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Abstract We study preprocessing techniques for clause normal forms of LTL formulas. Applying the mechanism
of labeled clauses enables us to reinterpret LTL satisfiability as a set of purely propositional problems and thus to
transfer simplification ideas from SAT to LTL. We demonstrate this by adapting variable and clause elimination,
a very effective preprocessing technique used by modern SAT solvers. Our experiments confirm that even in the
temporal setting substantial reductions in formula size and subsequent decrease of solver runtime can be achieved.
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1 Introduction

Propositional linear temporal logic (LTL) is a modal logic with modalities referring to time [13]. Traditionally, it
finds its use in formal verification of reactive systems where it serves as a specification language for expressing the
system’s desired behavior. The specifications are subsequently checked against a model of the system during the
process ofmodel checking [3]. More recently, the importance of LTL satisfiability checking is becoming recognized
[14,16], where the task is to decide whether a given LTL formula has amodel at all. This is, for instance, essential for
assuring quality of formal specifications [12]. Satisfiability checking of LTL is a computationally difficult task, in
fact a PSPACE-complete one [17], and thus techniques for improving solving methods are of practical importance.

One possibility for speeding up the checking lies in simplifying the input formula before the actual decision
method is started. In the context of resolution-based methods for LTL satisfiability [8,18], on which we focus here,
formulas are first translated into a clause normal form. Simplification then means reducing the number of clauses
and variables while preserving satisfiability of the formula. Such a preprocessing stepmay have a significant positive
impact on the subsequent running time.

In this paperwe take inspiration from theSATcommunitywhere a technique called variable and clause elimination
[5] has been shown to be particularly effective. It combines exhaustive application of the resolution rule over selected
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variables with subsumption and other reductions. Our main contribution lies in showing that variable and clause
elimination can be adapted from SAT to the setting of LTL. This is quite non-trivial, because LTL normal forms
consist of temporal clauses, which are bound to specific temporal contexts and so their interactions in inferences
and reductions need to be carefully controlled.

A general method for reducing LTL satisfiability to the purely propositional setting has been introduced in [18].
There, the existence of a model of an LTL formula is shown to be equivalent to satisfiability of one of infinitely
many potentially infinite standard clause sets. These are, however, finitely represented with the help of labels, which
allows for an effective transfer of resolution-based reasoning techniques from propositional logic to LTL. In this
paper, we extend the ideas of [18] to adapt variable and clause elimination. An additional label component is needed
to justify elimination in its general form, but we prove it can be dispensed with after the elimination process.

Our exposition starts in Sect. 2, where we describe our version of clause normal form of LTL formulas, which we
call temporal satisfiability task (TST). TSTs are a particular refinement of the separated normal form [7], which can
be seen as concise representations of Büchi automata. This observation, which is of independent interest, represents
another contribution of this paper. The mechanism of labeled clauses itself is introduced in Sect. 3 and utilized
for variable and clause elimination in Sect. 4. Practical potential of our method is demonstrated in Sect. 5, where
we describe the effect of the simplification on runtimes of two resolution-based LTL provers over an extensive set
of benchmark problems. In Sect. 6 we follow the connection to Büchi automata to discuss related work, and we
conclude in Sect. 7 by mentioning possibilities for future work.

2 Preliminaries

We assume the reader is familiar with propositional logic and the syntax and semantics of LTL.1 LTL formulas
are built over a given signature � = {p, q, r, . . .} of propositional variables using propositional connectives
¬,∧,∨, . . ., and temporal operators©,�,♦, U, . . . Propositional clauses, denotedC, D, possibly with subscripts,
are sets of literals understood as disjunctions. A propositional valuation is a mapping W : � → {0, 1}. We write
W |� C if a valuation W propositionally satisfies a clause C . An interpretation of an LTL formula is an infinite
sequence of valuations (Wi )i∈N, in this context also referred to as states.

In order to talk about two neighboring states at once we introduce a disjoint copy of the basic signature �′ =
{p′, q ′, r ′, . . .}. Given a clause C over �, we write C ′ to denote its obvious counterpart over �′. For a valuation
W over � let W ′ denote the valuation over �′ that behaves on primed symbols in the same way as W does on
non-primed ones. We therefore have W |� C if and only if W ′ |� C ′ for any such W and C . If W1 and W2 are two
valuations over �, we let [W1,W2] denote the joined valuation W1 ∪ (W2)

′ : � ∪ �′ → {0, 1}. Such a valuation is
needed to evaluate clauses over the joined signature � ∪ �′.

Most resolution-based approaches to satisfiability checking first translate the input formula into a certain normal
form. In the context of LTL, the separated normal form (SNF) developed by Fisher [7] has proven to be very useful.
It is obtained from an LTL formula by applying transformations that (1) introduce new variables as names for
complex subformulas, (2) remove temporal operators by expanding their fixpoint definitions, (3) apply classical
rewrite operations to obtain a result which is clausal, i.e. represented by a top-level conjunction of certain temporal
clauses, which are disjunctive in nature. The whole transformation preserves satisfiability of the input formula and
it is ensured that the result does not grow in size by more than a linear factor [8].2

In this paper, we use a particular refinement of SNF which we call temporal satisfiability task (TST).3 To
obtain a TST, a general SNF is first normalized further by using the ideas of [4]. In particular, we transform certain
temporal clauses called conditional eventuality clauses to unconditional ones and then reduce the potentiallymultiple
(unconditional) eventuality clauses to just one eventuality clause.4 Finally, to obtain a compact representation, we

1 See Appendix A for a short overview.
2 A streamlined version of the transformation can be found in Appendix B.
3 Our previous work [18,20] uses the term “LTL-specification” for this concept.
4 A recapitulation of these refinements has been moved to Appendix B.
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explicitly sort the clauses into three categories, strip off the temporal operators � and ♦, and write the clauses
down as standard propositional ones using the priming notation. Even after these refinements the result is linearly
bounded in size and equisatisfiable with respect to the original formula.

Definition 2.1 A TST is a quadruple T = (�, I, T,G) such that

• � is a finite propositional signature,
• I is a set of initial clauses Ci over the signature �,
• T is a set of step clauses Ct ∨ (Dt )

′ over the joined signature � ∪ �′,
• G is a set of goal clauses Cg over the signature �.

The initial and step clauses are directly translated from SNF. The goal clauses all together express the single
eventuality obtained in the previous step. This generalization (from a single goal clause) is for free and appears to
make the definition conceptually cleaner. Intuitively, a TST stands for the LTL formula(∧

Ci

)
∧ �

(∧
(Ct ∨ ©Dt )

)
∧ �♦

(∧
Cg

)
,

which directly translates to the following formal definition.

Definition 2.2 An interpretation (Wi )i∈N is a model of T = (�, I, T,G) if

1. for every Ci ∈ I , W0 |� Ci ,
2. for every i ∈ N and every Ct ∨ (Dt )

′ ∈ T , [Wi ,Wi+1] |� Ct ∨ (Dt )
′, and

3. there are infinitely many indexes j such that for every Cg ∈ G, Wj |� Cg .

A TST T is satisfiable if it has a model.

Remark 2.3 We close this section with an interesting observation relating our approach to LTL satisfiability to
explicit methods based on automata. It is well known (see e.g. [9]) that for any LTL formula ϕ there is a Büchi
automaton Aϕ recognizing models of ϕ, i.e. an automaton that accepts exactly those valuations (Wi )i∈N that are
models of ϕ. The size of such an automaton, i.e. the number of its states, is bounded by 2|ϕ|, where |ϕ| denotes the
size of the formula.

Now we can easily interpret a TST T as a symbolic representation of such an automaton. The states of
the automaton are formed by the set Q = 2� , i.e. the set of all valuations over �, its transition function
δ = {(W1,W2) | [W1,W2] |� ∧

(Ct ∨ (Dt )
′)} contains those pairs of valuations that satisfy the step clauses,

and its initial and accepting sets are defined as QI = {W | W |� ∧
Ci } and QF = {W | W |� ∧

Cg}, respectively.
It is easy to check that the models of T are exactly the accepting runs of this automaton.

This way one can view the transformations from an LTL formula to SNF and further to a TST as an alternative
way of obtaining a Büchi automaton for the formula. Interestingly, it is only the last step, when the automaton is
made explicit, that incurs the inherent exponential blowup.

3 Mechanism of Labeled Clauses

The purpose of this section is to show that the task of LTL satisfiability can be reduced to a set of purely propositional
SAT problems. This provides a means for transferring the well-known resolution-based reasoning techniques from
the propositional level to that of LTL. In particular, it will in Sect. 4 allow us to transfer variable and clause
elimination. The reduction from LTL that we present leaves us with infinitely many propositional problems over an
infinite signature. Labels are then used to finitely represent and control clauses within these problems, abbreviating
entire clause sets.

Assume we have a TST T = (�, I, T,G) and want to decide satisfiability of the formula it represents. It is a
known fact that when considering satisfiability of LTL formulas attention can be restricted to ultimately periodic
[17] interpretations. These start with a finite sequence of states and then repeat another finite sequence of states
forever. This observation, which is one of the key ingredients of our approach, motivates the following definition.
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Fig. 1 Schematic presentation of the potentially infinite set of clauses that is satisfiable if and only if a TST T = (�, I, T,G) has a
(K , L)-model with K = 2 and L = 3. The axis represents the infinite signature �∗, while the gray bars stand for individual copies of
the initial, step, and goal clauses, respectively

Definition 3.1 Let K ∈ N, and L ∈ N
+ = N\{0} be given. An interpretation (Wi )i∈N is a (K , L)-model of

T = (�, I, T,G) if

1. for every C ∈ I , W0 |� C ,
2. for every i ∈ N and every C ∈ T , [Wi ,Wi+1] |� C ,
3. for every i ∈ N and every C ∈ G, W(K+i ·L) |� C .

We will call the pair (K , L) of natural numbers K ∈ N and L ∈ N
+ a rank of a model.

Satisfiability within a (K , L)-model for some values of K and L corresponds to the original semantics except
that the condition on the goal clauses to be satisfied in infinitely many states is now controlled and we require that
these states form an arithmetic progression with K as the initial term and L the common difference. Please consult
[19] for a detailed proof of why focusing only on (K , L)-models does not change the notion of satisfiability.

For a particular choice of K and L , the existence of a (K , L)-model can be stated as an infinite but purely
propositional problem over the infinite signature �∗ = ⋃

i∈N �(i). Here we extend the convention about priming
and allow it to be applied more than once. Thus along with signatures � and �′ we also have �′′, �′′′, . . . (also
written �(2), �(3), . . .), as other disjoint copies of the basic signature implicitly meant to represent states further in
the future. Now the purely propositional problem simply restates the definition of a (K , L)-model in the form of
clauses over �∗, making use of the natural bijection between propositional valuations over �∗ and interpretations.5
It consists of:

• the set of initial clauses I = {C (0) | C ∈ I },
• together with {C (i) | C ∈ T, i ∈ N},
• and with {C (K+i ·L) | C ∈ G, i ∈ N},
where the symbol C (i) means that each literal in C is being “moved i signatures forward”. Thus, e.g., for a clause
C = p ∨ q ′ over � ∪ �′ we denote by C (2) the clause p(2) ∨ q(3) over �(2) ∪ �(3). See Fig. 1 for an illustration of
the situation.

3.1 Introducing Labels

We have now reduced LTL satisfiability of a TST T to infinitely many (for every pair of K and L) infinite
propositional problems over �∗. We proceed by assigning labels to the clauses of T such that a labeled clause
represents up to infinitelymany standard clauses over�∗. Then an inference, such as resolution, performed between
labeled clauses corresponds to infinitely many inferences on the level of �∗. This is similar to the idea of “lifting”
from first-order theorem proving where clauses with variables represent up to infinitely many ground instances.
Here, however, we deal with the additional dimension of performing infinitely many reasoning tasks on the “ground
level” in parallel, one for each rank (K , L).

5 Given W ∗ : �∗ → {0, 1}, the corresponding interpretation (Wi )i∈N : N × � → {0, 1} is defined by the equation Wi (p) = W ∗(p(i))

for every i ∈ N and every p ∈ �.
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Definition 3.2 A label is a triple (b, k, l) ∈ {∗, 0} × ({∗} ∪ N) × N. A labeled clause C is a pair (b, k, l) ||C
consisting of a label and a standard clause over �∗.6

The three label components stand for three independent conditions on the time indexes to which the clause
relates. Intuitively, the first label component b relates the clause to the beginning of time and the second component
relates the clause to the indexes of the form K + i · L , where the goal should be satisfied. In both cases, ∗ stands for
a “don’t care” value, so if b or k equals ∗, the respective condition is trivially satisfied by any index. The third label
component restricts the set of (K , L) models for which the clause is relevant by a certain divisibility condition in
the values of L . It also has a default, “don’t care” value corresponding to a vacuous restriction, namely l = 0. The
precise statement of these conditions is postponed till Definition 3.4 below.

When a labeled clause set is constructed from a TST three particular label values are used:

Definition 3.3 Given a TST T = (�, I, T,G), the initial labeled clause set NT for T is defined to contain

• labeled clauses of the form (0, ∗, 0) ||C for every C ∈ I ,
• labeled clauses of the form (∗, ∗, 0) ||C for every C ∈ T , and
• labeled clauses of the form (∗, 0, 0) ||C for every C ∈ G.

Later on, new label values are computed from old ones using certain operations when labeled clauses interact
in inferences, as will be detailed shortly. The full generality of labels reflects an entire “closure” of the above three
initial values under these operations.

Semantics of labels and labeled clauses is given via a map to certain sets of time indexes.

Definition 3.4 Let a rank (K , L) be given. We define a set R(K ,L)(b, k, l) of indexes represented by the label
(b, k, l) as the set of all t ∈ N such that

1. b �= ∗ → t = 0 and
2. k �= ∗ → ∃s ∈ N . t + k = K + s · L and
3. L divides l.

A standard clause of the form C (t) is said to be represented by the labeled clause (b, k, l) ||C in (K , L) if
t ∈ R(K ,L)(b, k, l).

Example Let us assume that a TST T contains a goal clause (a ∨ b) ∈ G. In the initial labeled clause set NT this
goal clause becomes (∗, 0, 0) || a ∨ b. If we now, for example, fix K = 2 and L = 3 as in Fig. 1, our labeled clause
will represent all the standard clauses (a ∨ b)(t) with t ∈ R(2,3)(∗, 0, 0) = {2, 5, 8, . . .}.

Notice that when computing R(2,3)(∗, 0, 0), the condition on the first label component b is trivially satisfied
because b = ∗. Also the condition on the third label component l is vacuously true, since any number L ∈ N

+
divides 0. Thus we are looking for numbers t of the form t = K + s · L for some s ∈ N. This gives us the set
R(2,3)(∗, 0, 0) = {2, 5, 8, . . .}.

The semantics of labels is chosen such that for any given rank (K , L) the standard clauses over �∗ represented
by the labeled clauses from the initial labeled clause set NT form the previously described purely propositional
problem that encodes the existence of a (K , L)-model of T . That is the idea behind the following definition and
lemma which capture soundness of the translation of a TST into an initial labeled clause set.

Definition 3.5 Let N(K ,L) = {C (t) | (b, k, l) ||C ∈ N & t ∈ R(K ,L)(b, k, l)} denote the set of standard clauses
represented in (K , L) by the labeled clauses from N . A set of labeled clauses N is called (K , L)-satisfiable if there
is a valuation W ∗ : �∗ → {0, 1} which (propositionally) satisfies N(K ,L). The set N is called satisfiable if it is
(K , L)-satisfiable for some rank (K , L).

6 The theory allows for the full generality of �∗. As discussed later, in practice we restrict our attention to clauses over � ∪ �′.



332 M. Suda

Lemma 3.6 Let T be a TST and NT its initial labeled clause set. Then T is satisfiable if and only if NT is.
More precisely, for any rank (K , L) the initial labeled clause set NT is (K , L)-satisfiable if and only if T has a
(K , L)-model.

To justify the semantics of the remaining values and how they relate to soundness, we will need to first describe
the mentioned operations which act on labels during the resolution inference.

3.2 Label Merge

The ultimate goal of this section is to “lift” the classical resolution inference to labeled clauses. To achieve this goal
we first need to describe how to combine the labels of the inference’s premises to obtain the label of the inference’s
conclusion. This label is obtained using the merge operation.

Definition 3.7 The merge of labels (b1, k1, l1) and (b2, k2, l2) is a label (b, k, l) defined imperatively as follows:

• if b1 = ∗ then b ← b2 else if b2 = ∗ then b ← b1 else b ← 0,
• if k1 = ∗ then k ← k2 else if k2 = ∗ then k ← k1 else k ← min(k1, k2),
• if k1 = ∗ or k2 = ∗ then l ← gcd(l1, l2) else l ← gcd(l1, l2, |k1 − k2|),
where gcd stands for the greatest common divisor operation and gcd(0, 0) = 0.

Example Merge of (∗, 2, 0) and (∗, 5, 0) is (∗, 2, 3); we compute theminimumof the k components, and the greatest
common divisor of their difference and the original l components. Merge of (∗, 2, 3) and (∗, 2, 3) is (∗, 2, 3); merge
is, in fact, idempotent. Merge of (∗, 2, 3) and (∗, ∗, 0) is (∗, 2, 3); merge has, in fact, a neutral element (∗, ∗, 0).
Merge of (∗, 2, 3) and (0, 1, 4) is (0, 1, 1).

The merge operation is defined such that the way it acts on labels corresponds to the intersection operation on
the represented sets of indexes.

Lemma 3.8 Let (b, k, l) be the merge of labels (b1, k1, l1) and (b2, k2, l2). Then for any rank (K , L)

R(K ,L)(b, k, l) = R(K ,L)(b1, k1, l1) ∩ R(K ,L)(b2, k2, l2).

Proof The proof is straightforward from the definitions. We check by case analysis that

(b1 �= ∗ ⇒ t = 0) and (b2 �= ∗ ⇒ t = 0) is equivalent to (b �= ∗ ⇒ t = 0),

that

(k1 �= ∗ ⇒ ∃s ∈ N . t + k = K + s · L) and (k2 �= ∗ ⇒ ∃s ∈ N . t + k = K + s · L)

is equivalent to

(k �= ∗ ⇒ ∃s ∈ N . t + k = K + s · L),

provided (k1 = ∗ or k2 = ∗ or k1, k2 ∈ N and L divides |k1 − k2|), and, finally, that
(L divides l1) and (L divides l2) is equivalent to (L divides gcd(l1, l2)).

The only case that now needs additional explanation is when both k1, k2 ∈ N and k1 �= k2. To explore this
case, let us without loss of generality pick k1 < k2. We obtain for an index t represented by both labels that
t = K + s1 · L − k1 = K + s2 · L − k2 for some s1, s2 ∈ N, which implies k2 − k1 = (s2 − s1) · L . Hence the extra
divisibility condition which propagates to the third label component l (taking the absolute value of the difference
k1 − k2 in Definition 3.7 is just cosmetics). Notice, on the other hand, that if L divides k2 − k1 then any index t of
the form t = K + s1 · L − k1 can be also expressed as t = K + s2 · L − k2 (taking s2 as k2 − k1 divided by L),
but not necessarily vice versa, when k1 < k2. That is why the new value of the second label component k equals
min(k1, k2). See also the accompanying Fig. 2 to follow the argument. ��
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Fig. 2 A situation in which an index t is represented by two labels (b1, k1, l1) and (b2, k2, l2) such that k1, k2 ∈ N and k1 �= k2. Such
an overlap can happen if and only if L divides |k1 − k2|

3.3 Temporal Shift

The second operation on labels we need is temporal shift. Its intuitive role is to align one labeled clause with another
such that the variable over which we subsequently plan to resolve the two clauses occurs in both of them under the
same number of primes.

We define the temporal shift operation on labeled clauses by the following two equations

TS( (∗, ∗, l) ||C ) = (∗, ∗, l) || (C)′, (3.1)

TS( (∗, k, l) ||C ) = (∗, k + 1, l) || (C)′. (3.2)

Note that the operation is undefined for labeled clauses with the first component b = 0, because these only represent
standard clauses fixed to the time index 0.

Soundness of time shift is the statement that all the standard clauses represented by the right hand side of (3.1)
and (3.2) are also represented by the respective left hand sides in any rank (K , L).7

Lemma 3.9 Let (K , L) be a rank and let D = TS(C) for some labeled clause C = (∗, k, l) ||C, k ∈ ({∗} ∪ N).
Then any standard clause represented in (K , L) by D is represented in (K , L) by C.

Proof Let (C ′)(t) be a standard clause represented in (K , L) by D = (∗, k′, l) || (C)′. This means that t ∈
R(K ,L)(∗, k′, l). We either have k = ∗ and k′ = ∗ or k ∈ N and k′ = k + 1. In any case t + 1 ∈ R(K ,L)(∗, k, l), and
thus C (t+1) = (C ′)(t) is represented in (K , L) by C = (∗, k, l) ||C . ��

3.4 Labeled Resolution

We finally arrive to defining the labeled resolution operation. Because we in general allow arbitrarily many primes
in labeled clauses, the operation involves iterated application of temporal shift.

Definition 3.10 Let C1 = (b1, k1, l1) || p(i) ∨ C1 and C2 = (b2, k2, l2) || ¬p( j) ∨ C2 be two labeled clauses. Their
labeled resolvent over the variable p, denoted C1 ⊗p C2, is computed as follows:

1. If i = j then C1 ⊗p C2 equals the labeled clause (b, k, l) ||C1 ∨ C2 where (b, k, l) is the merge of the labels
(b1, k1, l1) and (b2, k2, l2).

2. If i < j and b1 = ∗ then C1 ⊗p C2 equals TS j−i (C1) ⊗p C2, where TSn stands for the n-fold application of the
temporal shift operation. This reduces the computation to the previous case.

3. If i > j and b2 = ∗ then C1 ⊗p C2 equals C1 ⊗p TSi− j (C2); analogously to case 2.
4. If either i < j and b1 = 0 or i > j and b2 = 0 then the resolvent is undefined.

Strictly speaking, the resolvent C1 ⊗p C2 does not depend just on the variable p, but more specifically on the
occurrences of the literals p(i) and ¬p( j) in the respective clauses. We will, however, only use Definition 3.10 in
situations where there is just one occurrence of a literal mentioning the variable p (possibly primed) in each of the
two clauses, and therefore, confusion will not arise.

7 The converse does not hold. For instance, the labeled clause (∗, ∗, 0) || p′ = TS( (∗, ∗, 0) || p ) does not represent the standard clause
p(0) in any rank (K , L), although the original clause (∗, ∗, 0) || p does.
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Example Let two labeled clauses (∗, 0, 0) || ¬p ∨ q and (∗, 0, 0) || r ∨ p′ be given. They cannot directly (as in
case 1 above) generate a labeled resolvent, although in (K , L) = (0, 1) there are (for every t) standard clauses
¬p(t+1) ∨ q(t+1) and r (t) ∨ p(t+1) represented, respectively, by the two labeled clauses, which resolve on p(t+1).
The first labeled clause first needs to be shifted to (∗, 1, 0) || ¬p′ ∨ q ′ (case 2), and the clauses then resolve on p′
and a labeled resolvent (∗, 0, 1) || r ∨ q ′ is obtained.

Labeled resolution operation is sound in the following sense.

Lemma 3.11 Let (K , L) be a rank. Any standard clause represented in (K , L) by the labeled resolvent C1 ⊗p C2
of clauses C1 and C2 is a propositional resolvent over some “instance” p(i) of the variable p of clauses represented
in (K , L) by C1 and C2, respectively.

Proof Follows from Lemmas 3.8 and 3.9. ��
More interestingly, labeled resolution operation is also designed to be complete, i.e. to lift every possible propo-

sitional resolution from the “ground level”.

Lemma 3.12 Let C1 = (b1, k1, l1) || p(i) ∨ C1 and C2 = (b2, k2, l2) || ¬p( j) ∨ C2 be two labeled clauses and let
(K , L) be a rank. If there are numbers n, t1, t2 ∈ N such that n = i + t1 = j + t2 and the clauses p(n) ∨ (C1)

(t1)

and ¬p(n) ∨ (C2)
(t2) are represented in (K , L) by C1 and C2, respectively, then the labeled resolvent C = C1 ⊗p C2

is defined and the propositional resolvent (C1)
(t1) ∨ (C2)

(t2) over p(n) is represented in (K , L) by C.

Proof The labeled resolvent is only undefinedwhen the corresponding temporal shift operation would be undefined.
Let us (without loss of generality) focus on one of the symmetrical cases when this happens and assume that i < j
and b1 = 0. Because b1 = 0 we must have t1 = 0, but then i + t1 = i < j ≤ j + t2 for any t2 ∈ N, and so there can
be no n = i + t1 = j + t2. In other words, whenever there are numbers n, t1, t2 ∈ N such that n = i + t1 = j + t2
and the clauses p(n) ∨ (C1)

(t1) and ¬p(n) ∨ (C2)
(t2) are represented in (K , L) by C1 and C2, respectively, then the

labeled resolvent C = C1 ⊗p C2 is defined.
To prove the second part of the lemma, we focus on case 2 of Definition 3.10. The remaining cases are simpler

(case 1) or analogous (case 3). We, therefore, assume that i < j and b1 = ∗. The clause TS j−i (C1) must be of the
form (b1, k′

1, l1) || p( j) ∨ (C1)
( j−i), where either k′

1 = k1 = ∗ or k′
1 = k1 + ( j − i). In both cases, by Definition 3.4

t1 ∈ R(K ,L)(b1, k1, l1) implies t2 = t1 − ( j − i) ∈ R(K ,L)(b1, k
′
1, l1).

Thus, by Lemma 3.8 t2 ∈ R(K ,L)(b, k, l), where (b, k, l) is the merge of labels (b1, k′
1, l1) and (b2, k2, l2), i.e. the

label of the labeled resolvent C1 ⊗p C2 = C. Thus C, which is of the form (b, k, l) || (C1)
( j−i) ∨ C2, in (K , L)

represents

((C1)
( j−i) ∨ C2)

(t2) = (C1)
( j−i)+t2 ∨ (C2)

(t2) = (C1)
(t1) ∨ (C2)

(t2).

��
Remark 3.13 The way we package the temporal shift operation with resolution is reminiscent to the use of most
general unifiers in first-order theorem proving. Indeed, we can understand temporal shift as a form substitution on
time indexes.

There is a straightforward encoding of LTL formulas and, in particular, of TSTs into first-order logic. The
encoding models time by first-order variables understood to range over the natural numbers. On the syntax level,
we have the constant 0 for the initial time point and the successor function s for modeling the single step from the
current time point X to the next s(X). Also, each signature symbol p ∈ � is translated to a monadic predicate
p(X), parameterized by the time point where it is supposed to hold. Table 1 shows three labeled clauses translated
this way.

In the light of this translation, the fact that temporal shift cannot be applied to initial clauses corresponds to
non-unifiability of the constant 0 with any term starting with the successor function s: that is the reason why clauses
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Table 1 Example labeled
clauses translated to
first-order logic

Labeled clause First-order clause

(1) (0, ∗, 0) || ¬p ∨ q ¬p(0) ∨ q(0)

(2) (∗, ∗, 0) || p′ ∨ r ′ ∀X. p(s(X)) ∨ r(s(X))

(3) (∗, ∗, 0) || ¬r ∨ q ∀Y. ¬r(Y ) ∨ q(Y )

(1) and (2) in Table 1 cannot be unified and resolved on p. The successful use of temporal shift corresponds to a
substitution: we can substitute Y �→ s(X) to unify clauses (2) and (3) of Table 1 and resolve them. Lemma 3.12
effectively states that the substitutions corresponding to temporal shift operation employed in Definition 3.10 are,
in fact, most general unifiers.

4 Elimination

By variable and clause elimination we understand the preprocessing technique described in [5] for simplifying
propositional SAT problems. It consists of a combination of a controlled version of variable elimination and of the
subsumption reduction8 for removing clauses, as described below. These two are alternated in a saturation loop
until no further immediate improvement is possible. In this section we show how the mechanism of labeled clauses
can be used to adapt variable and clause elimination to the context of LTL.

Propositional variable elimination relies on exhaustive application of the resolution inference rule. Given (stan-
dard) clauses C = p ∨ C0 and D = ¬p ∨ D0, their standard resolvent C ⊗ D is C0 ∨ D0. Now, given a
propositional problem in CNF consisting of a set of clauses N and a variable p, one separates N into three disjoint
subsets N = Np ∪ N¬p ∪ N0 of clauses. The first set, Np, is a set of clauses containing the variable p positively,
the clauses from N¬p contain p negatively, and N0 is a set of clauses without variable p. A new clause set N is
obtained as (Np ⊗ N¬p) ∪ N0, where Np ⊗ N¬p = {C ⊗ D | C ∈ Np, D ∈ N¬p}. The set N no longer contains
the variable p and is satisfiable if and only if N is.

The obtained set N may contain tautological clauses,9 which are redundant and should be removed. Then the sizes
of N and N are compared. In general, eliminating a single variable may incur a quadratic blowup. An elimination
step is only considered an improvement and should be committed to when the size of N is not greater than that of
N (possibly up to an additive constant). It is shown in [5] that improvement eliminations occur often in practice
and that they can be used to simplify the input formula considerably.

4.1 Lifting Variable Elimination to Labeled Clauses

Let us now turn to eliminating variables from TSTs. We know that TSTs naturally correspond to sets of labeled
clauses and these in turn represent propositional problems (albeit, in general, infinite ones) fromwhich variables can
be eliminated by the standard procedure described above. There is still a complication, however, because a single
variable p ∈ � from the TST corresponds to all its “instances” p, p′, p(2), . . . on the “ground level” of the signature
�∗. To be able to represent the result after elimination, all these instances need to be eliminated from the ground
level uniformly, in one step. This seems to be a difficult task when the TST contains a clause that mentions the
variable p in two different time contexts, like, for example, in ¬p ∨ q ∨ p′. In this case the individual eliminations
cannot be done independently from each other and we rule the case out from further considerations.

8 A standard clause C subsumes a clause D, if C’s literals are a subset of D’s literals. Subsumed clauses are redundant and can be
discarded.
9 A tautological clause contains both a variable and its negation.
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Remark 4.1 There are some interesting subcases where eliminating such a variable would, in theory, be possible
and would yield useful results. Consider the SNF containing p, �(¬p ∨ p′), �(¬p ∨ r), from which p can
be “semantically” eliminated and one obtains �r . On the other hand, eliminating p from the SNF containing
p, �(¬p ∨ ¬p′), �(p ∨ p′), �(¬p ∨ a) should give us a formula whose models (Wi )i∈N satisfy the condition
(i mod 2 = 0 ⇒ Wi |� a), which is a property known [21] not to be expressible by an LTL formula over the single
variable a.

Let us now, therefore, assume that we are given a set of labeled clauses N , perhaps an initial labeled clause set
for a TST T , and a variable p ∈ � such that no clause in N contains more than one possibly primed occurrence of
p. We separate N into Np ∪ N¬p ∪ N0, a subset containing p positively (possibly primed), a subset containing p
negatively (possibly primed), and a subset not containing p at all. A new set of labeled clauses N is constructed as
(Np ⊗p N¬p) ∪ N0, where Np ⊗p N¬p = {C1 ⊗p C2 | C1 ∈ Np, C2 ∈ N¬p} stands for the set of all the labeled
resolvents (Definition 3.10) over the variable p between labeled clauses from Np and N¬p, respectively.

Example Let us assume that a set N contains the following labeled clauses

(0, ∗, 0) || p ∨ q ∨ r, (4.1)

(0, ∗, 0) || ¬p ∨ ¬r, (4.2)

(∗, ∗, 0) || r ∨ ¬p′, (4.3)

(∗, 0, 0) || ¬p ∨ q, (4.4)

and these are the only labeled clauses of N mentioning the variable p. Then eliminating p from N means removing
the above labeled clauses and replacing them by all the possible labeled resolvents over p. Notice that, actually,

• the tautology (4.1) ⊗p (4.2) = (0, ∗, 0) || q ∨ r ∨ ¬r can be immediately dropped,
• and (4.1) ⊗p (4.3) is undefined, because temporal shift does not apply to (4.1).

Thus we replace in N the above four clauses by the only nontrivial resolvent (4.1) ⊗p (4.4) = (0, 0, 0) || q ∨ r .

We now show that variable elimination preserves satisfiability of the given clause set.

Theorem 4.2 Let N = Np ∪N¬p ∪N0 and N = (Np ⊗p N¬p)∪N0 be sets of labeled clauses as described above.
Then N is (K , L)-satisfiable if and only if N is.

Proof Let us first assume that N is (K , L)-satisfiable. This means there is a valuation V : �∗ → {0, 1} such that
V |� N(K ,L). In order to show that N is (K , L)-satisfiable, we construct a new valuation V : (�)∗ → {0, 1}, where
� = �\{p} is the reduced basic signature. Similarly to the propositional case, we do this by simply forgetting the
value of eliminated variable’s instances:

V (q(i)) = V (q(i))

for every q ∈ � and every i ∈ N. Now we need to show that V |� N (K ,L).
Because the variable p does not occur in the clauses of N0, we have directly that V |� (N0)(K ,L). Let us now take

a clause E ∈ (Np ⊗p N¬p)(K ,L). By Lemma 3.11, E must be of the form C ∨ D for some p(i) ∨ C ∈ (Np)(K ,L)

and ¬p(i) ∨ D ∈ (N¬p)(K ,L). Because these two clauses are true in V by assumption, their resolvent E is true in V
by soundness of propositional resolution. Because the variable p does not occur in E , the clause is also true in V .

To show the opposite direction let us assume that the set N is (K , L)-satisfiable, i.e., that there is a valuation
V : (�)∗ → {0, 1} such that V |� N (K ,L). We extend V to a valuation V over �∗ by defining for every i ∈ N

V (p(i)) = 1 if and only if there is a clause p(i) ∨ C ∈ (Np)(K ,L) such that V �|� C.

Note that the definition is correct, because by our restriction on variable elimination no instance of p occurs in the
clause C above. Next we show that V |� N(K ,L).
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The fact that V |� (N0)(K ,L) follows again trivially from the assumption. Also, from the way we extended
V to V , we have V |� (Np)(K ,L). Let us prove by contradiction that also V |� (N¬p)(K ,L). Assume there is
a clause ¬p(i) ∨ D ∈ (N¬p)(K ,L) false in V . This means V (p(i)) = 1 and, therefore, there is another clause
p(i) ∨ C ∈ (Np)(K ,L) such that C is false in V . We must have that the propositional resolvent C ∨ D is false in V .
But by Lemma 3.12, we have C ∨ D ∈ (Np ⊗p N¬p)(K ,L). A contradiction. ��

Apart from the previously explained restriction, there is another limitation on practical variable elimination.
Consider a clause set containing the following two labeled clauses:

(∗, ∗, 0) || ¬x ∨ p′ and (∗, ∗, 0) || ¬p ∨ y′.
Eliminating p from the set would yield (possibly among other clauses) the labeled clause

(∗, ∗, 0) || ¬x ∨ y′′.
This could be a useful simplification in some contexts, but notice that it got us outside SNF and TSTs, because y
now occurs doubly primed.
Although we normally avoid eliminating variables like p above, there is, nevertheless, an advantage in knowing
that such a step has a proper meaning and can be performed. If the problematic resolvent could be, for instance,
shown redundant in the clause set (e.g. by subsumption), it would be sound to remove it and the desired syntactic
simplicity of the clause set would be preserved.

4.2 Eliminating Labeled Clauses by Subsumption

Let us now turn to reductions and in particular to showing how to extend subsumption to work with labels. To
lift propositional subsumption, we use the same idea as with resolution: any standard clause represented by the
subsumed labeled clause must be subsumed by a standard clause represented by the subsuming labeled clause. This
is achieved by the following:

Definition 4.3 A labeled clause (b1, k1, l1) ||C subsumes a labeled clause (b2, k2, l2) || D, if C subsumes D (i.e.,
C ⊂ D) and the merge of the labels (b1, k1, l1) and (b2, k2, l2) is equal to (b2, k2, l2).

In analogy to resolution, the subsumption relation on labeled clauses can be made stronger if we allow the
subsuming clause (but not the subsumed one) to be potentially shifted in time. For example, the clause (∗, ∗, 0) || q
subsumes (∗, 1, 0) || p∨q ′ in this sense. On the other hand, the clause (∗, ∗, 0) || q ′ cannot subsume (∗, ∗, 0) || p∨q,
because there is a standard clause represented by the latter, namely (p ∨ q)(0) = p ∨ q, which is not subsumed by
any standard clause represented by the former.

The following theorem states soundness of labeled clause elimination by subsumption.

Theorem 4.4 Let N and Ñ be sets of labeled clauses, such that Ñ ⊆ N and for everyD ∈ N\Ñ there exists C ∈ Ñ
such that C subsumes D. Then N is (K , L)-satisfiable if and only if Ñ is.

Proof As in the propositional case, a subsumed clause can be removed, because the constraint it imposes on the
possible valuations is implied by that of the present subsuming clause. ��

4.3 Elimination of “Exotic” Labels

We know that only the clauses labeled by (0, ∗, 0), (∗, ∗, 0) and (∗, 0, 0), which are the labels used in the definition
of the starting labeled clause set, directly correspond to initial, step and goal clauses of a TST, respectively. When
clauseswith other labels arise during elimination, the subsequent procedure for deciding satisfiability of the resulting
set needs to know how to deal with them. Interestingly, according to the theorem below, we may drop several kinds
of labeled clauses just after they are created without affecting satisfiability of the clause set.

We will need a simple lemma, which follows directly from the definitions.
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Lemma 4.5 Let (K , L) be an arbitrary rank, i ∈ N, and j ∈ N
+. Then (K + i · L , j · L) is a rank and for any

label (b, k, l) we have R(K+i ·L , j ·L)(b, k, l) ⊆ R(K ,L)(b, k, l).

Theorem 4.6 Let N be a finite set of labeled clauses and let N− be a subset of N obtained be removing all the
clauses with a label (b, k, l) such that either (b = 0 and k �= ∗) or (l �= 0). Then N− is satisfiable if and only if N
is.

Proof One implication is trivial since N− ⊆ N . For the other implication, we need an auxiliary definition. We say
that a label (b, k, l) is relevant for a rank (K , L) if R(K ,L)(b, k, l) �= ∅. Let us now assume that N− is (K0, L0)-
satisfiable, i.e. that there is a valuation V such that V |� (N−)(K0,L0). We may choose K1 of the form K0 + i · L0

and L1 of the form j · L0 large enough such that none of the removed clauses, i.e. none of the clauses from N\N−,
is relevant for the rank (K1, L1). This is possible, because a clause with a label satisfying (b = 0 and k �= ∗) is
only relevant for a rank (K , L) if k = K + s · L for some s ∈ N, and a clause with a label satisfying (l �= 0) is
only relevant for a rank (K , L) when L divides l. Moreover, there is only finitely many such clauses thanks to the
assumption of the theorem. If we now write

N(K1,L1) = (N\N−)(K1,L1) ∪ (N−)(K1,L1),

we can observe that (N\N−)(K1,L1) = ∅ by the choice of (K1, L1) and (N−)(K1,L1) ⊆ (N−)(K0,L0) by Lemma 4.5.
Therefore, V |� N(K1,L1) and so N is (K1, L1)-satisfiable. ��
Example Deriving an empty labeled clause during elimination does not immediately imply that the current clause
set is unsatisfiable. For instance, the label of the empty clause (∗, 0, 2) || ⊥ is only relevant for (K , L) when L
divides 2 and thus the current clause set may still be (K , L)-satisfiable for L > 2. Moreover, thanks to Lemma 4.5
we can always avoid dealing with the problematic ranks for which the empty clause is relevant by “typecasting” a
potential model to a higher rank.

After filtering a clause set with the help of Theorem 4.6, it will only contain clauses with the familiar labels of
the starting labeled clause set and possibly also clauses labeled by (∗, k, 0), k ∈ N. These do not pose any further
complications, because they arise naturally in our calculus LPSup [18] for LTL satisfiability.

4.4 The Elimination Procedure

We close this section by shortly discussing the overall variable and clause elimination procedure. As already
mentioned, it is advantageous to alternate variable elimination attempts with exhaustive application of subsumption
and possibly other reductions. That is because removing a subsumed clause may turn elimination of a particular
variable into an improvement and, on the other hand, new clauses generated during elimination may be subject to
subsumption. This holds true for the original SAT setting as it does with labels. A detailed description on how to
efficiently organize this process can be found in [5].

5 Experimental Evaluation

For our evaluation of the effectiveness of variable and clause elimination in LTL, we extended the preprocessing
capabilities of Minisat [6] version 2.2. We kept Minisat’s main simplification loop, which efficiently combines
variable elimination with subsumption and self-subsuming resolution, along with the fine-tuned heuristics for
deciding which variables to eliminate and in what order. We emulated labels by extending respective clauses with
extramarking literals10 and, to ensure correctness, we disallowed elimination of variables that occur both primed and

10 For example, any goal clause C is inserted as C ∨ g, where g is a fresh variable designated for marking goal clauses.
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non-primed in the input formula. Although this does not exploit the full potential of variable and clause elimination
with labeled clauses as described in Sect. 4, we already obtained encouraging results with this setup.

For testing we used a set of LTL benchmarks collected by Schuppan and Darmawan [16]. The set consists of a
total of 3723 problems from various sources (mostly previous papers on LTL satisfiability) and of various flavors
(application, crafted, random), and represents the most comprehensive collection of LTL problems we are aware of.
The testing proceeded in three stages. First, all the benchmarks were translated by our tool from the original format
into TSTs. Thenwe applied theMinisat-based elimination tool and obtained a set of simplified TSTs. Finally, we ran
two resolution-based LTL provers on both the original and simplified TSTs to measure the effect of simplification
on prover runtime. We choose the LTL prover LS4 [20], most likely the strongest LTL solver11 currently publicly
available, and trp++ [10], a well established temporal resolution prover by Boris Konev. Having performed the
experiments on two independent implementations should allow us to draw more general conclusions about the
effects of variable and clause elimination.

The experiments were performed on our servers with 3.16 GHz Xeon CPU, 16 GB RAM, and Debian 6.0. All
the tools along with intermediate files and experiment logs can be found at http://www.mpi-inf.mpg.de/~suda/vce.
html.

We recorded for each problem the number of variables and clauses that we were able to eliminate during the
second stage. We distinguished variables from the original problem and auxiliary variables that were introduced
during the transformation in stage one. In total, 39% of the variables (7% original, 32% auxiliary) and 32% of
the clauses were eliminated. The numbers vary greatly over individual subsets of the benchmarks. For example,
the family phltl allowed for almost no simplification: only 3% of the variables (just auxiliary), and 2% of the
clauses could be removed. On the other hand, 99% of the variables (almost all of them original) and 98% of the
clauses were removed on the family O1formula. While the former extreme can be explained by a concise and
already almost clausal structure of the original formulas from phltl, the latter follows from the fact that most
of the variables in O1formula occur in just one polarity, i.e. are pure. Eliminating a pure variable amounts to
removal of all the clauses in which the variable appears.12

The results of the third stage, in which we measured the effect of simplification on the performance of the two
selected provers, are summarized in Table 2 and at the same time represented graphically in Fig. 3. We see that both
LS4 and trp++ substantially benefit from the simplification, both in the number of solved instances and the overall
runtime. On some subsets the effect is quite pronounced (see, e.g., LS4 on alaska or trp++ on forobots),
while on others it is more modest. Only on the subset trp did the simplification result in less problems solved.13

What the table does not show, however, is that even among the trp problems there were some only solved in the
simplified form (16 such problems for LS4 and 9 for trp++). When judging the relative number of problems gained
by each prover, it should be noted that many problems come from scalable families and are mostly trivial or too
difficult to solve. This leaves the “gray zone” where improvement is possible relatively small.

To conclude, the results of our evaluation indicate that variable and clause elimination represents a useful
preprocessing technique of TSTs. Simplifying a clause set not only removes redundancies introduced by a previous,
potentially sub-optimal normal form transformation (when auxiliary variables get eliminated), but usually reduces
the input even further. This ultimately decreases the time needed to solve the problem. Further improvements are
expected from an independent implementation that will harness the full potential of the mechanism of labels.

11 LS4 solves 3556 of the above benchmarks within the time limit of 60s; the best system reported by Schuppan and Darmawan [16],
the bounded model checker of NuSMV 2.5, is able the solve 3368 of these benchmarks under the same conditions.
12 If x is a pure variable (literal) then N¬x is empty and so Nx ⊗ N¬x is empty as well.
13 We currently do not have a better explanation for this phenomenon than that a seemingly innocuous change in the presentation of
the problem caused by the elimination steers the provers to a different part of the search space. (These effects are common in theorem
proving in general.) This may be partially supported by an observation that the “lost problems” are not shared by LS4 and trp++.

http://www.mpi-inf.mpg.de/~suda/vce.html
http://www.mpi-inf.mpg.de/~suda/vce.html
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Table 2 Performance of the two provers on original (o) and simplified (s) problems, grouped by problem subset

Subset Size LS4 trp++

Solved Time (s) Solved Time (s)

acacia 71 o 71 7.1 71 39.3

s 71 7.1 71 11.3

alaska 140 o 121 6607.0 9 39,423.2

s 139 882.0 12 38,717.5

anzu 111 o 93 5754.2 0 33,300.0

s 94 5482.2 0 33,300.0

forobots 39 o 39 4.3 39 1198.8

s 39 3.9 39 194.2

rozier 2320 o 2278 13,312.9 2063 96,293.7

s 2278 13,270.7 2120 76,921.1

schuppan 72 o 41 9332.8 36 11,189.8

s 41 9320.9 37 10,741.0

trp 970 o 940 12,327.5 364 189,045.2

s 934 11,887.5 359 190,138.3

Total 3723 o 3583 47,345.8 2582 370,490.0

s 3596 40,854.3 2638 350,023.4

Number of problems solved by each prover within the time limit 300 s and the overall time spent during the attempts are shown. Unsolved
problems contribute 300.0 s, solved ones at least 0.1 s due to the measurement technique. The times spent on the actual simplification
are not included; these were observed to be negligible for most of the problems, with maximum of 0.3 s for the largest instance
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Fig. 3 Comparing the number of problems solved, simplified and original, within a given time limit. Although the value ranges for
LS4 (on the left) and trp++ (on the right) differ, both figures demonstrate better performance on the simplified problems

6 Discussion

We are not aware of any related work directly focusing on simplifying clause normal forms for LTL. However, some
interesting connections can be drawn with the help of Remark 2.3 of Sect. 2, which shows that a TST can be viewed
as a symbolic representation of a Büchi automaton. For instance, in the classical paper [9], an automaton accepting
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the models of an LTL formula ϕ is constructed such that its states are identified with sets of ϕ’s subformulas. A
closer look reveals an immediate connection between these subformulas and the variables introduced to represent
them in the SNF for ϕ. The above paper also suggests several improvements of the basic algorithm. For instance, it
is advocated that subformulas of the form μ1 ∧ μ2 need not be stored, because the individual conjuncts μ1 and μ2

will be later added as well and they already imply the conjunction as a whole. We can restate this on the symbolic
level as an observation that a variable introduced to represent a conjunctive subformula can always be eliminated,
which is a claim easy to verify.

Webelieve this connection deserves further exploration, as one could possibly use it to bring someof the numerous
techniques for optimizing explicit automata construction (see e.g. [14]) to the symbolic level. Note, however, that
the main application of the explicit automata construction approach lies in model checking and so the resulting
automaton is required to be equivalent to the original formula. On the other hand, our clausal symbolic approach
is meant for satisfiability testing only and so more general satisfiability preserving transformations are allowed.
An elimination of a variable from the original signature of the formula ϕ, or the “forgetting step” justified by
Theorem 4.6, are examples of transformations that do not have a counterpart on the automata side.

While the explicit notion of a symbolic representation of a Büchi automaton via a clause normal form has received
relatively little attention so far,14 symbolic approaches to LTL model checking and satisfiability based on Binary
Decision Diagrams are well known [2]. Again, it seems possible that some optimization techniques could be shared
between the two approaches. For instance, different BDD encodings recently studied by Rozier and Vardi [15],
could correspond to different ways of turning a formula into a TST.

7 Conclusion

We have shown that variable and clause elimination, a practically successful preprocessing technique for propo-
sitional SAT problems, can be adapted to the setting of linear temporal logic. For that purpose we have utilized
the mechanism of labeled clauses, a method for interpreting an LTL formula as finitely represented infinite sets
of standard propositional clauses. The ideas were implemented and tested on a comprehensive set of benchmarks
with encouraging results. In particular, variable and clause elimination has been shown to significantly improve
subsequent runtime of resolution-based provers LS4 and trp++.

We would like to stress here that labeled clauses provide a general method for transferring resolution-based
reasoning from SAT to LTL. It is therefore plausible that other preprocessing techniques, like, for example, the
blocked clause elimination [11], can be adapted along the same lines. Exploring this possibility will be one of the
directions for future work.

Appendix A. LTL Preliminaries

The language of linear temporal logic (LTL) formulas is an extension of the propositional language with temporal operators. The most
commonly used are Next ©, Always �, Eventually ♦, Until U, and Release R. Formally, let � = {p, q, . . .} be a (finite) signature of
propositional variables, then the set of LTL formulas is defined inductively as follows:

• any p ∈ � is a formula,
• if ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ , and ϕ ∨ ψ ,
• if ϕ and ψ are formulas, then so are ©ϕ, �ϕ, ♦ϕ, ϕUψ , and ϕRψ .

A propositional valuation, or simply a state, is a mapping W : � → {0, 1}. An interpretation for an LTL formula is an infinite
sequence of states W = (Wi )i∈N. The truth relation W, i |� ϕ between an interpretation W , time index i ∈ N, and a formula ϕ is
defined recursively as follows:

14 A correspondence between SNF and Büchi automata has been shown in [1]. The relevant theorem of the paper, however, does
not establish an equivalence between models of the formula and accepting runs of the automaton. Its value for translating techniques
between the symbolic and explicit approaches is, therefore, limited.
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W, i |� p iff Wi |� p,
W, i |� ¬ϕ iff not W, i |� ϕ,
W, i |� ϕ ∧ ψ iff W, i |� ϕ and W, i |� ψ ,
W, i |� ϕ ∨ ψ iff W, i |� ϕ or W, i |� ψ ,
W, i |� ©ϕ iff W, i + 1 |� ϕ,
W, i |� �ϕ iff for every j ≥ i , W, j |� ϕ,
W, i |� ♦ϕ iff for some j ≥ i , W, j |� ϕ,

W, i |� ϕUψ iff there is j ≥ i such that W, j |� ψ

and W, k |� ϕ for every k, i ≤ k < j ,
W, i |� ϕRψ iff for all j ≥ i , W, j |� ψ or

there is j ≥ i with W, j |� ϕ and for all k, i ≤ k ≤ j , W, k |� ψ .

An interpretation W is a model of an LTL formula ϕ if W, 0 |� ϕ. A formula ϕ is called satisfiable if it has a model, and is called
valid if every interpretation is a model of ϕ.

Appendix B. Transforming LTL Formulas to SNF

Formulas in SNF are conjunctions of temporal clauses, each of them assuming one of the following forms:

• an initial clause:
∨

j k j ,
• a step clause: �(

∨
j k j ∨ ∨

j ©l j ),
• an eventuality clause: �(

∨
j k j ∨ ♦l),

where k j , l j , and l stand for standard literals, i.e. propositional variables or their negation.
The translation of an LTL formula ϕ into an equisatisfiable SNF starts by first turning ϕ into an equivalent formula that is in negation

normal form (NNF), meaning the negation sign only occurs in front of propositional variables in the leaves of the formula tree. This can
be achieved by a standard operation that “pushes negations downwards” with the help of De Morgan’s rules and temporal equivalences
like¬©ϕ ≡ ©¬ϕ,¬�ϕ ≡ ♦¬ϕ, and¬(ϕUψ) ≡ (¬ϕ)R(¬ψ). Finally, multiple negations are absorbed with the help of the classical
equivalence ¬¬ϕ ≡ ϕ. In what follows we assume that ϕ is already in NNF.

The actual transformation is performed with the help of operator τ defined in Fig. 4, which recursively reduces any formula of the
form �(¬x ∨ ϕ), where x is a propositional atom, into the final SNF. During the process, new “fresh” variables are being introduced
(we typeset them in bold) which serve two different purposes: They stand as names for subformulas (as in the case of the rules for, e.g.,
conjunction), and may also play a role of “trackers” that influence the value of other variables not just in the current state, but also in
those to follow. This is how the semantics of, e.g., the Always operator � is being encoded. The overall translation is triggered by the
following rule

ϕ −→ i ∧ τ [�(¬i ∨ ϕ)] ,

with a fresh variable i that represents the whole formula.

Fig. 4 The rules for SNF transformation. The freshly introduced variables are in bold
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Example Here we work out an example from [8] to demonstrate the translation procedure. Assume we would like to prove the formula
(♦p ∧ �(p → ©p)) → ♦�p. In refutational theorem proving we proceed by negating the formula and trying to show the negation
to be unsatisfiable. By taking the negation into NNF (and translating away the implication symbol) we obtain

(♦p ∧ �(¬p ∨ ©p)) ∧ �♦¬p,

which is consequently translated into the following set of clauses:

i By the initial rule.

�(¬i ∨ ♦u1) The first conjunct by rule 6,
�(¬u1 ∨ p) terminates by rule 1.

�(¬i ∨ u2)
�(¬u2 ∨ ©u2) The second conjunct by rule 5,

�(¬u2 ∨ u3 ∨ v3) inside which there is disjunction (rule 3),
�(¬u3 ∨ ¬p) the first argument is a literal (rule 1),
�(¬v3 ∨ ©u4) the second goes by rule 4

�(¬u4 ∨ p) and terminates by rule 1.

�(¬i ∨ u5)
�(¬u5 ∨ ©u5) The third conjunct by rule 5,
�(¬u5 ∨ ♦u6) inside which we apply rule 6,
�(¬u6 ∨ ¬p) and terminate by rule 1.

Notice that transformation τ introduces more new variables than would be strictly necessary. For example, the variable u6 just
“connects” the last two clauses, which could be replaced by one equivalent eventuality clause �(¬u5 ∨ ♦¬p). This is a price we pay
here for the simple statement of the transformation rules in Fig. 4 (no side conditions ). An actual implementation would strive to detect
the literal case as soon as possible, and thus, e.g., introduction of u6 would be avoided.

Appendix C. Transforming General SNF to a TST

The transformation of general SNF to TSTs focuses on eventuality clauses. It consists in two simplification steps:

1. turning the conditional eventuality clauses into unconditional ones (of the form �♦l),
2. reducing multiple (unconditional) eventuality clauses from the SNF into just one eventuality clause.

We present our modification of the simplifications first introduced in [4] that performs both steps at once.
Assume that an SNF of a formula contains n (in general) conditional eventuality clauses

�(Ci ∨ ♦li )
for i = 1, . . . , n, where Ci is the conditional part, i.e. a disjunction of literals. We remove these, and replace them with a single
unconditional eventuality clause

�♦m (C.1)

together with the following five step clauses for every i = 1, . . . , n :
� (Ci ∨ li ∨ ti), (C.2)
� (¬ti ∨ ©li ∨ ©ti), (C.3)
� (si ∨ ¬ti ∨ ©¬si), (C.4)
� (¬si ∨ ¬m), (C.5)
� (si ∨ ©¬m), (C.6)

where again the bold variables are supposed to be new to the formula.
The idea behind the simplification is the following: If the condition ¬Ci is satisfied in the current state and the respective eventuality

li is not satisfied in the same state we start “tracking” the eventuality with the help of the new variable ti (clause C.2). The tracking
variable ti is forced to stay true also in the future states unless the eventuality li is finally satisfied (clause C.3). Now let us look from the
other side. The unconditional eventuality (clause C.1) will infinitely often ensure that all the variables si are false in one state (clause
C.5) and were true in the previous state (clause C.6). Thus in the intervals between states where m holds, there will always be two
consecutive states where si changes from false to true. But this cannot happen if we are tracking that particular eventuality at that time
(clause C.4). To sum up, for each of the original eventualities we have a guarantee that in every interval between states where m holds
the eventuality was either not triggered at all (¬Ci was false in the whole interval) or the eventuality was triggered and subsequently
satisfied in that interval. Please consult [4] for a formal proof.
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Example Our previous example contained two conditional eventuality clauses �(¬i ∨♦u1) and �(¬u5 ∨♦u6). We may replace these
by the following set of clauses to obtain an equisatisfiable problem with just one unconditional eventuality clause:

�♦m,
�(¬i ∨ u1 ∨ t1),

�(¬t1 ∨ ©u1 ∨ ©t1),
�(s1 ∨ ¬t1 ∨ ©¬s1),

�(¬s1 ∨ ¬m),
�(s1 ∨ ©¬m),

�(¬u5 ∨ u6 ∨ t2),
�(¬t2 ∨ ©u6 ∨ ©t2),
�(s2 ∨ ¬t2 ∨ ©¬s2),

�(¬s2 ∨ ¬m),
�(s2 ∨ ©¬m).
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