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Abstract
In the setting of the lattice Z

n we consider a pseudo-differential operator A whose
symbol belongs to a class defined on Zn × T

n , where Tn is the n-torus. We realize A
as an operator acting between the discrete Sobolev spaces Hsj (Zn), s j ∈ R, j = 1, 2,
with the discrete Schwartz space serving as the domain of A. We provide a sufficient
condition for the essential adjointness of the pair (A, A†), where A† is the formal
adjoint of A.
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1 Introduction

Difference equations and the corresponding pseudo-differential operators on the lat-
tice Zn play an important role in the discretization of continuous problems. In the last
fifteen years, a number of researchers have studied various questions concerning these
operators; see, for instance, the papers [5, 6, 11, 15, 24, 27–30]. In parallel with these
developments, based on the quantization described in [31], the authors of [16, 23, 25,
26] have investigated operators on the circle S1 and, more generally, on the n-torusTn .
Furthermore, the authors of [7, 8, 17, 18] have studied various properties of (general-
ized) pseudo-differential operators (the so-calledZ-operators and S-operators) related
to a finite measure space S such that L2(S) is a separable Hilbert space.

A few years ago the authors of [4] developed a global symbol calculus for pseudo-
differential operators on Z

n . In this calculus, Zn × T
n plays the role of the phase

space, whereby the frequency component belongs to T
n . As the frequency space Tn
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is compact, there will be no improvement with respect to the decay of the frequency
variable if one tries to construct the symbol calculus by mimicking the definition of
the standard Hörmander class on R

n . In the article [4], the authors overcame this
difficulty by using a similar strategy as in [31] but with switched roles of the space and
frequency variables. It turns out that the symbol class Smρ,δ(Z

n×T
n), withm, ρ, δ ∈ R,

introduced in [4] (see definition 2.1 below for the special case ρ = 1 and δ = 0), bears
some resemblance to that of the so-called SG-operators discussed in [10]. Having
developed the appropriate symbol calculus, the authors of [4] were able to provide
the conditions for the �2(Zn)-boundedness (here, �2(Zn) denotes the space of square
summable complex-valued functions on Zn), compactness, and Hs(Zn)-boundedness
of the corresponding operators (here, Hs(Zn) indicates a discrete Sobolev space; see
Sect. 2.6 below). Additionally, the paper [4] contains, among other things, the proof
of weighted apriori estimates for difference equations, the proof of (sharp) Gårding
inequality, and a discussion of the problem of unique solvability of parabolic equations
on Zn .

Building on the paper [4], the authors of [9] studied, among other questions, the
relationship between the maximal and minimal realizations in �2(Zn) of a pseudo-
differential operator A whose domain Dom(A) is the Schwartz space S(Zn) (see
Sect. 2.3 below for the definition of S(Zn)). Here, in analogy with the definitions in
chapter 13 of the book [33] (in the context of Rn), the “minimal operator" Amin refers
to the closure of A|S(Zn) in �2(Zn), while the “maximal operator" Amax is defined as
follows: Let f and u be two functions in �2(Zn). One says that u ∈ Dom(Amax) and
Amaxu = f if

(u, A†v) = ( f , v),

for all v ∈ S(Zn), where (·, ·) is the inner product in �2(Zn) and A† is the formal
adjoint of A (see (2.1) and (2.4) below for the descriptions of (·, ·) and A†). After
demonstrating various properties of the Sobolev spaces Hs(Zn) and establishing the
appropriate analogue of Agmon–Douglis–Nirenberg inequalities, the authors of [9]
proved (in their theorem 3.19) that if A is an elliptic operator whose symbol belongs
to the class Sm1,0(Z

n × T
n) with m > 0, then Amin = Amax. Subsequent to the paper

[9], the authors of [19] considered weighted Mm
ρ,�(Zn ×T

n)-type symbols (analogous
to the class Mm

ρ,�(Rn × R
n) in [13, 14, 34]), and after developing the corresponding

calculus, established, among other things, the coincidence of minimal and maximal
operators on �2(Zn) (assuming M-ellipticity of the corresponding symbols).

The question about the equality of maximal and minimal realizations of a pseudo-
differential operator A whose symbol belongs to Sm1,0(Z

n × T
n), m ∈ R, and whose

domain is Dom(A) = S(Zn) can be rephrased as follows: under what conditions
do A and its formal adjoint A† form an “essentially adjoint pair" in �2(Zn)? In this
context, the term “(A, A†) is an essentially adjoint pair" means that the following two
conditions are fulfilled: ˜A = (A†)∗ and ˜A† = A∗, where ˜G stands for the closure and
G∗ denotes the true adjoint (that is, the operator-theoretic adjoint) of an operator G.

In our paper we consider a more general version of this question, namely, we allow
the operators A (where the symbol of A is in Sm1,0(Z

n × T
n), m ∈ R) and A† to act

between Sobolev spaces:
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A : Dom(A) ⊆ Hs1(Zn) → Hs2(Zn), Dom(A) = S(Zn), s1, s2 ∈ R, (1.1)

and

A† : Dom(A†) ⊆ H−s2(Zn) → H−s1(Zn), Dom(A†) = S(Zn). (1.2)

As A and A† map S(Zn) into S(Zn) (see proposition 3.15 in [9]) and S(Zn) is dense
in Hs(Zn) for all s ∈ R (see lemma 3.16 in [9]), we see that these two definitions
make sense and that the operators A and A† are densely defined.

In themain result of our article (theorem2.7)we show that if A is an elliptic operator
of orderm and ifm > s1−s2, then A and A† form an essentially adjoint pair. As A and
A† act between two (generally different) Hilbert spaces, in definition 2.6 below we
describe the term “essentially adjoint pair" more broadly than we indicated at end of
the third paragraph of this section. Here, it is worth pointing out that in definition 2.6,
one of the members of the pair acts between the anti-duals of those Hilbert spaces that
serve as the “origin" and the “final destination" for the action of the other member of
the pair. As we showed in the appendix A, the mentioned definition is applicable to the
context of (1.1) and (1.2) because the anti-dual of Hs(Zn) can be identified suitably
with the space H−s(Zn). We mention that in the case s1 = s2 = 0 our theorem 2.7
reduces to theorem 3.19 from [9], that is, we recover the result about the equality of
minimal and maximal realizations of A|S(Zn) in �2(Zn) (as described earlier in this
section). If we assume s1 = s2 = 0 and A = A† (see corollary 2.9), we get the
essential self-adjointness of A on S(Zn).

We note that the special case s1 = s2 = 0 of our theorem 2.7 can be obtained
quickly from the following two observations: (i) by theorem 4.1 in [4] our operator A
is unitarily equivalent to the formal adjoint of a toroidal pseudo-differential operator
B whose symbol b is related to the symbol a of A as follows: b(x, k) = a(−k, x),
where x ∈ T

n and k ∈ Z
n (here Tn is the n-torus) and (ii) the minimal and maximal

realizations in the space L2(Tn) of an elliptic operator B|C∞(Tn) of order m > 0
coincide (see theorem 3.5 in [26] for the case n = 1 and theorem 4.8 in [16] for
the general case n ∈ N). (Although the authors of [16, 26] work in the L p-setting,
1 < p < ∞, in our discussion we stress the Hilbert space case.) However, the
general case (see (1.1) and (1.2) above) of the problem considered in our article is
not covered in [16, 26], where the minimal and maximal realizations are operators
L2(Tn) → L2(Tn) (focusing on the Hilbert space case p = 2). Thus, our theorem 2.7
does not follow directly (via unitary equivalence) from the mentioned results of [16,
26]. The fact that the operators A and A† act between different Sobolev spaces as
in (1.1) and (1.2) complicates the situation, requiring a closer look at the Sobolev
scale {Hs(Zn)}s∈R and modifications of the approach used in [9, 16, 26].

Weprove theorem2.7 by employing the symbol calculus from [4, 9] and by reducing
the problem to the question of the essential self-adjointness of an operator acting in (a
single) Hilbert space Hs1(Zn) ⊕ Hs2(Zn). We accomplish the latter task by using an
abstract device from the book [32] (recalled in lemma 3.9 below) and tailoring it to our
specific problem (see lemma 3.10 below). Our theorem 2.7 can be viewed as a discrete
analogue of the results of [2], where the author considered the essential adjointness
of the pair (A, A†), with the corresponding operators acting between Sobolev (or
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Sobolev-like) spaces and having hypoelliptic symbols of the following types: (i) the
usual (uniform) Hörmander class, (ii) the symbol class defined in section IV.23 of the
book [32] (see the paper [3] for a weighted version of this class), and (iii) the (uniform)
Hörmander class with the additional condition that its members are uniformly almost
periodic functions with respect to the space variable.

Lastly, we remark that it is possible to formulate an analogue of theorem 2.7 for
operators with Mm

ρ,�(Zn × T
n)-type symbols from [19]. To keep our presentation

simpler, we chose to work in the setting of Sm(Zn × T
n)-type symbols from [4, 9].

Our paper consists of six sections and an appendix. In Sect. 2, after describing the
basic notations and recalling the definitions of the symbol class and the corresponding
pseudo-differential operator on Z

n , discrete Sobolev spaces, and the notion of an
essentially adjoint pair of operators, we state themain result of the paper (theorem 2.7).
Subsequently, in Sect. 3 we recall the needed elements of the symbol calculus from
[4], state and prove a couple of additional properties of elliptic operators on Z

n , and
recall an abstract device from [32] mentioned in the previous paragraph. Finally, we
prove the main result (and its corollary) in Sects. 4 and 5. In Sect. 6 we describe
two applications of our result: well-posedness of initial-value problems for evolution
equations in �2(Zn) and construction of an extended Hilbert scale on Zn generated by
an elliptic operator. In the appendix A we discuss the anti-duality between the discrete
Sobolev spaces Hs(Zn) and H−s(Zn), s ∈ R.

2 Notations and Results

2.1 Basic Notations

In this article, the symbols Z, N, and N0 refer to the sets of integers, positive integers,
and non-negative integers respectively. Forn ∈ N, we denote then-dimensional integer
lattice by Z

n . By an n-dimensional multiindex α we mean an element of Nn
0, that is,

α = (α1, α2, . . . , αn) with α j ∈ N0. We define |α| := α1 + α2 + · · · + αn , and
α! := α1α2 . . . αn . For k ∈ Z

n and α ∈ N
n
0, we define

kα := kα1
1 kα2

2 . . . kαn
n .

and

|k| :=
√

k21 + k22 + · · · + k2n .

By {e j }nj=1 we mean a collection of elements e j ∈ N
n
0, where

e j := (0, 0, . . . , 1, 0, . . . , 0),

with 1 occupying the j-th slot and 0 occupying the remaining slots.
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For a function u(k1, k2, . . . , kn) of the input variable k = (k1, k2, . . . , kn) ∈ Z
n

we define the first partial difference operator �k j as

�k j u(k) := u(k + e j ) − u(k),

where k + e j is the usual addition of the n-tuplets k and e j . For a multiindex α ∈ N
n
0

we define

�α
k := �

α1
k1

�
α2
k2

. . . �
αn
kn

.

We will also need basic differential operators on the n-dimensional torus T
n :=

R
n/Zn . For x ∈ T

n and α ∈ N
n we define

Dx j := 1

2π i

∂

∂x j
, Dα

x := Dα1
x1 D

α2
x2 . . . Dαn

xn ,

where i is the imaginary unit. Additionally, for l ∈ N0 we define,

D(l)
x j :=

l−1
∏

r=0

(

1

2π i

∂

∂x j
− r

)

, D(0)
x j := 1,

where “1" refers to the identity operator. For α ∈ N
n
0, we define

D(α)
x := D(α1)

x1 D(α2)
x2 . . . D(αn)

xn .

2.2 Symbol Classes

We now recall the definition of the symbol class Sm(Zn × T
n) introduced by the

authors of [4].

Definition 2.1 For m ∈ R, the notation Sm(Zn × T
n) indicates the set of functions

a : Zn × T
n → C satisfying the following properties:

(i) for all k ∈ Z
n , we have a(k, ·) ∈ C∞(Tn);

(ii) for all α, β ∈ N
n
0, there exists a constant Cα,β > 0 such that

|D(β)
x �α

k a(k, x)| ≤ Cα,β(1 + |k|)m−|α|,

for all (k, x) ∈ Z
n × T

n .

Remark 2.2 The class Sm(Zn ×T
n) is not contained in the symbol classes introduced

in definition 2.1 and definition 4.1 of [28]. The symbol class of definition 2.1 (definition
4.1) of [28] is designed so that the corresponding operator is bounded in unweighted
(suitably weighted) �p-spaces on Z

n , 1 ≤ p ≤ ∞. Lastly, we remark that our main
result (see theorem 2.7 below) does not follow from the boundedness results of [28].

We also recall the definition of an elliptic symbol from [4].
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Definition 2.3 For m ∈ R, the elliptic symbol class ESm(Zn × T
n) refers to the set

of functions a ∈ Sm(Zn ×T
n) satisfying the following property: there exist constants

C > 0 and R > 0 such that

|a(k, x)| ≥ C(1 + |k|)m,

for all x ∈ T
n and all k ∈ Z

n such that |k| > R.

2.3 Schwartz Space

Before discussing pseudo-differential operators on Z
n , we recall the definition of the

Schwartz spaceS(Zn) from [4] and [9]: this space consists of the functions u : Zn → C

such that for all α, β ∈ N
n
0 we have

sup
k∈Zn

|kα(�
β
k u)(k)| < ∞.

The symbol S′(Zn) indicates the space of tempered distributions, that is, continuous
linear functionals on S(Zn).

2.4 Discrete Fourier Transform

For 1 ≤ p < ∞ we define �p(Zn) as the space of functions u : Z → C such that
‖u‖p < ∞, where

‖u‖p
p :=

∑

k∈Zn

|u(k)|p.

In particular for p = 2 we get a Hilbert space �2(Zn) with the inner product

(u, v) :=
∑

k∈Zn

u(k)v(k). (2.1)

To simplify the notation we will denote the corresponding norm in �2(Zn) by ‖ · ‖.
For u ∈ �1(Zn), its discrete Fourier transform û(x) is a function of x ∈ T

n defined
as

û(x) :=
∑

k∈Zn

e−2π ik·xu(k),

where k · x := k1x1+k2x2+· · ·+knxn . It turns out that the discrete Fourier transform
can be extended to �2(Zn), and by normalizing the Haar measure on Z

n and T
n , the

Plancherel formula takes the following form:

∑

k∈Zn

|u(k)|2 =
∫

Tn
|̂u(x)|2 dx .
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We also recall the following inversion formula:

u(k) =
∫

Tn
e2π ik·x û(x) dx, k ∈ Z

n . (2.2)

2.5 Pseudo-Differential Operator

For a symbol a ∈ Sm(Zn × T
n) we define the pseudo-differential operator Ta as

follows:

(Tau)(k) :=
∫

Tn
e2π ik·xa(k, x )̂u(x) dx, u ∈ S(Zn). (2.3)

In proposition 3.15 of [9], the authors showed that the operator Ta maps S(Zn) into
S(Zn), and by a small modification of this argument, one can show that Ta : S(Zn) →
S(Zn) is continuous.

For a continuous linear operator P : S(Zn) → S(Zn), its formal adjoint P† is
defined using the following relation:

(Pu, v) = (u, P†v), (2.4)

for all u, v ∈ S(Zn), where (·, ·) is as in (2.1).
The operator Ta : S(Zn) → S(Zn) extends to a continuous linear operator

Ta : S′(Zn) → S′(Zn)

defined as follows:

(TaF)(u) := F
(

T †
a u

)

, F ∈ S ′(Zn), u ∈ S(Zn),

where T †
a is the formal adjoint of Ta and z is the conjugate of z ∈ C.

2.6 Sobolev Spaces

To formulate the main result we will need the discrete Sobolev spaces, as defined in
[4] and [9]. For s ∈ R define

�s(k) := (1 + |k|2) s
2 , k ∈ Z

n . (2.5)

Looking at the definition 2.1, it can be checked that �s ∈ ESs(Zn × T
n).

Next, for s ∈ R we define

Hs(Zn) := {u ∈ S ′(Zn) : T�s u ∈ �2(Zn)} (2.6)

with the norm ‖u‖Hs := ‖T�s u‖, where ‖ · ‖ is the norm corresponding to the inner
product (2.1) in �2(Zn).
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Note that the spaces (2.6) are, in fact, polynomially weighted sequence spaces. An
important property, established in lemma 3.16 of [9], is the density of the space S(Zn)

in Hs(Zn) for all s ∈ R.
We will also use the following two notations:

H−∞(Zn) := ∪s∈RHs(Zn), H∞(Zn) := ∩s∈RHs(Zn).

As shown in lemma A.1 in the appendix, the inner product (2.1), considered as a
sesquilinear form on S(Zn) × S(Zn), extends to a continuous sesquilinear pairing

(·, ·) : Hs(Zn) × H−s(Zn) → C, (2.7)

for all s ∈ R. Relative to this pairing, the spaces Hs(Zn) and H−s(Zn) are anti-dual
to each other.

2.7 Operators Acting Between Sobolev Spaces

Wearenowready todescribe themainoperators studied in this paper. For s1, s2,m ∈ R

and a symbol a ∈ Sm(Zn × T
n) we define A : Dom(A) ⊆ Hs1(Zn) → Hs2(Zn) as

follows:

Au := Tau, Dom(A) = S(Zn). (2.8)

Next, we define A† : Dom(A†) ⊆ H−s2(Zn) → H−s1(Zn) as follows:

A†u := (Ta)
†u, Dom(A†) = S(Zn). (2.9)

The operators A and A† make sense because Ta and (Ta)† map S(Zn) into S(Zn), and
S(Zn) ⊆ Hs(Zn) for all s ∈ R. Furthermore, the operators are densely defined since
S(Zn) is dense in Hs(Zn) for all s ∈ R.

2.8 Some Abstract Concepts

Before stating the main theorem, let us recall some abstract notions. Let H1 and H2
be Hilbert spaces with their anti-dual spaces (H1)

′ and (H2)
′ (here, by “the anti-dual

space to H j” we mean the space of continuous anti-linear functionals on H j ). Let
〈 f , u〉d j denote the action of a functional f ∈ (H j )

′ on a vector u ∈ H j , j = 1, 2.

Definition 2.4 We say that the (densely defined) operators Y : H1 → H2 and
Z : (H2)

′ → (H1)
′ constitute a formally adjoint pair if

〈 f ,Yu〉d2 = 〈Z f , u〉d1
for all u ∈ Dom(Y ) ⊆ H1 and f ∈ Dom(Z) ⊆ (H2)

′.

Remark 2.5 From the definition it follows that the operators Y and Z are closable.
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In what follows, the notation

G ′ : (H2)
′ → (H1)

′ (2.10)

refers to the true adjoint (that is, the adjoint in the operator-theoretic sense) of an
operator G : H1 → H2.

Additionally, ˜S stands for the closure of a (closable) operator S.

Definition 2.6 We say that (densely defined) operators

Y : H1 → H2, Z : (H2)
′ → (H1)

′ (2.11)

form an adjoint pair if Y = Z ′ and Z = Y ′. Similarly, we say that (densely defined)
operators Y and Z in (2.11) form an essentially adjoint pair if ˜Y = Z ′ and ˜Z = Y ′.

2.9 Statement of the Result

In this section, we state the main result of our article.

Theorem 2.7 Let s1, s2 ∈ R. Assume that a ∈ ESm(Zn ×T
n), where m ∈ R satisfies

m > s1 − s2. Let A and A† be as in (2.8) and (2.9) respectively. Then, the operators
A and A† form an essentially adjoint pair.

Remark 2.8 The special case s1 = s2 = 0 of theorem 2.7 can be obtained quickly by
using unitary equivalence of A with an elliptic pseudo-differential operator of order
m > 0 on the torus Tn and appealing to theorem 3.5 of [26] for n = 1 and theorem 4.8
of [16] for n ∈ N. However, the general case of theorem 2.7 does not follow directly
via unitary equivalence from the mentioned results of [16, 26]. For more details, see
the fourth-to-last paragraph of Sect. 1 in our article.

As a consequence of theorem 2.7, we get the following corollary:

Corollary 2.9 Assume that a ∈ ESm(Zn × T
n) with m > 0. Let A and A† be as

in (2.8) and (2.9) respectively, in both definitions with s1 = s2 = 0. Assume that A is
formally self-adjoint, that is, assume that A = A†. Then A, as an operator in �2(Zn),
is essentially self-adjoint on S(Zn).

3 Preliminary Lemmas

We start this section by recalling the symbol calculus for Sm(Zn × T
n) developed by

the authors of [4].

3.1 Symbol Calculus for Sm(Zn × T
n).

The following properties of the class Sm(Zn × T
n) follow easily from definition 2.1:

Lemma 3.1 For m1, m2 ∈ R, we have
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(i) If m1 ≤ m2, then Sm1(Zn × T
n) ⊆ Sm2(Zn × T

n);
(ii) If a ∈ Sm1(Zn × T

n) and b ∈ Sm2(Zn × T
n), then ab ∈ Sm1+m2(Zn × T

n);
(iii) If a ∈ Sm1(Zn×T

n) then D(β)
x �α

k a(k, x) ∈ Sm1−|α|(Zn×T
n), for allα, β ∈ N

n
0 .

For the proof of the asymptotic sum formula given below, see lemma 3.4 in [4].

Lemma 3.2 Let {m j } j∈N be a sequence of real numbers satisfying the following two
properties: m j > m j+1 for all j and lim

j→∞m j = −∞. Additionally, let {a j } j∈N be

a sequence of symbols such that a j ∈ Sm j (Zn × T
n). Then, there exists a symbol

a ∈ Sm1(Zn × T
n) such that

a(k, x) ∼
∑

j

a j (k, x),

where the asymptotic relation is understood in the following sense:

⎡

⎣a(k, x) −
∑

j<N

a j (k, x)

⎤

⎦ ∈ SmN (Zn × T
n),

for all N ∈ N.

We now recall the composition rule and the adjoint rule from theorems 3.1 and 3.2
in [4], noting that the ordering of the difference (or differential) operators in the
composition rule is different from that of the analogous formula for the Rn-setting.

Proposition 3.3 Assume that a ∈ Sm1(Zn×T
n) and b ∈ Sm2(Zn×T

n), withm1, m2 ∈
R. Let Ta = Op[a] and Tb = Op[b] be as in (2.3). Then, the following properties
hold:

(i) TaTb = Op[c] with c ∈ Sm1+m2(Zn × T
n), and

c(k, x) ∼
∑

α

1

α!D
(α)
x a(k, x)�α

k b(k, x), (3.1)

where the asymptotic relation is interpreted as

⎡

⎣c(k, x) −
∑

|α|<N

1

α!D
(α)
x a(k, x)�α

k b(k, x)

⎤

⎦ ∈ Sm1+m2−N (Zn × T
n),

for all N ∈ N.
(ii) (Ta)† = Op[q] with q ∈ Sm1(Zn × T

n), and

q(k, x) ∼
∑

α

1

α!�
α
k D

(α)
x a(k, x), (3.2)
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where z denotes the conjugate of z ∈ C, and the asymptotic relation is interpreted
as

⎡

⎣q(k, x) −
∑

|α|<N

1

α!�
α
k D

(α)
x a(k, x)

⎤

⎦ ∈ Sm1−N (Zn × T
n),

for all N ∈ N.

For the next proposition, which summarizes the continuity property, see corollary
5.6 in [4].

Proposition 3.4 Assume that a ∈ Sm(Zn × T
n) with m ∈ R. Let Ta = Op[a] be

as in (2.3). Then, Ta : S(Zn) → S(Zn) extends to a continuous linear operator
Ta : Hs(Zn) → Hs−m(Zn) for all s ∈ R.

Before going further we define

S−∞(Zn × T
n) := ∩t∈RSt (Zn × T

n).

The statement of the next proposition, which describes the parametrix property of
an elliptic operator (that is, an operator whose symbol belongs to ESm(Zn × T

n)), is
contained in theorem 3.6 in [4].

Proposition 3.5 Assume that p ∈ ESm(Zn × T
n) with m ∈ R. Let Tp = Op[p] be

as in (2.3). Then, there exists an operator Q = Op[q] with q ∈ S−m(Zn × T
n), such

that

QP = I + V1 PQ = I + V2,

where I is the identity operator and Vj = Op[v j ] with v j ∈ S−∞(Zn ×T
n), j = 1, 2.

As a consequence of propositions 3.4 and 3.5, one easily gets the following elliptic
regularity property:

Proposition 3.6 Assume that a ∈ ESm(Zn × T
n) with m ∈ R. Let Ta be as in (2.3).

Additionally, assume that u ∈ H−∞(Zn) and Tau ∈ Hs(Zn), for some s ∈ R. Then,
u ∈ Hs+m(Zn).

3.2 Further Properties of the Class ESm(Zn × T
n).

In this section we describe two additional features of the class ESm(Zn × T
n).

Lemma 3.7 Assume that a ∈ ESm1(Zn×T
n), b ∈ ESm2(Zn×T

n), and c ∈ Sm3(Zn×
T
n), with m j ∈ R, j = 1, 2, 3.

(i) Then ab ∈ ESm1+m2(Zn × T
n).

(ii) If m3 < m1, then (a + c) ∈ ESm1(Zn × T
n).
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Proof Property (i) is easily verified by using the equality |ab| = |a||b| and defini-
tion 2.3. To verify the property (ii), we use the hypothesis c ∈ Sm3(Zn × T

n), which
tells us

|c(k, x)| ≤ C1(1 + |k|)m3,

where C1 is a constant independent of x . We also use the absolute value inequality

|a(k, x) + c(k, x)| ≥ |a(k, x)| − |c(k, x)|

and definition 2.3, which tells us

|a(k, x)| ≥ C2(1 + |k|)m1, |k| > R,

where C2 and R are constants. Combining the mentioned three inequalities together
with the assumption m3 < m1, we obtain (a + c) ∈ ESm1(Zn × T

n). ��
We now record two properties of the operators whose symbols belong to the class

ESm(Zn × T
n).

Lemma 3.8 Assume that Ta = Op[a] and Tb = Op[b] with a ∈ ESm1(Zn × T
n),

b ∈ ESm2(Zn × T
n), with m j ∈ R, j = 1, 2. Then

(i) TaTb = Op[c] with c ∈ ESm1+m2(Zn × T
n);

(ii) (Ta)† = Op[c] with c ∈ ESm1(Zn × T
n).

Proof Let us verify the property (i). From (3.1) we get

c ∼ ab +
∑

|α|≥1

1

α!D
(α)
x a(k, x)�α

k b(k, x). (3.3)

By lemma 3.7(i) we have ab ∈ ESm1+m2(Zn×T
n). Turning to the expression after the

summation symbol, using the parts (iii) and (ii) of lemma 3.1, we get [D(α)
x a�α

k b] ∈
Sm1+m2−|α|(Zn × T

n). Therefore, referring to lemma 3.2, we see that the term after
+ on the right hand side of (3.3) leads to a symbol belonging to Sm1+m2−1(Zn ×T

n).
Since ab ∈ ESm1+m2(Zn × T

n) we can use part (ii) of lemma 3.7 to infer c ∈
ESm1+m2(Zn × T

n). The property (ii) can be proved in the same way after starting
from the expansion (3.2). ��

3.3 Two Abstract Results

We recall that ifH1 andH2 are Hilbert spaces with inner products (·, ·)H j , j = 1, 2,
then H1 ⊕ H2 is a Hilbert space whose inner product is defined as follows: For

u =
(

u1
u2

)

∈ H1 ⊕ H2, v =
(

v1
v2

)

∈ H1 ⊕ H2
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we have

(u, v)H1⊕H2 = (u1, v1)H1 + (u2, v2)H2. (3.4)

Denote by E j : (H j )
′ → H j , j = 1, 2, the isometric isomorphisms identifying

anti-linear functionals with vectors via Riesz theorem:

〈 f , ·〉d j = (E j f , ·)H j , (3.5)

where 〈 f , u〉d j indicates the action of the functional f ∈ (H j )
′ on the vector u ∈ H j .

For an operator G : H1 → H2, we define G∗ : H2 → H1 as

G∗ := E1G
′E−1

2 , (3.6)

where G ′ : (H2)
′ → (H1)

′ is the true adjoint of G introduced in (2.10).
For the following abstract result, we refer the reader to exercise IV.26.2 (and the

outline of its proof) in the book [32]:

Lemma 3.9 LetH1 andH2 be Hilbert spaces with inner products (·, ·)H j , j = 1, 2.
Let P : H1 → H2 and Q : H2 → H1 be densely defined operators such that

(Pu, v)H2 = (u, Qv)H1 , (3.7)

for all u ∈ Dom(P) ⊆ H1 and v ∈ Dom(Q) ⊆ H2. Let T : H1 ⊕H2 → H1 ⊕H2
be an operator given by

T =
(

0 Q
P 0

)

, T
(

u1
u2

)

=
(

Qu2
Pu1

)

, (3.8)

with the domain Dom T = Dom(P) ⊕Dom(Q). (Here,H1 ⊕H2 is a Hilbert space
with the inner product (3.4).) Then the following are equivalent:

(i) The operators P and Q satisfy ˜P = Q∗ and ˜Q = P∗. (Here,˜S refers to the closure
of an operator S and S∗ is as explained above the statement of this lemma.)

(ii) The operator T is essentially self-adjoint on Dom(P) ⊕ Dom(Q).

Before stating the next lemma, which will help us apply the previous result to
our problem, we remind the reader that we use the terms “formally adjoint pair" and
“essentially adjoint pair" in the same sense as in definitions 2.4 and 2.6 above.

Lemma 3.10 Assume that Y : H1 → H2 and Z : (H2)
′ → (H1)

′ constitute a for-
mally adjoint pair. Let T be as in (3.8) with P = Y and Q = E1ZE

−1
2 , with the

isometric isomorphisms E j : (H j )
′ → H j as in Riesz theorem. Then the following

are equivalent:

(i) the operators Y and Z form an essentially adjoint pair;



150 Page 14 of 22 O. Milatovic

(ii) the operator T is essentially self-adjoint on Dom(Y ) ⊕ E2 Dom(Z).

Proof Using the property (3.5) together with the assumption that Y and Z constitute
a formally adjoint pair, we obtain

(v, Pu)H2 = (v,Yu)H2 = 〈E−1
2 v,Yu〉d2 = 〈ZE−1

2 v, u〉d1
= (E1ZE

−1
2 v, u)H1 = (Qv, u)H1 , (3.9)

for all u ∈ Dom(P) ⊆ H1 and v ∈ Dom(Q) ⊆ H2.
This shows that (3.7) is satisfied. Therefore, P = Y and Q = E1ZE

−1
2 satisfy the

hypotheses of lemma 3.9.
By definition 2.6, the operators Y and Z form an essentially adjoint pair if and

only if ˜Y = Z ′ and ˜Z = Y ′. This is equivalent to the fulfillment of the following two
equalities: ˜P = Q∗ and ˜Q = P∗. This, in turn, is equivalent (in view of lemma 3.9)
to the essential self-adjointness of T on Dom(Y ) ⊕ E2 Dom(Z). ��

4 Proof of Theorem 2.7

To simplify the notations, in this section we will write Sm , ESm , Hs , and �2 instead
of Sm(Zn × T

n), ESm(Zn × T
n), Hs(Zn), and �2(Zn). Additionally, ˜F denotes the

closure of an operator F , and F ′ indicates the (operator) adjoint of F .
Let a ∈ ESm with m ∈ R, let A and A† be as in (2.8) and (2.9), and let s1, s2 ∈ R.
Using the isomorphisms H−s j (Zn) ∼= (Hsj (Zn))′, j = 1, 2, established

lemma A.1, we see that

〈 f , Au〉d2 = ( f , Au) = (A† f , u) = 〈A† f , u〉d1 , (4.1)

for all f ∈ S(Zn) and u ∈ S(Zn), where in the second equality we the used the defi-
nition (2.4). Here, 〈·, ·〉d j indicate the action of a functional belonging to (Hsj (Zn))′
on a vector belonging to Hsj (Zn).

From (4.1) we see that A and A† constitute a formally adjoint pair in the sense
of definition 2.4 above. For the remainder of the proof we will use the hypothesis
m > s1 − s2.

Recalling the definition of Hs , we see that operator T�t : Hs → Hs−t , t, s ∈ R,
is an isometric isomorphism with the inverse (T�t )

−1 = T�−t . In particular, consider
the isometric isomorphisms E j := T�−2s j

: H−s j → Hsj , j = 1, 2, with the inverses

E−1
j = T�2s j

.

As A and A† constitute a formally adjoint pair, it follows that the hypotheses of
lemma 3.10 are satisfied for H j = Hsj , Y = A, and Z = A†, where A and A† are
as in (2.8) and (2.9). Therefore, showing that A and A† form an essentially adjoint
pair is equivalent to demonstrating that the operator T in (3.8), with P = A and
Q = E1A†E−1

2 is essentially self-adjoint on S(Zn) ⊕ T�−2s2
S(Zn).
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We now transfer the problem to the context of the (more convenient) space �2 ⊕�2.
To this end, we define

J+ :=
(

T�s1
0

0 T�s2

)

, J− :=
(

T�−s1
0

0 T�−s2

)

, (4.2)

and observe that

J+ : Hs1 ⊕ Hs2 → �2 ⊕ �2

is an isometric isomorphism.
As in (2.10),

(J+)′ : (�2 ⊕ �2)′ → (Hs1 ⊕ Hs2)′

denotes the true adjoint of J+.
Using lemma A.1, we identify (�2 ⊕ �2)′ with �2 ⊕ �2 and (Hs1 ⊕ Hs2)′ with

H−s1 ⊕ H−s2 . Having done this, we define (as in (3.6))

(J+)∗ := E(J+)′,

where

E :=
(

T�−2s1
0

0 T�−2s2

)

.

With these definitions in place, a computation shows that

(J+)∗ = (J+)−1 = J−.

Therefore, the essential self-adjointness of T , considered as an operator in Hs1 ⊕ Hs2

with Dom(T ) = S(Zn) ⊕ T�−2s2
S(Zn), is equivalent to the essential self-adjointness

of the operator

G := J+T J−,

considered as an operator in �2 ⊕ �2 with Dom(G) = S(Zn) ⊕ S(Zn).
Remembering that E j = T�−2s j

: H−s j → Hsj , j = 1, 2, and computing

G =
(

T�s1
0

0 T�s2

) (

0 E1A†E−1
2

A 0

) (

T�−s1
0

0 T�−s2

)

=
(

0 T�−s1
A†T�s2

T�s2
AT�−s1

0

)

,
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we note that G can be written as

G =
(

0 B†

B 0

)

, (4.3)

where B := T�s2
AT�−s1

is elliptic of order r := m+s2−s1, as granted by lemma 3.7.
(Furthermore, note that r > 0 in view of the hypothesis m > s1 − s2.)

Using (4.3) and the definition of (·, ·)�2⊕�2 from (3.4), we see that G is a symmetric
operator with Dom(G) = S(Zn)⊕S(Zn). In other words, we have G ⊂ G∗, where G∗
is the true adjoint of G. (Here, we used lemma A.1 to identify (�2 ⊕ �2)′ with �2 ⊕�2.)
Since (by an abstract fact) G∗ is a closed operator, we have

˜G ⊂ G∗, (4.4)

where ˜G is the closure of G.
Our goal is to establish the equality ˜G = G∗.
To reach this goal, we first note that proposition 3.4 (applied to the block-operators

B and B† in (4.3) of order r = m + s2 − s1 > 0) yields

Hr ⊕ Hr ⊂ Dom(˜G). (4.5)

(This step uses the assumption r > 0, ensuring that Hr ⊕ Hr ⊂ �2 ⊕ �2.)
Furthermore, looking at (4.4) and (4.5), we see that it remains to show the inclusion

Dom(G∗) ⊂ Hr ⊕ Hr . (4.6)

Using the definitionofG∗ and looking at (4.3), the inclusionv =
(

v1
v2

)

∈ Dom(G∗)

means the following: v j ∈ �2, j = 1, 2, and there exists f =
(

f1
f2

)

∈ �2 ⊕ �2 such

that

(v,Gu)�2⊕�2 = ( f , u)�2⊕�2 , (4.7)

for all u =
(

u1
u2

)

∈ Dom(G) = S(Zn) ⊕ S(Zn).

Using (4.3) and the definition of (·, ·)�2⊕�2 from (3.4), we can rewrite (4.7) as

(v1, B
†u2) + (v2, Bu1) = ( f1, u1) + ( f2, u2), (4.8)

where (·, ·) is the inner product in �2.
As (4.8) holds for all u1 ∈ S(Zn) and all u2 ∈ S(Zn), putting u1 = 0 first, and,

after that, u2 = 0, we get

(v1, B
†u2) = ( f2, u2), (v2, Bu1) = ( f1, u1),
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where (·, ·) is the inner product in �2.
Keeping in mind that v j ∈ �2 and taking into account lemma A.1, the latter two

equalities lead to

Bv1 = f2, B†v2 = f1.

As B and B† are elliptic (of order r = m + s2 − s1) and as f j ∈ �2, j = 1, 2,
proposition 3.6 tells us that v j ∈ Hr , j = 1, 2. This shows the inclusion (4.6). �

5 Proof of Corollary 2.9

In this corollary A is an operator �2(Zn) with domain S(Zn). Using theorem 2.7
with s1 = s2 = 0, we infer that A and A† form an essentially adjoint pair. After
identifying (�2(Zn))′ with �2(Zn), the latter means (by definition 2.6) that ˜A = (A†)∗
and ˜A† = A∗, where ˜G indicates the closure of an operator G and G∗ indicates the
true adjoint of G. Now the hypothesis of the corollary tells us A = A†, which in
combination with the preceding sentence leads to ˜A = A∗. This means that A is
essentially self-adjoint on Dom(A) = S(Zn). �

Remark 5.1 The proof of theorem 2.7 in the case s1 = s2 = 0 tells us that under the
hypotheses of corollary 2.9 we have Dom(˜A) = Dom(A∗) = Hm(Zn). This property
was established earlier in proposition 3.18 of [9].

6 Two Applications

In this sectionwe illustrate the importance of corollary 2.9 forwell-posedness of initial-
value problems for evolution equations in �2(Zn) and for constructing an extended
Hilbert scale on Z

n corresponding to an elliptic operator.

6.1 Evolution Equations

Let G be an operator (with domain Dom(G)) on a Hilbert space H . The problem

du

dt
= Gu(t), t ≥ 0, u(0) = u0, u0 ∈ H , (6.1)

is called an abstract Cauchy problem (ACP) associated with G and initial value u0 ∈
H .

We say u ∈ [0,∞) → H is a solution of the ACP (6.1) if u(·) is continuously
differentiable, u(t) ∈ Dom(G) for all t ≥ 0 and u satisfies (6.1).

We recall the following property from proposition II.6.2 in [12]:

(P) Assume thatG is a generator of a strongly continuous (not necessarily contractive)
semigroup {V (t)}t≥0 of bounded linear operators on a Hilbert spaceH . Then for
every u0 ∈ Dom(G), the function
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t �→ u(t) := V (t)u0,

is the unique solution to the ACP (6.1).

We now consider H = �2(Zn) and an operator A := Op[a], such that a ∈
ESm(Zn×T

n), withm > 0, where ESm(Zn×T
n) is as in definition 2.3. Furthermore,

we assume that A is lower semi-bounded:

(Au, u) ≥ C‖u‖2, (6.2)

for all u ∈ S(Zn), where C ∈ R, (·, ·) is as in (2.1) and ‖ · ‖ is the corresponding norm
in �2(Zn).

It is well known that (6.2) implies that A = A†. Thus, by corollary 2.9, the closure ˜A
of A|S(Zn) is a lower semi-bounded self-adjoint operator in �2(Zn) (with Dom(˜A) =
Hm(Zn), as indicated in remark 5.1. Therefore, by theorem II.3.15 from [12] the
operator−˜A generates a strongly continuous (quasi-contractive) semigroup on �2(Zn).
This, together with (P), yields the following property:
Under the above assumptions onA := Op[a], the ACP (6.1) with H = �2(Zn),
G = −˜A, and u0 ∈ Dom(˜A) = Hm(Zn) has a unique solution.

6.2 Extended Hilbert Scale onZn

We now use corollary 2.9 to construct an extended Hilbert scale on Z
n generated by

an elliptic operator. It turns out that this (and related) scale(s) have attracted quite a
bit of interest in the last two decades; see the monograph [20], the paper [21], and the
references therein.

We begin with abstract terminology from Sect. 2 of [21]. Let H be a separable
complex Hilbert space with inner product (·, ·)H and norm ‖ · ‖H . Let A be a self-
adjoint operator in H such that (Au, u)H ≥ ‖u‖2H for all u ∈ Dom(A).

Applying spectral calculus we get the operator As for each s ∈ R. Note that
Dom(As) is dense in H ; in particular, if s ≤ 0 we have Dom(As) = H . We define
H (s)

A as the completion of Dom(As) with respect to the inner product

(u, v)s := (Asu, Asv)H , u, v ∈ Dom(As).

It turns out that H (s)
A is a separable Hilbert space. In the sequel, we use the symbols

(·, ·)s and ‖ · ‖s to indicate the inner product and norm of H (s)
A .

The family {H (s)
A : s ∈ R} is called Hilbert scale generated by A or, in abbreviated

form, A-scale. According to Sect. 2 of [21], for s ≥ 0 we have H (s)
A = Dom(As),

while for s < 0 we have H (s)
A ⊃ H .

As indicated in Sect. 2 of [21], for all s0 < s1, [H (s0)
A , H (s1)

A ] is an admissible pair (in
the sense of Sections 1.1.1–1.1.2 of [20]). In what follows, the term extended Hilbert
scale generated by A or extended A-scale refers to the set of all Hilbert spaces that
serve as interpolation spaces with respect to pairs of the form [H (s0)

A , H (s1)
A ], s0 < s1.

(Here we use the term interpolation space in the sense of Sections 1.1.1–1.1.2 of [20].)
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Applying spectral calculus, for a Borel measurable function ϕ : [1,∞) → (0,∞),
we define a (positive self-adjoint) operator ϕ(A) in H . Furthermore, we define Hϕ

A
as the completion of Dom(ϕ(A)) with respect to the inner product

(u, v)ϕ := (ϕ(A)u, ϕ(A)v)H , u, v ∈ Dom(ϕ(A)).

Referring to Sect. 2 of [21], Hϕ
A is a separable Hilbert space.We use the symbols (·, ·)ϕ

and ‖ · ‖ϕ to denote the inner product and norm of Hϕ
A . Furthermore, as mentioned in

Sect. 2 of [21], we have Hϕ
A = Dom(ϕ(A)) if and only if 0 /∈ Spec(ϕ(A)).

We now switch to the setting ofH = �2(Zn). We begin by listing the assumptions
on our operator A := Op[a]:
(H1) a ∈ ES1(Zn × T

n), where ES1(Zn × T
n) is as in definition 2.3;

(H2) (Au, u) ≥ ‖u‖2, for all u ∈ S(Zn), where (·, ·) is as in (2.1) and ‖ · ‖ is the
corresponding norm in �2(Zn).

Under the hypotheses (H1)–(H2), A|S(Zn) is a formally self-adjoint operator whose
symbol a belongs to the class ES1(Zn × T

n). Thus, by corollary 2.9, A|S(Zn) is an
essentially self-adjoint operator in �2(Zn). Moreover, remark 5.1 tells us that the
domain of the self-adjoint closure of A is the space H1(Zn). To keep our notations
simpler, for the remainder of this section, we denote the self-adjoint closure of A|S(Zn)

again by A.
Specializing the abstract construction from the beginning of Sect. 6.2 to H =

�2(Zn), for a Borel function ϕ : [1,∞) → (0,∞) we define the space Hϕ
A(Zn)

generated by an operator A satisfying (H1)–(H2).
Following section 2.4.1 in [20], we say that a function ϕ : [1,∞) → (0,∞) is

RO-varying at infinity if

(i) ϕ is Borel measurable
(ii) there exist numbers a > 1 and c ≥ 1 (depending on ϕ) such that

c−1 ≤ ϕ(λt)

ϕ(t)
≤ c, for all t ≥ 1, λ ∈ [1, a]. (6.3)

In the sequel, the inclusion ϕ ∈ RO means that a function ϕ : [1,∞) → (0,∞) is
RO-varying at infinity.

We end this section with a property established in theorem 2.7 of [22] (analogue of
theorem 5.1 in [21] for the Rn-setting):
Assume that ϕ ∈ RO . Additionally, assume that A := Op[a] is an operator satisfying
(H1)–(H2). Then, up to norm equivalence, we have

Hϕ
A(Zn) = Hϕ(Zn), (6.4)

where Hϕ(Zn) is as in (2.6) with �s(k) replaced by

ϕ
(

(1 + |k|2)1/2
)

.
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Remark 6.1 The condition a ∈ ES1(Zn × T
n) in (H1) can be replaced by a ∈

ESm(Zn × T
n), with m > 0. In this case, the following variant of (6.4) holds:

Hϕ
A(Zn) = Hϕm (Zn), where ϕm(t) := ϕ(tm), t ≥ 1.

Appendix A Anti-duality Between Discrete Sobolev Spaces

In this section we adapt the proof of lemma 4.4.4 in [1] to discrete Sobolev spaces.
We begin with a brief review of terminology. Denote by V the conjugate of a

(complex) vector space V . Viewed as real vector spaces, V and V are the same. The
only difference is that the multiplication of a vector v ∈ V by a scalar z ∈ C is defined
as zv, where z is the conjugate of z. The space of linear (respectively, anti-linear)
functionals on V will be denoted by V ′ (respectively, (V )′).

Let V1 and V2 be two topological (complex) vector spaces. By a pairing of V1 and
V2 we mean a continuous sesquilinear map B : V1 × V2 → C. (Here, “sesquilinear"
means linear in the first and anti-linear in the second slot.) The pairing B gives rise to
continuous linear maps τ : V1 → (V2)′ and κ : V2 → V ′

1 as follows:

τ(u) := B(u, ·) κ(v) := B(·, v).

The pairing B is said to be perfect if τ and κ are (linear) isomorphisms.

Lemma A.1 Let s ∈ R. Then the �2-inner product (2.1), initially considered on
S(Zn) × S(Zn), extends to a (continuous sesquilinear) pairing

(·, ·) : Hs(Zn) × H−s(Zn) → C.

The pairing (·, ·) is perfect and induces isometric (linear) isomorphisms H−s(Zn) ∼=
(Hs(Zn))′ and Hs(Zn) ∼= (H−s(Zn))′.

Proof Let (·, ·) be as in (2.1) and let �s be as in (2.5). For all u, v ∈ S(Zn) we have

|(u, v)| = |(�su,�−sv)| ≤ ‖�su‖‖�−sv‖ = ‖u‖Hs‖v‖H−s , (A.1)

where we used Cauchy–Schwarz inequality in �2(Zn). The last equality is justified
because

‖�su‖ = ‖T�s u‖, ‖�−sv‖ = ‖T�−sv‖,

where the last two formulas follow from the definition (2.3) and the inversion
formula (2.2).

As S(Zn) is dense in the spaces H±s(Zn) (see lemma 3.16 in [9]), from (A.1)
we infer that the �2-inner product extends to a (continuous sesquilinear) pairing
(·, ·) : Hs(Zn) × H−s(Zn) → C.

Additionally, from (A.1) we obtain

‖u‖Hs = sup{|(u, v)| : v ∈ S(Zn) and ‖v‖H−s = 1}. (A.2)
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Using the density of S(Zn) in the space H−s(Zn), observe that the right hand side
of (A.2) is equal to the norm of the functional τ(u) ∈ (H−s(Zn))′ corresponding to
u ∈ Hs(Zn) via τ(u) := (u, ·). Therefore, τ : Hs(Zn) → (H−s(Zn))′ is an isometry.

In the same way, using (A.1) we can show that the map κ : H−s(Zn) → (Hs(Zn))′
defined as κ(v) := (·, v) is an isometry.

In particular, the maps τ and κ are injective. From the injectivity of κ we infer
that the range of τ is dense in (H−s(Zn))′. As τ is an isometry, it follows that τ is
surjective. Therefore, τ is an isometric isomorphism. In the same way, we can show
that κ is an isometric isomorphism. ��
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8. Catană, V.: S-operators related to a finite measure space. Appl. Anal. 99(2), 326–339 (2020)
9. Dasgupta, A., Kumar, V.: Ellipticity and Fredholmness of pseudo-differential operators on �2(Zn).

Proc. Amer. Math. Soc. 150(7), 2849–2860 (2022)
10. Dasgupta, A., Wong, M.W.: Spectral theory of SG-pseudo-differential operators on L p(Rn). Studia

Math. 187(2), 185–197 (2008)
11. Delgado, J., Wong, M.W.: L p-nuclear pseudo-differential operators on Z and S

1. Proc. Amer. Math.
Soc. 141(11), 3935–3942 (2013)

12. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Grad. Texts inMath.
194, Springer-Verlag, New York, (2000)

13. Garello, G., Morando, A.: A class of L p-bounded pseudodifferential operators. Progress in analysis,
Vol. I, II (Berlin,: 689–696, p. 2003. World Sci. Publ, River Edge, NJ (2001)

14. Garello, G., Morando, A.: L p-bounded pseudodifferential operators and regularity for multi-quasi-
elliptic equations. Integral Equ. Oper. Theory 51(4), 501–517 (2005)

15. Ghaemi, M.B., Jamalpour Birgani, M., Nabizadeh Morsalfard, E.: A study on pseudo-differential
operators on S1 and Z. J. Pseudo-Differ. Oper. Appl. 7(2), 237–247 (2016)

16. Kalleji, M.K.: Essential spectrum of M-hypoelliptic pseudo-differential operators on the torus. J.
Pseudo-Differ. Oper. Appl. 6(4), 439–459 (2015)

17. Kumar, V., Mondal, S.S.: Nuclearity of operators related to finite measure spaces. J. Pseudo-Differ.
Oper. Appl. 11(3), 1031–1058 (2020)



150 Page 22 of 22 O. Milatovic

18. Kumar, V., Mondal, S.S.: Self-adjointness and compactness of operators related to finite measure
spaces. Complex Anal. Oper. Theory 15(2), 22–30 (2021)

19. Kumar, V., Mondal, S.S.: Symbolic calculus and M-ellipticity of pseudo-differential operators on Zn .
Anal. Appl. (Singap.) 21(6), 1447–1475 (2023)

20. Mikhailets, V.,Murach, A.: Hörmander spaces, interpolation, and elliptic problems. DeGruyter Studies
in Mathematics, 60, De Gruyter, Berlin, (2014)

21. Mikhailets, V., Murach, A., Zinchenko, T.: An extended Hilbert scale and its applications.
arXiv:2102.08089

22. Milatovic, O.: Extended Sobolev scale on Z
n . J. Pseudo-Differ. Oper. Appl. 15(2), 25–26 (2024)

23. Molahajloo, S., Wong, M.W.: Pseudo-differential operators on S
1. In: New developments in pseudo-

differential operators, Oper. Theory Adv. Appl., 189, Birkhäuser Verlag, Basel, pp. 297–306 (2009)
24. Molahajloo, S.: Pseudo-differential operators onZ. In:Pseudo-differential operators: complex analysis

and partial differential equations, Oper. TheoryAdv. Appl. 205, Birkhäuser Verlag, Basel, pp. 213–221.
(2010)

25. Molahajloo, S.: A characterization of compact pseudo-differential operators on S
1. In: Pseudo-

differential operators: analysis, applications and computations, Oper. Theory Adv. Appl., 213
Birkhäuser/Springer Basel AG, Basel, pp. 25–29 (2011)

26. Pirhayati,M.: Spectral theory of pseudo-differential operators on S1. IN: Pseudo-differential operators:
analysis, applications and computations,Oper. Theory Adv. Appl., 213, Birkhäuser/Springer Basel AG,
Basel, pp. 15–23 (2011)

27. Rabinovich, V.S.: Exponential estimates of solutions of pseudodifferential equations on the lattice
(hZ)n : applications to the lattice Schrödinger and Dirac operators. J. Pseudo-Differ. Oper. Appl. 1(2),
233–253 (2010)

28. Rabinovich,V.S., Roch, S.: Pseudodifference operators onweighted spaces, and applications to discrete
Schrödinger operators. Acta Appl. Math. 84(1), 55–96 (2004)

29. Rabinovich, V.S., Roch, S.: Essential spectra and exponential estimates of eigenfunctions of lattice
operators of quantum mechanics. J. Phys. A 42(38), 385207–21 (2009)

30. Rodriguez Torijano, C.A.: L p-estimates for pseudo-differential operators on Z
n . J. Pseudo-Differ.

Oper. Appl. 2(3), 367–375 (2011)
31. Ruzhansky, M., Turunen, V.: Quantization of pseudo-differential operators on the torus. J. Fourier

Anal. Appl. 16, 943–982 (2010)
32. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer-Verlag, Berlin

(2001)
33. Wong, M.W.: An Introduction to Pseudo-Differential Operators, 2nd edn. World Scientific Publishing

Co., Inc, River Edge, NJ (1999)
34. Wong, M.W.: M-elliptic pseudo-differential operators on L p(Rn). Math. Nachr. 279(3), 319–326

(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/2102.08089

	The Essential Adjointness of Pseudo-Differential Operators on mathbbZn
	Abstract
	1 Introduction
	2 Notations and Results
	2.1 Basic Notations
	2.2 Symbol Classes
	2.3 Schwartz Space
	2.4 Discrete Fourier Transform
	2.5 Pseudo-Differential Operator
	2.6 Sobolev Spaces
	2.7 Operators Acting Between Sobolev Spaces
	2.8 Some Abstract Concepts
	2.9 Statement of the Result

	3 Preliminary Lemmas
	3.1 Symbol Calculus for Sm(mathbbZntimesmathbbTn).
	3.2 Further Properties of the Class ESm(mathbbZntimesmathbbTn).
	3.3 Two Abstract Results

	4 Proof of Theorem 2.7
	5 Proof of Corollary 2.9
	6 Two Applications
	6.1 Evolution Equations
	6.2 Extended Hilbert Scale on mathbbZn

	Appendix A Anti-duality Between Discrete Sobolev Spaces
	Acknowledgements
	References




