote a discretization by
{λ∗, d}.

2. We define a multi-matrix H = (hn1n2...nt ) of type N1×· · ·×Nt , called the accumulator matrix, or accumulator
function. One first initializes each entry H(n) := hn1n2...nt of H by setting

H(n) = 0, nk = 0, . . . , Nk − 1, k = 1, . . . , t.

3. Choose a number of points of interest, say Pj , j = 1, . . . , ν, in the image space A
2
(x,y)(R). Consider in

A
t
(�1,...,�t )

(R) the Hough transform �Pj (F) of the point Pj =: x j of Eq. (2.2), that is,

�Pj (F) = {
λ ∈ A

t
(�1,...,�t )

(R) | F(x j , λ) = 0
}
, j = 1, . . . , ν.

Then define

H(n) := hn1n2...nt := #{Pj | �Pj (F) ∩ C(n) �= ∅, 1 ≤ j ≤ ν}.
That is, H(n) is the number of the points Pj such that the corresponding Hough transform �Pj (F) passes
through the cell C(n), 1 ≤ j ≤ ν. We also refer to this step as to the process of voting the accumulator matrix.
See Example 9 for the discussion of a special notable case.
Let us point out a parallelism between the exact context discussed in Sect. 2 and the present discretized

setting. Indeed, duality relation (2.3) can be interpreted as saying that the above condition �Pj (F) ∩C(n) �= ∅
assures Cλn to be a curve approximating the points Pj ’s. That is, when the discretization step d tends to zero the
inequality �Pj (F)∩C(n) �= ∅ becomes a passage condition through the center λn of the cellC(n). In symbols,
for j = 1, . . . , ν,

lim
d→0

(
�Pj (F) ∩ C(n) �= ∅) = λn ∈ �Pj (F).

4. Wewant to find a curve from the familyF , say Cλopt , best approximating the profile of interest (which determines,
of course, the choice of the data set of points Pj ’s as in Step 3, some of them possibly perturbed by noise). Let
λopt = (λ

opt
1 , . . . , λ

opt
t ) be the center of the cell C(n) whose corresponding entry hn1n2...nt of the accumulator

matrix will take (local) maximum value m.1 By what previously observed, the curve Cλopt approximates the
maximum number, m, of points among P1, . . . , Pν . This suggests Cλopt as a potential candidate curve to best
approximate the profile of interest.

Note that Theorem 3.2 and Lemma 3.3 establish a theoretical support to overcome a possible ambi-
guity due to the presence of noise in the image. More precisely, assume that the previous argument
leads to a further cell C(n′), corresponding to the entry hn′

1n
′
2...n

′
t
of the accumulator matrix H , giving

a “false” (local) maximum m due to the presence of noise among the points Pj ’s. In such a way, we
would find a further potential candidate curve C

λopt
′ to approximate the profile. Thus, Theorem 3.2(2)

suggests the identity Cλopt = C
λopt

′ to be true. In an exact context, the regularity property then would

apply to give λopt = λopt
′
, so that the curve Cλopt would be univocally determined by the parameter

λopt.
Of course, λopt is determined up to the discretization {λ∗, d}.

5. To explicitly find the cell C(n) represented by the point λopt, make a scanning of the accumulator func-
tion. By computing its maximum we then determine the t-tuple (λ

opt
1 , . . . , λ

opt
t ) which represents the cell

in question and which characterizes the equation of the seeked curve Cλopt best recognizing the profile of
interest.

Figure 5 describes the behavior of the recognition algorithm for an elliptic curve of Eq. (4.1), where in the
recognition procedure we take as known the parameters n and b and we try to recover the parameters m and a. We

1 Note that if two or more local maxima are obtained in different cells, they essentially correspond to two or more different curves from
the family.
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Fig. 5 Recognition of an elliptic curve, Eq. (4.1) with m = −1, n = 0, a = −4 and b = −7. Top left dataset points sampled on the
curve; top right Hough transforms of the dataset points; bottom left accumulator function; bottom right recognized curve with dataset
points superimposed

start from a synthetic dataset of 154 points satisfying the curve equation (Fig. 5, top left panel) and we show the
Hough transforms of the points in the dataset (straight lines in the parameter space A

2
(M,A)(R), Fig. 5, top right

panel), the accumulator function (Fig. 5, bottom left panel), and the result of the recognition (Fig. 5, bottom right
panel).

Example 9 (Voting the accumulator matrix in the case of rational Hough transforms). In “most cases”, for t = 2
parameters, the Hough transform turns out to be a rational plane curve. For instance, this is always the case when
the polynomials gi j (λ) occurring in Eq. (2.1) are either linear or quadratic in the parameters λ = (a, b), so that the
Hough transforms are either lines or conics (see [2,17] for explicit examples).

With the notation as above, let’s assume that, for a general point P in the image plane A
2
(x,y)(R), the Hough

transform �P (F) is a rational curve in the parameter plane 〈A, B〉. It can be therefore expressed in the parametric
form (compare with Example 8):

�P (F) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A = a1(u)

b1(u)

B = a2(u)

b2(u)

, u ∈ R,
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where a1(u), a2(u), b1(u), b2(u) are polynomials in R[u]. Thus the condition
�P (F) ∩ C(n) �= ∅
as in Step 3) above is equivalent to ask that the system of polynomials inequalities
(
λ1,n1 − d1

2

)
b1(u) ≤ a1(u) <

(
λ1,n1 + d1

2

)
b1(u)

(
λ2,n2 − d2

2

)
b2(u) ≤ a2(u) <

(
λ2,n2 + d2

2

)
b2(u)

has a solution.

Remark 5.1 (Presence of “false” maxima). Le F be a family of curves Cλ : fλ(x, y) = 0 as in Sect. 2. Assume that
the defining polynomial fλ(x, y) is identically zero for λ = (0, 0, . . . , 0) =: 0, that is, the locus C0 is the whole
image plane A2

(x,y)(R). By the duality condition (2.3), we then have in the parameter space:

(0, 0, . . . , 0) ∈ �P (F) for each point P ∈ A
2
(x,y)(R).

The fact that all Hough transform pass through the origin of the parameter space clearly leads to a “false”
maximumwhen we discretize a region T containing the origin. Even if we assume λ �= (0, 0, . . . , 0)when defining
the family F = {Cλ}, this situation may cause serious problems in the determination of the maximum of the
accumulator function as in Step 5 of the recognition algorithm outlined above, mainly depending on the shape of
the Hough transforms. An accurate case by case ad hoc argument may be needed to overcome the problem.

Relevant cases where this problem actually occurs are the conchoid of Slüse and the Lamet curve described in
Examples 6 and 8, respectively.

Remark 5.2 The computation of the accumulator function and its maximization is the most time-consuming step
of the algorithm. Further, it strongly depends on the number of parameters, since the dimension of the domain
of this function is given by the number of parameters in the game. Even though the theory, and the algorithmic
aspects, presented in this section hold true in the above general framework, in practice, the computational burden
associated to the accumulator function computation and optimization leads to the need of restricting to families of
curves depending on a small number of parameters.

On the other hand, evidences show how including roto-translations and even scaling of the variables is a matter
of importance (see, for instance, the discussion in [6, Remark 2.1 and Paragraph 3.1]), this increasing (by up to
six) the number t of the parameters λ = (λ1, . . . , λt ) and then making heavier all computations. Work to establish
such a relevant extent is in progress (we also refer to [25] for related results). The symmetry algorithm and its
applications, presented in Sects. 6 and 7 below, offer a new, alternative, valuable approach to characterize reflection
symmetries and then to decrease the dimension of the parameter space.

6 The Symmetry Algorithm

A continuous imagemay be defined as a 2-dimensional continuous function, with respect to the Euclidean topology,

f : R1 × R2 → [0,∞) ⊂ R,

where R1, R2 are closed Euclidean intervals inR, x and y are plane coordinates, and the value (also called amplitude)
of f at any pair of coordinates (x, y) is called the intensity of the image at that point. When x , y and the amplitude
values of f are all finite, discrete quantities, we call the image a digital image and we refer to the intensity values
as gray levels. Note that a digital image is composed by a finite number of elements, each of which has a particular
location and value. These elements are referred to as pixels.

To convert the continuous image represented by the function f to digital form, we have to sample the function
in both coordinates (sampling) and in amplitude (quantization). The function f = f (x, y) is then a digital image
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Fig. 6 Sample image in gray levels where black and white colors represent the minimum and maximum value respectively, isolines of
the image intensity (red contours), and gradient field of the image (blue arrows)

if (x, y) ∈ Z
2+ and f is a function that assigns a gray level value (that is a real number) to each distinct pair of

coordinates (x, y). The result of sampling and quantization is a matrix f = { fi, j } whose entries are real numbers
(see [13] for basic concepts and methodologies for digital image processing).

The algorithm for the search of axes of symmetry in images is based on a fundamental ingredient, the computation
of the numerical gradient of the image, and on the assumption that pairs of points where gradient directions are
similar can not be symmetrical with respect to an axis of symmetry.

Given a digital image f = {
fi, j

}
, where i = 1, . . . , I and j = 1, . . . , J , the image gradient outlines directional

changes in the gray levels of the image. At each image point (i.e., at each pixel), the gradient points in the direction of
largest possible intensity increase, and its magnitude corresponds to the rate of change in that direction (see Fig. 6).
As a consequence, in image processing, the gradient is commonly used to detect boundaries of objects present in
images (i.e., for edge detection purposes). As for the computation of the gradient is concerned, recall that an image
is a matrix whose entries are determined by particular locations and values. Then, to compute the gradient, just
approximations of the derivatives in the horizontal and vertical directions can be defined. The most common way to
compute them is to convolve the input image with a kernel (see [13, Chapter 3, Section 3.7.3] for a basic description
on computation and use of the gradient in digital image processing).

The symmetry algorithm is made of the following steps.

1. Computation of the gradient.Gradient images f (x) and f (y), in the x and y directions respectively, are computed

by using Sobel’s gradient operator ([13], p. 136). The Sobel operator uses two 3× 3 kernels S(x) =
{
S(x)
m,n

}
and

S(y) =
{
S(y)
m,n

}
, m, n = −1, 0, 1, where

S(x) =
⎡

⎣
−1 0 1
−2 0 2
−1 0 1

⎤

⎦ S(y) =
⎡

⎣
−1 −2 −1
0 0 0
1 2 1

⎤

⎦ , (6.1)

which are convolved with the original image to calculate numerical approximations of the derivatives, that is,

f (x)
i, j =

1∑

m=−1

1∑

n=−1

S(x)
m,n fi+m, j+n and f (y)

i, j =
1∑

m=−1

1∑

n=−1

S(y)
m,n fi+m, j+n . (6.2)

The set S of pixels where the gradient magnitude is greater than a fixed threshold defines the set of edge points.
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Fig. 7 Symmetry condition applied to two different pairs of edge points (red dots). Left the selected pair of points satisfies the symmetry
condition and then the corresponding middle point (purple dot) is added to the midpoint map. Right the symmetry condition is not
satisfied (angles outlined by purple and yellow arcs are clearly different), so the considered pair of points does not contribute to the
midpoint map

2. Computation of the gradient direction. The gradient direction in each pixel P = (i, j) ∈ S is obtained by the
angle

θi, j =

⎧
⎪⎪⎨

⎪⎪⎩

arctan
f (y)
i, j

f (x)
i, j

if f (x)
i, j �= 0

π
2 if f (x)

i, j = 0,

(6.3)

i.e., by the angle between the gradient vector and the x-axis.
3. Selection of potentially symmetrical pairs of points. Under the hypothesis that pairs of points having similar

gradient directions can not be symmetrical with respect to an axis of symmetry, only the pairs P1 = (i1, j1),
P2 = (i2, j2) ∈ S for which |θi1, j1 − θi2, j2 | > ε1 are selected, where ε1 is a fixed threshold.

4. Verification of symmetry condition. For each pair of points P1, P2 ∈ S selected as described at the previous item,
we say that the two points are symmetrical with respect to an axis of symmetry if the two gradient vectors form
congruent angles with the line joining the two points (see Fig. 7). As a consequence, we define the condition
symmetry in the following way:

(i) let v1 =
(
f (x)
i1, j1

, f (y)
i1, j1

)
and v2 =

(
f (x)
i2, j2

, f (y)
i2, j2

)
be the gradient vectors in P1 and P2, respectively;

(ii) let d12 = (i2 − i1, j2 − j1) and d21 = (i1 − i2, j1 − j2) be the vectors from P1 to P2 and from P2 to P1,
respectively;

(iii) let α1 = arccos v1 · d12|d12||v1| and α2 = arccos v2 · d21|d21||v2| be the angles formed by the gradient vectors v1 and v2
with the line passing through P1 and P2;

(iv) we say that P1 and P2 are symmetrical points if the condition |α1 − α2| < ε2 is verified, where ε2 is a fixed
threshold.

5. Construction of the midpoint map. Provided that at the previous item n pairs of points have been identified as
symmetrical points, we then define the midpoint map as a matrix M = {

Mi, j
}
of type I × J with binary values

different from 0 just in the n pixels corresponding to the midpoints of each pair.
6. Hough transform for line detection. Finally, the application of the Hough transform for lines detection in the

midpoint image allows one to detect the axis (or axes) of symmetry.

We provide here some examples.

Example 10 Consider the simple binary image (just two gray levels are allowed) shown at the top of Fig. 8. The
computation of the gradient, as previously described, allows the identification of the pixels defining the edge of the
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Fig. 8 Top original image.Middle left edge points (blue dots) and gradient vectors (red arrows).Middle right zoom of the middle left
panel. Bottom left edge points (blue dots) and midpoints (red dots). Bottom right axis of symmetry (red line) identified by applying the
Hough transform for line detection to the midpoints set
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Fig. 9 Detection of the axes of symmetry for the curve with 3 convexities Ca,b with a = 0.8, b = 0.6. Top original image. Bottom left
edge points (blue dots) and midpoints (red dots). Bottom right edge points (blue dots) and the three axes of symmetry

arrow. These pixels can be represented as points in a cartesian plane (blue dots in the middle panels of Fig. 8) where
the coordinate axes are related to the row and column indices of the image. The analysis of gradient directions (red
arrows in the middle panels of Fig. 8) allows the selection of potentially symmetrical pairs of points, and then the
verification of the symmetry condition for building the midpoints map (red dots in the bottom left panel of Fig. 8).
As a final step, the application of the Hough transform for line detection to the set of midpoints results in the
identification of the axis of symmetry of the arrow shape, as shown in the bottom right panel Fig. 8.

Example 11 The top panel in Fig. 9 represents an image of the region bounded by the graph of the curve with 3
convexities of polar Eq. (4.3),

C0.8,0.6 : ρ = 0.8

1 + 0.6 cos(3θ)
.

The bottom left panel shows the edge points (blue dots) together with the midpoint map (red dots), while the bottom
right panel displays the three main axes of symmetry of the curve (red, green and black lines), correctly detected
by using the Hough transform for the family of lines expressed in normal parametrization form (3.2).

Example 12 Consider now the region enclosed between two concentric ellipses (see top left panel in Fig. 10) and
the corresponding midpoint map we can construct (see top right panel in Fig. 10). Given the intrinsic symmetry
of an ellipse, we can meanwhile find a lot of axes of symmetry by iterating the last step of the algorithm (bottom
left panel). On the other hand, it could be more interesting to identify a sort of “ellipse-type symmetry” instead of
the usual axial symmetry. If we look at the midpoint map we can recognize an ellipse-shape set of midpoints. To
identify the equation of a curve best approximating such a shape we can simply follow the argument as in the last
step of the algorithm, by using, instead, a family F = {Ca,b} of ellipses Ca,b : ax2 + by2 = 1 (see bottom right
panel).
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Fig. 10 Detection of symmetries in an image depicting the region enclosed between two ellipses. Top left original image. Top right
the midpoint map. Bottom left midpoints (blue dots), multiple axes of symmetry (red lines) identified by using the Hough transform
recognition algorithm and plots of the ellipses used to build the inner and outer profiles of the ring in the original image (equation
1
2 x

2+ y2 = 1 for the yellow ellipse, and 2x2+4y2 = 1 for the green one). Bottom right plot of the ellipse of equation 0.9x2+1.8y2 = 1
(red line) identified by applying the Hough transform approach for ellipse detection to the midpoint map

Example 13 Let us now play with elliptic curves, trying to do something similar to what we have done in Example
12. Then, let us consider the image representing a limited portion of the region enclosed between two elliptic curves
(see Fig. 11, top left panel) and construct the midpoint map (top right panel) by using the symmetry algorithm. We
can now think to a sort of “elliptic-type symmetry” and recognize in the picture an “elliptic-shape” set of midpoints.
To identify the equation of a curve best approximating such a shape we can again follow the argument as in the last
step of the algorithm, by using, in this case, a family F = {Ca,b,m} of cubic curves expressed in a variant of the
Weierstrass form, Ca,b,m : y2 = mx3 + ax2 + b (see the red curve in the bottom panel, Fig. 11).

7 Applications

As outlined in the Sect. 1, the search for symmetries in images is an important issue not only per se, but for several
applications in pattern recognition, such as face recognition. The examples provided in the previous section suggest
an interesting and innovative way to apply the Hough transform-based technique for symmetry detection, presented
in Sect. 6, as a pre-processing step for the Hough transform recognition algorithm, with useful applications, for
instance, in medical imaging.

Remark 5.2 highlights the main limitation of the Hough transform recognition procedure: the dimension of the
parameter space A

t
(�1,...,�t )

(R) depends on the number t of parameters in the game and, as a consequence, the
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Fig. 11 Detection of symmetries in an image depicting the region enclosed between two elliptic curves. Top left original image. Top
right the midpoint map. Bottom plots of the two elliptic curves used to build the two elliptic-shape profiles in the image (equation
y2 = x3 + x2 + 1 for the green elliptic curve, and y2 = x3 + 2x2 + 2 for the yellow one), and plot of a third elliptic curve of equation
y2 = 0.81x3 + 1.2x2 + 1.4 (red line) identified by applying the Hough transform approach for elliptic curve detection to the midpoint
map

complexity of the recognition algorithm exponentially depends on t . Further, increasing the number of parameters
has a practical implication, that is, as much as the number t increases as much it becomes difficult to optimally
discretize the region T of the parameter space, where the search for the optimal t-tuple λopt has to be performed
(this potentially reducing the efficiency of the recognition algorithm). On the other hand, in real applications it
is mandatory to take into account of possible roto-translations and scaling factors, this leading to the need of
finding a good compromise between generality and computational costs. Thus, in practice, one usually restricts
to consider families of curves depending on as few parameters as possible, handling heuristically the problem of
fixing roto-translations and scaling parameters in a pre-processing step. The question these considerations may raise
is:

How can we proceed to reduce the number t of parameters without loss of generality and without reducing
(in fact, possibly increasing) the efficiency of the recognition algorithm?

A possible answer to this question is:
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Fig. 12 Top left original CT image of a human vertebra. Top right binary image containing the edge points obtained by using Sobel
operator. Bottom axis of symmetry (red line) identified by the symmetry algorithm superimposed to the edge points (blue dots)

Fig. 13 Recognition of the spinal canal profile of Fig. 12 by using the curve with 3 convexities of Eq. (4.4). Left superposition of the
recognized curve to the original CT image. Right superposition of the recognized curve to the edge points. The curve best approximating
the profile turns out to be of equation (x2 + y2)3 = (

10.2(x2 + y2) − 0.12(x3 − 3xy2)
)2
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Fig. 14 Example of a vertebra profile not alignedwith the coordinate axes. Top left original CT image. Top right binary image containing
the edge points obtained by using Sobel operator.Bottom axis of symmetry (red line) identified by the symmetry algorithm superimposed
to the edge points (blue dots)

In order to automatically fix all the parameters concerning roto-translations of the image, we can exploit all
information about symmetries we can infer by using the symmetry algorithm described in Sect. 6.

To support this statement, let us recall a problem of great interest in medical imaging: the recognition of
bone profiles [6,10,17,18]. As a first example, let us consider a X-ray Computed Tomography (CT) image of
a human vertebra (see Fig. 12, top left panel), with the aim to identify the curve best approximating the spinal
canal profile. To this end, we will use the family of curves with 3 convexities described in Example 7, in the
form of Eq. (4.4), as successfully proposed in [18]. An edge detection algorithm based on the computation of
the image gradient allows the extraction of the edge points (see Fig. 12, top right panel) to whom we apply
the symmetry algorithm. As shown in the bottom panel of Fig. 12, the axis of symmetry we find is horizontal,
suggesting that, in this case, no rotations are needed. Then, the application of the Hough transform recognition
algorithm leads to the very good result shown in Fig. 13, where the recognized curve is superimposed to both,
the edge points (right panel) and the original image (left panel). Let us now consider a second example where
the vertebrae profiles are not perfectly aligned with the axes of the CT acquisition as in Fig. 14, where the appli-
cation of the symmetry algorithm detects an axis of symmetry with a slope slightly different from zero (Fig.
14, bottom panel). The application of the Hough transform recognition algorithm, without using the informa-
tion coming from the symmetry algorithm, leads to the non optimal result shown in the top panels of Fig. 15.
On the other hand, if we previously rotate the edge points consistently with the slope of the identified axis of
symmetry, the Hough transform-based detection technique is able to achieve more precise results in the recogni-
tion of the spinal canal profile (see Fig. 15, bottom panels). A different, but analogous, example is presented in
Fig. 16.
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Fig. 15 Recognition of the spinal canal profile in the CT image of Fig. 14 by using the curve with 3 convexities of Eq. (4.4), with or
without information on the axis of symmetry. Top panels results obtained with no preliminary rotation of the edge points. The recognized
curve has equation (x2 + y2)3 = (

10.1(x2 + y2) − 0.35(x3 − 3xy2)
)2. Bottom panels results obtained with a preliminary rotation of

the edge points. The recognized curve has equation (x2 + y2)3 = (
10.4(x2 + y2) − 0.2(x3 − 3xy2)

)2

As a final application of the symmetry algorithm, we have considered a stack of 111 CT images of a human
spine and, for each slice, we have automatically detected the axis of symmetry of the corresponding vertebra. The
algorithm turns out to be very robust with a rate of 72 % cases in which the axis of symmetry has been correctly
identified, a rate of 9 % cases where the axis has not been correctly determined, and a remaining 19 % cases in
which the detected axis is acceptable but slightly tilted with respect to the true one. In Fig. 17, results corresponding
to the processing of six among these 111 slices are presented.
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Fig. 16 Recognition of the spinal canal profile in a CT image by using the curve with 3 convexities of Eq. (4.4), with or without
information on the axis of symmetry. Top left binary image containing the edge points. Top right axis of symmetry (red line) identified
by the symmetry algorithm superimposed to the edge points (blue dots). Middle panels result obtained with no preliminary rotation of
the edge points. The recognized curve has equation (x2 + y2)3 = (

11.1(x2 + y2) − 0.02(x3 − 3xy2)
)2. Bottom panels result obtained

with a preliminary rotation of the edge points. The recognized curve has equation (x2 + y2)3 = (
9.8(x2 + y2) − 0.32(x3 − 3xy2)

)2
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Fig. 17 The symmetry algorithm in action on a whole stack of CT images of a human spine

8 Conclusions

In this paper we develop a Hough-type technique able to identify curves of symmetry in images. In the case of
straight lines we discuss a real world application in the framework of medical imaging. The general case of various
shapes seems to be an intriguing matter in different areas, and it is under investigation. Also, a comparison of our
technique with several methods mainly developed in computer vision, quoted in the Sect. 1, appears as a challenging
tool for future work.
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