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Abstract. Given two strings, the longest common subsequence (LCS) problem
consists in computing the length of the longest string that is a subsequence of
both input strings. Its generalisation, the all semi-local LCS problem, requires
computing the LCS length for each string against all substrings of the other
string, and for all prefixes of each string against all suffixes of the other string.
We survey a number of algorithmic techniques related to the all semi-local
LCS problem. We then present a number of algorithmic applications of these
techniques, both existing and new. In particular, we obtain a new all semi-
local LCS algorithm, with asymptotic running time matching (in the case of
an unbounded alphabet) the fastest known global LCS algorithm by Masek
and Paterson. We conclude that semi-local string comparison turns out to be
a useful algorithmic plug-in, which unifies, and often improves on, a number of
previous approaches to various substring- and subsequence-related problems.
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1. Introduction

Given two strings a, b of lengths m, n respectively, the (global) longest common
subsequence (LCS) problem consists in computing the length of the longest string
that is a subsequence of both a and b. In [48], we defined this problem’s generali-
sation, the all semi-local LCS problem, where the LCS is computed for each string
against all substrings of the other string, and for all prefixes of each string against
all suffixes of the other string. The all semi-local LCS problem arises naturally in
the context of LCS computations on substrings. We define the problem and give
other preliminaries in Section 2.

The author acknowledges the support of The University of Warwick’s DIMAP (the Centre for
Discrete Mathematics and its Applications) during this work.
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In previous papers, we developed an approach for the solution of the all
semi-local LCS problem, based on an intimate geometric relationship between
its output matrix (that we call a “highest-score matrix”) and a certain kind of
infinite permutation matrices. Exploiting this relationship, we proposed several
algorithmic techniques involving fast multiplication of highest-score matrices in
the (min, +)-semiring. We review these techniques in Section 3.

In Section 4, we present a number of algorithmic applications of our tech-
niques, both existing and new. These applications fall into two broad subcategories,
based on the overall algorithm structure: either iterative, or divide-and-conquer.

Classical algorithms for the global LCS problem are based on the iterative
approach. In particular, the dynamic programming algorithm by Wagner and Fis-
cher [50] runs in time O(mn). The algorithm by Masek and Paterson [35] runs in
time O(mn log log n

log n ) for m ≤ n and reasonably close m and n, assuming the RAM
model with word size at least O(log log n); this running time can be improved to
O( mn

log n ) if the alphabet size is bounded by a constant.
The iterative approach to the all semi-local LCS problem is covered in this

paper by Subsections 4.1–4.5. In particular, in Subsection 4.1 we give an improved
(faster and simpler) all semi-local LCS algorithm. In contrast with the algorithm
of [48], the new algorithm is independent of the highest-score matrix multiplica-
tion method. Instead, it uses small-block precomputation directly, and runs in time
O(mn log log n

log n ) for m ≤ n and reasonably close m and n, under the same assump-
tions on the RAM model, both for bounded and unbounded alphabet size. Thus,
in the case of an unbounded alphabet, the running time of our algorithm matches
the running time of the global LCS algorithm by Masek and Paterson, while in the
case of a bounded (constant-sized) alphabet, the running time of our algorithm
remains unchanged, and the algorithm by Masek and Paterson runs faster by a
factor of O(log log n).

By direct application of our algorithm, in Subsection 4.2 we obtain an im-
proved algorithm for the cyclic LCS problem, and in Subsection 4.3 for the longest
repeated subsequence problem.

Extending the paradigms of incremental [27, 30] and fully-incremental [23]
string comparison, in Subsection 4.4 we define block-incremental string compari-
son, where each of the two input strings can be extended on-line by either append-
ing or prepending a block of characters of variable length l. We give an algorithm
that, following some off-line precomputation, updates the LCS data structure on-
line in time O(ml0.5) (respectively, O(nl0.5)) when input string a (respectively, b)
is kept fixed.

In Subsection 4.5, we consider the paradigm of common-substring compar-
ison [14, 31], where a text string of length n is compared against an unspecified
number of pattern strings, that may share a common substring of length l ≤ n.
The goal is, given the text, to preprocess the common substring so as to minimise
the LCS computation time for each occurrence of the common substring in the
patterns. Papers [14, 31] give an algorithm for the global version of the problem.
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This algorithm, following some preprocessing in time O(nl), takes time O(n) for
each occurrence of the common substring in a pattern. We extend this algorithm
to the more general semi-local version of the problem. Our algorithm, after the
same asymptotic amount of preprocessing, takes time O(n) for the first occurrence
of the common substring in a pattern, and time O(nl0.5) for each subsequent oc-
currence in the same pattern. In particular, if the common substring only occurs
in every pattern string once, our algorithm improves on the algorithm of [14, 31]
in functionality, without any increase in the asymptotic running time.

The (broadly defined) divide-and-conquer approach is covered by Subsec-
tions 4.6–4.12. In Subsection 4.6, we describe the all semi-local LCS algorithm
from [48], running in time O( mn

log0.5 n
) for m ≤ n and reasonably close m and n.

Although this algorithm is in general slower than the new iterative algorithm
from Subsection 4.1, it illustrates well the divide-and-conquer approach, which is
applicable to a wide range of other algorithmic problems. In particular, Subsec-
tion 4.7 describes an efficient algorithm given in [47, 49] for all semi-local LCS on
permutations. Direct applications of this algorithm, also given in [47, 49], include
an improved algorithm for the cyclic LCS problem on permutations, described in
Subsection 4.8, and for the maximum clique problem on a circle graph, described
in Subsection 4.9.

In Subsection 4.10, we propose a new method for local string comparison in
windows, which has the potential to serve as a highly sensitive alternative to the
standard “dot plot” method of biological string comparison. In contrast with the
“dot plot” method, which only accounts for character substitutions, our method
accounts for character insertions, deletions and substitutions. We describe the new
method in terms of the window-window and window-substring LCS problems, and
give an algorithm running in time O(mn).

Subsection 4.11 is concerned with gene assembly from candidate exons, which
is an important problem in computational biology. Among the most successful
approaches to this problem is spliced alignment, proposed by Gelfand et al., which
scores different candidate exon chains within a DNA sequence of length m by
comparing them to a known related gene sequence of length n, m = Θ(n). Gelfand
et al. gave an algorithm for spliced alignment running in time O(n3). Kent et al.
considered sparse spliced alignment, where the number of candidate exons is O(n),
and proposed an algorithm for this problem running in time O(n2.5). We describe
our result from [45], which is based on a generalisation of window-substring string
comparison, and gives an improved algorithm for sparse spliced alignment running
in time O(n2.25).

In Subsection 4.12, we consider the LCS problem and the local subsequence
recognition problem for a compressed text of length m̄ against an uncompressed
pattern of length n. Cégielski et al. [11] gave an algorithm for local subsequence
recognition running in time O(m̄n2 log n). We describe our result from [46], which
gives a new LCS algorithm and an improved local subsequence recognition algo-
rithm for a compressed text against an uncompressed pattern, both running in
time O(m̄n1.5).
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As already apparent to the reader, the aim of this paper is twofold: on one
hand, to survey the techniques and applications of semi-local string comparison
that have appeared in the author’s previous papers; on the other hand, to introduce
a number of new techniques and applications. At the end, we conclude that semi-
local string comparison turns out to be a useful algorithmic plug-in, which unifies,
and often improves on, a number of previous approaches to various substring- and
subsequence-related problems.

2. Semi-local longest common subsequences

We consider strings of characters from a fixed finite alphabet, denoting string
concatenation by juxtaposition. Given a string, we distinguish between its con-
tiguous substrings, and not necessarily contiguous subsequences. Special cases of
a substring are a prefix and a suffix of a string. For two strings a = α1α2 . . . αm

and b = β1β2 . . . βn of lengths m, n respectively, the longest common subsequence
(LCS ) problem consists in computing the length of the longest string that is a
subsequence of both a and b. We will call this length the LCS score of the strings.

In [48], we introduced the following problem.

Definition 1. The all semi-local LCS problem consists in computing the LCS scores
on substrings of a and b as follows:
• the all string-substring LCS problem: a against every substring of b;
• the all prefix-suffix LCS problem: every prefix of a against every suffix of b;
• symmetrically, the all substring-string LCS problem and the all suffix-prefix

LCS problem, defined as above but with the roles of a and b exchanged.

It turns out that this is a very natural and useful generalisation of the LCS
problem. In the rest of this paper, we present several algorithmic techniques for
the all semi-local LCS problem, and some of its applications.

A traditional distinction, especially in computational biology, is between
global (full string against full string) and local (all substrings against all sub-
strings) comparison. Our problem lies in between, hence the term “semi-local”.
Many string comparison algorithms output either a single optimal comparison
score across all local comparisons, or a number of local comparison scores that
are “sufficiently close” to the globally optimal. In contrast with this approach, we
require to output all the locally optimal comparison scores.

In addition to standard integer indices . . . ,−2,−1, 0, 1, 2, . . ., we use odd half-
integer indices . . . ,− 5

2 ,− 3
2 ,− 1

2 , 1
2 , 3

2 , 5
2 , . . .. For two numbers i, j, we write i � j if

j − i ∈ {0, 1}, and i � j if j − i = 1. We denote

[i : j] = {i, i + 1, . . . , j − 1, j}

〈i : j〉 =
{

i +
1
2
, i +

3
2
, . . . , j − 3

2
, j − 1

2

}

To denote infinite intervals of integers and odd half-integers, we will use −∞ for i
and +∞ for j where appropriate. For both interval types [i : j] and 〈i : j〉, we call
the difference j − i interval length.
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We will make extensive use of finite and infinite matrices, with integer el-
ements and integer or odd half-integer indices. A permutation matrix is a (0,1)-
matrix containing exactly one nonzero in every row and every column. An identity
matrix is a permutation matrix I, such that I(i, j) = 1 if i = j, and I(i, j) = 0
otherwise. Each of these definitions applies to both finite and infinite matrices.

From now on, instead of “index pairs corresponding to nonzeros”, we will
write simply “nonzeros”, where this does not lead to confusion. A finite permu-
tation matrix can be represented by its nonzeros. When we deal with an infinite
matrix, it will typically have a finite non-trivial core, and will be trivial (e.g., equal
to an infinite identity matrix) outside of this core. An infinite permutation matrix
with finite non-trivial core can be represented by its core nonzeros.

Given a permutation matrix D and a set of its columns R, the permutation
submatrix induced by R is obtained by deleting from D all columns not belonging
to R, and then deleting from the remaining submatrix all zero rows. A permutation
submatrix induced by a set of rows is defined analogously.

Let D be an arbitrary numerical matrix with indices ranging over 〈0 : n〉. Its
distribution matrix, with indices ranging over [0 : n], is defined by

d(i0, j0) =
∑

D(i, j) i ∈ 〈i0 : n〉 , j ∈ 〈0 : j0〉
for all i0, j0 ∈ [0 : n]. We have

D(i, j) = d

(
i− 1

2
, j +

1
2

)
−d

(
i− 1

2
, j − 1

2

)
−d

(
i +

1
2
, j +

1
2

)
+d

(
i +

1
2
, j − 1

2

)

When matrix d is a distribution matrix of D, matrix D is called the density
matrix of d. The definitions of distribution and density matrices extend naturally
to infinite matrices. We will only deal with distribution matrices where all elements
are defined and finite.

We will use the term permutation-distribution matrix as an abbreviation of
“distribution matrix of a permutation matrix”.

3. Algorithmic techniques

The rest of this paper is based on the framework for the all semi-local LCS problem
developed in [48], which refines the approach of [5,42]. For completeness, we include
most background definitions and results from [48].

3.1. Dominance counting

It is well-known that an instance of the LCS problem can be represented by a
dag (directed acyclic graph) on an m× n grid of nodes, where character matches
correspond to edges scoring 1, and non-matches to edges scoring 0.

Definition 2. Let m, n ∈ N. An alignment dag G is a weighted dag, defined on
the set of nodes vl,i, l ∈ [0 : m], i ∈ [0 : n]. The edge and path weights are called
scores. For all l ∈ [1 : m], i ∈ [1 : n]:
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Figure 1. An alignment dag and a highest-scoring path.

• horizontal edge vl,i−1 → vl,i and vertical edge vl−1,i → vl,i are both always
present in G and have score 0;

• diagonal edge vl−1,i−1 → vl,i may or may not be present in G; if present, it
has score 1.

Given an instance of the all semi-local LCS problem, its corresponding alignment
dag is an m×n alignment dag, where the diagonal edge vl−1,i−1 → vl,i is present,
iff αi = βj.

Figure 1 shows the alignment dag corresponding to strings a = “baabcbca”,
b = “baabcabcabaca” (an example borrowed from [5]).

Common string-substring, suffix-prefix, prefix-suffix, and substring-string
subsequences correspond, respectively, to paths of the following form in the align-
ment dag:

v0,i � vm,i′ vl,0 � vm,i′ v0,i � vl′,n vl,0 � vl′,n (1)
where l, l′ ∈ [0 : m], i, i′ ∈ [0 : n]. The length of each subsequence is equal to the
score of its corresponding path.

The solution to the all semi-local LCS problem is equivalent to finding the
score of a highest-scoring path of each of the four types (1) between every possible
pair of endpoints. This is also equivalent to finding the corresponding shortest
distances in an undirected graph, obtained from the alignment dag by assigning
length 1 to vertical and horizontal edges, length 0 to diagonal edges, and ignoring
edge directions. Thus, the problem is related to classical shortest path problems.
In particular, given a planar graph on mn nodes with nonnegative edge lengths,
the algorithm of [28] builds in time O(mn log(m + n)) a data structure of size
O(mn log(m+n)), that allows to query in time O(log(m+n)) the distance between
any node on the graph boundary and any other node. Assuming n = Θ(m), this
data structure is redundant for the all semi-local LCS problem, since in this case
the solution can be represented explicitly in size O(mn) with query time O(1).
However, the data structure of [28] applies to the general range of m and n, and
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to the more general string-prefix and string-suffix LCS problems, generalising the
corresponding algorithm of [42].

We aim to obtain a more efficient solution to the all semi-local LCS problem
by exploiting the special structure of the alignment dag. To describe our algo-
rithms, we need to modify the definition of the alignment dag by embedding the
finite grid of nodes into in an infinite grid.

Definition 3. Given an m × n alignment dag G, its extension G+ is an infinite
weighted dag, defined on the set of nodes vl,i, l, i ∈ [−∞ : +∞] and containing G
as a subgraph. For all l, i ∈ [−∞ : +∞]:
• horizontal edge vl,i−1 → vl,i and vertical edge vl−1,i → vl,i are both always

present in G+ and have score 0;
• when l ∈ [1 : m], i ∈ [1 : n], diagonal edge vl−1,i−1 → vl,i is present in G+ iff

it is present in G; if present, it has score 1;
• otherwise, diagonal edge vl−1,i−1 → vl,i is always present in G+ and has

score 1.
An infinite dag that is an extension of some (finite) alignment dag will be called
an extended alignment dag. When dag G+ is the extension of dag G, we will say
that G is the core of G+. Relative to G+, we will call the nodes of G core nodes.

By using the extended alignment dag representation, the four path types (1)
can be reduced to a single type, corresponding to the all string-substring (or,
symmetrically, substring-string) LCS problem on an extended set of indices.

Definition 4. Given an m×n alignment dag G, its extended horizontal (respectively,
vertical) highest-score matrix1 is an infinite matrix defined by

A(i, j) = max score(v0,i � vm,j) i, j ∈ [−∞ : +∞] (2)

A∗(i, j) = max score(vi,0 � vj,n) i, j ∈ [−∞ : +∞] (3)

where the maximum is taken across all paths between the given endpoints in the
extension G+. If i = j, we have A(i, j) = 0. By convention, if j < i, then we let
A(i, j) = j − i < 0.

In Figure 1, the highlighted path has score 5, and corresponds to the value
A(4, 11) = 5, which is equal to the LCS score of string a and substring b′ =
“cabcaba”.

In this paper, we will deal almost exclusively with extended (i.e., finitely
represented, but conceptually infinite) alignment dags and highest-score matrices.
From now on, we omit the term “extended” for brevity, always assuming it by
default. For most of this subsection, we will concentrate on the properties of hori-
zontal highest-score matrices, referring to them simply as “highest-score matrices”.

1These matrices are called “DIST matrices”, e.g., in [14, 42], and “score matrices” in [49]. We
have chosen a different terminology to reflect better the score-maximising nature of the matrix

elements, and to avoid confusion with pairwise score matrices used in comparative genomics (see,
e.g., [25]).
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By symmetry, vertical highest-score matrices will have analogous properties. We
assume i, j ∈ [−∞ : +∞], unless indicated otherwise.

The maximum path scores for each of the four path types (1) can be obtained
from the highest-score matrix (2) as follows:

max score(v0,j � vm,j′) = A(j, j′)

max score(vi,0 � vm,j′) = A(−i, j′)− i

max score(v0,j � vi′,n) = A(j, m + n− i′)−m + i′

max score(vi,0 � vi′,n) = A(−i, m + n− i′)−m− i + i′

where i, i′ ∈ [0 : m], j, j′ ∈ [0 : n], and the maximum is taken across all paths
between the given endpoints.

Theorem 1. A highest-score matrix has the following properties:

A(i, j) � A(i− 1, j); (4)

A(i, j) � A(i, j + 1); (5)

if A(i, j + 1) � A(i− 1, j + 1) , then A(i, j) � A(i− 1, j) ; (6)

if A(i− 1, j) � A(i− 1, j + 1) , then A(i, j) � A(i, j + 1) . (7)

Proof. A path v0,i−1 � vm,j can be obtained by first following a horizontal edge
of score 0: v0,i−1 → v0,i � vm,j . Therefore, A(i, j) ≤ A(i − 1, j). On the other
hand, any path v0,i−1 � vm,j consists of a subpath v0,i−1 � vl,i of score at most 1,
followed by a subpath vl,i � vm,j . Therefore, A(i, j) ≥ A(i − 1, j) − 1. We thus
have (4) and, by symmetry, (5).

A crossing pair of paths v0,i � vm,j and v0,i−1 � vm,j+1 can be rearranged
into a non-crossing pair of paths v0,i−1 � vm,j and v0,i � vm,j+1. Therefore, we
have the Monge property:

A(i, j) + A(i− 1, j + 1) ≤ A(i− 1, j) + A(i, j + 1)

Rearranging the terms

A(i− 1, j + 1)−A(i, j + 1) ≤ A(i− 1, j)−A(i, j)

and applying (4), we obtain (6) and, by symmetry, (7). �

The properties of Theorem 1 are symmetric with respect to i and n − j.
Alves et al. [5] introduce the same properties but do not make the most of their
symmetry. We aim to exploit symmetry to the full.

Corollary 1. A highest-score matrix has the following properties:

if A(i, j) � A(i− 1, j) , then A(i, j′) � A(i− 1, j′) for all j′ ≤ j ;

if A(i, j) = A(i− 1, j) , then A(i, j′) = A(i− 1, j′) for all j′ ≥ j ;

if A(i, j) � A(i, j + 1) , then A(i′, j) � A(i′, j + 1) for all i′ ≥ i ;

if A(i, j) = A(i, j + 1) , then A(i′, j) = A(i′, j + 1) for all i′ ≤ i .
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Figure 2. An alignment dag and the seaweeds.

Proof. These are the well-known properties of matrix A and its transpose AT being
totally monotone. In both pairs, the properties are each other’s contrapositive, and
follow immediately from Theorem 1. �

Informally, Corollary 1 says that the inequality between the corresponding
elements in two successive rows (respectively, columns) “propagates to the left
(respectively, downwards)”, and the equality “propagates to the right (respectively,
upwards)”. Recall that by convention, A(i, j) = j − i for all index pairs j < i.
Therefore, we always have an inequality between the corresponding elements in
successive rows or columns in the lower triangular part of matrix A. If we fix i and
scan the set of indices j from j = −∞ to j = +∞, an inequality may change to
an equality at most once. We call such a value of j critical for i. Symmetrically,
if we fix j and scan the set of indices i from i = +∞ to i = −∞, an inequality
may change to an equality at most once, and we can identify values of i that are
critical for j. Crucially, for all pairs (i, j), index i will be critical for j if and only if
index j is critical for i. To capture this property, which is central to our method,
we give the following definition.

Definition 5. An odd half-integer point (i, j) ∈ 〈−∞ : +∞〉2 is called A-critical, if

A

(
i +

1
2
, j − 1

2

)
� A

(
i− 1

2
, j − 1

2

)
= A

(
i +

1
2
, j +

1
2

)
= A

(
i− 1

2
, j +

1
2

)

In particular, point (i, j) is never A-critical for i > j. When i = j, point (i, j)
is A-critical iff A(i− 1

2 , j + 1
2 ) = 0.

Corollary 2. Let i, j ∈ 〈−∞ : +∞〉. For each i (respectively, j), there exists exactly
one j (respectively, i) such that the point (i, j) is A-critical.

Proof. By Corollary 1 and Definition 5. �
Figure 2 shows the alignment dag of Figure 1 along with the critical points.

In particular, every critical point (i, j), where i, j ∈ 〈0 : n〉, is represented by
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a seaweed2, originating between the nodes v0,i− 1
2

and v0,i+ 1
2
, and terminating

between the nodes vm,j− 1
2

and vm,j+ 1
2
. The remaining seaweeds, originating or

terminating at the sides of the dag, correspond to critical points (i, j), where
either i ∈ 〈−m : 0〉 or j ∈ 〈n : n + m〉 (or both). In particular, every critical
point (i, j), where i ∈ 〈−m : 0〉 (respectively, j ∈ 〈n : m + n〉) is represented
by a seaweed originating between the nodes v−i− 1

2 ,0 and v−i+ 1
2 ,0 (respectively,

terminating between the nodes vm+n−j− 1
2 ,n and vm+n−j+ 1

2 ,n). For the purposes
of this subsection, the specific layout of the seaweeds between their endpoints is
not important. However, this layout will become meaningful in the context of the
algorithms described in the next section.

It is convenient to consider the set of A-critical points as an infinite permu-
tation matrix. For all i, j ∈ 〈−∞ : +∞〉, we define

DA(i, j) =

{
1 if (i, j) is A-critical
0 otherwise

We denote the infinite distribution matrix of DA by dA, and consider the following
simple geometric relation.

Definition 6. Point (i0, j0) dominates3 point (i, j), if i0 < i and j < j0.

Informally, the dominated point is “below and to the left” of the dominating
point in the highest-score matrix4. Clearly, for an arbitrary integer point (i0, j0) ∈
[−∞ : +∞]2, the value dA(i0, j0) is the number of (odd half-integer) A-critical
points it dominates.

The following theorem shows that the set of critical points defines uniquely
a highest-score matrix, and gives a simple formula for recovering the matrix ele-
ments.

Theorem 2. For all i0, j0 ∈ [−∞ : +∞], we have

A(i0, j0) = j0 − i0 − dA(i0, j0)

Proof. Induction on j0 − i0. Denote d = dA(i0, j0).
Induction base. Suppose i0 ≥ j0. Then d = 0 and A(i0, j0) = j0 − i0.
Inductive step. Suppose i0 < j0. Let d′ denote the number of critical points in
〈i0 : n〉 × 〈0 : j0 − 1〉. By the inductive hypothesis, A(i0, j0 − 1) = j0 − 1− i0 − d′.
We have two cases:

1. There is a critical point (i, j0 − 1
2 ) for some i ∈ 〈i0 : n〉. Then d = d′ + 1 and

A(i0, j0) = A(i0, j0 − 1) = j0 − i0 − d by Corollary 1.

2This imaginative term was suggested by Yu.V. Matiyasevich.
3The standard definition of dominance requires i < i0 instead of i0 < i. Our definition is more
convenient in the context of the LCS problem.
4Note that these concepts of “below” and “left” are relative to the highest-score matrix, and
have no connection to the “vertical” and “horizontal” directions in the alignment dag.
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2. There is no such critical point. Then d = d′ and A(i0, j0) = A(i0, j0−1)+1 =
j0 − i0 − d by Corollary 1.

In both cases, the theorem statement holds for A(i0, j0). �

In Figure 2, critical points dominated by point (4, 11) are represented by
seaweeds whose both endpoints (and therefore the whole seaweed) fit between the
two vertical lines, corresponding to index values i = 4 and j = 11. Note that there
are exactly two such seaweeds, and that A(4, 11) = 11− 4− 2 = 5.

There is a close connection between Theorem 2 and the canonical structure
of general Monge matrices described in [10].

By Theorem 2, a highest-score matrix A is represented uniquely by an infinite
permutation matrix DA with odd half-integer row and column indices. We will
call matrix DA the implicit representation of A. From now on, we will refer to the
critical points of A as nonzeros (i.e., ones) in its implicit representation.

Recall that outside the core, the structure of an alignment graph is trivial: all
possible diagonal edges are present in the off-core subgraph. This property carries
over to the corresponding permutation matrix.

Definition 7. Given an infinite permutation matrix D, its core is a square (possibly
semi-infinite) submatrix defined by the index range [i0 : j0] × [i1 : j1], where
j0 − i0 = j1 − i1 (as long as both these values are defined), and such that for all
off-core elements D(i, j), we have D(i, j) = 1 iff j − i = j0 − i0 and j − i = j1 − i1
(in each case, as long as the right-hand side is defined).

Informally, the off-core part of matrix D has nonzeros on the off-core exten-
sion of the core’s main diagonal.

The following statements are an immediate consequence of the definitions.

Corollary 3. A core of an infinite permutation matrix is a (possibly semi-infinite)
permutation matrix.

Corollary 4. Given an alignment dag A as described above, the corresponding per-
mutation matrix DA has core of size m+n, defined by i ∈ 〈−m, n〉, j ∈ 〈0, m+n〉.

In Figure 2, the set of critical points represented by the seaweeds corresponds
precisely to the set of all core nonzeros in DA. Note that there are m+n = 8+13 =
21 seaweeds in total.

Since only core nonzeros need to be represented explicitly, the implicit repre-
sentation of a highest-score matrix can be stored as a permutation of size m + n.
From now on, we will assume this as the default representation of such matrices.

By Theorem 2, the value A(i0, j0) is determined by the number of nonzeros in
DA dominated by (i0, j0). Therefore, an individual element of A can be obtained
explicitly by scanning the implicit representation of A in time O(m+n), counting
the dominated nonzeros. However, existing methods of computational geometry
allow us to perform this dominance counting procedure much more efficiently, as
long as preprocessing of the implicit representation is allowed.
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The following theorems are derived from two relevant geometric results, one
classical and one recent. In view of algorithmic applications, we extend the fol-
lowing theorem from [48] to cover, in addition to ordinary matrix element queries,
also batch queries returning a set of elements in a row (or column) of the matrix.

Theorem 3. Given the implicit representation DA of a highest-score matrix A,
there exists a data structure which
• has size O((m + n) log(m + n));
• can be built in time O((m + n) log(m + n));
• allows to query an individual element of A in time O(log2(m + n));
• allows to query r consecutive elements in a row (or column) of A in time

O(r + log2(m + n)).

Proof. The structure in question is a 2D range tree [9] (see also [38]), built on the
set of core nonzeros in DA. There are m+n such nonzeros, hence the total number
of nodes in the tree is O((m + n) log(m + n)). A dominance counting query on
the set of core nonzeros can be answered by accessing O(log(m + n)2) of the tree
nodes. A dominance counting query on the set of off-core nonzeros can be answered
by a simple constant-time index calculation (note that the result of such a query
can only be non-zero when the query is made outside the core subgraph of the
alignment dag). The sum of the above two dominance counting queries provides
the total number of nonzeros dominated by the query point (i0, j0). The value
A(i0, j0) can now be obtained by Theorem 2.

Given a batch query of r consecutive elements in a row (or column) of A,
the first element is obtained as described above, in time O(log2(m + n)). For each
subsequent element, the count of dominated nonzeros is changed by at most 1,
and can be updated in constant time by a single index comparison. Therefore, the
whole batch query can be answered in time O(r + log2(m + n)). �

Theorem 4. Given the implicit representation DA of a highest-score matrix A,
there exists a data structure which
• has size O(m + n);
• allows to query an individual element of A in time O( log(m+n)

log log(m+n)).

Proof. As above, but the range tree is replaced by the asymptotically more efficient
data structure of [24]. �

While the data structure used in Theorem 4 provides better asymptotics,
the range tree used in Theorem 3 is simpler, requires a less powerful computation
model, and is more likely to be practical. Therefore, we will be using Theorem 3
as our main technique for efficient semi-local LCS queries.

We conclude this subsection by formulating yet another previously unex-
ploited symmetry of the all semi-local LCS problem. This time, we consider both
the horizontal highest-score matrix A as in (2), and the vertical highest-score
matrix A∗ as in (3). We show a simple one-to-one correspondence between the
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implicit representations of A and A∗, allowing us to switch easily between these
representations.

Theorem 5. We have DA(i, j) = DA∗(−i, m + n− j).

Proof. Straightforward case analysis based on Definition 5. �

3.2. Highest-score matrix multiplication

A common pattern in many problems on strings is partitioning the alignment dag
into alignment subdags. Without loss of generality, consider a partitioning of an
(M + m) × n alignment dag G into an M × n alignment dag G1 and an m × n
alignment dag G2, where M ≥ m. The dags G1, G2 share a horizontal row of n
nodes, which is simultaneously the bottom row of G1 and the top row of G2; the
dags also share the corresponding n− 1 horizontal edges. We will say that dag G
is the concatenation of dags G1 and G2. Let A, B, C denote the highest-score
matrices defined respectively by dags G1, G2, G. Our goal is, given matrices A,
B, to compute matrix C efficiently. We call this procedure highest-score matrix
multiplication.

Highest-score matrix multiplication can be performed naively in time
O((M + n)3) by standard matrix multiplication over the (max, +)-semiring. By
exploiting the Monge property of the matrices, the time complexity of highest-
score matrix multiplication can be reduced to O((M + n)2), which is optimal if
the matrices are represented explicitly. However, a further reduction in the time
complexity of highest-score matrix multiplication is possible, by using the implicit
matrix representation and algorithmic ideas introduced in Subsection 3.1.

The implicit representation of matrices A, B, C consists of respectively M+n,
m + n, M + m + n core nonzeros. Alves et al. [5] use a similar representation;
however, for their algorithm, n nonzeros per matrix are sufficient. They describe
a procedure equivalent to highest-score matrix multiplication for the special case
m = 1. By iterating this procedure, they obtain a string-substring LCS algorithm
running in time O(mn). In a generalised form, the main technique of [5] can be
stated as follows.

Lemma 1 (Generalised from [5]). Consider the concatenation of alignment dags
as described above, with highest-score matrices A, B, C. Given the implicit rep-
resentations of A, B, the implicit representation of C can be computed in time
O(M + mn) and memory O(M + n).

The following results from [48] improve on Lemma 1 for n = o(m2).

Definition 8. Let n ∈ N. Let A, B, C be arbitrary numerical matrices with indices
ranging over [0 : n]. The (min, +)-product A	B = C is defined by

C(i, k) = min
j

(
A(i, j) + B(j, k)

)
i, j, k ∈ [0 : n]

Lemma 2 ([48]). Let DA, DB, DC be permutation matrices with indices ranging
over 〈0 : n〉, and let dA, dB, dC be their respective distribution matrices. Let
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Figure 3. An illustration of Lemma 3.

dA	dB = dC . Given the nonzeros of DA, DB, the nonzeros of DC can be computed
in time O(n1.5) and memory O(n).

Lemma 3 ([48]). Let DA, DB, DC be permutation matrices with indices ranging
over 〈−∞ : +∞〉. Let DA (respectively, DB) have semi-infinite core 〈0 : +∞〉2
(respectively, 〈−∞ : n〉2). Let dA, dB, dC be the respective distribution matrices,
and assume dA 	 dB = dC . We have

DA(i, j) = DC(i, j) for i ∈ 〈−∞ : +∞〉 , j ∈ 〈n : +∞〉 (8)

DB(j, k) = DC(j, k) for j ∈ 〈−∞ : 0〉 , k ∈ 〈−∞ : +∞〉 (9)

Equations (8)–(9) cover all but n nonzeros in each of DA, DB, DC . These remain-
ing nonzeros have i ∈ 〈0 : +∞〉, j ∈ 〈0 : n〉, k ∈ 〈−∞ : n〉. Given the n remaining
nonzeros in each of DA, DB, the n remaining nonzeros in DC can be computed in
time O(n1.5) and memory O(n).

The above lemma is illustrated by Figure 3. Three horizontal lines represent
respectively the index ranges of i, j, k. The nonzeros in DA (respectively, DB) are
shown by top-to-middle (respectively, middle-to-bottom) seaweeds; thick seaweeds
correspond to the nonzeros covered by (8)–(9), and thin seaweeds to the remaining
nonzeros. By Lemma 3, the nonzeros in DC covered by (8)–(9) are represented by
thin top-to-bottom seaweeds. The remaining nonzeros in DC are not represented
explicitly, but can be obtained from the thick top-to-middle and middle-to bottom
seaweeds by Lemma 2.

Lemma 4 ([48]). Consider the concatenation of alignment dags as described above,
with highest-score matrices A, B, C. Given the implicit representations of A, B,
the implicit representation of C can be computed in time O(M +n1.5) and memory
O(M + n).

Note that Lemma 4 improves on Lemma 1, if and only if n = o(m2). In the
rest of this subsection, we obtain an even better, unconditional improvement on
Lemma 1, which is applicable in particular if m
 n.

The algorithm of Lemma 4 employs a subroutine for multiplying infinite
permutation-distribution matrices, described by Lemma 3. The subroutine works
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in the special case where both multiplicands have semi-infinite core. We now give
a subroutine for the complementary special case, where one multiplicand’s core is
unbounded, and the other’s is finite.

Lemma 5. Let DA, DB, DC be permutation matrices with indices ranging over
〈−∞ : +∞〉. Let DA (respectively, DB) have trivial infinite core 〈−∞, +∞〉2
(respectively, finite core 〈0 : n〉2). Let dA, dB , dC be the respective distribution
matrices, and assume dA 	 dB = dC . We have

DA(i, j) = DC(i, j) for i ∈ 〈−∞ : +∞〉 , j ∈ 〈−∞ : 0〉 ∪ 〈n : +∞〉 (10)

Equation (10) cover all but n nonzeros in each of DA, DB, DC . These remaining
nonzeros have i ∈ 〈−∞ : +∞〉, j, k ∈ 〈0 : n〉. Given the n remaining nonzeros in
each of DA, DB, the n remaining nonzeros in DC can be computed in time O(n1.5)
and memory O(n).

Proof. It is straightforward to check equality (10), by (2) and Definition 8. Infor-
mally, each nonzero of DC appearing in (10) is obtained as a direct combination
of a core nonzero of DA and an off-core nonzero of DB. All remaining nonzeros of
DA and DB are core, and determine collectively the remaining nonzeros of DC .
However, this time the direct one-to-one relationship between nonzeros of DC and
pairs of nonzeros of DA and DB need not hold.

Observe that all the off-core nonzeros of DB with j ∈ 〈−∞ : 0〉 are dominated
by each of the remaining nonzeros of DB. Furthermore, none of the nonzeros of
DB with j ∈ 〈n : +∞〉 are dominated by any of the remaining nonzeros of DB.
Hence, the nonzeros of DA appearing in (10) cannot affect the computation of the
remaining nonzeros of DC . We can therefore simplify the problem by looking for
the remaining nonzeros of DC in an induced submatrix. More precisely, let D′

A

(respectively, D′
B, D′

C) be a permutation submatrix of DA (respectively, DB, DC),
induced by the set of columns with j ∈ 〈0 : n〉 (respectively, k ∈ 〈0 : n〉 for both
D′

B, D′
C). We define d′A, d′B, d′C accordingly. The index order is preserved in each

submatrix, so the dominance relation is not affected.
It is easy to check that d′A 	 d′B = d′C , iff dA 	 dB = dC . Matrices D′

A, D′
B,

D′
C satisfy the conditions of Lemma 2. Therefore, given the set of nonzeros of D′

A,
D′

B, the set of nonzeros of D′
C can be computed in time O(n1.5) and memory

O(n). �

The above lemma is illustrated by Figure 4, using the same conventions as
Figure 3.

We are now able to give a new algorithm for highest-score matrix multipli-
cation, which is an unconditional improvement on Lemma 1.

Lemma 6. Consider the concatenation of alignment dags as described above, with
highest-score matrices A, B, C. Given the implicit representations of A, B, the
implicit representation of C can be computed in time O(M + m0.5n) and memory
O(M + n).
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Figure 4. An illustration of Lemma 5.

Proof. By Lemma 5, all but n core nonzeros of DC can be obtained in time and
memory O(M + n). We now show how to obtain the remaining core nonzeros in
time O(m0.5n), instead of time O(n1.5) given by Lemma 5.

The main idea is to decompose matrix dB into a (min, +)-product of per-
mutation-distribution matrices with small core. The decomposition is described
in terms of density matrices, and proceeds recursively. In each recursive step, we
define infinite permutation matrices D′

B, D′′
B, that are obtained from the density

matrix DB as follows.
Recall that core nonzeros in DB belong to the range 〈−m : n〉 × 〈0 : m + n〉.

Intuitively, the idea is to split the range of each index into two blocks:

〈−m : n〉 =
〈
−m :

n

2

〉
∪

〈n

2
: n

〉

〈0 : m + n〉 =
〈
0 :

n

2

〉
∪

〈n

2
: m + n

〉

Note that the splits are not uniform, and that among the resulting four rectangular
blocks in DB, the block 〈n2 : n〉× 〈0 : n

2 〉 cannot contain any nonzeros. We process
the remaining three blocks individually, gradually introducing nonzeros in matrices
D′

B, D′′
B until they become permutation matrices. Matrix D′

B (respectively, D′′
B)

will have core 〈−m : n
2 〉×〈0 : m+ n

2 〉 (respectively, 〈n2 : m+n〉×〈m+ n
2 : 2m+n〉).

First, we consider all nonzeros in DB at (j, k) ∈ 〈−m : n
2 〉 × 〈0 : n

2 〉. For
every such nonzero, we introduce a nonzero in D′

B at (j, k). We also consider all
nonzeros in DB at (j, k) ∈ 〈n2 : n〉 × 〈n2 : m + n〉. For every such nonzero, we
introduce a nonzero in D′′

B at (m + j, m + k).
Now consider all nonzeros in DB at (j, k) ∈ 〈−m : n

2 〉×〈n2 : m+n〉. There are
exactly m such nonzeros; we denote them by (j0, k0), (j1, k1), . . . , (jm−1, km−1),
where j0 < j1 < · · · < jm−1. For each nonzero (jt, kt), we introduce a nonzero in
D′

B at (jt,
n+1

2 + t), and a nonzero in D′′
B at (n+1

2 + t, m + kt).
Finally, we introduce the off-core nonzeros in D′

B, D′′
B at (j, k), k − j = m.

The recursive step is completed.
Let d′B, d′′B be the distribution matrices of D′

B, D′′
B. Let d∗B = d′B 	 d′′B ,

and d∗C = dA 	 d∗B = dA 	 d′B 	 d′′B, and define D∗
B, D∗

C accordingly. By the
construction of the decomposition of dB, matrices DB and D∗

B (as well as dB
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Figure 5. Proof of Lemma 6: the original matrix DB.
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Figure 6. Proof of Lemma 6: the decomposition of DB.

and d∗B) are related by a simple shift: for all (i, k), i, k ∈ 〈−∞, +∞〉, we have
DB(j, k) = D∗

B(j, k + m). Consequently, matrices DC and D∗
C are related by a

similar shift: for all (i, k), i, k ∈ 〈−∞, +∞〉, we have DC(i, k) = D∗
C(i, k + m).

The described decomposition process continues recursively, as long as n ≥ m.
The problem of computing matrix dC is thus reduced, up to an index shift, to n/m
instances of multiplying permutation-distribution matrices. In every instance, one
of the multiplied matrices has core of size O(m). By Lemma 5, the non-trivial
part of every such multiplication can be performed in time O(m1.5) and memory
O(m). The trivial parts of all these multiplications can be combined into a single
scan of the nonzeros of each of DA, DB, and can therefore be performed in time
and memory O(M + n). Hence, the whole computation can be performed in time
O(M + (n/m) ·m1.5) = O(M + m0.5n) and memory O(M + n). �

The decomposition of matrix DB in the proof of Lemma 6 is illustrated
by Figures 5, 6. The rectangle corresponding to DB is split into two half-sized
rectangles, corresponding to D′

B and D′′
B. Each of the new rectangles is completed

to a full-sized rectangle by trivial extension; then, the rectangles are arranged
vertically with a shift by m. The seaweeds that do not cross the partition are
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preserved by the construction, up to a shift by m. The seaweeds that do cross
the partition are also preserved up to a shift by m, by passing them through a
parallelogram-shaped “buffer zone”. Note that this construction makes the latter
class of seaweeds uncrossed in D′

B, and preserves all their original crossings in D′′
B.

3.3. Partial highest-score matrix multiplication

In certain contexts, e.g., when m � n, we may not be able to solve the all semi-
local LCS problem, or even to store its implicit highest-score matrix. In such cases,
we may wish to settle for the following asymmetric version of the problem.

Definition 9. The partial semi-local LCS problem consists in computing the LCS
scores on substrings of a and b as follows:

• the all string-substring LCS problem: a against every substring of b;
• the all prefix-suffix LCS problem: every prefix of a against every suffix of b;
• the all suffix-prefix LCS problem: every suffix of a against every prefix of b.

In contrast with the all semi-local LCS problem, the comparison of substrings of a
against b is not required.

Let A be the highest-score matrix for the all semi-local LCS problem. Given
an implicit representation of A, the corresponding partial implicit representation
consists of all nonzeros A(i, j), where either i ∈ 〈0 : n〉, or j ∈ 〈0 : n〉 (equivalently,
(i, j) ∈ 〈0 : n〉 × 〈0 : +∞〉 ∪ 〈−∞ : n〉 × 〈0 : n〉). All such nonzeros are core; their
number is at least n and at most 2n (note that the size of a partial implicit repre-
sentation is therefore independent of m). The minimum (respectively, maximum)
number of nonzeros is attained when all (respectively, none of) these nonzeros are
contained in the submatrix defined by (i, j) ∈ 〈0 : n〉 × 〈0 : n〉.
Theorem 6. Given the partial implicit representation of a highest-score matrix A,
there exists a data structure which

• has size O(n log n);
• can be built in time O(n log n);
• allows to query an individual element of A, corresponding to an output of the

partial semi-local LCS problem, in time O(log2 n).

Proof. Similarly to the proof of Theorem 3, the structure in question is a 2D range
tree built on the set of nonzeros in the partial implicit representation of A. �

The following lemma gives an equivalent of highest-score matrix multiplica-
tion for partially represented matrices.

Lemma 7. Consider the concatenation of alignment dags as described in Subsec-
tion 3.2, with highest-score matrices A, B, C. Given the partial implicit represen-
tations of A, B, the partial implicit representation of C can be computed in time
O(n1.5) and memory O(n).
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Proof. Let D′
A(i, j) = DA(i−M, j), D′

B(j, k) = DB(j, k + m), D′
C(i, k) = DB(i−

M, k +m) for all i, j, k, and define d′A, d′B , d′C accordingly. It is easy to check that
d′A 	 d′B = d′C , iff dA 	 dB = dC . Matrices D′

A, D′
B, D′

C satisfy the conditions of
Lemma 3, therefore all but n of the core nonzeros in the required partial implicit
representation can be obtained by (8)–(9) in time and memory O(n), and the
remaining n core nonzeros in time O(n1.5) and memory O(n). �

4. Algorithmic applications

4.1. Semi-local LCS: the iterative algorithm

We now describe our new approach to the all semi-local LCS problem. First, we give
a simple algorithm, running in overall time O(mn), matching the running time of
the standard dynamic programming algorithm for the (global) LCS problem (see,
e.g., [15,21]). Our algorithm is similar to the string-substring LCS algorithm of [5],
but is adapted to solve a more general problem than in [5], and is expressed in the
new terminology and notation.

Algorithm 1 (All semi-local LCS, simple iteration).
Input: strings a, b of length m, n, respectively.
Output: implicit highest-score matrix on strings a, b.
Description. We build the output matrix D incrementally. The matrix is concep-
tually infinite, and is initialised as a shifted identity matrix: D(i, j) = I(i, j −m)
for all i, j ∈ 〈−∞ : +∞〉. Such a matrix corresponds to the trivial alignment dag,
where all possible diagonal edges are present.

We now perform a sequence of incremental transformations on the initial
trivial alignment dag. We scan the dag from top to bottom and from left to right,
in each step removing a diagonal edge from the current dag, if the corresponding
diagonal edge is absent from the alignment dag of the input strings.

Let D be the implicit highest-score matrix corresponding to the current state
of the dag. An incremental transformation corresponding to an index pair l, i ∈ [1 :
n] is reflected in matrix D as follows. Let j0 = i+m− l− 1

2 and j1 = i+m− l+ 1
2 .

Let i0, i1 ∈ 〈−m : m+n〉 be respectively the row indices of the nonzeros in columns
j0 and j1. We assign

if i0 < i1 and αl = βi then

D(i0, j0)← 0 ; D(i0, j1)← 1 ; D(i1, j0)← 1 ; D(i1, j1)← 0 ;
otherwise D unchanged

By Definition 5, this assignment maintains the invariant “the current state of
matrix D is the implicit highest-score matrix for the current state of the alignment
dag”. Therefore, the final state of matrix D provides the required output.
Cost analysis. For every pair (l, i), the incremental transformation runs in constant
time. Therefore, the total computation work is O(mn), assuming the RAM model
with word size at least O(log log n).
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The memory cost is dominated by storing the input and the core of current
implicit highest-score matrix. Therefore, the total memory cost is O(m + n). �

The above algorithm has a simple interpretation in terms of the seaweeds
of Figure 2. Each seaweed is traced across the alignment dag and keeps straight
by default. However, the seaweed bends away, if it about to meet a diagonal dag
edge, or another seaweed which is has previously crossed. Therefore, two given
seaweeds are allowed to cross at most once. Notice that the same property holds
for the highest-scoring paths in the dag. The layout of the seaweeds in Figure 2
corresponds precisely to the sequence of states of Algorithm 1.

Algorithm 1 can now be modified to achieve subquadratic running time, using
the method of small-block precomputation originating in [7]. Using this method,
Masek and Paterson [35] gave an algorithm for the (global) LCS problem run-
ning in time O(mn log log n

log n ) for an unbounded alphabet (as observed, e.g., in [1]),
and in time O( mn

log n ) for a finite (bounded) alphabet5. We now give an algorithm
with similar running time, solving the more general semi-local LCS problem. This
algorithm also improves on, and supersedes, our subquadratic semi-local LCS al-
gorithm from [48].

From now on, we assume without loss of generality that m ≤ n. We will also
assume that m and n are reasonably close, so that m = Ω( log n

log log n ). We do not
make any assumptions on the size of the alphabet, except that the characters can
be compared in constant time. We call two strings of equal length isomorphic, if
one can obtained from the other by a permutation of the alphabet.

Algorithm 2 (All semi-local LCS, iteration with block precomputation).

Input, output: as in Algorithm 1; we let t = log n
4 · log log n , where the logarithms are

base 2, and assume that t ≤ m ≤ n.
Description. As in Algorithm 1, we build the output matrix incrementally, by
performing a sequence of transformations on the initial trivial alignment dag. This
time, we scan the dags from top to bottom and from left to right in blocks of size
t× t, in each step replacing a trivial block of the current dag by the corresponding
block in the alignment dag of the input strings.

Let D be the matrix corresponding to the current dag. Consider a dag block
indexed by [l − t, l] × [i − t, i], where l ∈ [t : m], i ∈ [t : n]. An incremental
transformation corresponding to this block is reflected in matrix D as follows.
Consider the 2t × 2t permutation submatrix of D, induced by the column range
〈i+m−l−t : i+m−l+t〉. The transformed matrix D is obtained by replacing this
permutation submatrix with a new permutation submatrix on the same row and
column sets. The replacement permutation submatrix is a function of the original
one, and of the substrings αl−t+1 . . . αl and βi−t+1 . . . βi. Therefore, for each of
the (2t)! possible original permutation matrices, and for each of at most (2t)2t

possible non-isomorphic substring pairs, the replacement permutation matrix can

5Assuming unit-cost RAM, both the algorithm of [35] and our algorithm can be speeded-up by
another factor of O(log n) (see, e.g., [52]).
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be precomputed in advance. The precomputation of each individual replacement
matrix can be performed by Algorithm 1.

Given an implicit representation of matrix D and a set of 2t columns, the
set of rows in the corresponding induced permutation submatrix can clearly be
found in time O(t). An additional requirement necessary for efficient searching of
replacement submatrices is that the row indices of each induced submatrix are
obtained in ascending order. This requirement is trivially satisfied at the start
of the computation, and is maintained in every block processing step inductively
as follows. As before, consider the block [l − t, l] × [i − t, i], where l ∈ [t : m],
i ∈ [t : n]. By the inductive hypothesis, as an input to processing this block
we have two permutation submatrices, induced respectively by the column ranges
〈i+m−l−t : i+m−l〉 and 〈i+m−l : i+m−l+t〉; the row indices of each submatrix
are in ascending order. The first (respectively, second) of these submatrices is
obtained as the output of the block processing step for the block immediately to the
left (respectively, above) of the current block (if such a predecessor block exists).
The two sequences of row indices can be merged in time O(t) into one sequence,
still in ascending order, defining the required permutation submatrix induced by
the column range 〈i + m − l − t : i + m − l + t〉, with row indices in ascending
order. The precomputed replacement matrix can now be found and substituted
for the original one in time O(t); the sequence of row indices is unchanged and is
still in ascending order. We now scan this sequence in order to split it into two
subsequences, each still in ascending order, corresponding in the new matrix to row
indices of the two permutation submatrices, induced as before by the the column
ranges 〈i+m− l− t : i+m− l〉 and 〈i+m− l : i+m− l+ t〉. The first (respectively,
second) of these submatrices will serve as the input to the block processing step
for the block immediately below (respectively, to the right) of the current block
(if such a successor block exists). The overall block processing time is thus O(t).

The described block processing procedure maintains the invariant “current
matrix D is the implicit highest-score matrix for the current dag”. Therefore, the
final state of matrix D provides the required output.
Cost analysis. In the precomputation stage, there are at most (2t)! · (2t)2t problem
instances, each of which costs O(t2). Therefore, the total cost of the precomputa-
tion is at most is (2t)! · (2t)2t ·O(t2) = o((2t)4t) = o(24t · log(2t)) =
o(24 · log n

log log n · log log n) = o(2log n) = o(n).
In the main computation stage, there are mn

t2 block processing steps, each of
which costs O(t). Therefore, the total computation work is mn

t2 ·O(t) =
O(mn · log log n

log n ), under the same assumptions on the RAM model as in Algo-
rithm 1. �

In the case of an unbounded alphabet, the running time of Algorithm 2
matches the running time of the global LCS algorithm by Masek and Pater-
son [35]. In the case of a bounded (constant-sized) alphabet, the running time
of Algorithm 2 remains unchanged, while the running time of the algorithm by
Masek and Paterson can be improved by a factor of O(log log n).



592 A. Tiskin Math.comput.sci.

Note that the dag cells in Algorithm 1 and dag blocks in Algorithm 2 can
be processed in any order consistent with the grid-like left-to-right and top-to-
bottom data dependency pattern. While the most obvious processing order choice
is lexicographic (either by rows or by columns), one can also apply the recursively
defined order of [17] to obtain a cache-efficient version of both algorithms.

4.2. Cyclic LCS

Given strings a, b of length m, n respectively, the cyclic LCS problem consists
in computing the length of the longest string that is a subsequence of a and of
some cyclic shift of b (or, equivalently, of a cyclic shift of a and a cyclic shift
of b). Cyclic string comparison has been considered in [30, 33, 42]. Papers [30, 42]
give algorithms that solve the cyclic LCS problem in worst-case time O(mn). By
running Algorithm 2 on strings a and bb (a concatenation of string b with itself),
and then performing n string-substring LCS queries for a against every substring
of bb of length n, the cyclic LCS problem can now be solved in time O(mn · log log n

log n ).

4.3. Longest repeated subsequence

Given a string a of length n, the longest repeated subsequence problem consists in
computing the length of the longest subsequence of a that is a concatenation of
two identical strings. This problem has been considered under the name “longest
tandem scattered subsequence problem” in [29], where an algorithm running in
time O(n2) was given. By running Algorithm 2 on string a against itself, and then
performing n − 1 prefix-suffix LCS queries for every possible non-trivial prefix-
suffix decomposition of a, the longest repeated subsequence problem can now be
solved in time O(n2 · log log n

log n ).

4.4. Incremental LCS

The problem of incremental LCS was introduced in [27, 30]. It consists in com-
puting the LCS for a fixed text string against a pattern string of variable length,
which can be modified on-line by either appending or prepending a character. An
extension of this problem, called fully-incremental LCS, was introduced in [23]. In
this extension, both input strings can be modified on-line in a similar fashion. In
both versions of the problem, the goal is to maintain a data structure that will
store the LCS score for the input strings, and will allow efficient on-line updates
of this score’s value.

We denote by a, b the current state of each input string, and by m, n its
respective current size. Papers [27,30] give incremental LCS algorithms with worst-
case update time O(m) (the length of the fixed string). Paper [23] extends this
result to a fully-incremental LCS algorithm with worst-case update time O(m)
(respectively, O(n)) when input string a (respectively, b) is kept fixed.

The above algorithms can be matched by a straightforward generalisation of
Algorithm 1. Intuitively, our dynamic data structure consists of the endpoints of all
the seaweeds in the current state of the alignment dag. Prepending or appending
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a character to string a (respectively, b) corresponds to adding a new row of cells
along the top or bottom (respectively, left or right) boundary of the dag’s core.

We can further generalise fully-incremental string comparison by consider-
ing block updates instead of single-character updates. In this new version of the
problem, that we call block-incremental string comparison, both input strings can
be extended on-line by either appending or prepending a block of characters from
a pre-specified set of admissible blocks. The set of admissible blocks is known in
advance, and off-line pre-processing of this set is allowed.

Consider an individual block update, and let l be the corresponding block
length. Such an update can be done naively as l single-character updates, giv-
ing the block update time O(ml) (respectively, O(nl)) when input string a (re-
spectively, b) is kept fixed. The method of highest-score matrix multiplication
described in Subsection 3.2 provides the following improvement. The set of admis-
sible blocks is preprocessed off-line by computing the implicit highest-score matrix
for each input string against every admissible block. The preprocessing runs in
time O((m + n) ·L), where L is the total length of the admissible blocks. Given
the implicit highest-score matrices, an individual block update can be performed
by Lemma 6 in time O(ml0.5) (respectively, O(nl0.5)) when input string a (respec-
tively, b) is kept fixed.

The same techniques generalise further to the case where the dynamic data
structure is required to support, in addition to the global LCS, also semi-local LCS
queries. By Theorem 3, a data structure allowing efficient semi-local LCS score
queries can be maintained at an extra time O((m + n) log(m + n)) per update,
under both single-character and block updates.

4.5. Common-substring LCS

The paradigm of common-substring comparison was introduced by Landau and
others in [14, 31]. We compare a text string of length n against an unspecified
number of pattern strings. The pattern strings may share a common substring of
length l; we assume l ≤ n. The location(s) of the common substring in each of the
patterns is (are) known in advance. The goal is, given the text, to preprocess the
common substring so as to minimise the LCS computation time for each occurrence
of the common substring in the patterns. The remainder of the algorithm’s running
time may only depend on the text, and on the parts of the patterns outside the
occurrences of the common substring.

The problem can be solved naively by computing the LCS length for the text
against each of the patterns, ignoring the common-substring structure. The result-
ing algorithm does no preprocessing, and runs in time O(nl) for each occurrence
of the common substring.

An improved algorithm is given in [14, 31]. This algorithm, following some
preprocessing in time O(nl), runs in time O(n) for each occurrence of the common
substring.
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Once again, here we consider a more general problem of semi-local common-
substring comparison. As in ordinary semi-local string comparison, string-sub-
string, substring-string, prefix-suffix and suffix-prefix LCS length queries are al-
lowed between the text and each of the patterns.

Similarly to the global version of the problem, the semi-local version can be
solved naively by computing the implicit highest-score matrix for the text against
each of the patterns, ignoring the common-substring structure. The resulting al-
gorithm does no preprocessing, and runs in time O(nl) for each occurrence of the
common substring.

The method described in Subsection 3.2 provides the following algorithm
for semi-local common-substring comparison, which is in fact a special case of
the block-incremental semi-local LCS algorithm from the previous subsection. We
preprocess the common substring is in time O(nl), obtaining the implicit highest-
score matrix for the text against the common substring. For every pattern string,
the implicit highest-score matrix can now be built incrementally, starting from
an arbitrary occurrence of the common substring. Each incremental update takes
time O(nl0.5) per occurrence of the common substring in the pattern, and O(n)
per pattern character outside any such occurrence. Overall, the algorithm takes
time O(n) for the first occurrence of the common substring in a pattern, and
time O(nl0.5) for each subsequent occurrence in the same pattern. In particular,
if the common substring only occurs in every pattern string once, our algorithm
improves on the algorithm of [14, 31] in functionality, without any increase in the
asymptotic running time.

4.6. Semi-local LCS: the divide-and-conquer algorithm

For completeness, we now describe a semi-local LCS algorithm from [48], based
on the divide-and-conquer approach. While the algorithm is asymptotically slower
than Algorithm 2, it provides a useful pattern for designing algorithms for various
other substring- and subsequence-related problems.

As before, we assume without loss of generality that m ≤ n. For simplicity, we
also assume that m and n are close: n/2 ≤ m ≤ n. First, we give a simple algorithm,
based on the fast highest-score matrix multiplication procedure of Lemma 4, and
running in overall time O(mn), matching the running time of Algorithm 1.

Algorithm 3 (All semi-local LCS, simple divide-and-conquer).
Input: strings a, b of length m, n, respectively; we assume n/2 ≤ m ≤ n.
Output: implicit extended highest-score matrix on strings a, b.
Description. The computation proceeds recursively, partitioning the longer of the
two current strings into a concatenation of two strings of equal length (within
±1 if string length is odd). Given a current partitioning, the corresponding im-
plicit highest-score matrices are multiplied by Lemma 4. Note that we now have
two nested recursions: the main recursion of the current algorithm, and the inner
recursion of the algorithm underlying Lemmas 2–4.
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In the process of main recursion, the algorithm alternates between partition-
ing string a and string b. Therefore, we will need to convert the implicit represen-
tation of a horizontal highest-score matrix into a vertical one, and vice versa. This
can be easily achieved by Theorem 5.

The base of the main recursion is m = n = 1.
Cost analysis. Consider the main recursion tree. The computation work in the tree
is dominated by the bottom level, which consists of O(mn) instances of implicit
highest-score matrix multiplication of size O(1). Therefore, the total computation
cost is O(mn).

The main recursion tree can be evaluated depth-first, so that the overall
memory cost is dominated by the top level of the main recursion, running in
memory O(n). �

The above algorithm can now be easily modified to achieve subquadratic
running time. As Algorithm 2, the new algorithm is based on precomputing an
exhaustive small-block lookup table.

Algorithm 4 (All semi-local LCS, divide-and-conquer with block precomputation).
Input, output: as in Algorithm 3.
Description. Consider an all semi-local LCS problem on strings of size
t = 1

2 · logσ m, where σ is the size of the alphabet. All possible instances of this
problem are precomputed by Algorithm 1 (or by the algorithm of [5]). After that,
the computation proceeds as in Algorithm 1. However, the main recursion is cut
off at the level where block size reaches t, and the precomputed values are used as
the recursion base.
Cost analysis. In the precomputation stage, there are σ2t problem instances, each of
which costs O(t2). Therefore, the total cost of the precomputation is σ2t ·O(t2) =
1
4 ·m(logσ m)2 = O( mn

log1/2 m
).

Consider the main recursion tree. The computation work in the tree is domi-
nated by the cut-off level, which consists of O(mn/t2) instances of implicit highest-
score matrix multiplication of size O(t). Therefore, the total computation cost is
mn/t2 ·O(t1.5) = O( mn

t1/2 ) = O( mn
log1/2 m

). �

4.7. Semi-local LCS in permutations

In [49], we considered a restriction of the all semi-local LCS problem to strings that
are permutations of a given set of size n. The resulting problem is equivalent to
finding all-substring longest increasing subsequences (LIS) in a permutation. The
same problem was previously considered in [2], where an algorithm running in time
O(n2 log n) is given. Our algorithm from [49] is based on recursive application of
implicit highest-score matrix multiplication, and runs in time O(n1.5).

A related problem of computing the complete LIS in every substring of a fixed
size is studied in [4, 12]. In particular, paper [12] gives an algorithm that runs in
time proportional to the size of the output (i.e., the combined lengths of all the
output subsequences), which can be as high as Θ(n2). In contrast, our algorithm
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from [49] only computes the lengths instead of the complete LIS; however, this is
done for substrings of every possible size.

4.8. Cyclic LCS in permutations

The cyclic LCS problem on permutation strings is equivalent to the LIS problem
on a circular string. This problem is considered in paper [3], which gives a Monte
Carlo algorithm running in time O(n1.5 log n) with small error probability. Without
loss of generality, we consider the computation of the LCS score for all rotations
of an input permutation string a against the identity permutation. The cyclic LCS
problem on permutations can now be solved as follows
• run our algorithm from [49] on the identity permutation string against

string a;
• run the algorithm of Lemma 2, obtaining the implicit highest-score matrix

for the identity permutation string against string aa (the concatenation of a
with itself);
• perform n string-substring LCS queries.

The above computation runs in deterministic time O(n1.5).

4.9. Maximum cliques in circle graphs

A circle graph [16, 20] is defined as the intersection graph of a set of chords in
a circle, i.e., the graph where nodes correspond to the chords, and two nodes
are adjacent iff the corresponding chords intersect. It has long been known that
the maximum clique problem on a circle graph on n nodes is solvable in polyno-
mial time [18]. The best previous algorithms for this problem [6, 22, 36, 40] run in
time O(n2) when the input graph is dense. In [49], we show that by running our
semi-local LCS algorithm on a pair of permutations defined by the input set of
chords, and then performing n prefix-suffix LCS queries on these permutations,
the problem of finding a maximum clique in a circle graph can be solved in time
O(n1.5).

4.10. Window-local LCS

So far, we have only considered global and semi-local string comparison. We now
give an approach to local string comparison – the variant that is the most impor-
tant biologically, but also the most difficult. We consider a version of local string
comparison that is restricted to fixed-length substrings in either one, or both input
strings. Given a fixed parameter w, we call a substring of length w a window in
the corresponding string.

String comparison in windows is one of the most traditional forms of local
string comparison. Probably the earliest such paradigm is dot plots (also known as
dot matrices), introduced in [34]. In addition to numerical data, dot plots provide
a convenient visualisation of string comparison. In the context of dot plots, com-
paring strings in windows is usually referred to as filtering. The standard filtering
method compares every window of a against every window of b in terms of their
Hamming score, i.e., the count of matching characters along the main diagonal of
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the windows’ Cartesian product. A Hamming-filtered dot plot can be computed in
time O(mn) by the algorithm of [34,37]. This algorithm is implemented in various
software packages (see, e.g., [13, 39, 44]).

Numerous other paradigms of local string comparison have been proposed.
The Smith–Waterman algorithm [43] allows one to obtain the highest-scoring pair
across all pairs of the inputs’ substrings, or, more generally, all substring pairs scor-
ing above a certain threshold. The threshold is dependent on the scoring scheme:
for example, for the LCS score, the algorithm only provides the trivial global
comparison, so the method is generally only useful for edit scores with relatively
high costs of character insertion and deletion, and relatively low cost of substitu-
tion. A significant drawback of the Smith–Waterman algorithm is that it generally
favours long, less precise substring alignments over short, more precise ones (see,
e.g., [8]). In contrast, by providing all the local scores between windows of the
input strings, the dot plot method gives the user more flexibility to select the bio-
logically significant substring alignments. However, the Hamming scoring scheme
used by the method is less sensitive than the LCS score or the general edit score
used by Smith–Waterman.

Our approach can be seen as a refinement of the dot plot method and a com-
plement to the Smith–Waterman method. As in the dot plot method, we compute
all window-window comparison scores between the input strings. However, instead
of the Hamming score, our method is based on the LCS score. Therefore, it is
potentially more sensitive, since it compares the window substrings in terms of
insertions, deletions and substitutions, instead of just substitutions. The method
can be further extended to use more general edit scoring schemes.

We describe the new method in terms of computing the LCS lengths on
substrings of a and b as follows:
• the window-window (respectively, window-substring) LCS problem: every win-

dow of a against every window (respectively, substring) of b.
In the rest of this subsection, we argue that these problems can be solved in time
O(mn), matching the asymptotic running time of both the Hamming-scored dot
plot and the Smith–Waterman methods.

Note that the solution of the window-substring LCS problem can be rep-
resented implicitly in space O(mn) by giving the highest-score matrix for each
window of a against b. An individual window-substring LCS length query can be
performed on this data structure in time O(log2 n) (or even O( log n

log log n ) with a
higher multiplicative constant). The same data structure can be used to obtain
the explicit solution of the window-window LCS problem in time O(mn). Thus,
we will treat both problems simultaneously.

Algorithm 5 (Window-window and window-substring LCS).
Input: strings a, b of length m, n, respectively; window length w.
Output: implicit highest-score matrix for every window of a against full b.
Description. For simplicity, we assume that m is a power of 2. We call an interval
of the form [k · 2s : (k + 1) · 2s], k, s ∈ Z, as well as the corresponding substring
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of a, canonical. In particular, all individual characters of a are canonical substrings.
Every substring of a can be decomposed into a concatenation of O(log m) canonical
substrings.

In the following, by processing an interval we mean computing the implicit
highest-score matrix for the corresponding substring of a against b.

First phase. Canonical intervals are processed in a balanced binary tree, in
order of increasing length. Every interval of length 20 = 1 is canonical, and is
processed by a simple scan of string b. Every canonical interval of length 2s+1 is
processed as a concatenation of two already processed half-sized canonical intervals
of length 2s.

Second phase. We represent each window [i, j], j − i = w, by an odd half-
integer prescribed point (i, j) ∈ 〈0 : m〉2. We then proceed by partitioning the
square range 〈0 : m〉2 recursively into regular half-sized square blocks.

Consider an h × h block 〈i0 − h : i0〉 × 〈j0 : j0 + h〉. The computation is
organised so that when a recursive call is made on this block, either we have
i0 ≥ j0, or the interval [i0 : j0] is already processed.

We can establish in time O(1) the number of prescribed points contained in
the current block. If this number is zero, no further computation on the block or
recursive partitioning is performed. Otherwise, we have j − i ∈ {−h, 0, h, 2h, . . .}.
If j − i = −h, then the intervals [i0 − h : j0], [i0 : j0 + h] have length 0, and
the interval [i0 − h : j0 + h] is canonical. If j − i ≥ 0, we process the intervals
[i0 − h : j0], [i0 : j0 + h], [i0 − h : j0 + h]. Each of these intervals can be processed
by Lemma 6, appending and/or prepending a canonical interval of length h to the
already processed interval [i0 : j0]. We then perform further partitioning of the
block, and call the procedure recursively on each of the four subblocks.

The base of the recursion is h = 1. At this point, we process all 1× 1 blocks
containing a prescribed point, which is equivalent to processing the original win-
dows. The computation is completed.
Cost analysis. In both the first and the second phase, the computation is dominated
by the cost of the bottom level of the computation tree, equal to O(m) ·O(n) =
O(mn).

Storing the implicit highest-score matrices for all O(m) canonical intervals
requires memory O(mn). However, not all these matrices need to be stored simulta-
neously. By processing and consuming the canonical intervals incrementally within
a sliding window of length w, the memory cost can be reduced to O(wn). �

Note that the asymptotic running time of the algorithm is independent of
window length w.

By a constant-factor blow-up of the alignment dag, our algorithm can be
extended from the LCS score to the more general edit score, where the insertion,
deletion and substitution costs are any constant rationals.

4.11. Sparse spliced alignment

Assembling a gene from candidate exons is an important problem in computational
biology. Several alternative approaches to this problem have been developed over
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time. One of the most successful approaches is spliced alignment by Gelfand et
al. [19] (see also [21]), which scores different candidate exon chains within a DNA
sequence by comparing them to a known related gene sequence. In this method, the
two sequences are modelled respectively by strings a, b of lengths m, n; we assume
that m = Θ(n). A subset of substrings in string a are marked as candidate exons.
The comparison between sequences is made by string alignment. The algorithm
for spliced alignment given in [19] runs in time O(n3).

In general, the number of candidate exons k may be as high as O(n2). The
method of sparse spliced alignment makes a realistic assumption that, prior to the
assembly, the set of candidate exons undergoes some filtering, after which only a
small fraction of candidate exons remains. Kent et al. [26] give an algorithm for
sparse spliced alignment that, in the special case k = O(n), runs in time O(n2.5).
For higher values of k, the algorithm provides a smooth transition in running time
to the dense case k = O(n2), where its running time O(n3) is asymptotically equal
to the algorithm of [19].

In [45], we improve on the results of [26], by proposing an algorithm for sparse
spliced alignment that, in the case k = O(n), runs in time O(n2.25), and also
provides a smooth transition in running time to the dense case. Our approach is
based on a new method of quasi-local string comparison, generalising the window-
substring LCS problem of Subsection 4.10. Another ingredient of our algorithm is
a fast procedure for highest-score matrix-vector multiplication, which complements
the highest-score matrix multiplication algorithm of Lemma 6.

4.12. Compressed subsequence recognition

Computation on compressed strings is one of the key approaches to processing
massive data sets. It has long been known that certain algorithmic problems can
be solved directly on a compressed string, without first decompressing it; see [11,32]
for references.

One of the most general string compression methods is compression by
straight-line programs (SLP) [41]. In particular, SLP compression captures the
well-known LZ and LZW algorithms [51,53,54]. Various pattern matching problems
on SLP-compressed strings have been studied; see, e.g., [11] for references. Cégielski
et al. [11] considered subsequence recognition problems on SLP-compressed strings.
For an SLP-compressed text of length m̄, and an uncompressed pattern of length n,
they gave several algorithms for global and local subsequence recognition, running
in time O(m̄n2 log n).

In [46], we improve on the results of [11] as follows. First, we describe a simple
folklore algorithm for global subsequence recognition on an SLP-compressed text,
running in time O(m̄n). Then, we consider the more general semi-compressed LCS
problem, which consists in computing implicitly the LCS between the compressed
text and every substring of the uncompressed pattern. This problem is still a
special case of the string-to-CFL edit distance problem; the same problem with
a compressed pattern is known to be NP-hard. For the semi-compressed LCS
problem, we propose a new algorithm, running in time O(m̄n1.5). Our algorithm
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is based on the partial highest-score matrix multiplication technique presented
in Subsection 3.3. We then extend this method to the several versions of local
subsequence recognition considered in [11], for each obtaining an algorithm running
in the same asymptotic time O(m̄n1.5).

5. Conclusions

We have surveyed a number of existing and new algorithmic techniques and appli-
cations related to semi-local string comparison. Our approach unifies a substantial
number of previously unrelated problems and techniques, and in many cases allows
us to match or improve existing algorithms. It is likely that further development
of this approach will give it even more scope and power.

A number of questions related to the semi-local string comparison frame-
work remain open. In particular, it is not yet clear whether the framework can
be extended to arbitrary real costs, or to sequence alignment with non-linear gap
penalties.

In summary, semi-local string comparison turns out to be a useful algorithmic
plug-in, which unifies, and often improves on, a number of previous approaches to
various substring- and subsequence-related problems.

Acknowledgement

This paper was conceived in a discussion with Gad Landau. The author thanks an
anonymous referee, whose comments helped to improve the paper.

References

[1] A.V. Aho, D. S.Hirschberg and J.D. Ullman. Bounds on the complexity of the
longest common subsequence problem. Journal of the ACM, 23:1–12, 1976.

[2] M. H. Albert, R. E. L. Aldred, M.D. Atkinson, H.P. van Ditmarsch, B.D. Handley,
C. C. Handley and J. Opartny. Longest subsequences in permutations. Australasian
Journal of Combinatorics, 28:225–238, 2003.

[3] M. H. Albert, M.D. Atkinson, D. Nussbaum, J.-R. Sack and N. Santoro. On the
longest increasing subsequence of a circular list. Information Processing Letters,
101:55–59, 2007.

[4] M. H. Albert, A.Golynski, A.M. Hamel, A. López-Ortiz, S. S. Rao and M.A. Safari.
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