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Abstract The notion of Lyapunov function plays a key role in the design and verification of dynamical systems, as
well as hybrid and cyber-physical systems. In this paper, to analyze the asymptotic stability of a dynamical system,
we generalize standard Lyapunov functions to relaxed Lyapunov functions (RLFs), by considering higher order
Lie derivatives. Furthermore, we present a method for automatically discovering polynomial RLFs for polynomial
dynamical systems (PDSs). Our method is relatively complete in the sense that it is able to discover all polynomial
RLFs with a given predefined template for any PDS. Therefore it can also generate all polynomial RLFs for the
PDS by enumerating all polynomial templates.
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1 Introduction

The notion of Lyapunov function plays a very important role in the design and verification of dynamical systems, in
particular, in performance analysis, stability analysis and controller synthesis of complex dynamical and controlled
systems[12,15,30]. In recent years, people realized that the notion is quite helpful for safety verification of hybrid
and cyber-physical systems as well [31].

However, the following two issues hinder the application of Lyapunov functions in practice. Firstly, as shown by
LaSalle’s Invariance Principle [15], it is actually not necessary to require the first-order Lie derivative of a Lyapunov
function to be strictly negative in order to guarantee asymptotic stability, and therefore this limits the applicability
of the method. Secondly, in general there is no effective way so far to find Lyapunov functions, although many
methods have been proposed by different researchers using expertise of their fields.

To address the above two issues, in this paper, we first generalize the standard concept of Lyapunov function
to relaxed Lyapunov function (RLF). Compared with the conventional definition of Lyapunov function, the first
non-zero higher order Lie derivative of an RLF is required to be negative, rather than its first-order Lie derivative.
Such a relaxation extends the set of admissible functions that can be used to certify asymptotic stability. Based on
RLFs, we give a new criterion for deciding asymptotic stability. Note that the same terminology “relaxed Lyapunov
function” was used in [27] with a different definition.

Another contribution of this paper is that we present a relatively complete method for automatically discovering
polynomial RLFs for polynomial dynamical systems (PDSs). The basic idea is to predefine a parametric polynomial
as a template of RLF first, and then utilize the Lie derivatives of the template at different orders to generate constraints
on the parameters, and finally solve the resulting constraints using computer algebra tools like DISCOVERER [36],
QEPCAD [3] and Redlog [8]. Here, relative completeness means that our method is able to discover all polynomial
RLFs with a given predefined template for a given PDS. Therefore it can also generate all polynomial RLFs for
the PDS by enumerating all polynomial templates. Notice that the enumeration of templates can be automatically
managed with respect to polynomial degrees. That is, for each d ∈ N, we predefine a template polynomial with
degree d and compute the corresponding constraint.Such an enumeration process does not terminate. However, in
practice we can stop when reaching an assumed upper bound on the degree of templates.

Related Work The idea of applying higher order Lie derivatives to analyze asymptotic stability is not new. For
example, in [4,20] the authors resorted to certain linear combinations of higher order Lie derivatives with non-
negative coefficients such that the combination satisfies certain conditions. This method is comparable with the
framework of vector Lyapunov functions method [19,21]. The authors of [2] presented a close work to [20] which
constructs standard Lyapunov functions using sums-of-squares (SOS) optimization and semidefinite programming
(SDP) tools. Our method is essentially different from theirs because an RLF only requires its first non-zero higher
order Lie derivative to be negative. The work [13] indeed proposed a very similar condition to ours: first-order
Lie derivative negative semidefinite and some conditions on higher order Lie derivatives. In [9] there is also a
follow-up work to [13]. Anyway, in these two works, the Lyapunov functions allow the first non-zero higher order
Lie derivative to be occasionally positive.

In the literature, there is a lot of work on constructing Lyapunov functions. For instance, in [1,11,16], methods
for constructing common quadratic Lyapunov functions for linear systems were proposed, which were generalized
in [29] and [34] for nonlinear systems wherein the generated Lyapunov functions are not necessarily quadratic.
Another useful technique is the linear matrix inequality (LMI) method introduced in [14] and [25], which utilized
the results of numerical optimization for discovering piecewise quadratic Lyapunov functions. Based on SOS and
SDP [24], a method for constructing piecewise high-degree polynomial and piecewise non-polynomial Lyapunov
functions was proposed in [23] and [26]. The SOS and SDP based method was also used in [32] to search for
control Lyapunov functions for polynomial systems. In [28], the authors proposed a new method for computing
Lyapunov functions for PDSs by solving semi-algebraic constraints using the tool DISCOVERER [36]. Approaches
for constructing Lyapunov functions beyond polynomials using radial basis functions were proposed in [10].
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Our method has the following features compared to the related work. Firstly, it generates relaxed Lyapunov
functions rather than conventional Lyapunov functions. Secondly, it is able to discover all polynomial RLFs by
enumerating all polynomial templates for any PDS, whereas other methods can only produce Lyapunov functions
of special forms. Thirdly, the LMI method and SOS method are numerical, while our method is symbolic, which
means it could provide a mathematically rigorous framework for the stability analysis of PDSs.

Structure The rest of this paper is organized as follows. For a self-contained presentation, Sect. 2 gives the
theoretical foundations based on which our method is developed. Section 3 shows a new criterion for asymptotic
stability using the notion of relaxed Lyapunov functions. In Sect. 4 we present a sound and relatively complete
method and a corresponding algorithm for automatically discovering polynomial RLFs for PDSs. The method is
illustrated using an example in Sect. 5. Finally, we conclude this paper and discuss possible future work in Sect. 6.

2 Theoretical Foundations

To make the paper self-contained, we present the fundamental concepts and results in polynomial ideal theory and
Lyapunov stability, which could be skipped if the reader is familiar with them.

2.1 Polynomial Ideal Theory

Let K be an algebraic field, and K[x1, x2, . . . , xn] denote the polynomial ring over K. Customarily, let x denote
the n-tuple (x1, . . . , xn). Then K[x1, x2, . . . , xn] can be written as K[x] for short, and a polynomial in K[x] can
simply be written as p(x) or p. In this paper, K will be taken as the rational number field Q or the real number field
R according to different contexts, and x takes values from the n-dimensional Euclidean space R

n .
In our method we will use polynomials with undetermined coefficients, called parametric polynomials or tem-

plates. Such polynomials can be denoted by p(u, x), where u = (u1, u2, . . . , ut ) is a t-tuple of parameters. Given
u0 ∈ R

t , we call the polynomial pu0(x) resulted by substituting u0 for u in p(u, x) an instantiation of p(u, x). In
the sequel, all parametric polynomials p(u, x) are assumed to be in Q[u, x], while their instantiations pu0(x) are
polynomials in R[x].

We briefly introduce some fundamental results relative to polynomial ideals in the following for self-contained-
ness. Please refer to [6] for more details.

Definition 2.1 A subset I ⊆ K[x] is called an ideal iff

(a) 0 ∈ I ;
(b) If p(x), g(x) ∈ I , then p(x)+ g(x) ∈ I ;
(c) If p(x) ∈ I , then p(x)h(x) ∈ I for any h(x) ∈ K[x].

It is easy to check that if p1, . . . , pm ∈ K[x], then

〈p1, . . . , pm〉 =
{

m∑
i=1

pi hi | ∀1 ≤ i ≤ m. hi ∈ K[x]
}

is an ideal (actually the least ideal containing p1, p2, . . . , pm). In general, we say an ideal I is generated by poly-
nomials g1, g2, . . . , gk ∈ K[x] if I = 〈g1, g2, . . . , gk〉, where all gi for i ∈ {1, 2, . . . , k} are called generators of
I . In fact, we have

Theorem 2.2 (Hilbert Basis Theorem) Every ideal I ⊆ K[x] has a finite generating set. That is, I =〈g1, g2, . . . ,

gk〉 for some g1, g2, . . . , gk ∈ K[x].
From this result, it is easy to see that
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Theorem 2.3 (Ascending chain condition) For any ascending chain

I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ · · ·

of ideals in polynomial ring K[x], there must be an N such that for all m ≥ N , Im = IN .

2.2 Dynamical Systems and Stability

We summarize some fundamental theories of dynamical systems here. For details please refer to [12,15,30].

2.2.1 Dynamical Systems

We consider autonomous dynamical systems modeled by first-order ordinary differential equations

ẋ = f(x), (2.1)

where x ∈ R
n and f is a vector function from R

n to R
n , which is also called a vector field in R

n .
In this paper, we focus on special nonlinear dynamical systems whose vector fields are defined by polynomials.

Definition 2.4 (Polynomial dynamical system) Suppose f = ( f1, f2, . . . , fn) in (2.1). Then (2.1) is called a
polynomial dynamical system (PDS for short) if for every 1 ≤ i ≤ n, fi is a polynomial in R[x]. Such f is called a
polynomial vector field.

For the sake of computability, in this paper, all PDSs are assumed to have vector fields defined by polynomials
with rational coefficients, i.e. f ∈ Q

n[x].
If f in (2.1) satisfies the local Lipschitz condition, then given x0 ∈ R

n , there exists a unique solution x(t) of (2.1)
defined on (a, b) with a < 0 < b s.t.

∀t ∈ (a, b).
dx(t)

dt
= f(x(t)) and x(0) = x0.

We call x(t) on [0, b) the trajectory of (2.1) starting from the initial point x0.
Let g(x) be a function from R

n to R. Suppose both g and f are differentiable in x at any order n ∈ N (i.e. g and
f are smooth functions). Then we can inductively define the Lie derivatives of g along f which are functions like
L : R

n → R, as follows:

• L0
f g(x) = g(x),

• Lk+1
f g(x) = (∇Lk

f g, f
)
, for k ≥ 0,

where ∇ is the gradient operator, i.e. ∇Lk
f g =̂ ( ∂Lk

f g
∂x1

,
∂Lk

f g
∂x2

, . . . ,
∂Lk

f g
∂xn

) , and (·, ·) is the inner product of two vectors,
i.e. ( (a1, . . . , an), (b1, . . . , bn) ) = ∑n

i=1 ai bi .

Simply, the zeroth-order Lie derivative of g along f is g itself, and the first-order Lie derivative describes the
slope of g along the solution trajectories of f .

Polynomial functions are smooth. Thus polynomial vector field f is locally Lipschitz. Besides, given a poly-
nomial vector field f and a polynomial p, the Lie derivatives of p along f are well defined at all orders
and are all polynomials. For a parameterized polynomial p(u, x), we can define Lk

f p(u, x) : R
n → R

by seeing u as undetermined constants rather than variables. In the sequel we will implicitly employ these
facts.

Example 2.5 Suppose f = (−x, y) and p(x, y) = x + y2. Then L0
f p = x + y2, L1

f p = −x + 2y2, L2
f p =

x + 4y2, L3
f p = −x + 8y2.
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2.2.2 Stability

The following are classical results of stability theory in the sense of Lyapunov.

Definition 2.6 A point xe ∈ R
n is called an equilibrium point or critical point of (2.1) if f(xe) = 0.

We assume xe = 0 w.l.o.g from now on.

Definition 2.7 Suppose 0 is an equilibrium point of (2.1). Then

• 0 is called Lyapunov stable if for any ε > 0, there exists a δ > 0 such that if ‖x0‖ < δ,1 then the corresponding
solution x(t) of (2.1) starting from x0 can be extended to infinity, and ∀t ≥ 0. ‖x(t)‖ < ε ;

• 0 is called asymptotically stable if it is Lyapunov stable and there exists a δ > 0 such that for any ‖x0‖ < δ,
the corresponding solution x(t) of (2.1) starting from x0 satisfies limt→∞ x(t) = 0.

Lyapunov first provided a sufficient condition, using so-called Lyapunov functions, for the Lyapunov stability as
follows.

Theorem 2.8 (Lyapunov Stability Theorem) Suppose 0 is an equilibrium point of (2.1). If there is an open set
U ⊆ R

n with 0 ∈ U and a continuous differentiable function V : U → R such that

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) L1

f V (x) ≤ 0 for all x ∈ U,

then 0 is a stable equilibrium point of (2.1). Moreover, if condition (c) is replaced by

(c∗) L1
f V (x) < 0 for all x ∈ U\{0},

then 0 is an asymptotically stable equilibrium point of (2.1). Such V satisfying (a), (b) and (c) (or (c∗)) is called a
Lyapunov function.

Basically, for asymptotic stability of autonomous dynamical systems, the Lyapunov stability theorem requires a
positive definite function V with negative definite first-order Lie derivative L1

f V in a neighborhood of the equilib-
rium. If V has only negative semi-definite L1

f V but no trajectories can stay identically in the zero level set of L1
f V ,

then the asymptotic stability can also be guaranteed, which is known as the Barbashin-Krasovskii-LaSalle (BKL)
Principle.

Theorem 2.9 (BKL Principle) Let V be a function satisfying conditions (a), (b) and (c) in Theorem 2.8. If the set
M =̂ {x ∈ U | L1

f V (x) = 0} does not contain any trajectory of the system other than the trivial trajectory x(t) ≡ 0,
then 0 is asymptotically stable.

Inspired by Theorem 2.9, we will define relaxed Lyapunov functions (RLFs for short) in the subsequent section,
which guarantee the asymptotic stability of an equilibrium point.

3 Relaxed Lyapunov Function

Intuitively, a Lyapunov function requires that any trajectory starting from x0 ∈ U cannot leave the region {x ∈ R
n |

V (x) ≤ V (x0)}. In the asymptotic stability case, the corresponding V forces any trajectory starting from x0 ∈ U
to transect the boundary {x ∈ R

n | V (x) = V (x0)} towards the set {x ∈ R
n | V (x) < V (x0)}. The left picture in

Fig. 1 illustrates how a Lyapunov function guarantees asymptotic stability.

1 Given x = (x1, x2, . . . , xn) ∈ R
n , ‖x‖ =

√∑n
i=1 x2

i denotes the Euclidean norm of x.
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Fig. 1 Trajectories transecting Lyapunov surfaces

It is clear that L1
f V (x) < 0 is only a sufficient condition for asymptotic stability. When a point x satisfies

L1
f V (x) = 0, the transection requirement may still be met if the first non-zero higher order Lie derivative of V at

x is negative. In this case, the trajectory may be tangential to a Lyapunov surface at the cross point (see the right
picture in Fig. 1). To formalize the above idea, and motivated by our recent work [17] on continuous invariant
generation, we give the following definitions.

Definition 3.1 (Pointwise Rank) Let N
+ be the set of positive natural numbers. Given a smooth function g and a

smooth vector field f , the pointwise rank of g w.r.t. f is defined as the function γg,f : R
n → N

+ ∪ {∞} given by

γg,f (x) =
{∞, if ∀k ∈ N

+. Lk
f g(x) = 0,

min{k ∈ N
+ | Lk

f g(x) �= 0}, otherwise.

Example 3.2 For f = (−x, y) and p(x, y) = x + y2, by Example 2.5, we have γp,f (0, 0) = ∞, γp,f (1, 1) =
1, γp,f (2, 1) = 2.

Definition 3.3 (Transverse Set) Given a smooth function g and a smooth vector field f , the transverse set of g w.r.t
f is defined as

Transg,f =̂ {x ∈ R
n | γg,f (x) < ∞ ∧ L

γg,f (x)
f g(x) < 0}.

Intuitively, Transg,f consists of those points at which the first non-zero higher order Lie derivative of g along f
is negative. Now we can relax condition (c∗) in Theorem 2.8 and get a new criterion for asymptotic stability.

Theorem 3.4 Suppose 0 is an equilibrium point of a dynamical system defined by smooth vector field f . If there is
an open set U ⊆ R

n with 0 ∈ U and a smooth function V : U → R s.t.

(a) V (0) = 0,
(b) V (x) > 0 for all x ∈ U\{0} and
(c) x ∈ TransV,f for all x ∈ U\{0},
then 0 is an asymptotically stable equilibrium point of (2.1).

Proof First, condition (c) implies L1
f V (x) ≤ 0 for all x ∈ U\{0}. In order to show the asymptotic stability of 0,

according to Theorem 2.9, it is sufficient to show that M =̂ {x ∈ U | L1
f V (x) = 0} contains no nontrivial trajectory

of the dynamical system.
If not, let x(t), t ≥ 0 be such a trajectory contained in M other than x(t) ≡ 0. Then for all t ≥ 0, L1

f V (x(t)) = 0
and x(t) �= 0. In particular, by (c), x0 = x(0) ∈ TransV,f . Then by Definition 3.3, the Taylor Formula of L1

f V (x(t))
at t = 0

L1
f V (x(t)) = L1

f V (x0)+ L2
f V (x0) · t + · · · + L

γV,f (x0)

f V (x0) · t γV,f (x0)−1

(γV,f (x0)− 1)! + o(tγV,f (x0))

= L
γV,f (x0)

f V (x0) · t γV,f (x0)−1

(γV,f (x0)− 1)! + o(tγV,f (x0))
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shows that there exists an ε > 0 s.t. ∀t ∈ (0, ε). L1
f V (x(t)) < 0,which contradicts the fact ∀t ≥ 0. L1

f V (x(t)) = 0.��
Definition 3.5 (Relaxed Lyapunov Function) We refer to the function V in Theorem 3.4 as a relaxed Lyapunov
function, denoted by RLF.

In the next section, we will explore how to automatically discover polynomial RLFs for PDSs.

4 Automatically Discovering Polynomial RLFs for PDSs

Given a PDS, the process of automatically discovering polynomial RLFs is as follows:

1. a template, i.e. a parametric polynomial p(u, x), is predefined as a candidate for RLF;
2. the conditions for p(u, x) to be an RLF are translated into an equivalent formula� of the decidable first-order

theory of real closed fields [33];
3. the constraint �′ on parameters u, or equivalently a set Su ⊆ R

t consisting of all t-tuples subject to �′, is
obtained by applying quantifier elimination (QE for short. See [3,8]) to�, and any instantiation of u by u0 ∈ Su

yields an RLF pu0(x).

4.1 Computation of Transverse Set

Step 2 in the above process, i.e. translation of the three conditions in Theorem 3.4, is crucial to our method. In
particular, we have to show that for any polynomial p(x) and polynomial vector field f , the transverse set Transp,f

can be represented by first-order polynomial formulas. We will achieve this by showing that there exists a uniform
upper bound on γp,f (x) for all x ∈ R

n with γp,f (x) < ∞. To this end, we first give several theorems by exploring
the properties of Lie derivatives and polynomial ideals.

Theorem 4.1 (Fixed Point Theorem) Given p ∈ K[x], if Li+1
f p ∈ 〈L1

f p, . . . , Li
f p〉, then for all m > i, Lm

f p ∈
〈L1

f p, . . . , Li
f p〉.

Proof We prove this fact by induction.
Induction hypothesis: Li+1

f p ∈ 〈L1
f p, . . . , Li

f p〉.
Assume Lk

f p ∈ 〈L1
f p, . . . , Li

f p〉 for some k > i . Then there are g j ∈ K[x] s.t. Lk
f p = ∑i

j=1 g j L j
f p. By the

definition of Lie derivative it follows that

Lk+1
f p =

(
∇Lk

f p, f
)

=
⎛
⎝∇

i∑
j=1

g j L j
f p, f

⎞
⎠

=
⎛
⎝ i∑

j=1

L j
f p∇g j +

i∑
j=1

g j∇L j
f p, f

⎞
⎠

=
i∑

j=1

(∇g j , f)L j
f p +

i∑
j=1

g j L j+1
f p

=
i∑

j=1

(∇g j , f)L j
f p +

i−1∑
j=1

g j L j+1
f p + gi Li+1

f p. (4.1)

By induction hypothesis, Li+1
f p ∈ 〈L1

f p, . . . , Li
f p〉. So by (4.1) we get Lk+1

f p ∈ 〈L1
f p, . . . , Li

f p〉. Therefore by
induction the fact follows immediately. ��
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Theorem 4.2 Given p ∈ K[x], the number

Np,f = min{i ∈ N
+ | Li+1

f p ∈ 〈L1
f p, . . . , Li

f p〉}
is well defined. Furthermore, Np,f is computable if Gröbner bases are computable in K[x].
Proof First it is easy to show that Np,f has an equivalent expression

Np,f = min{i ∈ N
+ | Ii+1 = Ii },

where Ii = 〈L1
f p, . . . , Li

f p〉 ⊆ K[x]. Noting that

I1 ⊆ I2 ⊆ · · · ⊆ Ik · · ·
forms an ascending chain of ideals, by Theorem 2.3, Np,f is well-defined. Computation of Np,f is actually an ideal
membership problem, which can be solved by computation of Gröbner bases [6]. So Np,f is computable if the field
K is properly chosen so that the Gröbner bases of ideals are computable in the ring K[x]. ��
Example 4.3 For f = (−x, y) and p(x, y) = x + y2, by Example 2.5, we have L2

f p /∈ 〈L1
f p〉 and L3

f p ∈
〈L1

f p, L2
f p〉. So Np,f = 2.

Given a parametric polynomial p(u, x) ∈ Q[u, x] and a polynomial vector field f ∈ Q
n[x], all Lie derivatives

Lk
f p(u, x) can be seen as polynomials in Q[u, x]. Then using similar arguments we can give the parametric versions

of Theorem 4.1 and Theorem 4.2 for Lk
f p(u, x), just by taking all ideals in Q[u, x]. Suppose Np,f is defined as in

Theorem 4.2 for p(u, x). Then we have

Theorem 4.4 (Rank Theorem) Suppose that p =̂ p(u, x). Then for all x ∈ R
n and all u0 ∈ R

t , γpu0 ,f
(x) < ∞

implies γpu0 ,f
(x) ≤ Np,f .

Proof If the conclusion is not true, then there exist x0 ∈ R
n and u0 ∈ R

t s.t.

Np,f < γpu0 ,f
(x0) < ∞.

By Definition 3.1, x0 satisfies

L1
f pu0(x0) = 0 ∧ · · · ∧ L

Np,f
f pu0(x0) = 0 ∧ L

γpu0 ,f
(x0)

f pu0(x0) �= 0.

Then by Theorem 4.2 and 4.1, for all m > Np,f , we have Lm
f pu0(x0) = 0. In particular,

L
γpu0 ,f

(x0)

f pu0(x0) = 0,

which contradicts L
γpu0 ,f

(x0)

f pu0(x0) �= 0. ��
In what follows, we will adopt the convention that

∨
i∈∅ ηi = false and

∧
i∈∅ ηi = true, where ηi is a logical

formula. Now we are able to give a logical representation of transverse sets as follows.

Theorem 4.5 Given a parameterized polynomial p =̂ p(u, x) and a polynomial vector field f , for any u0 ∈ R
t

and any x ∈ R
n, x ∈ Transpu0 ,f

if and only if u0 and x satisfy ϕp,f , where

ϕp,f =̂
Np,f∨
i=1

ϕi
p,f , and (4.2)

ϕi
p,f =̂

⎛
⎝i−1∧

j=1

L j
f p(u, x) = 0

⎞
⎠ ∧ Li

f p(u, x) < 0. (4.3)

Proof (⇒) Suppose x ∈ Transpu0 ,f
. By Definition 3.3, x satisfies

L1
f pu0(x) = 0 ∧ L2

f pu0(x) = 0 ∧ · · · ∧ L
γpu0 ,f

(x)
f pu0(x) < 0 . (4.4)

By Theorem 4.4, γpu0 ,f
(x) ≤ Np,f . Then it is obvious that (4.4) must be one of the disjuncts of (4.2), thus implying

(4.2).
(⇐) If u0 and x satisfy ϕp,f , then they must satisfy one of the Np,f disjuncts. By Definition 3.3 we can see that

x ∈ Transpu0 ,f
holds trivially. ��
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4.2 A Sound and Relatively Complete Method for Generating RLFs

Based on the results established in Sect. 4.1, our main result of automatically generating polynomial RLFs for PDSs
can be stated as the following theorem.

Theorem 4.6 (Main Result)
Given a PDS ẋ = f(x) with f(0) = 0 and a parametric polynomial p =̂ p(u, x). Let u0 = (u10 , u20 , . . . , ut0) ∈

R
t . Then pu0 is an RLF if and only if there exists r0 ∈ R, r0 > 0 such that (u10 , u20 , . . . , ut0 , r0) satisfies

φp,f =̂φ1
p,f ∧ φ2

p,f ∧ φ3
p,f , where

φ1
p,f =̂ p(u, 0) = 0 , (4.5)

φ2
p,f =̂ ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u, x) > 0) , (4.6)

φ3
p,f =̂ ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → ϕp,f ) (4.7)

with ϕp,f defined in (4.2).

Proof First, in Theorem 3.4, the existence of an open set U is equivalent to the existence of an open ball
B(0, r0) =̂ {x ∈ R

n | ‖x‖ < r0}. Then according to Theorem 4.5, it is easy to check that (4.5), (4.6) and (4.7)
are direct translations of conditions (a), (b) and (c) in Theorem 3.4. ��

According to Theorem 4.6, we can follow the three steps at the beginning of Sect. 4 to discover polynomial
RLFs for PDSs. This method is “relatively complete” because we can discover all possible polynomial RLFs in the
form of a predefined template, and thus can find all polynomial RLFs by enumerating all polynomial templates for
a given PDS.

4.3 Simplification and Implementation

To construct φp,f in Theorem 4.6, we need to compute Np,f in advance, whose complexity is very high.What is
the worse, when Np,f is a large number the resulting φp,f could be a huge formula, for which QE is infeasible in
practice. Regarding this, in the following we will try to reduce the complexity of RLF generation in two aspects:

1) we show that some of the quantifier elimination problems arising in the process of RLF generation can be
reduced to so called real root classification (RRC for short) problems, which can be solved in a more efficient
way compared to standard QE problems;

2) for analysis of asymptotic stability, one RLF is enough. Therefore we can search for RLF in a stepwise manner:
if an RLF can be obtained by solving constraints involving merely lower order Lie derivatives, there is no need
to resort to higher order ones.

We need the following three lemmas to explain the first aspect.

Lemma 4.7 Suppose f is a smooth vector field, g is a smooth function defined in an open set U ⊆ R
n, and

L1
f g(x) ≤ 0 for all x ∈ U. Then for any x ∈ U, γg,f (x) < ∞ implies x ∈ Transg,f .

Proof Suppose there is an x0 ∈ U such that γg,f (x0) < ∞ and L
γg,f (x0)

f g(x0) > 0. Let x(t) be the trajectory of f
starting from x0. Then from

L1
f g(x(t)) = L1

f g(x0)+ L2
f g(x0) · t + · · · + L

γg,f (x0)

f g(x0) · t γg,f (x0)−1

(γg,f (x0)− 1)! + o(tγg,f (x0))

= L
γg,f (x0)

f g(x0) · t γg,f (x0)−1

(γg,f (x0)− 1)! + o(tγg,f (x0)) (4.8)
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we can see that there exists an ε > 0 such that ∀t ∈ (0, ε). L1
f g(x(t)) > 0, which contradicts L1

f g(x) ≤ 0 for all
x ∈ U . ��
Lemma 4.8 Suppose f is a smooth vector field, g is a smooth function defined in an open set U ⊆ R

n, and
L1

f g(x) ≤ 0 for all x ∈ U. Then for any x ∈ U, γg,f (x) < ∞ implies γg,f (x) = 2k + 1 for some k ∈ N.

Proof If there is an x0 ∈ U such that γg,f (x0) < ∞ and γg,f (x0) = 2k for some k ∈ N
+, by Lemma 4.7 we have

L
γg,f (x0)

f g(x0) < 0. Then again by (4.8) we can see there exists an ε > 0 such that ∀t ∈ (−ε, 0). L1
f g(x(t)) > 0,

which contradicts L1
f g(x) ≤ 0 for all x ∈ U . ��

Lemma 4.9 Suppose f is a polynomial vector field and p(x) is a polynomial, and L1
f p(x) ≤ 0 for all x in an open

set U ⊆ R
n. Then for any x ∈ U, x ∈ Transp,f if and only if x is not a common root of the sequence of polynomials

L1
f p(x), L3

f p(x), . . . , L(2K0+1)
f p(x),

where K0 =̂� Np,f −1
2 �2 and Np,f is defined in Theorem 4.2.

Proof (⇒) Actually K0 has been chosen is such a way that 2K0 +1 is the largest uneven number less than or equal
to Np,f , i.e. 2K0 + 1 = Np,f or 2K0 + 1 = Np,f − 1. Suppose x0 ∈ Transp,f and L1

f p(x0) = L3
f p(x0) = · · · =

L(2K0+1)
f p(x0) = 0. From Lemma 4.8 we know that γp,f (x0) is an odd number. Thus γp,f (x0) ≥ 2K0+1+2 > Np,f ,

which contradicts Theorem 4.4.
(⇐) If x0 is not a common root of L1

f p(x), L3
f p(x), . . . , L(2K0+1)

f p(x), then γp,f (x0) < ∞. By Lemma 4.7 we
get x0 ∈ Transp,f . ��
Now we are able to present a simplified version of Theorem 4.6 as follows.

Theorem 4.10 Given a PDS ẋ = f(x) with f(0) = 0 and a parametric polynomial p =̂ p(u, x). Let u0 =
(u10 , u20 , . . . , ut0) ∈ R

t . Then pu0 is an RLF if and only if there exists r0 ∈ R, r0 > 0 such that (u10 , u20 , . . . , ut0 , r0)

satisfies ψp,f =̂ψ1
p,f ∧ ψ2

p,f ∧ ψ3
p,f ∧ ψ4

p,f , where

ψ1
p,f =̂ p(u, 0) = 0 , (4.9)

ψ2
p,f =̂ ∀x.(‖x‖2 > 0 ∧ ‖x‖2 < r2 → p(u, x) > 0) , (4.10)

ψ3
p,f =̂ ∀x.(‖x‖2 < r2 → L1

f p(u, x) ≤ 0) , (4.11)

ψ4
p,f =̂ ∀x.(0 < ‖x‖2 < r2 → L1

f p(x) �= 0 ∨ L3
f p(x) �= 0 ∨ · · · ∨ L(2K0+1)

f p(x) �= 0) (4.12)

with K0 defined in Lemma 4.9.

Proof By combining Theorem 3.4 with Lemma 4.9 we can get the results immediately. ��
In Theorem 4.10, constraints (4.9), (4.10) and (4.11) have relatively small sizes and can be solved by QE tools,

while (4.12) can be handled more efficiently as an RRC problem of parametric semi-algebraic systems.

Definition 4.11 A parametric semi-algebraic system (PSAS for short) is a conjunction of polynomial formulas
of the following form:⎧⎪⎪⎨
⎪⎪⎩

p1(u, x) = 0, . . . , pr (u, x) = 0,
g1(u, x) ≥ 0, . . . , gk(u, x) ≥ 0,
gk+1(u, x) > 0, . . . , gl(u, x) > 0,
h1(u, x) �= 0, . . . , hm(u, x) �= 0,

(4.13)

where r ≥ 1, l ≥ k ≥ 0,m ≥ 0 and all pi ’s, gi ’s and hi ’s are in Q[u, x]\Q.

2 For 0 ≤ r ∈ R, we have �r� ∈ N and r − 1 < �r� ≤ r .
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For a PSAS, the interesting problem is so-called real root classification, that is, to determine conditions on the
parameters u such that the given PSAS has certain prescribed number of distinct real solutions. Theories on real
root classification of PSASs were developed in [37,38]. A computer algebra tool named DISCOVERER [36] was
developed to implement these theories. See [22,35] for some applications of this technique in stability analysis of
biological systems.

Given a PSAS P with n indeterminates and s polynomial equations, it was argued in [5] that CAD-based QE on
P has complexity doubly exponential in n. In contrast, the RRC approach has complexity singly exponential in n
and doubly exponential in t , where t is the dimension of the ideal generated by the s polynomials. Therefore RRC
can dramatically reduce the complexity especially when t is much less than n.

For our problem, to solve (4.12) we can define a PSAS

P =̂
{

L1
f p(u, x) = 0, L3

f p(u, x) = 0, . . . , L(2K0+1)
f p(u, x) = 0

−‖x‖2 > −r2, ‖x‖2 > 0
.

Then the command RealRootClassification(P, 0) in DISCOVERER returns conditions on u and r such that P has
no solutions. In practice, P can be constructed in a stepwise manner. That is, L(2i+1)

f p(u, x) = 0 for 0 ≤ i ≤ K0

can be added to P one by one. Based on this idea, we present a relaxed Lyapunov function generation algorithm
(Algorithm 1) implementing Theorem 4.10.

Algorithm 1Relaxed Lyapunov Function Generation

Input: f ∈ Q[x1, . . . , xn]n with f(0) = 0, p ∈ Q[u1, . . . , ut , x1, . . . , xn]1

Output: Res ⊆ R
t+12

i := 1; Res := ∅; L1
f p := (∇ p, f);3

P := ‖x‖2 > 0 ∧ ‖x‖2 < r2;4

Res0 := QE(ψ1
p,f ∧ ψ2

p,f ∧ ψ3
p,f );5

if Res0 = ∅ then6
return ∅;7

else8
repeat9

P := P ∧ Li
f p = 0;10

Res := Res0 ∩ RRC(P, 0);11
if Res �= ∅ then12

return Res;13

else14

Li+1
f p := (∇Li

f p, f);15

Li+2
f p := (∇Li+1

f p, f);16
i := i + 2;17

until Li
f p ∈ 〈L1

f p, L2
f p, . . . , Li−1

f p〉;18

return ∅;19

Remark 4.12 In Algorithm 1,

• ψ1
p,f ψ

2
p,f and ψ3

p,f in Line 5 are defined in (4.9), (4.10) and (4.11) respectively;
• QE in line 5 is done in a computer algebra tool like Redlog [8] or QEPCAD [3];
• RRC in line 11 stands for the RealRootClassification command in DISCOVERER;
• in Line 18 the loop test can be done by the IdealMembership command in MapleTM [18].

Termination of Algorithm 1 is guaranteed by Theorem 4.1 and Theorem 4.2; correctness of Algorithm 1 is
guaranteed by Theorem 4.10.
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Fig. 2 Vector field and
Lyapunov surfaces in
Example 5.1

5 Example

We illustrate our method for RLF generation using the following example.

Example 5.1 Consider the nonlinear dynamical system(
ẋ
ẏ

)
=

(−x + y2

−xy

)
(5.1)

with a unique equilibrium point O(0, 0). We want to establish the asymptotic stability of O .
First, the linearization of (5.1) at O has the coefficient matrix

A =
(−1 0

0 0

)

with eigenvalues −1 and 0, so none of the principles of stability for linear systems can be applied. Besides, a
homogeneous quadratic Lyapunov function x2 +axy +by2 for verifying asymptotic stability of (5.1) does not exist
in R

2, because

∀x∀y.

(
x2 + y2 > 0 → (

x2 + axy + by2 > 0
∧ 2x ẋ + ayẋ + ax ẏ + 2by ẏ < 0

) )

is false. However, if we try to find an RLF in R
2 using the simple template p =̂ x2 + ay2, then Algorithm 1 returns

a = 1 in about 1 second on a desktop with a 2.66 GHz CPU and 3 GB memory. This means (5.1) has an RLF
x2 + y2, and O is asymptotically stable. See Fig. 2 for an illustration.

From this example, we can see that RLFs really extend the class of functions that can be used for asymptotic sta-
bility analysis, and our method for automatically discovering RLFs can save us a lot of effort in finding conventional
Lyapunov functions in some cases.

6 Conclusion

In this paper, we first generalize the notion of Lyapunov functions to relaxed Lyapunov functions by considering
the higher order Lie derivatives of a smooth function along a smooth vector field. The main advantage of RLF is
that it provides us more probability of certifying asymptotic stability. We also propose a method for automatically
discovering polynomial RLFs for PDSs. Our method is relatively complete in the sense that we can generate all
polynomial RLFs in the form of a predefined template, and thus can enumerate all potential polynomial RLFs
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by enumerating all polynomial templates for a given PDS. We believe that our methodology could serve as a
mathematically rigorous framework for the asymptotic stability analysis.

The main disadvantage of our approach is the high computational complexity: the complexity of the first-order
quantifier elimination over the real closed fields is doubly exponential [7]. Although the performance of our illus-
trating example is good, the present approach cannot work on complex systems. Currently we are considering
improving the efficiency of QE on a special class of first-order polynomial formulas, and it will be the main focus
of our future work.

Acknowledgments The authors thank Professors Zhou Chaochen, Yang Lu, Xia Bican and Yu Wensheng for their helpful discussions
on the topic. We also thank the anonymous referees for their valuable comments on the previous version, which helped us to improve
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