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Abstract The hierarchic superposition calculus over a theory T, called SUP(T), enables sound reasoning on the
hierarchic combination of a theory T with full first-order logic, FOL(T). If a FOL(T) clause set enjoys a sufficient
completeness criterion, the calculus is even complete. Clause sets over the ground fragment of FOL(T) are not
sufficiently complete, in general. In this paper we show that any clause set over the ground FOL(T) fragment can
be transformed into a sufficiently complete one, and prove that SUP(T) terminates on the transformed clause set,
hence constitutes a decision procedure provided the existential fragment of the theory T is decidable. Thanks to
the hierarchic design of SUP(T), the decidability result can be extended beyond the ground case. We show SUP(T)
is a decision procedure for the non-ground FOL fragment plus a theory T, if every non-constant function symbol
from the underlying FOL signature ranges into the sort of the theory T, and every term of the theory sort is ground.
Examples for T are in particular decidable fragments of arithmetic.
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1 Introduction

Recent progress in automated reasoning has greatly encouraged numerous applications in soft- and hardware
verification and the analysis of complex systems. The applications typically require to determine the validity/un-
satisfiability of formulae over the combination of the free first-order logic with some background theories. Often
such formulae include quantifiers and even quantifier alternations.

Satisfiability modulo theories (SMT) techniques are well-known to be efficient and scalable approaches towards
reasoning over combinations of theories. SMT solvers [23,24] are restricted to ground formulae, or to formulae
that can be effectively and efficiently reduced to a ground fragment. In comparison, superposition-based inference
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systems (SUP) are complete for full first-order logic. After clause normal form translation they reason on equational
clauses with universally quantified variables. The superposition calculus can be turned into a decision procedure for
a number of decidable first-order fragments, e.g., [2,6,19,21], and is a good basis for actually proving decidability
of fragments and obtaining efficient implementations. There are now several calculi available combining full first-
order logic with a theory T: the hierarchic theorem proving approach SUP(T) for any theory T [7], an instance of
this approach for the combination with linear arithmetic SUP(LA) [1] and non-linear arithmetic SUP(NLA) [12],
superposition and chaining for totally ordered divisible abelian groups [27], superposition with linear arithmetic
integrated [22], and model evolution extended with linear arithmetic [8].

The DPLL(� + T ) calculus of [9] is a tight integration of DPLL, specialized SMT solvers for T , and first-order
reasoning � based on Superposition and Resolution. For example, DPLL(� +T ) can be turned into a decision pro-
cedure for theories that axiomatize type systems relevant to program checking. The crucial feature of such theories
is that they need to be essentially finite: they have one unary function symbol whose range is finite. The general
form of initial clause sets DPLL(� + T ) deals with, is R � P , where P is ground formula containing T symbols,
and R is a set of non-ground clauses without occurrences of T symbols axiomatizing an application specific theory.

The hierarchic theorem proving approach [7] offers an abstract completeness result for the combination via a
sufficient completeness criterion that goes beyond ground problems or specific theories, as studied for example in
local theory extensions [17,20]. Furthermore, it enables the handling of the theory T part in a modular way that
can be eventually implemented via efficient off-the-shelf solvers (in contrast to [22,27]). In this paper we show
that the SUP(T) calculus is a decision procedure for the ground FOL(T) fragment and can be extended for the FOL
fragment including FOL variables plus a theory T, where every non-constant function symbol from the underlying
FOL signature ranges into the sort of the theory T, and all terms of the theory sort are ground. This actually closes a
gap for SUP(T) that was already shown a decision procedure for certain FOL(T) fragments with variables [15,16],
whereas the ground case was not yet solved.

The paper is organized as follows: first we give an introduction to the most important notions, Sect. 2, and
present the SUP(T) calculus, Sect. 3. In Sect. 4, we prove SUP(T) to be a decision procedure for the ground FOL(T)
fragment. In Sect. 5 we show that SUP(T) can decide beyond the ground fragment. The paper ends with a discussion
of the achieved results and a presentation of further directions of research, Sect. 6.

2 Preliminaries

For the presentation of the superposition calculus, we refer to the notation and notions of [28], where for the specific
notions serving the hierarchical combination of a theory T with first-order logic, we refer to [1,7,12]. We will not
introduce the full apparatus of the hierarchical theorem proving technology, but just the notions that enable us to
state the inference rules, the sufficient completeness criterion, the completeness result and the redundancy notion.

Multisets A multiset over a set X is a mapping M from X to the non-negative integer (natural) numbers. Intui-
tively, M(x) specifies the number of occurrences of x ∈ X in M . We say that x is an element of M if M(x) > 0.
The union, intersection, and difference of multisets are defined by the identities: (M1 ∪ M2)(x)= M1(x)+M2(x),

(M1 ∩ M2)(x) = min{M1(x), M2(x)}, and (M1\M2)(x) = min{0, M1(x) − M2(x)}. A multiset M is finite if the
set {x | M(x) > 0} is finite. If M is a multiset and N a set, we write M ⊆ N to indicate that every element of M is
an element of N , and use M\N to denote the multiset M ′ for which M ′(x) = 0 for any x in N , and M ′(x) = M(X),
otherwise. We often use sequence- or set-like notation to denote multisets and write, for instance, M1, M2 instead-
of M1 ∪ M2, or M, L instead of M ∪ {L}. For example, {F, G, G} denotes the multiset M over formulae for which
M(F) = 1, M(G) = 2, and M(H) = 0, for any other formula H .

Signatures and Terms A many-sorted signature is a pair � = (S,�) where S is a finite set of sort symbols and
� a set of operator symbols over S. In addition to the sets S and �, we assume a set of sorted variables X , such
that for every single sort S ∈ S there is a countably infinite set of different variables of the sort S in X . The set of
well-sorted terms over a variable set X is denoted by T�(X ); the set of all terms of a specific sort S is denoted by
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T�(S,X ). Given a term t ∈ T�(X ), we write sort(t) to denote the sort of t . The function vars maps a term to the
set of all variables occurring in it. A term t is called ground if vars(t) = ∅. The set of all ground terms built over
� is denoted by T�(∅), or shortly T�; the set of all ground terms of a specific sort S is denoted by T�(S).

A position is a word over the natural numbers. The set ρ( f (t1, . . . , tn)) of positions of a given term f (t1, . . . , tn)

is defined as follows: (i) the empty word ε is a position in any term t and t/ε = t , (ii) if t/p′ = f (t1, . . . , tn),
then p = p′.i is a position in t for all i = 1, . . . , n, and t/p = ti . The length |p| of a position p is its length
as a sequence: |ε| = 0, |p′.i | = |p′| + 1. The depth of a term is the maximal length of a position in the term:
depth(t) = max(|p| | p ∈ ρ(t)). We write top(t) to denote the top symbol of t , and t[s]p to denote that s = t/p
is a subterm of t at some position p ∈ ρ(t); we may simply write t[s] if the position of s in t is not important in
the context of discussion. Ambiguously, we write t[s′] (or t[s′]p) to denote the term obtained from t by replacing
the occurrence of s (at the position p) with the term s′. The subterm s is called strict if the position p of s in t has
non-zero length, and it is called immediate if |p| = 1, i.e. if s occurs immediately below the top function symbol.

Substitutions and Unifiers A substitution σ is a mapping from variables X to terms T�(X ) such that every
variable x ∈ X is mapped to a term σ(x) = t of the same sort S = sort(x) = sort(t), and there only finitely many
variables x for which σ(x) 	= x . The application σ(x) of a substitution σ to a variable x is usually written in postfix
notation as xσ ; the composition of two substitutions σ and τ is written as a juxtaposition στ , i.e. tστ = (tσ)τ .
For a substitution σ , we write dom(σ ) to denote the set of all variables which are not mapped by σ to themselves:
dom(σ ) = {x ∈ X | xσ 	= x}; cdom(σ ) is the set of all variables occurring in the image of dom(σ ) under the
substitution: cdom(σ ) = {vars(t) | t = xσ, x ∈ dom(σ )}. The result of an application of a substitution σ to a term
t yields a term s = tσ obtained from t by replacing each variable occurrence x with xσ , for all x ∈ vars(t). The
term s is called an instance of t ; if the s is ground, then it is called a ground instance of t . The set of all ground
instances of a term t is denoted by gi(t). We write t[s/x] to denote tσ for σ = {x 
→ s}.

Two terms s and t are said to be unifiable if there exists a substitution σ such that sσ = tσ ; the substitution σ

is called then a unifier of s and t . It is called a most general unifier, written σ = mgu(s, t), if any other unifier τ

of s and t can be represented as τ = στ ′, for some substitution τ ′. Notably, most general unifiers are unique up to
variable renaming. A substitution σ is called a matcher from s to t if sσ = t .

Clauses As usual in the superposition context, all considered atoms are equations t ≈ s where s and t are of
the same sort. Every predicate symbol is encoded as a function into a set with one distinguished element; without
loss of generality, we assume that there is a distinct sort for every predicate symbol. Non-equational atoms are thus
turned into equations P(t1, . . . , tn) ≈ trueP which are simply abbreviated by P(t1, . . . , tn). A literal L is either an
atom or a negated atom.

A clause C is a pair of multisets of atoms, written C = (� → 	), where all variables are assumed to be univer-
sally quantified, if not stated otherwise; the multiset � is called the antecedent, and the multiset 	 the succedent.
Logically, the atoms in � denote negative literals while the atoms in 	 denote the positive literals in the clause.
Semantically, a clause C = {A1, . . . , Am} → {B1, . . . , Bn} represents an implication A1∧. . .∧Am → B1∨. . .∨Bn ,
or equivalently a disjunction ¬A1 ∨ . . . ∨ ¬Am ∨ B1 ∨ . . . ∨ Bn . Sometimes, we interpret clauses as (multi)sets
of their literals, thus given a clause C = {A1, . . . , Am} → {B1, . . . , Bn} we may write C = {L1, . . . , Lm+n},
where {L1, . . . , Lm+n} = {¬A1, . . . ,¬Am, B1, . . . , Bn}. Different clauses are assumed to be variable disjoint.
The clause C = � → 	 is called negative (positive) if it contains only negative (positive) literals; Horn if its
succedent contains at most one atom, i.e. |	| ≤ 1; unit if it consists of a single literal, i.e. |�| + |	| = 1; empty if
it does not contain a literal, i.e. � = 	 = ∅. We write � to denote an empty clause, a contradiction.

A clause C1 is said to subsume a clause C2 if there exists a matcher σ from C1 to C2 such that C1σ ⊆ C2σ , where
C1 and C2 considered as multisets of literals. The clause C1 is said to strictly subsume the clause C2 if C2 does not
subsume C1. It is worth mentioning that the subsumed clause C2 is a logical consequence (see a presentation of
semantics below) of the subsuming clause C1. Two clauses C and D are duplicates of each other, if they are equal
up to variable renaming. Obviously, the clauses C and D are equivalent and subsume each other.
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Semantics and Specifications A �-algebra A consists of a �-sorted family of non-empty carrier sets SA for
each sort S ∈ S and of a function fA : (S1)A× . . .× (Sn)A → SA for every f : S1 × . . .× Sn → S ∈ �. The inter-
pretation tA of a ground term t = f (t1, . . . , tn) is defined recursively by ( f (t1, . . . , tn))A = fA((t1)A, . . . , (tn)A).
An algebra A is called term-generated, if every element of an SA is the interpretation of some ground term of sort
S. The universe of an algebra A is defined by UA = ⋃

S∈S SA.
An algebra A is said to satisfy an equation t ≈ s, if tA = sA. A ground clause C = � → 	 is satisfied by

A if A satisfies an atom in 	 or at least one atom in � is not satisfied by A. An algebra A satisfies a non-ground
clause C if it satisfies all ground instances gi(C) of the clause. If A satisfies every clause in a clause set N , then
A is called a model of N . A clause set N is called satisfiable if it has a model, it is called unsatisfiable otherwise.
We write A |� C to denote that A satisfies a clause C (analogously for atoms and sets of clauses). Also, we say
that C is true in A if A |� C , and false otherwise (analogously for atoms and sets of clauses). A clause is called
valid, or a tautology, if it is true in all �-algebras, which is denoted by |� C . If N is unsatisfiable we denote this
by N |� ⊥. Given two clause sets N and M , we say N entails M , or M is a consequence of N , written N |� M ,
if each model A of N is a model of M . The sets N and M are called equivalent, written N |�| M , if N |� M and
M |� N . We call two clause sets N and M equisatisfiable, if N is satisfiable iff M is satisfiable (not necessarily in
the same models).

A specification is a tuple Sp = (�,C ) where C is a class of term-generated �-algebras, called models of the
specification. We assume C is closed under isomorphisms. If Sp is the class of all �-models of a certain set of
�-formulas Ax , then we write (�, Ax) instead of (�,C ).

The specification Sp is called compact if every set of formulae over � is satisfiable in C whenever each of its
finite subsets is satisfiable in C , or equivalently if every set of formulae over � is unsatisfiable in C whenever some
its finite subset is unsatisfiable in C .

Hierarchic Specification Assume Sp = (�,C ) is a specification consisting of a signature � = (S,�) and
a class C of term-generated algebras closed under isomorphism. Let Sp′ = (�′, Ax ′) be a specification, where
�′ = (S ′,�′) is a signature augmenting �, i.e. S ⊆ S ′ and � ⊆ �′, and Ax ′ is an axiom (formula) set over �′.
A pair HSp = (Sp, Sp′) is called a hierarchic specification, where Sp is called the base specification, and Sp′
is called the body of the hierarchic specification. The models in C of the base specification are also called base
algebras. The sorts S ′′ = S ′\S and operators �′′ = �′\� are called free.

If A′ is a �′-algebra, the restriction of A′ to �, written A′|� , is the �-algebra that is obtained from A′ by
removing every carrier set S′′

A′ for all free sorts S′′ ∈ S ′\S and every function fA′ for all free operator symbols
f ∈ �′\�. A �′-algebra A′ is called hierarchic if its restriction to � is a base algebra, i.e. if A′|� ∈ C . Informally
speaking, a �′-algebra A′ is hierarchic, if A′ extends some base model A ∈ C (meaning that A′ interprets all
base operator symbols in � the same as A does) and neither collapses any its sort nor adds new elements to it,
i.e. if A′ is a conservative extension of A. A hierarchic algebra A′ is called a model of a hierarchic specification
HSp = (Sp, Sp′), where Sp′ = (�′, Ax ′), if it is a model of the axiom set Ax ′.

Let N and M be two sets of �′-clauses. A �′-algebra A′ is called a hierarchic model of N , denoted by
A′ |�C N , if A′ |� N and A′|� ∈ C , i.e. if A′ entails N and is a hierarchic algebra. We say N implies M
relative to C , written N |�C M , if every hierarchic model of N is also a model of M . We call N consistent/sat-
isfiable relative to C (or equivalently C -consistent/satisfiable, or consistent/satisfiable with respect to the theory
T ), if there exists a hierarchic model of N , and, otherwise, we call it inconsistent/unsatisfiable relative to C
(or equivalently C -inconsistent/unsatisfiable, or inconsistent/unsatisfiable with respect to the theory T ), written
N |�C ⊥. Alternatively, we can say N |�C M if given a base specification Sp and a body signature �′, the
hierarchic specification HSp = (Sp, (�′, N → M)) has a model. If N is a set of base clauses, it is C -consis-
tent if and only if some base algebra A in C is a model of N . The set N is C -valid if it is true in every model
A ∈ C . Note that for any clause sets N and M, N |�C M follows from N |� M , but not other way around, in
general.

Refutational theorem proving for hierarchic theories is aimed at answering one the following questions: given a
clause set N over the body signature �′,
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• is N false in all models of the hierarchic specification HSp?
• does a hierarchic specification (Sp, (�′, Ax ′ ∪ N )) have no model? or
• is Ax ′ ∪ N inconsistent relative to C ?

Each of the questions is a reformulation of the others, and, hence, they are all equivalent.
For the sake of simplicity, for the rest we assume a single base sort S and a single free sort S′′, i.e. S = {S}

and S ′ = {S, S′′}. The base sort S may contain further terms built over function symbols from �′ and in particular
�′′ ranging into the base sort. In addition to operator symbols we assume two distinct countably infinite sets of
variables X and X ′′, consisting of all variables ranging into the base and free sorts, respectively; the union of sets
is denoted by X ′ = X ∪X ′′. Variables in X are called base, and ones in X ′′ non-base. We write T�′(X ′) to denote
the set of all terms over operators �′ and variables X ′; the set of all ground terms over �′ is denoted by T�′ . A term
is called pure if it does not contain both a base operator and a free operator. Pure terms built over base variables
and base operator symbols are called base, pure terms built over variables (base and non-base) and free operator
symbols and that are not single base variables are called free (that is, a free term may contain base variables, but
cannot be a base variable-term). We write T�(X ) for the set of all base terms, and T�′′(X ′) \ X for the set of all
free terms; the respective sets of ground terms are denoted by T� and T�′′ . A substitution is called simple if it maps
every base variable to a base term. If σ is a simple substitution, tσ is called a simple instance of t (analogously for
equations and clauses). The set of all simple ground instances of a clause C is denoted by sgi(C) (analogously for
terms, atoms/literals, clause sets).

In order to enable a modular combination of free FOL and a background theory T, we deal with so-called
abstracted clauses that consist only of pure literals. An abstracted clause C is usually written in the form C = 
 ‖
� → 	, where 
 is a multiset of base literals built over base operator symbols from � and base variables from X ,
and � and 	 multisets of free atoms built over free operator symbols from �′′ and variables (base and non-base)
from X ′. The parts 
,�, and 	 of the abstracted clause C are called the constraint, the antecedent and the succedent
of C , respectively. The part � → 	 of the clause C to the right from the double bar ‖ separator is called the free part
of the clause. In Sect. 3 we show that any clause over �′ can be transformed into an equivalent abstracted clause.

Semantically, an abstracted clause C = 
 ‖ � → 	 is an implication
∧


 ∧ ∧
� → ∨

	 between the
conjunction of literals in 
 and atoms in � on one hand side, and disjunction of atoms in 	, on the other. Thus,
the double bar ‖ symbol is simply used to separate the base part of a clause from the free one and does not carry
itself any logical meaning. The constraint 
 and the free part � → 	 of an abstracted clause C may share base
variables. As usual, 
,� and 	 may be empty and are then interpreted as true, true, false, respectively.

An abstracted clause C = 
 ‖ � → 	 is called negative (positive) if its free part contains only negative
(positive) literals; Horn if its succedent contains at most one atom, i.e. |	| ≤ 1; unit if its free part consists of a
single literal, i.e. |�| + |	| = 1; empty if its constraint and free part are empty. As in the plain case, we write � to
denote an empty clause, a contradiction.

Calculus The technical part, “mechanics”, of automated theorem proving is realized by means of special rules,
called deduction rules, that manipulate a given clause set N by adding to or deleting clauses from N . The rules are
described in a fraction-like manner, where the clauses above the fraction bar are called the premises of the rule, and
the clauses below the bar the conclusions of the rule. There are three basic types of rules:

• inference rules

I
C1 . . . Cn

D

that add the conclusion D to the current clause set N yielding a clause set N ′ = N∪{D}, provided C1, . . . , Cn ∈ N ;
• reduction rules

R
C1 . . . Cn

D1 . . . Dm
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that replace in N the premises C1 . . . Cn by the conclusions D1 . . . Dm yielding a clause set N ′ =
N\{C1, . . . , Cn} ∪ {D1, . . . , Dm};

• and splitting rules

S
C

D | D′

that replace the whole set N by disjunction of two sets N1 = N ∪ {D} and N2 = N ∪ {D′}, provided C ∈ N .

Deduction rules are usually constrained by a list of conditions that have to be satisfied in order to apply the rules
and help to reduce the search space. An application of an inference, reduction, or splitting rule is called inference,
reduction, or splitting, respectively.

Given a clause set N , inference rules are aimed to derive new clauses (the conclusion D) from already existing
ones (the premises C1 . . . Cn) in N , whereas reduction rules are devoted to “simplify” N by replacing clauses in it
(the premises C1 . . . Cn) by some “simpler” ones (the conclusions D1 . . . Dm). As a special case, if the number of
conclusions of a reduction rule is smaller than the number of its premises, the rule can be actually used to delete
clauses from N , thus reducing the size of N . Splitting rules have a dual nature: on one hand, they replace the current
clause set N by two sets and extend them by new clauses D and D′, respectively, serving this way like inference
rules; on the other hand, the new clauses D and D′ are “simpler” then the premise C and usually subsume C ,
so that C can be deleted just after the splitting rule application, reducing thus the original problem to “simpler”
subproblems, and serving this way like reduction rules. The aim of splitting is to split a clause set into two simpler
independent clause sets, such that they can be considered separately from each other.

A set of deduction rules is a called a calculus. An inference/reduction rule is sound (with respect to an entailment
relation |�) if it yields a clause set N ′ entailed (with respect to |�) by the original set N . A splitting rule is sound if
the disjunction of the resulting clause sets N1 and N2 is entailed by the original set N . A calculus is sound if every
deduction rule thereof is so. Traditionally, refutational theorem proving has been formally described as a closure
process that systematically adds conclusions of inferences to a given set of clauses and deletes redundant clauses
until a “closed”, or “saturated”, set N∗ is reached, where the conclusion of every inference from N∗ is already
contained in N∗, or a premise or the conclusion of an inference is redundant with respect to N∗. A calculus is called
refutationally complete (with respect to an entailment relation |�), if a saturated set of clauses is unsatisfiable (with
respect to |�) if and only if it contains the empty clause. ��
Orderings and Selection Functions A binary relation → over terms is called compatible with contexts if for all
terms s1, s2, and t it holds that s1 → s2 implies t[s1] → t[s2], provided t[s1] and t[s2] are well-formed/sorted. We call
a binary relation→ stable under substitutions if for any substitution σ and any two terms t and s, if t → s then tσ →
sσ . A binary relation → is called a rewrite relation if it is compatible with contexts and stable under substitutions.
A binary relation → is called well-founded (or terminating) if there is no infinite descending chain t1 → t2 → . . ..

A (partial) ordering is a transitive, reflexive, and antisymmetric binary relation. A strict ordering is a transitive
and irreflexive relation. Every partial ordering � induces a strict ordering � by t � s iff t � s and t 	= s. A strict
ordering is said to be total if for any two distinct elements s and t either s � t or t � s. An ordering � is called a
reduction ordering if it is a well-founded and transitive rewrite relation (that is, a well-founded, transitive relation
that is compatible with contexts, stable under substitutions, and possessing the subterm property).

The lexicographic extension �lex on tuples of some strict ordering is defined by (t1, . . . , tn) �lex (s1, . . . , sn) if
ti � si for some i ∈ {1, . . . , n}, and t j = s j for every 1 ≤ j ≤ i . The multiset extension �mul of a partial ordering
� is defined as follows: M �mul N if M 	= N and for every s such that N (s) > M(s), there exists some t such
that M(t) > N (s) and t � s. Given a multiset, any smaller multiset can be obtained by (repeatedly) replacing an
element by zero or more occurrences of smaller elements. If an ordering � is total (respectively, well-founded), so
is its multiset extension [11].

Definition 1 (Lexicographic path ordering [4]) Let � be a strict ordering on function symbols, called precedence.
The lexicographic path ordering �lpo is defined by: t �lpo s iff:
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1. s ∈ vars(t) and s 	= t , or
2. t = f (t1, . . . , tm), s = g(s1, . . . , sn), and

(a) ti �lpo s for some i ∈ {1, . . . , m}, or
(b) f � g, and t �lpo s j for ∀ j ∈ {1, . . . , n}, or
(c) f = g, t �lpo s j for ∀ j ∈ {1, . . . , n}, and (t1, . . . , tm) (�lpo)lex (s1, . . . , sm),

where (�lpo)lex is the lexicographic extension of �lpo.

Theorem 2 (LPO [4]) The LPO is a reduction ordering. If the precedence � is total on the set of operator symbols,
then LPO �lpo augmenting � is total on the set of ground terms.

Any ordering on terms can be extended to (abstracted) clauses in the following way. We consider clauses as
multisets of occurrences of (dis)equations (recall that the antecedent and the succedent of a abstracted clause con-
sist of equations, whereas the constraint may contain also disequations). An occurrence of an equation s ≈ t in
the antecedent is identified with the multiset {s, s, t, t}, the occurrence of an equation s ≈ t in the succedent is
identified with the multiset {s, t}; analogously, an occurrence of an equation s 	≈ t in the constraint is identified
with {s, s, t, t}, and an occurrence of a disequation s ≈ t in the constraint is identified with {s, t}. Now we overload
� on (dis)equation occurrences to be the multiset extension of � on terms, and � on clauses to be the multiset
extension of � on (dis)equation occurrences. Observe that an occurrence of an equation s ≈ t in the antecedent is
strictly greater than an occurrence of s ≈ t in the succedent.

An antecedent or succedent occurrence of an equation s ≈ t is maximal (minimal) in a clause C = 
 ‖ � → 	

if there is no occurrence of an equation in � → 	 that is strictly greater (smaller) then the occurrence s ≈ t with
respect to �. An antecedent or succedent occurrence of an equation s ≈ t is strictly maximal (strictly minimal)
in the clause C if there is no occurrence of an equation in � → 	 that is greater (smaller) then or equal to the
occurrence s ≈ t with respect to �. We do not consider occurrences of (dis)equations in the constraint of a clause
for our maximality criteria. As clauses are abstracted, this is justified by considering a suitable path ordering, like
LPO, where the operator symbols from � are smaller than all symbols in �′′ = �′\�.

Selection functions, like ordering restrictions, are aimed to reduce the search space of a calculus. A selection
function Sel assigns to each abstracted clause C = 
 ‖ � → 	 a multiset of atoms in the antecedent � of the
clause. The atoms returned by Sel(C) are called selected in the clause C . A selection function Sel may select atoms
arbitrarily irregardless of ordering restrictions. The strategy, when all atoms are selected in the antecedent of a
clause, is called eager selection. Eager selection is an instance of positive superposition strategy, which is called
this way because in this strategy only positive clauses can be superposed into other clauses. In this work, we shall
exploit eager selection as it allows to keep the length of Horn abstracted clauses bounded.

For the rest of the paper we assume a hierarchic specification HSp = (Sp, Sp′), where Sp = (�,C ) is the base
specification, Sp′ = (�′, Ax ′) the body of HSp, with respective signatures � = ({S},�) and �′ = ({S, S′′},�′),
and countably infinite sets of base X and free X ′′ variables, constituting the variable set X ′ = X ∪X ′′. Sometimes,
in the examples illustrating our approach, we shall instantiate � and �′ with concrete signatures. For the sake
of simplicity, we set the axiom set Ax ′ to be empty, which in the light of the observation from Sect. 2, page 430,
regarding the main concerns of refutational theorem proving for hierarchic theories, does not diminish the generality
of the overall approach.

Upper Greek letters 
,�,	 denote sequences of atoms or theory literals, lower Greek letters σ, τ substitutions,
lower Latin characters l, r, s, t terms, a, b, c constants of the free sort, a, b, c constants of the base sort, u, v, w

variables of the free sort, x, y, z variables of the base sort, and upper Latin characters A, B, E atoms.

3 Superposition Modulo a Theory T

One of the main aims of hierarchic superposition calculus is processing problems over a combination of a theory
T and the FOL in a modular fashion, where internal reasoning in each part remains hidden from another. For this
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reason we stick to abstracted clauses (defined in Sect. 2) which consist of two parts: one contains only base literals,
and another only free FOL literals, such that base parts of abstracted clauses could be directly loaded into a theory
solver, and free parts could be treated as ordinary plain clauses by a superposition-based procedure (for instance,
an automated theorem prover) slightly adjusted to support simple unification and extension of reduction rules with
extra checks for redundancy conditioned by the theory T (see below for details). Any given clause C = � → 	

can be transformed into an abstracted clause C ′ = 
′ ‖ �′ → 	′, where 
′ contains only base literals and all
base terms in �′,	′ are variables, by the following transformation [7]. Whenever a subterm t whose top symbol is
a base symbol from � occurs immediately below a free operator symbol, it is replaced by a new base sort variable x
(“abstracted out”) and the equation x ≈ t is added to �. Analogously, if a subterm t whose top symbol is not a base
symbol from � occurs immediately below a base operator symbol, it is replaced by a new general variable x and
the equation x ≈ t is added to �. This transformation is repeated until all terms in the clause are pure; then all base
literals are moved to 
′ and all free atoms to �′,	′, respectively. Recall that �′,	′ are multisets of atoms whereas

′ holds theory literals (including negative literals). We need to “purify” clauses only once—just before saturating
the clauses, since if the premises of an inference are abstracted clauses, then the conclusion is also abstracted (a
formal proof is given in Lemma 8 in [7]). For an example of abstraction, see Sect. 4.2. The abstraction procedure
presented is essentially the Nelson-Oppen method’s preprocessing step, usually referred to as purification.

The overall hierarchic superposition calculus is based on a reduction ordering � that is total on ground terms [10].
Moreover, following [7] we impose the requirement that in the ordering � all ground base terms are smaller than
all ground non-base terms.

Definition 3 (Hierarchic Splitting) The hierarchic splitting rule is

S

1,
2 ‖ �1, �2 → 	1,	2


1 ‖ �1 → 	1 | 
2 ‖ �2 → 	2

where

(i) vars(
1 ‖ �1 → 	1) ∩ vars(
2 ‖ �2 → 	2) = ∅,
(ii) 	1 	= ∅ and 	2 	= ∅.

The hierarchic splitting rule splits a given clause into two variable disjoint parts which are “semantically” inde-
pendent in the sense that the premise C = 
1,
2 ‖ �1, �2 → 	1,	2 is equivalent to the disjunction of the
conclusions C1 = 
1 ‖ �1 → 	1 and C2 = 
2 ‖ �2 → 	2, therefore, N is satisfiable iff one of the sets
N1 = N\C ∪C1 or N2 = N\C ∪C2 is satisfiable, or equivalently, N is unsatisfiable iff each Ni is unsatisfiable, for
i ∈ {1, 2}. Note, that we may delete the clause C in N1 and N2 because each Ci subsumes C . After the splitting, the
original clause set N is replaced by two clause sets N1 and N2, that are considered then independently from each
other. The main reason behind using splitting is to reduce a given problem to the Horn fragment, which is essential
for achieving termination. For this reason, we only apply splitting if the two succedent parts 	1,	2 are non-empty
(for a more detailed motivation see Sect. 4.3.1).

Definition 4 (Hierarchic Equality Resolution) The hierarchic equality resolution rule is

I

 ‖ �, s ≈ t → 	

(
 ‖ � → 	)σ

where

(i) σ = mgu(s, t) and σ is simple,
(ii) (s ≈ t)σ is maximal in (�, s ≈ t → 	)σ and no literal in � is selected

or
s ≈ t is selected.
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Definition 5 (Hierarchic Superposition Left) The hierarchic superposition left rule is

I

1 ‖ �1 → 	1, l ≈ r 
2 ‖ s[l ′] ≈ t, �2 → 	2

(
1,
2 ‖ s[r ] ≈ t, �1, �2 → 	1,	2)σ

where

(i) σ = mgu(l, l ′) and σ is simple,
(ii) l ′ is not a variable,

(iii) lσ 	≺ rσ ,
(iv) sσ 	≺ tσ ,
(v) (l ≈ r)σ is strictly maximal in (�1 → 	1, l ≈ r)σ ,

(vi) (s ≈ t)σ is maximal in (s ≈ t, �2 → 	2)σ and no literal in �2 is selected
or
s ≈ t is selected,

(vii) no literal in �1 is selected.

Definition 6 (Hierarchic Superposition Right) The hierarchic superposition right rule is

I

1 ‖ �1 → 	1, l ≈ r 
2 ‖ �2 → 	2, s[l ′] ≈ t

(
1,
2 ‖ �1, �2 → 	1,	2, s[r ] ≈ t)σ

where
(i) σ = mgu(l, l ′) and σ is simple,

(ii) l ′ is not a variable,
(iii) lσ 	≺ rσ ,
(iv) sσ 	≺ tσ ,
(v) (l ≈ r)σ is strictly maximal in (�1 → 	1, l ≈ r)σ ,

(vi) (s[l ′] ≈ t)σ is strictly maximal in (s[l ′] ≈ t, �2 → 	2)σ ,
(vii) no literal in �1, �2 is selected.

As we mentioned above, an application of Hierarchic Superposition Left/Right rule may produce an assignment
of base variables (s[r ] ≈ t)σ in the case if r and t are base variables, l and s are non-variable terms, and l ′ = s. The
resulting assignment of base variables is moved to the constraint of the inference resolvent (where it gets negated if
produced by the Hierarchic Superposition Right rule as it is moved from succedent of the clause to its constraint).
We do not explicitly mention this rule as it is obvious. It has not been needed in the previous formulation of the
calculus [7] because there no strict separation between subsets of base and free literals of an abstracted clause has
been made. However, it is very useful to separate the base literals from the free ones in order to explore the reasoning
mechanisms for the base specification. This also emphassis the fact that (ground) base terms are strictly smaller
than (ground) non-base terms.

It is worthwhile to notice that the unifier σ underlying the inference rules Hierarchic Equality Resolution and
Hierarchic Superposition Left/Right can unify a base variable only with another base variable, because σ is required
to be simple (meaning that σ can substitute base variables only with base terms) and premises are abstracted (meaning
that the only base terms occurring in the free part of premises are just base variables).

Definition 7 (Constraint Refutation) The constraint refutation rule is

I

1 ‖→ . . . 
n ‖→

�

where (
1 ‖ → ), . . . , (
n ‖ → ) |�C ⊥.
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The rule Constraint Refutation is applied if the set of base clauses (
1 ‖→), . . . , (
n ‖→) is unsatisfiable in
the base theory T.

We do not give a definition of the Hierarchic Factoring inference rule, because clauses of the FOL(T) fragments
considered here can be always split into Horn clauses, herewith Factoring gets obsolete (for more details regarding
splitting into Horn clauses see Sect. 4.3.1), and completeness is preserved though.

Discarding separation of base and free parts of clauses and simple unifiers, the rules Hierarchic Splitting, Hierar-
chic Superposition Left/Right, and Hierarchic Equality Resolution are obvious instances of the respective standard
superposition inference rules [5,28], therefore the hierarchic rules are sound with respect to the general entail-
ment relation |�, hence sound with respect to the hierarchic entailment relation |�C (recall that N |� M implies
N |�C M). The rule Constraint Refutation is not sound with respect to the general entailment relation |� (as for a set
of base clauses inconsistent relative to the theory T, there might exist a non-standard model of T,—a model out of the
base model class C ,—that actually satisfies the given set of base clauses), but the rule is evidently sound with respect
to |�C . Thus, the overall inference system consisting of the rules Hierarchic Splitting, Hierarchic Superposition
Left/Right, Hierarchic Equality Resolution, and Constraint Refutation is sound with respect to |�C [7].

We do not introduce the hierarchic redundancy criterion proposed in [7], as the only concrete redundancy crite-
rion we need here is deletion of duplicate clauses modulo renaming. This is equivalent to omitting inferences which
produce such clauses. For this reason, we also do not define the reduction rules Hierarchic Tautology Deletion and
Hierarchic Subsumption Deletion given in [7]. Nevertheless, in practice the overall approach would considerably
benefit from using these rules, as clauses, that could be eliminated by the rules, naturally arise in SUP(T) derivations
from clause sets over the FOL(T) fragments considered here.

Definition 8 (Sufficient Completeness [7]) A set N of clauses is called sufficiently complete with respect to simple
instances, if for every model A′ of sgi(N ) and every ground term t ∈ T�′(S) of the base sort S there exists a ground
base term t ′ ∈ T� such that t ≈ t ′ is true in A′.

Theorem 9 (Completeness [7]) If the base specification is compact, then the hierarchic superposition calculus is
refutationally complete for all sets of clauses that are sufficiently complete with respect to simple instances.

The compactness requirement is obsolete in cases where all possible hierarchic superposition derivations for
some clause set are finite. We will show this to be the case for the fragments we consider here. The given definition
of the sufficient completeness criterion is very strong, but still the calculus may be complete for some clause sets,
that do not enjoy the criterion. In practice, we only need to sufficiently define only those non-base terms of the base
sort that actually occur in a given clause set N . For a finite clause set N sufficient completeness can be obtained
by transforming N into a clause set N ′, in which every non-base term t of the base sort occurs in a positive unit of
the form t ≈ t ′, where t ′ is a base term. If, by a proper instantiation of the SUP(T) calculus the existence of such
equations remains an invariant for any SUP(T) derivation N0 � N1 � . . ., where N0 is the clause set N ′ abstracted,
sufficient completeness is preserved and the overall approach is complete. Completeness of the calculus for clause
sets over the fragments we consider in the current work is achieved exactly in this way—by sufficiently defining all
non-base terms of the base sort that do occur in a given clause set (the approach is further described in the following
sections).

Example Here is an example, for which the hierarchical calculus is not complete, but where completeness can
be recovered by sufficiently defining present terms. Let the background theory T be rational linear arithmetic;
<,≥, 0 ∈ �, and f, a ∈ �′′; the function symbol f ranges into the base sort S, and a into the free sort S′′. Consider
the two clauses

(1) → f (a) ≥ 0

(2) → f (a) < 0
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which are abstracted to

(1′) x 	≥ 0 ‖ f (a) ≈ x →
(2′) x 	< 0 ‖ f (a) ≈ x →

Recall that variables in clauses are universally quantified, hence all clauses are variable disjoint. Clearly, the set
of these two clauses is unsatisfiable relative to C , however no SUP(T) inference is possible. Note that hierarchic
equality resolution is not applicable as σ = {x 
→ f (a)} is not a simple substitution. The two clauses are not
sufficiently complete, because the clause set does not imply simple instances of the term f (a) to be equal to some
base term.

Note that the set is satisfiable in a �′-model A′, that extends the base sort with an extra “junk” element, which
we denote by “♦”, exclusively generated by the term f (a), i.e. tA′ = ♦ iff t = f (a); and interprets the predicates
“<” and “≥” such that:

• ♦ ≥A′ 0A′ and ♦ <A′ 0A′ are true; and
• A′ |� s < s′ iff s < s′ holds in the theory of linear arithmetic (analogously for ≥), for any ground base terms

s, s′ ∈ T�.

The model A′ is not hierarchic, as its restriction A′|� to the base signature is a non-standard model of linear
arithmetic (because of the junk “♦”).

The equality of f (a) to a base term can, for example, be forced by the additional clause

(3) → f (a) ≈ 0

which is abstracted to

(3′) y ≈ 0 ‖ → f (a) ≈ y

Now the three clauses are sufficiently complete. For the clauses there is a refutation where Hierarchic Superpo-
sition Left Inferences between the clauses (1) and (3), and (2) and (3) yield respectively (note the move of base
variable assignments y ≈ x from the free parts of the conclusions to the constraints):

(4) x < 0, y ≈ 0, y ≈ x ‖ →
(5) x ≥ 0, y ≈ 0, y ≈ x ‖ →

which are equivalent to

(4′) 0 < 0 ‖ →
(5′) 0 ≥ 0 ‖ →

respectively. A Constraint Refutation application to the clause (4) (or equivalently to (4′)) results in the empty
clause. ��

4 Deciding Ground FOL(T)

In this section we prove that the SUP(T) calculus is a decision procedure for the ground FOL(T) fragment.
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4.1 Basification

A key idea of the approach to decide the ground FOL(T) fragment we describe here is to sufficiently define ground
base sort terms, occurring in an input clause set and whose top symbol is a free function symbol, by extending the
clause set by extra positive unit clauses consisting of an equation between every such a term and a fresh (i.e. not
occurring in the clause set) base constant (parameter) uniquely introduced for the term, thus obtaining a sufficiently
complete clause set which is satisfiable iff the original one is so. Here we assume that the background theory T
actually provides such free (Skolem) constants. Semantically, they play the role of existentially quantified vari-
ables, i.e., for our decision result to be effective the base theory must provide decidability with respect to quantifier
alternations. This is, for example, the case for the theory of linear arithmetic, considered as the running example.
Furthermore, extending the background theory with new constant symbols may cause losing compactness of the
overall approach. We show that following a certain strategy, the SUP(T) calculus may produce only finitely many
irredundant clauses in the fragment considered, so compactness is guaranteed that way.

Given a clause set N , a ground term t , whose top symbol is a free function f ∈ �′′ ranging into the base sort S,
is called basified, if the set N contains a positive unit clause C ∈ N consisting of an equation t ≈ a, where a is a
base constant (theory parameter). The clause C is called basifying (for the term t). A ground clause set N is called
basified if every ground term t , occurring in N and whose top symbol is a free function f ∈ �′′ ranging into the
base sort S, is basified by a clause in N .

Every ground clause set N over FOL(T) can be transformed into an equisatisfiable basified clause set in the
following way: traverse every literal in every clause from innermost (i.e. discover the literal’s term tree bottom up)
and search for occurrences of subterms whose top symbol is a free function symbol ranging into the base sort;
whenever such a term t is being observed, there are two possible ways of proceeding:

• if this is the first occurrence of t considered, then: (i) introduce a fresh base constant a, (ii) replace the occurrence
of t with a, and (iii) extend the input clause set N with a basifying clause C = ( → t ≈ a);

• for otherwise, replace the current occurrence of t with the parameter a, that has been introduced previously up
to this point, when the first occurrence of t has been discovered.

As the transformation of terms is performed from innermost to outwards, in every term t basified, there is no
subterm whose top symbol is a free function symbol ranging into the base sort, thus no further basification in an
added basifying clause is needed. Besides, all subsequent occurrences of the same term t appearing in the input
clause set N are replaced with the same base parameter a exclusively introduced for t . Any basified clause set N
enjoys the sufficient completeness criterion, because for every term t occurring in N , whose top symbol is a free
function symbol ranging into the base sort, there is a basifying clause ( → t ≈ a) in N , where a is a base constant;
consequently, for every such t there exists a base term t ′ = a such that t ≈ t ′ is true in every model of N . From
a semantics perspective, the base parameters can be thought of as base-sorted variables existentially quantified on
the top of the overall problem.

Example Let N be a given clause set to be basified, containing just one clause:

N = { P( f (h(1 + g(a)))) → f (h(1)) + g(a) ≥ 0 }
where the background theory T is rational linear arithmetic; +,≥, 0, 1 ∈ �, and P, f, g, a, h ∈ �′′; the function
symbols f, g range into the base sort S, and a, h into the free sort S ′′.

Assume the literal ¬P( f (h(1 + g(a)))) is discovered first. Its (only) innermost subterm, whose top symbol is
a free function symbol ranging into the base sort, is the term g(a). First, a fresh base parameter a is introduced;
second, the current occurrence of g(a) is replaced with a; and then a basifying clause ( → g(a) ≈ a) is added,
yielding the following clause set:

{ P( f (h(1 + a))) → f (h(1)) + g(a) ≥ 0,

→ g(a) ≈ a }
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Next, the basification procedure processes the subterm f (h(1 + a)) by, likewise, introducing a fresh parameter,
replacing the subterm with the new parameter, and adding the respective basifying clause, resulting in the following
clause set:

{ P(b) → f (h(1)) + g(a) ≥ 0,

→ g(a) ≈ a,

→ f (h(1 + a)) ≈ b }

At this point, every subterm of the first literal becomes basified, so the second literal f (h(1)) + g(a) ≥ 0 is being
processed. Assume the subterm f (h(1)) is considered first. After basifying the subterm in the above manner, we
obtain:

{ P(b) → c + g(a) ≥ 0,

→ g(a) ≈ a,

→ f (h(1 + a)) ≈ b,

→ f (h(1)) ≈ c }

In the next step, the subterm g(a) is to be basified. Since another occurrence of the term has been already processed,
and for which a unique base parameter has been introduced, the parameter a, no new parameter is produced now
and no basifying clause is added, and the current occurrence of g(a) is replaced with the a, yielding the following
clause set N ′:

N ′ = { P(b) → c + a ≥ 0,

→ g(a) ≈ a,

→ f (h(1 + a)) ≈ b,

→ f (h(1)) ≈ c }

The obtained clause set N ′ can be split into two parts: NI and NB . The set NI is the set of the basified clauses from
the initially given clause set N , the set NB is the set of clauses basifying those in NI . So, for the example above,
we have:

NI = { P(b) → c + a ≥ 0 },
NB = { → g(a) ≈ a,

→ f (h(1 + a)) ≈ b,

→ f (h(1)) ≈ c }

Let N be a ground clause set, N ′ = NI ∪ NB a clause set obtained from N by basification, where NI is the set
of the basified clauses from N , and NB is the set of clauses basifying those in NI . Let L = t1 ≈̇ t2 be an arbitrary
literal from a clause C ∈ N , where ≈̇ ∈ {≈, 	≈}. We want to determine the structure of the literal L ′ = t ′1 ≈̇ t ′2,
which the literal L becomes after basification in the corresponding clause C ′ ∈ NI . Regarding the structure of
t1 – analogously for t2 – there are two possible cases:

1. any subterm s of t1 with a free top symbol top(s) = f ∈ �′′ is of the free sort sort(s) = S′′, or more formally:
∀ p ∈ ρ(t1) : top(t1/p) ∈ �′′ ⇒ sort(t1/p) = S′′, implying that any base sort subterm of t1 is actually a base
term; in this case there is no subterm in t1 to be basified, therefore t1 remains unchanged: t ′1 = t1.
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2. t1 contains a subterm s of the base sort sort(s) = S with a free top symbol top(s) = f ∈ �′′; then every such
a subterm s is replaced with a unique base parameter, yielding a term t ′1 such that any subterm of t ′1 with a
free top symbol is of the free sort S′′, or more formally: ∀ p ∈ ρ(t ′1) : top(t ′1/p) ∈ �′′ ⇒ sort(t ′1/p) = S′′,
implying that any base sort subterm of t ′1 is actually a base term.

Consider an arbitrary clause ( ‖ t ≈ a →) ∈ NB . The clause is basifying for some term t whose top symbol is
a free function symbol f ∈ �′′ ranging into the base sort S. Since basification runs from innermost in a backward
depth-first-search manner, at the iteration of basification, when the first occurrence of t is basified, all immediate
subterms of t have been basified already, hence any strict subterm s of t has a top symbol top(s) = g, that is either
a base function symbol including newly introduced base parameters, or a free function symbol ranging into the free
sort, i.e. ∀ p ∈ ρ(t) : p > ε, top(t/p) ∈ �′′ ⇒ sort(t/p) = S′′, implying that any immediate base sort subterm of
t is actually a base term.

In the following proposition and subsequent corollary we summarize the observations regarding the structure of
terms occurring in N ′ obtained by basification from a ground clause set N :

Proposition 10 Let N ′ = NI ∪ NB be a clause set obtained from a ground clause set N by basification. For any
literal L = t1 ≈̇ t2 in any clause from NI , where ≈̇ ∈ {≈, 	≈}, it holds that

∀ p ∈ ρ(ti ) : top(ti/p) ∈ �′′ ⇒ sort(ti/p) = S′′,

for every i ∈ {1, 2}. The only literal L = t ≈ a in any clause from NB is an equation between a base parameter a
and a term t, such that top(t) ∈ �′′, sort(t) = S, and

∀ p ∈ ρ(t) : p > ε, top(t/p) ∈ �′′ ⇒ sort(t/p) = S′′.

Corollary 11 If a clause set N ′ is obtained from a ground clause set N by basification, then for any literal
L = t1 ≈̇ t2 in any clause from N ′, where ≈̇ ∈ {≈, 	≈}, it holds that

∀ p ∈ ρ(ti ) : top(ti/p) ∈ � ⇒ ti/p ∈ T�,

for every i ∈ {1, 2}.

For a given ground clause set N , basification of N produces an equisatisfiable ground clause set N ′. From Propo-
sition 10 it follows that all non-base terms t of the base sort S occurring in N ′ are sufficiently defined and occur only
in positive literals of the form t ≈ t ′, where t ′ is ground base term, which makes the set N ′ sufficiently complete.

Lemma 12 Let N be a ground clause set. If N ′ is obtained from N by basification, then N ′ is sufficiently complete,
and N ′ and N are equisatisfiable.

The clause set N ′ obtained from a ground clause set N by basification contains one extra clause for each different
ground base sort terms with free top symbol that appears in N , and its size asymptotically equals the size of N in
the number of symbols in N . Basification takes loglinear (i.e. n log n) time in the number of symbols in N .

4.2 Abstraction

Abstraction introduced in Sect. 3 is used to split a clause into base and free parts such that each part consists of base
and free literals, respectively, and the only symbols shared by the parts of an abstracted clause are base variables.
After a given clause set N has been basified to a clause set N ′ = NI ∪ NB , the set N ′ is to be abstracted.
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Example Consider the clause set N ′ = NI ∪ NB from the previous example:

NI = { P(b) → c + a ≥ 0 },
NB = { → g(a) ≈ a,

→ f (h(1 + a)) ≈ b,

→ f (h(1)) ≈ c }

Abstraction yields the following clause set (recall that all variables are universally quantified):

N ′
I = { x ≈ b, c + a < 0 ‖ P(x) → },

N ′
B = { x ≈ a ‖ → g(a) ≈ x,

x ≈ b, y ≈ 1 + a ‖ → f (h(y)) ≈ x,

x ≈ c, y ≈ 1 ‖ → f (h(y)) ≈ x }

According to Corollary 11, any subterm t , occurring in a clause C = � → 	 from the clause set N ′ and whose
top symbol is a base operator symbol, is a base term (meaning that t contains no free symbol), therefore only base
terms are abstracted out. These implies that every variable x in the abstracted clause C ′ = 
′ ‖ �′ → 	′ is base
and assigned to some ground base term t via the equation x ≈ t in 
′. Thus, abstraction populates the constraint

′ of the clause C ′ by literals of two types:

• assignments x ≈ t of a variable x to a ground base term t , arising as the result of abstracting out base subterms
occurring below a free operator symbol; and

• base literals s ≈̇ t , where s and t are ground base terms and ≈̇ ∈ {≈, 	≈}, which have been already present in
the clause C ∈ N ′ and then moved to the constraint of C ′ at the final step of abstraction1; the literal gets negated
if it comes from the succedent of the clause.

Since no free term is abstracted out, the number of literals in each subset of the free part of the abstracted clause
C ′ = �′ → 	′ may only decrease in comparison to that of the corresponding original clause C = 
 ‖ � → 	,
i.e. |�′| ≤ |�| and |	′| ≤ |	|.

In the sequel of Sect. 4 we state different properties regarding variables occurring in clauses derived by the SUP(T)
calculus from a clause set obtained by basification and abstraction of an input set of ground clauses. Although all
variables occurring in such clauses are base, we formulate the properties for explicitly distinguished base variables.
This enables us to directly extend the results obtained for the ground FOL(T) to non-ground fragments involving
non-ground free terms containing variables of the free sort, Sect. 5.

Next we show that the above properties regarding base variables and the structure of the clauses’ constraints are
actually invariants for any SUP(T) derivation N0 � N1 � N2 � · · ·, where N0 is obtained from a ground clause set
by basification and abstraction.

Proposition 13 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause set by
basification and abstraction; let C = 
 ‖ � → 	 be an arbitrary clause in Ni , i ≥ 0. Then for every base variable
x ∈ vars(C) there exists a ground base term t ∈ T� such that2 the equation x ≈ t is in the constraint 
 of C.

1 Recall that predicates are encoded as functions; for instance, the literal c + a < 0 from the example above is an abbreviation for the
equation < (c + a, 0) ≈ true<. Encoding of predicates as functions is needed to compactly define the calculus. According to the defi-
nition of the SUP(T) calculus, only free literals are superposed, therefore encoding base predicates as functions is not strictly necessary.
Still, we do it as it helps to compress the theoretical discussion by saving one extra case (of considering predicative atoms), like in Prop-
osition 14. Whenever the Constraint Refutation rule is performed and the background T-solver is invoked, every such base predicative
(dis)equation P(t1, . . . , tn) ≈̇ trueP , where ≈̇ ∈ {≈, 	≈}, is passed to the solver as the corresponding predicate P(t1, . . . , tn).
2 Recall that T� stands for the set of all ground base terms. Notation for different types of term sets is introduced in Sect. 2.
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Proof We give a proof by induction on the length of derivation of Ni .
Induction Base For N0 the assertion follows from the definition of abstraction and Corollary 11.
Induction Hypothesis Assume the assertion holds for all clause sets Ni derived from N0, where i ≤ n, for some

n > 0.
Induction Step Let Nn+1 = Nn ∪ C , where C is a conclusion of an inference rule application to some clauses in

Nn . Consider the Hierarchic Equality Resolution rule, Definition 4,

I

 ‖ �, s ≈ t → 	

(
 ‖ � → 	)σ

the premise C1 ∈ Nn and conclusion C , respectively. As σ is simple and the premises are abstracted, the substitution
σ can unify a base variable only with another base variable. The variables vars(C1)\ dom(σ ) are not affected by
σ , and cdom(σ ) ⊆ vars(s, t) ⊆ vars(C1). Therefore, every variable x ∈ vars(C) comes from the clause C1, and
x = yσ , where y is a base variable (not necessarily different from x) from vars(C1). By induction hypothesis,
every base variable y ∈ vars(C1) is assigned to some ground base term t ′ via an equation (y ≈ t ′) ∈ 
 in the
constraint of C1, hence (y ≈ t ′)σ = (x ≈ t ′σ) ∈ 
σ , where 
σ is the constraint of C . Since t ′ is ground, we
obtain (x ≈ t ′) ∈ 
σ .

Consider the inference rule Hierarchic Superposition Right, Definition 6,

I

1 ‖ �1 → 	1, l ≈ r 
2 ‖ �2 → 	2, s[l ′] ≈ t

(
1,
2 ‖ �1, �2 → 	1,	2, s[r ] ≈ t)σ

with the premises C1, C2 ∈ Nn and conclusion C , respectively. As in the case of Hierarchic Equality Resolution,
we learn that every base variable x ∈ vars(C) comes from a clause C1 or C2, and x = yσ , where y is a base variable
(not necessarily different from x) from vars(C1, C2). Likewise, we conclude that an equation (x ≈ t ′) is contained
in the constraint (
1,
2)σ of C ′, for some ground base term t ′ ∈ T�. Analysis of the Hierarchic Superposition
Left rule is similar.

Consider the Hierarchic Splitting rule, Definition 3,

S

1,
2 ‖ �1, �2 → 	1,	2


1 ‖ �1 → 	1 | 
2 ‖ �2 → 	2

with the premise C ∈ Nn and conclusions C1 and C2, respectively. By induction hypothesis, we know that for every
base variable x ∈ vars(C) the equation (x ≈ t) ∈ (
1,
2), for some t ∈ T�. As, by Definition 3, 
1, �1,	1 on
one hand, and 
2, �2,	2 on the other are variable-disjoint, it holds that for every base variable x ∈ vars(Ci ), there
exists a term t ∈ T�, such that the atom (x ≈ t) ∈ 
i , for each i ∈ {1, 2}.

An application of the Constraint Refutation rule is a trivial case as the rule’s conclusion is an empty clause. ��

An application of the Hierarchic Superposition Left/Right rule can produce an assignment of two variables, say
(x ≈ y). If the variables are base, we replace (x ≈ y) with (s ≈ t), where s and t are the ground base terms, which
the variables are respectively assigned to (Proposition 13), and move the equation (s ≈ t) to the constraint of the
conclusion, where it gets negated in the case of the Hierarchic Superposition Right rule. We call this transformation
the variables assignments grounding, and write VAG(C) to denote the result of applying it to a clause C . Obviously,
VAG(C) is equivalent to C . The variable assignment grounding is implicitly applied to every clause derived.

Proposition 14 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause set
by basification and abstraction; let C = 
 ‖ � → 	 be an arbitrary clause in Ni , i ≥ 0. If variable assignment
grounding is applied to every clause derived, then every literal in 
 is either
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• an assignment x ≈ t , or
• a (dis)equation s1 ≈̇ s2,

where x is a base variable, t, s1, and s2 ground base terms, ≈̇ ∈ {≈, 	≈}.
Proof We give a proof by induction on the length of derivation of Ni .

Induction Base For N0 the assertion follows from the definition of abstraction and Corollary 11.
Induction Hypothesis Assume the assertion holds for all clause sets Ni derived from N0, where i ≤ n, for some

n > 0.
Induction Step Let Nn+1 = Nn ∪ C , where C is a conclusion of an inference rule application to some clauses in

Nn . Consider a Hierarchic Superposition Left inference, Definition 5,

I

1 ‖ �1 → 	1, l ≈ r 
2 ‖ s[l ′] ≈ t, �2 → 	2

(
1,
2 ‖ s[r ] ≈ t, �1, �2 → 	1,	2)σ

with the premises C1, C2 ∈ Nn and conclusion C , respectively. The constraint 
 = (
1,
2)σ of C is the conjunc-
tion of the premises’ constraints with the substitution σ applied onto them, therefore every literal L ′ ∈ 
 equals
Lσ , for some L ∈ 
1 ∪ 
2. As σ is simple and the premises are abstracted, the substitution σ can unify a base
variable only with another base variable. By induction hypothesis, every literal L ∈ 
1 ∪ 
2 is either:

• an assignment x ≈ t , then Lσ = (x ≈ t)σ = (y ≈ t), where y = xσ ; or
• a (dis)equation s1 ≈ s2, then Lσ = (s1 ≈ s2)σ = (s1 ≈ s2).

If the rule produces an assignment x ≈ y of two base variables in the free part of the conclusion, it is moved
to the constraint and grounded by the variable assignment grounding transformation, implicitly applied to every
clause in the derivation.

Analysis of the other inference rules (except Constraint Refutation and Hierarchic Splitting) is similar. The Hier-
archic Splitting rule produces two clauses, whose constraints are subsets of the premise’s constraint, which enjoys
the stated property by induction hypothesis. The induction step trivially holds for an application of the Constraint
Refutation inference rule. ��

4.3 Termination

Here we show that the SUP(T) calculus following a particular strategy terminates on all clause sets obtained from
ground clause sets by basification and abstraction. We prove the termination by first showing the following three
statements: (i) every non-Horn clause can be split into Horn clauses; (ii) every base variable occurring in a clause
is assigned to some ground base term via the constraint of the clause, and the number of such base terms is limited
by a certain finite number; since all variables are base, the number of different variables in a clause is bounded; and
(iii) the maximum size of literals is also limited (with an appropriately chosen ordering). Then we show that these
statements and the fact that the enrichment signature is finite imply that after finitely many new clauses have been
derived any further clause inferred is a variant of some clause previously derived.

4.3.1 Limiting the Length of Derived Clauses by Exhaustive Splitting

A bounded length of clauses in any SUP(T) derivation can be gained by splitting all clauses to Horn clauses and
using eager selection for SUP(T) inferences. In Proposition 15 we prove that all clauses derived from a set of Horn
clauses by SUP(T) inferences with eager selection do not exceed a certain length.

First, we show that a clause set, basified and abstracted, can actually be split into Horn clauses. Let N0 � N1 �
N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause set N by basification and abstraction.
In Propositions 13 and 14, we have shown that for any clause set Ni , i ≥ 0, in the derivation and any clause
C = 
 ‖ � → 	 in Ni the following hold:
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• every base variable x ∈ vars(C) is assigned to some ground base term t via an equation (x ≈ t) ∈ 
;
• the constraint 
 consists of literals of the two types:

– assignments x ≈ t of a variable x to a ground base term t , and
– (dis)equations s1 ≈̇ s2, where s1 and s2 are ground base terms and ≈̇ ∈ {≈, 	≈}.

From the structure of 
, we see that no two distinct variables x, y ∈ vars(
) occur in the same literal, which
means that the constraint 
 can always be split into n variable disjoint subsets, where n = | vars(
)|, the number
of distinct variables occurring in 
. Now, assume x is an arbitrary base variable occurring in the free part of C
more than once, say k > 1 times; let us denote this by C = 
 ‖ (� → 	)[x : k]. The variable x is assigned to
some term t ∈ T� via an equation (x ≈ t) ∈ 
. If we replace all subsequent occurrences of the variable x in � and
	 with fresh unique variables x2, …, xk and extend the constraint 
 with literals x2 ≈ t , …, xk ≈ t , we obtain an
equivalent clause


′, x2 ≈ t, . . . , xk ≈ t ‖ (�′ → 	′)[x : 1, x2 : 1, . . . , xk : 1],

where x and each xi occur in �′ and 	′ only once. Applying this transformation to every variable in C that has
multiple occurrences in the free part, gives us a clause C ′ = 
′′ ‖ �′′ → 	′′ which is equivalent to C and where
every base variable x ∈ vars(C ′) has at most one occurrence in the free part �′′ → 	′′ of the clause, implying that
no two free literals share a base variable. We call the exhaustive application of the transformation to all variables in
the clause variable cloning and write VC(C) to denote the result of applying it to a clause C . Note that the obtained
clause C ′ = VC(C) enjoys the statements of Propositions 13 and 14. Since all variables in C ′ are base, literals in
the free part of C ′ are all variable-disjoint. After applying variables cloning to a non-Horn clause, it can be split
into Horn clauses by a sequence of the Hierarchic Splitting rule applications.

As any non-Horn clause in N0 can be split into Horn clauses, we assume form now on that all clauses in N0 are
Horn, without loss of generality. Actually, it is sufficient to apply splitting only once exhaustively to clauses in N0,
and then the calculus generates only further Horn clauses.

Proposition 15 Let N0 � N1 � N2 � · · · be a SUP(T) derivation with eager selection. If N0 is a Horn clause set,
then every clause C ∈ Ni , i ≥ 1, contains at most as many free literals as the longest premise of the inference,
deriving C, does.

Proof An application of the Hierarchic Equality Resolution rule to a clause C ∈ N0 obviously yields a Horn conclu-
sion with a decremented number of free literals. Consider the inference rules Hierarchic Superposition Left/Right.
Since all free negative literals are selected in every clause in N0, an inference application is possible only between
either two positive unit clauses (Hierarchic Superposition Right), or between a positive unit clause and a Horn
clause (Hierarchic Superposition Left), yielding in each case a Horn clause with the number of literals equal at most
to the number of literals in the longest premise (actually, the number of free literals is smaller than in the longest
premise, only if the inference produces an assignment of two base variables which is moved to the constraint of
the conclusion). Applying this argument inductively, the assertion follows for every clause set Ni in the derivation
N0 � N1 � N2 � · · · . ��

Assume M is a set of abstracted clauses; we write nL(M) to denote the maximum number of free literals in a
clause from M :

nL(M) = maxC∈M {|�| + |	| |C = 
 ‖ � → 	} (4.1)

Corollary 16 Let N0 � N1 � N2 � · · · be a SUP(T) derivation with eager selection. If N0 is a Horn clause set,
then the number of free literals in any clause C ∈ Ni , for any i ≥ 0, is at most nL(N0).
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Since basification, abstraction, and splitting, which produce N0 out of a given ground clause set N , can only
decrease the number of free literals in a clause C ′ ∈ N0 in comparison to the number of all literals in the corre-
sponding clause C ∈ N , we conclude that nL(N0) ≤ maxC∈N (|C |).

4.3.2 Limiting the Number of Variables in Derived Clauses

Given a set M of abstracted clauses, we write nV (M) to denote the overall number of ground base terms, to each
of which there is an assignment of a variable via an equation in the constraint of a clause in M ; or more formally:

nV (M) = |
⋃

C∈M

{t ∈ T�| (x ≈ t) ∈ 
, where x ∈ vars(C) and C = 
 ‖ � → 	}| (4.2)

Example For the clause set N ′′ from the previous example (page 441), we have nV (N ′′) = 5, and the terms, to
which base variables are assigned, are (in the order of appearance): b, a, 1 + a, c, 1.

Proposition 17 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause set
by basification and abstraction. Then nV (Ni ) ≤ nV (N0), for every i ≥ 0.

Proof For the case i = 0 the assertion trivially holds. Let Ni+1 = Ni ∪C , where C is the conclusion of an inference
with premises in Ni . Assume nV (Ni ) ≤ nV (N0), induction hypothesis. In the proofs of Propositions 13 and 14,
we have shown that every ground base term s, appearing in the constraint of C , comes from one of the inference’s
premises. Therefore, every term t , for which there is an assignment x ≈ t in the constraint of C , is inherited from
Ni , implying that nV (Ni+1) ≤ nV (Ni ), hence, by induction hypothesis, nV (Ni+1) ≤ nV (N0). ��

Note that Proposition 17 requires neither eager selection for the derivation, nor N0 being a Horn clause set, nor
variables assignment grounding in clauses derived.

According to Proposition 14, for an arbitrary clause C = 
 ‖ � → 	 in the derivation N0 � N1 � N2 � · · ·
with variable assignment grounding applied to all derived clauses, it holds that every base literal in 
 containing
a variable x is of the form x ≈ t , where t ∈ T�. Assume the variable x occurs in 
 more than once, say k > 1
times, then L1 = (x ≈ t1), …, Lk = (x ≈ tk) are all literals in 
 with an entry of x , where t1, . . . , tk ∈ T� and k
is the number of occurrences of x in 
. By replacing all occurrences of x in each Li except L1 with the term t1, we
obtain literals L ′

2 = (t1 ≈ t2), …, L ′
n = (t1 ≈ tn); then the following clause

(
\{L2, . . . , Ln} ∪ {L ′
2, . . . , L ′

n}) ‖ � → 	,

whose constraint is obtained from 
 by replacing each Li with L ′
i , for all i ∈ {2, . . . , k}, is equivalent to the original

clause C . Applying this transformation to every variable that has multiple occurrences in 
, we obtain an equivalent
clause C ′ = 
′ ‖ � → 	, in which every base variable x ∈ vars(C ′) is assigned to a single ground base term
t ∈ T� via the equation (x ≈ t) ∈ 
′. We call the exhaustive application of the transformation to all variables in
the clause variable assignment propagation, and write VAP(C) to denote the result of applying it to a clause C .

Now, assume x, y are two arbitrary distinct variables in the obtained clause C ′ = VAP(C). The constraint 
′
contains two literals x ≈ s, y ≈ t , for some ground base s, t ∈ T�, which are uniquely defined. If s = t , then
the clause C ′[x/y] obtained from C ′ by replacing every occurrence of y with x is equivalent to C ′. Note that

′[x/y] contains two identical literals x ≈ s, one of which can be safely removed. After exhaustively merging all
variables that are assigned to the same term, we obtain a clause C ′′ = 
′′ ‖ �′ → 	′, which is equivalent to C ′,
hence, equivalent to C , and in which any two distinct base variables are assigned to distinct ground base terms via
respective equations in the constraint 
′′ of C ′′:

x 	= y ⇒ {x ≈ s, y ≈ t} ⊆ 
′′ and s 	= t,
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for any base variables x, y ∈ vars(C ′′) and some ground base terms s and t . We call the exhaustive application of
the transformation to all variables in the clause variable merging, and write VM(C) to denote the result of applying
it to a clause C .

Note that variable assignment propagation and variable merging are compatible with Propositions 13 and 14.
Although it is not mentioned in the definitions of the SUP(T) inference rules, we implicitly apply variable assign-
ment grounding, variable assignment propagation, and variable merging to every clause in the derivation. We call
the cascade of the three transformations—in the given order—the grounding-propagation-merging of variables,
and write MPG(C) to denote the result of applying the combined transformation to a clause C : MPG(C) =
VM(VAP(VAG(C))). For the sake of conciseness, we use a term MPG transformation for the combined operation.

It is important to notice, that variable merging is antagonistic to variable cloning (described in Sect. 4.3.1), but
the former is performed after application of an inference, whereas the latter is done prior to applying the Hierarchic
Splitting rule, so that the two operations are not in conflict to each other, particularly because splitting is applied
exhaustively before any other inference takes place.

Since every time a clause is derived all its base variables, which are assigned to the same term, are merged, the
number of base variables in any clause derived is bounded by the number of different base terms, to which there
are assignments in the constraint of the derived clause; and the number of all such terms, as we have shown in
Proposition 17, is not increasing.

Corollary 18 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause set by
basification and abstraction. If the MPG transformation is applied to every clause in the derivation, then

|{x ∈ vars(C) | sort(x) = S}| ≤ nV (N0),

for any clause C ∈ Ni , i ≥ 0.

Since all variables in C ∈ Ni are base, we conclude that the number of all variables in C is bounded by nV (N0).

4.3.3 Limiting the Size of Literals in Derived Clauses

A key condition to ensure a finite saturation of a given clause set N0 by the SUP(T) calculus is to keep the size
of literals limited. Here we present a reduction ordering that limits the growth of the literals’ size in any SUP(T)
derivation with respect to this ordering.

Definition 19 (Hierarchic lexicographic path ordering HLPO(γ )) Let γ : T�′(X ′) → N be a total function. The
hierarchic lexicographic path ordering �h(γ ) augmenting the function γ is defined by: t �h(γ ) s iff:

1. γ (t) > γ (s), or
2. γ (t) = γ (s) and t �lpo s,

where �lpo is the standard LPO, see Definition 1 for LPO.

In general, the above HLPO ordering is not stable under substitutions. However in the context of simple substi-
tutions and an appropriately defined function γ , it actually becomes a reduction ordering that is well-founded and
total on ground terms.

We define a function ω : T�′(X ′) → N, which for a given term t ∈ T�′(X ′) returns the number of free operator
symbol occurrences in t , as follows:

ω(t) = |{p ∈ ρ(t) | top(t/p) ∈ �′′}|. (4.3)

The function ω is extended to atoms and literals as

ω(s ≈̇ t) = ω(s) + ω(t),
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where s, t ∈ T�′(X ′) and ≈̇ ∈ {≈, 	≈}.
An instance of the Hierarchic lexicographic path ordering HLPO(ω) augmenting the function ω compares two

terms by, first, comparing the number of free operator symbol occurrences in the terms, and, second, if the number
of free operator symbol occurrences is the same, by comparing the terms with respect to the standard LPO.

In the context of the SUP(T) calculus for the ground FOL(T) fragment, terms involved in inferences may con-
tain only base variables from X . Moreover, SUP(T) admits only simple substitutions, hence the variables may be
substituted only with base terms. Next, we show that �h(ω) is a reduction ordering under these conditions. Propo-
sitions 20 and 21 followed hold only in the context of the ground FOL(T) fragment—for the non-ground case we
give corresponding propositions in Sect. 5.

Proposition 20 The hierarchic lexicographic path ordering �h(ω) augmenting the function ω is a reduction order-
ing for T�′(X ), with respect to simple substitutions.

Proof We need to show that �h(ω) is irreflexive, transitive, and well-founded binary relation that is compatible
with contexts, stable under simple substitutions, and has the subterm property. Let t, s, r ∈ T�′(X ) be arbitrary
�′-terms.

Irreflexivity of �h(ω) follows from that of > and �lpo.
Transitivity Assume t �h(ω) s �h(ω) r . We are to show that t �h(ω) r . Note that ω(t) ≥ ω(s) ≥ ω(r). Consider

two possible cases:

• ω(t) = ω(s) = ω(r), then t �lpo s �lpo r , and t �lpo r follows by transitivity of �lpo, consequently t �h(ω) r ;
• ω(t) > ω(s) or ω(s) > ω(r), then ω(t) > ω(r), consequently t �h(ω) r .

Well-foundedness Let t1, t2, . . . be arbitrary terms from T�′(X ) such that t1 �h(ω) t2 �h(ω) . . .. We are to show
that any such a descending chain of terms is finite. We prove it by induction on ω(t1).

Induction Base If ω(t1) = 0, then ω(t1) = ω(t2) = . . . = 0. Therefore, t1 �lpo t2 �lpo . . ., and the chain is
finite by well-foundedness of �lpo.

Induction Hypothesis Assume that any descending chain t1 �h(ω) t2 �h(ω) . . ., where ω(t1) ≤ n for some n ≥ 0,
is finite.

Induction Step Let ω(t1) = n + 1. There are two possible cases:

• ω(t1) = ω(t2) = . . . = n + 1, then this case is analogous to the induction base;
• there exists an index  > 1 such that ω(t1) > ω(t). Let k be the smallest index such that ω(t1) ≥ ω(tk)+ 1. As

ω(t1) = ω(t2) = . . . = ω(tk−1), we know that t1 �lpo t2 �lpo . . . �lpo tk−1. By well-foundedness of �lpo, the
left subchain t1 �h(ω) t2 �h(ω) . . . �h(ω) tk−1 is finite (and so is k). By induction hypothesis, the right subchain
tk �h(ω) tk+1 �h(ω) . . . is finite as well.

Thus, any descending chain t1 �h(ω) t2 �h(ω) . . . is finite, and, hence, �h(ω) is well-founded.
Compatibility with Contexts Let r = f (r1, . . . , rn), for some r1, . . . , rn ∈ T�′(X ) and n ≥ 1. Assume t �h(ω) s.

Consider the terms r ′ = r [t]i and r ′′ = r [s]i , for some 1 ≤ i ≤ n, obtained from r by replacing its i-th immediate
subterm r/ i by t and s, respectively. Then

ω(r ′) = ω(r) − ω(r/ i) + ω(t)

ω(r ′′) = ω(r) − ω(r/ i) + ω(s)

If ω(t) > ω(s), then ω(r ′) > ω(r ′′), thus r ′ �h(ω) r ′′ by condition 1 of Definition 19. If ω(t) = ω(s), then t �lpo s
and ω(r ′) = ω(r ′′). Let us compare r ′ and r ′′ with respect to �lpo. Since r ′/j = r ′′/j , for every 1 ≤ j ≤ n, j 	= i ,
and r ′/ i = t �lpo s = r ′′/ i , we obtain, by condition 2a of Definition 1, that r ′ �lpo r ′′/j , for every 1 ≤ j ≤ n.
Moreover, (r ′/1, . . . , r ′/n) (�lpo)lex (r ′′/1, . . . , r ′′/n), hence, by condition 2c, we obtain r ′ �lpo r ′′, yielding, by
condition 2 of Definition 19, that r ′ �h(ω) r ′′. So, �h(ω) is compatible with contexts.

Stability Under Simple Substitutions Assume t �h(ω) s. Let σ be an arbitrary simple substitution. Since all
variables occurring in t and s are of the base sort, they can be mapped by σ only to base terms, hence we have
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ω(tσ) = ω(t) and ω(sσ) = ω(s). If ω(t) > ω(s), then ω(tσ) > ω(sσ), hence tσ �h(ω) sσ . If ω(t) = ω(s), then
it must hold that t �lpo s. Since �lpo is stable under substitutions, we obtain tσ �lpo sσ , consequently, tσ �h(ω) sσ ,
by condition 2 of Definition 19. So, �h(ω) is stable under simple substitutions.

Subterm Property Let t = f (t1, . . . , tn), for some n ≥ 1, and s = ti be an immediate subterm of t , for some
1 ≤ i ≤ n. If f ∈ �′′, then ω(t) ≥ ω(s) + 1, consequently ω(t) > ω(s), therefore t �h(ω) s. For otherwise,
ω(t) ≥ ω(s). If ω(t) > ω(s), then t �h(ω) s. For otherwise, ω(t) = ω(s), but since �lpo has the subterm property,
we have t �lpo s, therefore t �h(ω) s. So, �h(ω) has the subterm property. ��

If M is a set of abstracted clauses, we write nF (M) to denote the maximum number of free operator symbol
occurrences in a free literal among all clauses in M :

nF (M) = max
C∈M

{ω(L) | L ∈ (� → 	), C = 
 ‖ � → 	}. (4.4)

Proposition 21 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained from a ground clause
set by basification and abstraction. If �h(ω) is the underlying ordering, then for every free literal L in any clause
C ∈ Ni , i ≥ 0, the number of free operator symbol occurrences ω(L) is at most nF (N0).

Proof We give a proof by induction on the length of derivation of Ni .
Induction Base For N0 the assertion trivially holds.
Induction Hypothesis Assume the assertion holds for all clause sets Ni derived from N0, where i ≤ n, for some

n > 0.
Induction Step Let Nn+1 = Nn ∪ C , where C is a conclusion of an inference rule application to some clauses

in Nn . Let us first make the following observation: for any simple substitution σ and any term t ∈ T�′(X ) built
over operators �′ and base variables X , the term tσ contains as many free operator symbols as the term t does,
i.e. ω(tσ) = ω(t), because there is no non-base variable in t , and simple substitutions can map base variables only
to base terms. Consider a Hierarchic Superposition Right inference, Definition 6,

I

1 ‖ �1 → 	1, l ≈ r 
2 ‖ �2 → 	2, s[l ′] ≈ t

(
1,
2 ‖ �1, �2 → 	1,	2, s[r ] ≈ t)σ

with the premises C1, C2 ∈ Nn and conclusion C , respectively. According to the definition of the rule,

lσ = l ′σ // by Cond. (i) of Def. 6

⇒ ω(lσ) = ω(l ′σ)

⇒ ω(l) = ω(l ′) // as l, l ′ ∈ T�′(X ) and σ simple

Moreover,

rσ 	�h(ω) lσ // by Cond. (iii) of Def. 6

⇒ ω(rσ) ≤ ω(lσ) // acc. to Def. 19 of �h(ω)

⇒ ω(r) ≤ ω(l) // as l, r ∈ T�′(X ) and σ simple
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Therefore,

ω(s[r ]σ) = ω(s[r ]) // as s[r ] ∈ T�′(X ) and σ simple

≤ ω(s[l]) // as ω(r) ≤ ω(l)

= ω(s[l ′]) // as ω(l) = ω(l ′)
⇒ ω

(
(s[r ] ≈ t)σ

) ≤ ω(s[l ′] ≈ t)

≤ nF (N0) // by Induction Hypothesis

For any other literal Lσ in the inference’s conclusion, where L is the corresponding literal from a premise, we
have ω(Lσ) = ω(L) ≤ nF (N0), by Induction Hypothesis. The analysis of the other rules is similar. ��

4.3.4 SUP(T) as a Decision Procedure for Ground FOL(T)

Lemma 22 Let N0 be obtained from a finite ground clause set N by basification and abstraction. If N0 is a Horn
clause set, then any SUP(T) derivation N0 � N1 � N2 � · · · with eager selection, MPG transformation, and
reduction ordering �h(ω) is terminating.

Proof According to Proposition 14, any literal in the constraint of a clause in the derivation is either a (dis)equation
s1 ≈̇ s2 between some ground base terms, where ≈̇ ∈ {≈, 	≈}, or an assignment x ≈ t of a base variable to
a ground base term. In the proof of Proposition 14 we have shown that terms s1, s2, t are all inherited from N0,
meaning that no new base term is produced by an inference. In Proposition 18, we have shown that a clause in the
derivation may contain at most nV (N0) different base variables. For finitely many different terms s1, s2, t and a
limited number of variables, there can be only finitely many different literals of the above form, therefore there can
be only finitely many different constraints 
, up to variable renaming and removal of duplicate literals.

According to Corollary 16, any clause in the derivation may contain at most nL(N0) free literals, each of which,
according to Proposition 21, may have at most nF (N0) function symbol occurrences, limiting thus the size of free
literals. As all variables in the derivation are base, the number of different variables in the free part of a clause is
also limited by nV (N0). For the finite set �′′ of free function symbols occurring in N0, a limited number and size of
literals, and limited number of variables, there exist only finitely many different free parts � → 	, up to variable
renaming.

Combining the two observations above, we conclude that there can be only finitely many different clauses

 ‖ � → 	 in the derivation N0 � N1 � N2 � · · ·, up to variable renaming. Thus, after sufficiently (and finitely)
many clauses have been derived, any further inference is redundant. Since only irredundant inferences have to be
performed, N0 � N1 � N2 � · · · is terminating. ��
Theorem 23 Let T be a base theory in which the ∃∗ fragment is decidable. Then the SUP(T) calculus with eager
selection, MPG transformation, reduction ordering �h(ω), and variable cloning and splitting preferred to other
inferences, is a decision procedure for the ground clause FOL(T) fragment.

Proof Basification, presented in Sect. 4.1, transforms a finite set N of ground FOL(T) clauses into a finite equi-
satisfiable clause set N ′, which is sufficiently complete, Lemma 12. Let N ′′ be a clause set obtained from N ′ by
abstraction, Sect. 4.2. In Sect. 4.3.1 we have shown that every clause in N ′′ can be split into Horn clauses, if
variable cloning (Sect. 4.3.1, page 444) is first applied to it. Let N 1

0 , . . . , N n
0 be the sets of Horn clauses obtained by

exhaustively applying splitting to N ′′. The clause set N ′′ is satisfiable if and only if at least one of N 1
0 , . . . , N n

0 is
so. Since SUP(T) is refutationally complete for all sufficiently complete clause sets, every N i

0, where 1 ≤ i ≤ n, is
satisfiable if and only if a SUP(T) derivation N i

0 � N i
1 � N i

2 � · · · does not contain an empty clause �. According
to Lemma 22, any SUP(T) derivation N i

0 � N i
1 � N i

2 � · · · with eager selection, MPG transformation (Sect. 4.3.2,
page 446) and the reduction ordering �h(ω) is terminating, therefore satisfiability of every N i

0 can be determined,
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hence satisfiability of N ′′ and N can be determined as well. Thus, the SUP(T) calculus with eager selection, reduc-
tion ordering �h(ω), and variable cloning and splitting preferred to other inferences, terminates for the ground clause
FOL(T) fragment. If the base theory supports a decision procedure for the ∃∗ fragment, then Constraint Refutation
can be decided. ��

Note that the usage of the hierarchic LPO �h(ω) yields an upper bound on the maximum size of free literals and,
hence, guarantees the existence of only finitely many different free literals over a finite set �′′ of free operator sym-
bols and a limited number of variables. Thus, even if the length of the free part of a clause not limited, there can be
only finitely many different free parts � → 	, up to variable renaming and duplication of literals. This observation
supports an alternative strategy involving neither splitting nor eager selection: indeed, the two ingredients are not
really needed for termination, but what is required in return is an additional Hierarchic Factoring rule [7], which is
necessary for refutational completeness in the absence of the splitting rule.

According to the definition of SUP(T) inference rules, Sect. 3, an empty clause � can be produced only by
an application of the Constraint Refutation rule, which is to apply to a set of base clauses (which are abstracted
clauses with the free part empty). As every base variable x is assigned to a ground base term t , Proposition 13, any
non-ground base clause can be grounded by propagation of all assignments x ≈ t . The term t may contain base
parameters introduced at the basification step. The parameters are essentially base variables existentially quantified
on the top of the overall clause set. Thus, an application of the Constraint Refutation rule reduces to checking
satisfiability of a base formula with all variables in it existentially quantified. For this reason, the only requirement
we impose on the theory T is the decidability of its existential fragment.

5 Non-ground FOL(T)

In this section we consider an application of SUP(T) to a non-ground FOL(T) fragment, for which SUP(T) is a
decision procedure as well. Due to the hierarchic design of SUP(T), the decidability result for the ground FOL(T)
fragment can be easily extended to some non-ground fragments. Here we present an instance of such an extension.

Definition 24 (BSHE(GBST) class) We call the class consisting of all Horn clause sets, where

(i) every non-predicate operator symbol of non-zero arity ranges into the base sort, and
(ii) all base sort terms are ground,

the Bernays-Schönfinkel Horn class with equality and ground base sort terms, BSHE(GBST).

Let N be a clause set from the BSHE(GBST) class, then any literal occurring in a clause from N may contain a
base or free predicate symbol, equality symbol, variables of the free sort S′′ which all occur immediately below a
free predicate or equality symbol, base function symbols, free function symbols of non-zero arity all ranging into
the base sort S, and constant symbols ranging either into the base S or the free sort S′′. Thus, any non-predicative
compound term occurring in N is ground and of the base sort S.

Example Let N be a given clause set containing just one clause:

N = { f (a) + 2 > b, P(u, 3 f (a), c) → Q(u, b)},

where the background theory T is the rational linear arithmetic; +,>, 2, 3 ∈ �, and P, Q, f, a, b, c ∈ �′′; the
function symbols f, b ranging into the base sort S, and a, c ranging into the free sort S′′; u ∈ X ′′ is a non-base
variable. The set N agrees with conditions (i) and (ii) of Definition 24 of the BSHE(GBST) class.

As usual, the input clause set N is first basified resulting in a clause set N ′ = NI ∪ NB :

NI = { a + 2 > b, P(u, 3a, c) → Q(u, b) },
NB = { → f (a) ≈ a,

→ b ≈ b }
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and then abstracted into a clause set N ′′ = N ′
I ∪ N ′

B :

N ′
I = { a + 2 > b, x ≈ 3a, y ≈ b ‖ P(u, x, c) → Q(u, y) },

N ′
B = { x ≈ a ‖ → f (a) ≈ x,

x ≈ b ‖ → b ≈ x }.

Let N be an arbitrary clause set from the BSHE(GBST) class. From now on we write N ′ = NI ∪ NB to denote
the clause set obtained from N by basification, where NI is the set of the basified clauses from N , and NB is the
set of clauses basifying those in NI ; and N ′′ to denote the clause set N ′ abstracted. Let N0 � N1 � N2 � . . . be
a SUP(T) derivation with MPG transformation, where N0 = N ′′. Most results for the ground fragment stated in
propositions and corollaries of the previous section hold also for the BSHE(GBST) class, and their proofs are valid
in the current context as well, therefore here we only reformulate the related properties to fit the BSHE(GBST)
class without providing proofs.

The presence of non-base variables interferes neither basification nor abstraction because they may occur only
immediately below equality or free predicate symbols. Therefore, terms occurring in basified BSHE(GBST) clause
sets have the same structural properties as in the case of basified ground FOL(T) clause sets.

Proposition 25 Let N be a clause set from the BSHE(GBST) class. Let N ′ = NI ∪ NB be a clause set obtained
from N by basification. For any literal L = (t1 ≈̇ t2) in any clause from NI , where ≈̇ ∈ {≈, 	≈}, it holds that

∀ p ∈ ρ(ti ) : top(ti/p) ∈ �′′ ⇒ sort(ti/p) = S′′,

for every i ∈ {1, 2}. The only literal L = (t ≈ a) in any clause from NB is an equation between a base parameter
a and a term t, such that top(t) ∈ �′′, sort(t) = S, and

∀ p ∈ ρ(t) : p > ε, top(t/p) ∈ �′′ ⇒ sort(t/p) = S′′.

Corollary 26 Let N be a clause set from the BSHE(GBST) class. If a clause set N ′ is obtained from N by basifi-
cation, then for any literal L = (t1 ≈̇ t2) in any clause from N ′, where ≈̇ ∈ {≈, 	≈}, it holds that

∀ p ∈ ρ(ti ) : top(ti/p) ∈ � ⇒ ti/p ∈ T�,

for every i ∈ {1, 2}.
Likewise, basification of a BSHE(GBST) clause set N produces an equisatisfiable clause set N ′. From Proposi-

tion 25 it follows that all non-base terms t of the base sort S occurring in N ′ are sufficiently defined and occur only
in positive literals of the form t ≈ t ′, where t ′ is ground base term, which makes the set N ′ sufficiently complete.

Lemma 27 Let N be a BSHE(GBST) clause set. If N ′ is obtained from N by basification, then N ′ is sufficiently
complete, and N ′ and N are equisatisfiable.

Since we consider only Horn clauses, the set N0 is already Horn (as neither basification nor abstraction add
atoms to the succedent of a clause), hence no splitting (and variable cloning) needs to be applied in any derivation
from N0. Thus, the properties regarding the maximal number of free literals stated in Proposition 15 and subsequent
Corollary 16 are true for the BSHE(GBST) fragment as well.

The derivation invariants regarding base variables and structure of constraints hold in the context of the
BSHE(GBST) class too.

Proposition 28 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set; let C = 
 ‖ � → 	 be an arbitrary clause in Ni , i ≥ 0. Then for



452 E. Kruglov, C. Weidenbach

every base variable x ∈ vars(C) there exists a ground base term t ∈ T� such that the equation x ≈ t is in the
constraint 
 of C.

Proposition 29 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set; let C = 
 ‖ � → 	 be an arbitrary clause in Ni , i ≥ 0. If variable
assignment grounding is applied to every clause derived, then every literal in 
 is either

• an assignment x ≈ t , or
• a (dis)equation s1 ≈̇ s2,

where x is a base variable, t, s1, and s2 ground base terms, ≈̇ ∈ {≈, 	≈}.
Proposition 30 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set. Then3 nV (Ni ) ≤ nV (N0), for every i ≥ 0.

Corollary 31 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set. If the MPG transformation is applied to every clause in the derivation,
then

|{x ∈ vars(C) | sort(x) = S}| ≤ nV (N0),

for any clause C ∈ Ni , i ≥ 0.

However, we have to take a special care of free variables. For this reason, we introduce another instance of the
hierarchic lexicographic path ordering, Definition 19, which limits the number of non-base variables in a derived
clause and ensures a bounded literal growth. Since all free function symbols of non-zero arity range into the base
sort, any term of the free sort occurring in the input clause set N is either a non-base variable, or a free constant.
Clearly, this property is preserved by basification, abstraction, and any inference rule application, and holds thus
for all Ni in N0 � N1 � N2 � . . .. Therefore, during the derivation a non-base variable can be unified either with
another non-base variable, or with a free constant. If a non-base variable is unified with a free constant, the number
of free operator symbol occurrences in the superposed term can actually grow. To cope with this, we need to count
in addition the number of non-base variable occurrences. Here we use an instance of HLPO(γ ), where for γ we use
the function φ : T�′(X ′) → N defined as:

φ(t) = |{p ∈ ρ(t) | top(t/p) ∈ �′′ ∪ X ′′}|, (5.1)

which in contrast to the function ω, which counts only free operator symbol occurrences (see Equation 4.3), counts
in addition occurrences of variables ranging into the free sort. The resulting instance �h(φ) of HLPO is a reduction
ordering for the BSHE(GBST) fragment, with respect to simple substitutions.

Proposition 32 Let all non-constant function symbols in �′′ range into the base sort. The hierarchic lexicographic
path ordering �h(φ) augmenting the function φ is a reduction ordering for T�′(X ′) with respect to simple substitu-
tions.

Proof Let t, s, r ∈ T�′(X ′), r = f (r1, . . . , rn), where n ≥ 1, all non-constant function symbols in �′′ range
into the base sort, and X ′ = X ∪ X ′′ is a set of base and non-base variables, respectively. Argumentation for the
properties irreflexivity, transitivity, well-foundedness, context compatibility, and the subterm property is exactly
the same as in Proposition 20 with the only difference being in using the function φ in place of ω (the presence of
non-base variables does not harm the arguments of Proposition 20 regarding the listed properties).

3 We write nV (M) to denote the overall number of ground base terms, to each of which there is an assignment of a variable via an
equation in the constraint of a clause in the set of abstracted clauses M (see Equation 4.2 on page 445).
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The proof of stability under simple substitutions is slightly different – due to the presence of non-base variables.
Assume t �h(φ) s. Let σ be a simple substitution. Any base variable x ∈ vars(t) – analogously for s – can be mapped
by σ only to a base term, and since base terms may contain only base symbols, we have φ(xσ) = 0 = φ(x). As the
only non-variable terms of the free sort are constants, any non-base variable y ∈ vars(t) can be mapped by σ either
to a non-base variable or a free constant, hence φ(yσ) = 1 = φ(y). Thus, an application of σ to variables of t does
not change the number of occurrences of free symbols (free operators and variables of the free sort), and, therefore,
φ(t) = φ(tσ); analogously φ(s) = φ(sσ). If φ(t) > φ(s), then φ(tσ) > φ(sσ) as well, hence tσ �h(φ) sσ . If
φ(t) = φ(s), then φ(tσ) = φ(sσ), and it must also hold that t �lpo s. Since �lpo is stable under substitutions, we
know tσ �lpo sσ , consequently, tσ �h(φ) sσ . So, �h(φ) augmenting φ is stable under simple substitutions. ��

We redefine the function nF , Eq. 4.4, in the following way:

nF (M) = max
C∈M

{φ(L) | L ∈ � ∪ 	, C = 
 ‖ � → 	}, (5.2)

where M is a set of abstracted clauses.

Proposition 33 Let N0 � N1 � N2 � · · · be a SUP(T) derivation, where N0 is obtained by basification and
abstraction from a BSHE(GBST) clause set. If �h(φ) is the underlying ordering, then for every free literal L in any
clause C ∈ Ni , i ≥ 0, the number of free symbol occurrences φ(L) is at most nF (N0).

Proof Analogous to Proposition 21. ��
Lemma 34 Let N0 be obtained by basification and abstraction from a BSHE(GBST) clause set. Then any SUP(T)
derivation N0 � N1 � N2 � · · · with eager selection, MPG transformation, and reduction ordering �h(φ) is
terminating.

Proof According to Proposition 29, any literal in the constraint of a clause in the derivation is either a (dis)equation
s1 ≈̇ s2 between some ground base terms, where ≈̇ ∈ {≈, 	≈}, or an assignment x ≈ t of a base variable to
a ground base term. The terms s1, s2, t are all inherited from N0, meaning that no new base term is produced by
an inference. According to Proposition 31, a clause in the derivation may contain at most nV (N0) different base
variables. For finitely many different terms s1, s2, t and a limited number of variables, there can be only finitely
many different literals of the above form, therefore there can be only finitely many different constraints 
, up to
variable renaming.

According to Corollary 16, any clause in the derivation may contain at most nL(N0) free literals, each of which,
according to Proposition 33, may have at most nF (N0) function symbol occurrences, limiting thus the size of free
literals. For a limited number and size of literals, there exist only finitely many different free parts � → 	, up to
variable renaming.

Combining the two observations above, we conclude that there can be only finitely many different clauses

 ‖ � → 	, up to variable renaming, in the derivation N0 � N1 � N2 � · · ·. Thus, any inference from Ni , for
some i ≥ 0, with a conclusion C that can be matched to a clause D ∈ Ni by variable renaming, is redundant.
After sufficiently (and finitely) many clauses have been derived, any further inference is thus redundant. Since only
irredundant inferences have to be performed, N0 � N1 � N2 � · · · is terminating. ��
Theorem 35 Let T be a base theory in which the existential fragment is decidable. Then SUP(T) with eager selec-
tion, MPG transformation, and reduction ordering �h(φ) augmenting the function φ is a decision procedure for the
BSHE(GBST) class.

Proof Basification, presented in Sect. 4.1, transforms a finite set N of BSHE(GBST) clauses into a finite equisat-
isfiable clause set N ′, which is sufficiently complete, Lemma 27.

Let N ′ be abstracted into a clause set N0. As N is a Horn clause set, N0 is so as well. Let N0 � N1 � N2 � · · ·
be a SUP(T) derivation with eager selection, MPG transformation, and underlying ordering �h(φ) augmenting the
function φ. According to Lemma 34, the derivation is terminating.
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If the original clause set N is unsatisfiable, so is N0, and due to refutational completeness SUP(T) finitely refutes
N0 deriving an empty clause. If the original clause set N is satisfiable, so is N0, and SUP(T) finitely saturates N0

without deriving an empty clause. ��
One application of the above decidability is reasoning (saturation and querying) in ontologies with arithmetical

facts, such as time stamps, size/amount information, etc. Suda, Weidenbach, and Wischnewski have shown in [26]
that the ontology YAGO4 can be expressed in terms of the Bernays-Schönfinkel Horn class with equality, abbre-
viated BSHE, and presented a variant of superposition that decides the class. Typical examples of clauses in the
representation of the ontology are (the examples are taken from [26]):

→ bornIn(AlbertEinstein, Ulm) // for “Albert Einstein was born in Ulm”

→ human(AngelaMerkel) // for “Angela Merkel is a human”

human(x) → mammal(x) // for “Every human is a mammal”

The ontology can be queried with questions like “who are the people who died in New York at the same place
where their children were born?”, which is formally encoded as the following conjecture

∃ x, y, z. diedIn(x, y) ∧ hasChild(x, z) ∧ bornIn(z, y) ∧ locatedIn(y, NewY ork)

which after negating becomes the clause

diedIn(x, y), hasChild(x, z), bornIn(z, y), locatedIn(y, NewY ork) →

with all variables universally quantified.
If the ontology is further extended with arithmetical information, such as for instance:

→ overInY(WWII, 1945) // for “The World War II ended in 1945′′

→ diedInY(KarlTheGreat, 814) // for “Karl The Great died in 814′′

→ gdp(Russia, 2011, 2.4 · 1012) // for “The GDP5 of Russia was $ 2.4 trillion in 2011
′′

→ population(USA, 2012, 313.8 · 106) // for “The population of USA was 313.8 million in 2012′′

then it can be addressed with queries like:

• “Was the GDP of Germany steadily growing every year by at least 3 % in 2008-2010?”, which is encoded as
the conjecture:

∀ x1, x2, y1, y2. gdp(Germany, y1, x1), gdp(Germany, y2, x2),

2008 ≤ y2, y2 ≤ 2010, y2 = y1 + 1 → x2 ≥ 1.03 · x1

• “Was the GDP of Germany at least 3 % higher than that of any other country in Europe in the years 2008-2010?”:

∀ u.∀ x1, x2, y. gdp(Germany, y, x1), gdp(u, y, x2), locatedIn(u, Europe),

u 	≈ Germany, 2008 ≤ y, y ≤ 2010 → x1 ≥ 1.03 · x2

Now the query answering mechanisms presented in [29] can actually be extended according to the above decid-
ability result to yield also a decision procedure for the extended language.

4 YAGO (Yet Another Great Ontology) is the first automatically retrieved ontology out of Wikipedia and WordNet with accuracy of
about 97% [25]; a well-known ontology in the information retrieval community.
5 GDP (Gross domestic product)
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6 Conclusion

We have shown that the SUP(T) calculus is a decision procedure for the ground FOL(T) fragment as well as a
non-ground FOL(T) fragment where non-base variables can only be instantiated by constants. This answers the
so far open question whether SUP(T) can actually decide the ground case. It was already known that SUP(T) is
complete and for some cases even a decision procedure for certain non-ground fragments such as the combination
of FOL and (non)linear arithmetic [1,12], and the analysis of fragments resulting from the translation of first-order
probabilistic and (extended) timed automata [13–16].

There are several directions of future work. One is to extend the obtained results for SUP(T) to the combination
of several theories. As long as these theories can be represented in FOL (e.g., lists, arrays, see [2,3]) such a combi-
nation is straightforward. However, if the theories are not FOL representable, then additional research is needed to
understand such a combination in the hierarchic context. For example, a new variant of the sufficient completeness
will probably be needed.

For the sake of simplicity, in this paper we have restricted our attention to a Horn clause fragment of FOL(T),
where every non-constant function symbol from the underlying FOL signature ranges into the sort of the theory T
and all base sort terms are ground. Actually, SUP(T) can decide the general clause fragment as well, because since
in this case the only function symbols ranging into the free sort are constants, every non-Horn clause can be split
into Horn clauses by instantiating every subsequent occurrence of the same variable by the free constants, reducing
the original non-Horn problem to a Horn one.

Another topic for future investigation is the combination of FOL over explicit finite domain clause sets with
a combination of background theories T . A restrictive superposition calculus has been proven to be a decision
procedure for FOL over finite domain fragment [18]. The sweet point of the combination of FOL over finite domain
with T , but with non-constant function symbols ranging into the free sort, is that any clause set (even non-ground)
over the fragment is sufficiently complete by the transformations suggested in [18]. This is due to the fact that the
cardinality clause

x ≈ a1 ∨ · · · ∨ x ≈ an

representing the finite domain {a1, . . . , an} is reflected by the clauses

f ( x) ≈ a1 ∨ · · · ∨ f ( x) ≈ an for any f ∈ �′′ \ {a1, . . . , an}

which imply sufficient completeness for every term t ∈ T�′ of the base sort.
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