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Abstract
In this paper, we introduce the strong b-suprametric spaces in whichwe prove the fixed
point principles of Banach and Edelstein. Moreover, we prove a variational principle
of Ekeland and deduce a Caristi fixed point theorem. Furthermore, we introduce the
strong b-supranormed linear spaces in which we establish the fixed point principles
of Brouwer and Schauder. As applications, we study the existence of solutions to an
integral equation and to a third-order boundary value problem.

Keywords sb-Suprametric space · sb-Supranormed space · Fixed point theorem ·
Variational principle

Mathematics Subject Classification 54D35 · 54E99 · 47H10 · 47J20

Introduction

Let X be a nonempty set andR+ be the set of all nonnegative real numbers. A semimet-
ric is a distance function d : X × X → R+ that satisfies two axioms: (d1): d(x, y)= 0
if and only if x = y; (d2): d(x, y)= d(y, x) for all x, y ∈ X . It is well known that
by adding the triangle inequality to the axioms of d it becomes continuous. In 1993,
Czerwik [8] investigated a semimetric called b-metric, which satisfies the inequality:
d(x, y) ≤ b(d(x, z) + d(z, y)), where b is a constant in [1,+∞) and x, y, z ∈ X .
This notion has been studied previously by different authors, for the latest and rather
complete bibliography, we refer the reader to the surveys of Berinde and Păcurar [2]
and Karapınar [14]. Despite the b-metric is very useful in applications [7, 15, 27],
it has a major drawback due to its lack of continuity [26]. In order to overcome this
limitation, Kirk and Shahzad proposed a slight modification in the third axiom, see
[16, 17].
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The suprametric, which was introduced by the author in [3], is a semimetric that
fulfill d(x, y) ≤ d(x, z) + d(z, y) + ρd(x, z)d(z, y), where ρ is a constant in R+
and x, y, z ∈ X . This distance function is very useful to construct projective metrics
of Thompson’s type [25], and to prove the existence of solutions to various classes
of integral and matrix equations. Very recently, the suprametric has been utilized by
Panda et al. [21, 22] to analyze complex valued fractional order neural networks and
the existence of a solution of stochastic integral equations.

It is known that the space of p-integrable functions for p ∈ (0, 1) is a b-metric
space, but it is unclear whether it is a suprametric space. The author introduced the b-
suprametric [4], which subsume such functional space. Note that the distance function
of the b-suprametric is not necessarily continuous [4, Example 2.10], although the
continuity is very useful. In order to overcome this drawback here we introduce the
strong b-suprametric distance function, a subfamily of the b-suprametric, and shows
its continuity.

The objectives of this work are fourfold: (1) To introduce the strong b-suprametric
space in which we establish fixed point theorems of Banach and Edelstein types. (2)
To prove a variational principle through the Cantor’s intersection theorem, then to
derive a Caristi fixed point result via this variational principle. (3) To introduce the
strong b-supranormed linear space and to provide the fixed point principles of Brouwer
and Schauder in such linear space. (4) To provide new sufficient conditions for the
existence of a solution to an integral equation, via a Chebyshev type inequality, where
the integral operator involved is not necessarily Lipschitzian with respect to a metric.
Then, we show the existence of a unique solution to a third-order boundary value
problem.

1 Strong b-Suprametric Spaces

Here andbelow, the symbolsR andNwill denote respectively the set of all real numbers
and all nonnegative natural numbers. The symbol cl(A) stands for the closure of a set
A. We first need to recall the b-suprametric spaces from [4].

Definition 1.1 Let (X , d) be a semimetric space and b≥ 1, ρ ≥ 0 be two real constants.
The function d is called b-suprametric if:

(d3) d(x, y) ≤ b (d(x, z) + d(z, y)) + ρd(x, z)d(z, y) for all x, y, z ∈ X .
A pair (X , d) is called b-suprametric space if X is a nonempty set and d is a

b-suprametric.

In the previous definition, if ρ =0 we obtain the b-metric [8] and if b=1 we obtain
the suprametric [3]. In the sequel, we focus on the following subclass of b-suprametric
space.

Definition 1.2 Let (X , d) be a semimetric space and b≥ 1, ρ ≥ 0 be two real constants.
The function d is called strong b-suprametric (sb-suprametric space) if:

(d ′
3) d(x, y) ≤ b d(x, z) + d(z, y) + ρd(x, z)d(z, y) for all x, y, z ∈ X .

A pair (X , d) is called sb-suprametric space if X is a nonempty set and d is an
sb-suprametric.
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Remark 1.3 From (d2), it follows that we also have

d ′′
3 d(x, y) ≤ d(x, z) + b d(z, y) + ρd(x, z)d(z, y), for all x, y, z ∈ X .

Examples 1.4 • All suprametric spaces of [3] are sb-suprametric spaces.
• Let X = {1, 2, 3} and let d : X × X → R+ be a function defined by:

d(x, y) =
⎧
⎨

⎩

0, x = y,
3, (x, y) ∈ {

(1, 2), (2, 1)
}
,

1
2 , otherwise.

Then (X , d) is an sb-suprametric space with coefficient b = 3
2 and ρ = 8.

• Let X = C+[0, 1] of continuous nonnegative functions endowed with

δ(x, y) = sup
t∈[0,1]

|x(t) − y(t)|(|x(t) − y(t)| + 1
2 ), for all x, y ∈ X .

Then (X , δ) is an sb-suprametric space for b = ρ = 2.

Proposition 1.5 Let (X , d)be an sb-suprametric space, then for all p, q, s, t ∈ X

ρ(d(p, q) − d(s, t))2

(b + ρd(p, q) + ρd(s, t))2
≤ 2

(
d(p, t) + d(s, q) + ρ d(p, t) d(s, q)

)
. (1)

Proof Let (X , d) be an sb-suprametric space with ρ > 0 (the case ρ = 0 is trivial).
Then,

d(p, q) ≤ d(p, s) + b d(s, q) + ρ d(p, s) d(s, q)

≤ d(s, t) + b d(p, t) + ρ d(s, t) d(p, t) + b d(s, q)

+ ρ
(
d(s, t) + b d(p, t) + ρ d(s, t) d(p, t)

)
d(s, q)

≤ d(s, t) + (
b + ρ d(s, t)

)(
d(p, t) + d(s, q) + ρ d(p, t) d(s, q)

)
,

which implies

d(p, q) − d(s, t)

(b + ρ d(s, t))
≤ d(p, t) + d(s, q) + ρ d(p, t) d(s, q). (2)

A similar argument shows that

d(s, t) − d(p, q)

(b + ρ d(p, q))
≤ d(p, t) + d(s, q) + ρ d(p, t) d(s, q). (3)

Adding (2) to (3), we obtain

ρ(d(p, q) − d(s, t))2

(b + ρd(p, q))(b + ρd(s, t))
≤ 2

(
d(p, t) + d(s, q) + ρ d(p, t) d(s, q)

)
,

which implies (1). �	
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Remark 1.6 Let u ≥ 0 and ρ > 0. Assume that a sequence {un} ⊂ R+ satisfies

lim
n→∞

ρ (un − u)2

(b + ρ un + ρ u)2
= 0,

then un tends to u as n → ∞. Otherwise, if un does not tends to u there exists ε > 0
such that for all integer k > 0, n(k) > k and |un(k) − u| > ε. Then,

√
ρ ε

b + ρ un(k) + ρ u
<

√
ρ |un(k) − u|

b + ρ un(k) + ρ u
→ 0 as k → ∞,

which implies that un(k) tends to infinity as k → ∞, and hence

lim
k→∞

ρ (un(k) − u)2

(b + ρ un(k) + ρ u)2
= 1

ρ
,

yields a contradiction.

Remark 1.7 Let {pn} and {qn} be sequences in X such that limn→∞ d(pn, t)= 0 and
limn→∞ d(qn, s)= 0, then by (1) and Remark 1.6, lim

n→∞ d(pn, qn) = d(s, t), and this

means that d is continuous.

Let (X , d) be an sb-suprametric space. An open ball and a closed ball centered at
a ∈ X and of radius r > 0, are respectively given by

B(a, r) := {x ∈ X : d(a, x) < r} and B[a, r ]:={x ∈ X : d(a, x) ≤ r}.

Proposition 1.8 Let (X , d) be an sb-suprametric space. Then

(i) every open ball is an open set.
(ii) every closed ball is a closed set.

Proof To see (i), let r > 0 and a ∈ X . For y ∈ B(a, r) let

r1 := r − d(y, a)

b + ρd(y, a)
,

then if x ∈ B(y, r1),

d(x, a) ≤ b d(x, y) + d(y, a) + ρd(x, y) d(y, a)

< b r1 + d(y, a) + ρr1 d(y, a) = r .

Thus, B(y, r1) ⊆ B(a, r), and B(a, r) is open.
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Now, to see (ii), let r > 0 and a ∈ X and take a sequence {xn} in B[a, r ] convergent
to some x with respect to d. Then

d(a, x) ≤ d(a, xn) + b d(xn, x) + ρd(a, xn) d(xn, x)

≤ r + (b + ρr) d(xn, x),

and as n → ∞, we get x ∈ B[a, r ] which proves that B[a, r ] is closed. �	
As a consequence, we obtain the following propositions.

Proposition 1.9 Let (X , d) be an sb-suprametric space. The family of open balls form
a base of a topology on X.

Proof Let u ∈ B(x, ε), B(y, ε′) and choose r > 0 so that (b + ρr)d(x, u) + r < ε

and (b + ρr)d(y, u) + r < ε′. Then by taking a point v ∈ B(u, r), we obtain

d(x, v) ≤ bd(x, u) + d(u, v) + ρd(x, u)d(u, v) < (b + ρr)d(x, u) + r < ε,

d(y, v) ≤ bd(y, u) + d(x, u) + ρd(y, u)d(u, v) < (b + ρr)d(y, u) + r < ε′,

which implies that B(u, r) ⊂ B(x, ε) ∩ B(y, ε′). Finally, we conclude by using [10,
Lemma I.4.7] and the fact that every x ∈ X is also in B(x, τ ) for some τ > 0. �	
Proposition 1.10 An sb-suprametric space is normal.

Proof Let (X , d) be an sb-suprametric space. If x, y ∈ X such x �= y, then
U :=B(x, d(x,y)

2 ) and V :=B(y, d(x,y)
2 b+ρ d(x,y) ) are disjoint neighborhoods of x and y

respectively. Otherwise, assume that U ∩ V �= ∅, so there exists z ∈ U ∩ V . Thus,
using that d(x, z) < r

2 and d(y, z) < r
2 b+ρ r where r = d(x, y), we obtain

r = d(x, y) ≤ d(x, z) + d(z, y) + ρ d(x, z)d(z, y)

<
r

2
+ r

2 b + ρ r
+ ρ

r

2

r

2 b + ρ r
= r ,

a contradiction, so our claim holds. We conclude therefore that X is Hausdorff.
Let now U and V be disjoint closed sets and let

d(x,U ):= inf
u∈U d(x, u) and d(x, V ):= inf

v∈V d(x, v).

Define the sets

U ′:={
x ∈ X : d(x,U ) < d(x, V )

}
and V ′:={

x ∈ X : d(x, V ) < d(x,U )
}
.

Then U ′ and V ′ are disjoint neighborhoods of U and V respectively. �	
Proposition 1.11 In an sb-suprametric space, if a sequence has a limit it is unique.

Proposition 1.12 The strong b-metric space [16] is normal.
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Definition 1.13 Let (X , d) be an sb-suprametric space.

(i) The sequence {xn}n∈N converges to x ∈ X iff lim
n→∞ d(xn, x)= 0.

(ii) The sequence {xn}n∈N is Cauchy iff lim
n,m→∞ d(xn, xm)= 0.

(iii) (X , d) is complete iff any Cauchy sequence in X is convergent.

Remark 1.14 Let X=C+[0, 1] be the set of continuous functions x : [0, 1]→R+
endowed with δ the sb-suprametric of Examples 1.4. The completeness of (X , δ)

follows from that of (X , d) with d(x, y)= sup
t∈[0,1]

|x(t)−y(t)| for x, y ∈ X .

The next lemma is a direct consequence of Definition 1.13.

Lemma 1.15 In an sb-suprametric space, we have:

(i) A convergent sequence is a Cauchy sequence.
(ii) A Cauchy sequence converges iff it has a convergent subsequence.
(iii) A point u ∈ cl(U ) iff there is a sequence {un} ⊂ U converging to u.

Remark 1.16 If a sequence {xn}n∈N is Cauchy in a complete sb-suprametric (X , d),
then there exists x∗ ∈ X such that lim

n→∞ d(xn, x∗) = 0. By d ′
3 follows that every

subsequence {xn(k)}k∈N converges to x∗.

Remark 1.17 Let (X , d) be an sb-suprametric space. By d ′
3, we have:

d(x0, xn) ≤ bmax{1, ρn}
n∑

i=1
ei (d0, . . . , dn−1),

for all n ∈ N, x0, . . . , xn ∈ X , where di−1:=d(xi−1, xi ) and ei is the i th elementary
symmetric polynomial in n variables, that is,

ei (d0, . . . , dn−1) = ∑

0≤ j1< j2<···< ji≤n−1

i∏

k=1
d jk .

It is easy to see that these polynomials possess the following properties:

Proposition 1.18 Let n ∈ N and ei (x0, . . . , xn−1) be an elementary symmetric
polynomial of index 0 ≤ i ≤ n. Then,

(i) xk �→ ei (x0, . . . , xk, . . . , xn−1) is a nondecreasing function for 0≤ k ≤ n.
(ii) ei (ax0, . . . , axn−1) = aiei (x0, . . . , xn−1) for all a ∈ R+.

A covering of a set U in X is a family of open sets whose union contains U . A set
U ⊆ X is called compact if and only if every covering ofU by open sets in X contains
a finite sub-covering. A subset U of a topological space X is sequentially compact,
if every sequence of points in U has a subsequence converging to a point of X . A
set N ⊂ X is called an ε-net for a set U ⊆ X (ε > 0), if there exists xε ∈ N for
every x ∈ U such that d(x, xε) < ε. Next, we provide an extreme value theorem in
sb-suprametric spaces.
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Theorem 1.19 Let (X , d) be an sb-suprametric space. Let U be a compact subset of
X and f : U → R be a continuous function. Then,

(i) f is bounded on U,
(ii) f attains its supremum and its infimum.

Proof The proof is similar to that of [18, Chap. 5. Theorem 1] (see also [10, Lemma
I.5.8]). �	

The compactness is discussed in the rest of this section.

Theorem 1.20 For a setU in an sb-suprametric space X to be compact, it is necessary,
and in the case of completeness of X, sufficient that there is a finite ε-net for the set
U for every ε > 0.

Proof The proof is similar to that of [18, Chap. 5. Theorem 3], except for the value of
the distance between any two points, which does not exceed εn (1 + b + ρεn). �	
Corollary 1.21 A subset U of an sb-suprametric space is compact if and only if it is
closed and sequentially compact.

Proof The proof is exactly similar to that of [10, Theorem I.6.13]. �	
Corollary 1.22 Let (X , d) be a sb-suprametric space and U ⊆ X. If U is compact,
then it is bounded.

Proof Let Sn = {x1, . . . , xn} be a 1-net for U . Let a ∈ X , x ∈ X and xi ∈ Sn for
i = 1, . . . , n. Then,

d(x, a) ≤ bd(x, xi ) + d(xi , a) + ρd(x, xi ) d(xi , a)

≤ b
(
d(x, xi ) + d(xi , a)

) + ρ
2

(
d(x, xi ) + d(xi , a)

)2

≤ (b + ρ
2 )

(
1 + maxi d(xi , a)

)2
< ∞.

�	

2 Banach and Edelstein Fixed Point Theorems

We start by presenting a Banach fixed point result in sb-suprametric spaces.

Theorem 2.1 Let (X , d) be a complete sb-suprametric space and f : X → X be a
given mapping. Assume that there exists c ∈ [0, b−1) such that for all x, y ∈ X,

d( f x, f y) ≤ c d(x, y). (4)

Then f has a unique fixed point and
{
f nx

}

n∈N converges to it for all x ∈ X.
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Proof Assume that ρ > 0, since the case ρ = 0 is treated in [8] (see also [13]). Let
x0 ∈ X and define the sequence {xn} by xn = f nx0 for all n ∈ N, where f n is nth

iterates of f . For simplification let us introduce the notation: di, j :=d(xi , x j ), where
i, j ∈ N. Now, from (4), we get

dn,n+1 ≤ cdn−1,n < dn−1,n .

Hence, {dn,n+1} is decreasing sequence and for all k ∈ N, we have

dn,n+1 ≤ cn−k dk,k+1, for all n > k. (5)

So lim
n→∞ dn,n+1 = 0, and therefore there exits k ∈ N such that for all n ≥ k,

dn,n+1 ≤ 1. (6)

Next, we shall prove that the sequence {xn} is Cauchy. Using d ′
3 and (6), and for

sufficiently large integers p, q such that q > p > k it follow that

dp,q ≤ dp,p+1 + b dp+1,q + ρ dp,p+1 dp+1,q

≤ cp−kdk,k+1 + b dp+1,q + ρ cp−kdk+1,k dp+1,q

≤ cp−k + (b + ρ cp−k)dp+1,q ,

where

dp+1,q ≤ dp+1,p+2 + b dp+2,q + ρ dp+1,p+2 dp+2,q

≤ cp−k+1dk+1,k + b dp+2,q + ρ cp−k+1dk+1,k dp+2,q

≤ cp−k+1 + (b + ρ cp−k+1)dp+2,q .

By combining the previous inequalities, we obtain

dp,q ≤ cp−k + cp−k+1(b + ρ cp−k) + (b + ρ cp−k)(b + ρ cp−k+1)dp+2,q .

Using (6) in all terms of the sum, we obtain by induction

dp,q ≤ cp−k
q−p−1∑

i=0
ci

i−1∏

j=0
(b + ρ cp−k+ j ).

Now, since c ∈ [0, b−1), then

dp,q ≤ cp−k
q−p−1∑

i=0
ci

i−1∏

j=0
(b + ρ c j ).
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Using d’Alembert’s criterion of convergence of real series, we deduce that
∞∑
i=0

ui

converges, where

ui := ci
i−1∏

j=0
(b + ρ c j ).

We conclude dp,q → 0 as p, q → ∞, so the sequence {xn} is Cauchy. Thus, it follows
that {xn} converges to some x∗ ∈ X , say, since X is sb-complete, which proves that
ω f (x0) is nonempty. We now shall show that x∗ is a fixed point of f . By using (4),
we get

d( f xn(k), f x∗) ≤ c d(xn(k), x∗).

By letting k → ∞, we obtain by Proposition 1.11 and Remark 1.16 that x∗ = f x∗.
Finally, the uniqueness of the fixed point follows immediately from (4). �	
Remark 2.2 Theorem 2.1 generalizes [3, Theorem 2.1]. Note also that for the extended
suprametric, introduced by Panda et al. [22], an additional continuity assumption was
added to obtain the main fixed point theorem.

Proposition 2.3 Let (X , d) be an sb-suprametric space and let f : X → X be a
Lipschitz mapping, that is, there is a constant λ ∈ [0,∞) such that for all x, y ∈ X,

d( f x, f y) ≤ λ d(x, y).

Then f is continuous.

Proof The proof is exactly the same as that of [3, Proposition 1.8]. �	
Let X be a topological space and f : X → X be a mapping. For x0 ∈ X theω-limit

set is given by

ω f (x0):= ⋂

n∈N
cl

({
f k x0 : k ≥ n

})
.

The next result follows immediately from Remark 1.7, Proposition 2.3 and [19,
Theorem 1].

Theorem 2.4 Let (X , d) be an sb-suprametric space and let f : X → X be a
contractive mapping, that is, for all x, y ∈ X with x �= y,

d( f x, f y) < d(x, y).

If there exists x0 ∈ X such that ω f (x0) is nonempty, then f has a unique fixed point
and

{
f nx

}

n∈N converges to this fixed point for all x ∈ X.

Remark 2.5 Theorem 2.4 generalize [11, Theorem 1] and [3, Theorem 2.3]. In this
connection, see also [12, Chapter 1, Theorem 1.2] and [5, Section 6].
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3 Ekeland Variational Principle and Caristi Fixed Point Theorem

We first present a Cantor’s intersection theorem in sb-suprametric spaces.

Theorem 3.1 Let (X , d) be a complete sb-suprametric space, and let {Cn}n∈N be a
decreasing nested sequence of nonempty closed sets of X with

diam(Cn):= sup {d(x, y) : x, y ∈ Cn} → 0 as n → ∞.

Then
⋂

n∈N Cn = {z} for some z ∈ X.

Proof Since Cn is nonempty for all n, we take zn in every Cn . We then construct a
Cauchy sequence {zn} because d(zm, zn) ≤ diam(CN ) for all m, n greater than some
integer N and diam(CN ) → 0 as N → ∞. Now, by completeness of (X , d), we
deduce that {zn} converges to some z. Next, since zn ∈ CN for all n ≥ N and CN is
closed, z ∈ ⋂

n≥N Cn , which implies by the nestedness property that z ∈ ⋂
n∈N Cn .

Assume now that there exists z′ ∈ ⋂
n∈N Cn such that z′ �= z, then d(z, z′) > 0,

which implies that there exists m ∈ N such that diam(Cn) < d(z, z′) for all n ≥ m.
Consequently, z′ /∈ Cn for all n ≥ m and therefore z′ /∈ ⋂

n∈N Cn . This proves that⋂
n∈N Cn = {z}. �	
We next present an Ekeland’s variational principle in the new spaces.

Theorem 3.2 Let (X , d) be a complete sb-suprametric space (b> 1) and let φ : X →
R ∪ {±∞} be a lower semicontinuous function which is proper and lower bounded.
Then, for every x0 ∈ X and ε > 0 with

φ(x0) ≤ inf
x∈X φ(x) + ε,

there exist xε ∈ X and a sequence {xi }i∈N in X such that:

(i) limi→∞ d(xi , xε) = 0.
(ii) d(xi , xε) ≤ 2−nε, for all i ∈ N.

(iii) φ(xε) +
∞∑
i=0

b−i d(xε, xi ) ≤ φ(x0).

(iv) φ(xε) +
∞∑
i=0

b−i d(xε, xi ) < φ(x) +
∞∑
i=0

b−i d(x, xi ) for all x �= xε.

Proof Let x0 ∈ X and ε > 0 and define the set

C0:=
{
x ∈ X : φ(x) + d(x, x0) ≤ φ(x0)

}
.

Clearly,C0 is nonempty and closed since it contains x0, d is continuous and φ is lower
semi-continuous. Now, for all y ∈ C0, we have

d(x, x0) ≤ φ(x0) − φ(y) ≤ φ(x0) − inf
x∈X φ(x) ≤ ε. (7)
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Choose x1 ∈ C0 such that

φ(x1) + d(x1, x0) ≤ inf
x∈C0

{φ(x) + d(x, x0)} + (2b)−1ε,

and consider the set

C1 := {
x ∈ C0 : φ(x) + d(x, x0) + b−1d(x, x1) ≤ φ(x1) + d(x1, x0)

}
.

By induction, we choose xn−1 ∈ Cn−2 (n ≥ 2) and consider

Cn−1 := {
x ∈ Cn−2 : φ(x) +

n−1∑

i=0
b−i d(x, xi ) ≤ φ(xn−1) +

n−2∑

i=0
b−i d(xn−1, xi )

}
.

Then, we choose xn ∈ Cn−1 such that

φ(xn) +
n−1∑

i=0
b−i d(xn, xi ) ≤ inf

x∈Cn−1

{

φ(x) +
n−1∑

i=0
b−i d(xn−1, xi )

}

+ (2b)−nε. (8)

Define again a set

Cn :=
{

x ∈ Cn−1 : φ(x) +
n∑

i=0
b−i d(x, xi ) ≤ φ(xn) +

n−1∑

i=0
b−i d(xn, xi )

}

. (9)

Clearly,Cn is nonempty and closed since it contains xn , d is continuous and φ is lower
semicontinuous. Next, for all y ∈ Cn , we deduce from (8) and (9) that

b−nd(y, xn) ≤
[

φ(xn) +
n−1∑

i=0
b−i d(xn, xi )

]

−
[

φ(y) +
n−1∑

i=0
b−i d(y, xi )

]

≤
[

φ(xn) +
n−1∑

i=0
b−i d(xn, xi )

]

− inf
x∈Cn−1

[

φ(x) +
n−1∑

i=0
b−i d(xn, xi )

]

≤ (2b)−nε.

Hence, for all y ∈ Cn , we have

d(y, xn) ≤ 2−nε. (10)

this implies that (i) holds. Consequently, limn→∞ diam(Cn) = 0 and the sequence
{Cn}n∈N is decreasing nested sequence of nonempty closed sets of X . So, by Theorem
3.1 it follows that

⋂
n∈N Cn = {xε} for some xε ∈ X . Note that (ii) follows from (7)

and (10). Now, since for all x �= xε, x /∈ ⋂
n∈N Cn , thus there exists m ∈ N such that

x /∈ Cm , then

φ(xm) +
m−1∑

i=0
b−i d(xm, xi ) < φ(x) +

m∑

i=0
b−i d(x, xi ).
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But x /∈ Cm means that x /∈ Ck for all k ≥ m, so from the previous inequalities we
conclude that for all k ≥ m, we have

φ(xε) +
k∑

i=0
b−i d(xε, xi ) ≤ φ(xk) +

k−1∑

i=0
b−i d(xk, xi )

≤ φ(xm) +
m−1∑

i=0
b−i d(xm, xi ) ≤ φ(x0).

Consequently (iii) and (iii) hold. �	
Remark 3.3 Theorem 3.2 generalizes [6, Theorem 2.2].

Corollary 3.4 Let (X , d) be a complete sb-suprametric space (b> 1) and let φ : X →
R ∪ {±∞} be a lower semi-continuous function which is proper and lower bounded.
Then, for every ε > 0 there exist xε ∈ X and a sequence {xi }i∈N in X such that:

(i) limi→∞ d(xi , xε) = 0.

(ii) φ(xε) +
∞∑
i=0

b−i d(xε, xi ) ≤ infx∈X φ(x) + ε.

(iii) φ(xε) +
∞∑
i=0

b−i d(xε, xi ) ≤ φ(x) +
∞∑
i=0

b−i d(x, xi ) for all x ∈ X.

We next present a fixed point theorem in sb-suprametric spaces.

Theorem 3.5 Let (X , d) be a complete sb-suprametric space (b> 1). Let f : X → X
be amapping for which there exists a proper, lower semicontinuous and lower bounded
function φ : X → R ∪ {±∞} such that for all x ∈ X,

b2 + ρ

b − 1
d(x, f (x)) ≤ φ(x) − φ( f (x)). (11)

Then f has a fixed point.

Proof Assume that for all x ∈ X , f (x) �= x . By applying Corollary 3.4, we deduce
that for every ε > 0 there exist xε ∈ X and a sequence {xi }i∈N in X such that:

φ(xε) +
∞∑
i=0

b−i d(xε, xi ) ≤ φ(x) +
∞∑
i=0

b−i d(x, xi ),

for all x ∈ X . By taking x = f (xε), where here x �= xε, we get

φ(xε) − φ( f (xε)) <
∞∑
i=0

b−i d( f (xε), xi ) −
∞∑
i=0

b−i d(xε, xi ).

Now, by d ′
3 it follows that

φ(xε) − φ( f (xε)) <
∞∑
i=0

b1−i d( f (xε), xε) + ρ
∞∑
i=0

b−i d( f (xε), xε)d(xε, xi ).
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Since limi→∞ d(xε, xi ) = 0, then there exists an integer N > 0 such that for all
i ≥ N , we have d(xε, xi ) ≤ 1. Hence,

φ(xε) − φ( f (xε)) <
(
b2+ρ
b−1 + max0≤i≤N

{
b−i d(xε, xi )

})
d( f (xε), xε).

Next, we take x = xε in (11), we obtain

b2 + ρ

b − 1
d(xε, f (xε)) ≤ φ(xε) − φ( f (xε)),

and this inequality combined with the previous one yield a contradiction.We conclude
that f has a fixed point. �	

The Caristi’s fixed point theorem in sb-suprametric spaces follows immediately by
taking ψ = b−1

b2+ρ
φ in the previous theorem.

Corollary 3.6 Let (X , d) be a complete sb-suprametric space (b> 1). Let f : X → X
be amapping for which there exists a proper, lower semicontinuous and lower bounded
function ψ : X → R ∪ {±∞} such that for all x ∈ X,

d(x, f (x)) ≤ ψ(x) − ψ( f (x)).

Then f has a fixed point.

Proposition 3.7 Corollary 3.6 generalizes [17, Theorem 2.14].

4 Strong b-Supranormed Spaces

In this section, we introduce the concept of strong b-supranormed spaces and derive
some of its properties.

Definition 4.1 Let X be a nonempty linear space and b≥ 1, ρ ≥ 0 are two real con-
stants. A function ‖ · ‖ : X → R+ is called b-supranorm if the following conditions
hold:

(n1) ‖x‖ = 0 if and only if x = 0,
(n2) ‖λx‖ = |λ|‖x‖, for all x ∈ X and λ ∈ R

(n3) ‖x + y‖ ≤ b(‖x‖ + ‖y‖) + ρ ‖x‖ ‖y‖ for all x, y ∈ X .

A pair (X , ‖ · ‖) is called a b-supranorm space if X is a nonempty set and ‖ · ‖ is a
b-supranorm. The pair (X , ‖ · ‖) is called a supranorm space if b = 1.

Definition 4.2 Let X be a nonempty linear space and b≥ 1, ρ ≥ 0 are two real con-
stants. A function ‖ · ‖ : X → R+ is called strong b-supranorm (sb-supranorm) if it
satisfies (n1), (n2) and

(n′
3) ‖x + y‖ ≤ b ‖x‖ + ‖y‖ + ρ‖x‖‖y‖ for all x, y ∈ X .
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A pair (X , ‖ · ‖) is called a strong b-supranormed (sb-supranormed) linear space if
X is a nonempty set and ‖ · ‖ is a string b-supranorm. The pair (X , ‖ · ‖) is called a
strong supranormed linear space if b = 1.

Remark 4.3 Using (n2), it follows that

(n′′
3) n′′

3 ‖x + y‖ ≤ ‖x‖ + b ‖y‖ + ρ‖x‖‖y‖ for all x, y ∈ X .

Examples 4.4 • Clearly, strong b-normed spaces of [16] are sb-supranormed spaces.
• If ‖ · ‖ is an sb-supranorm linear space X , then the function d : X × X → R+
given by d(x, y) = ‖x − y‖ is an sb-suprametric.

• Consider the set X = R
2 endowed with a function ‖ · ‖ : X → R defined by

‖(x, y)‖ = |x − y| + min(|x |, |y|).

It is not difficult to see that (X , ‖ · ‖) is an sb-supranormed space for b= ρ = 2.

Remark 4.5 Let (X , ‖ · ‖) be an sb-supranormed linear space. If a sequence {xn}
converges simultaneously to x and y, that is, lim

n→∞ ‖xn − x‖ = lim
n→∞ ‖xn − y‖ = 0,

then x = y, and this follows from (n1) and (n′
3), since we have

‖x − y‖ ≤ ‖x − xn‖ + b‖xn − y‖ + ρ‖x − xn‖‖xn − y‖.

Moreover, we have the following inequality:

∥
∥
∥
∥

n∑

i=0
xi

∥
∥
∥
∥ ≤ bmax{1, ρn}

n∑

i=1
ei (‖x0‖, . . . , ‖xn‖),

for all n ∈ N and x0, . . . , xn ∈ X .

Lemma 4.6 Let (X , ‖·‖) be an sb-supranormed linear space. Then, ‖·‖ is a continuous
function.

Proof Assume that ρ > 0 and let x, y ∈ X , then

‖x‖ = ‖y + (x − y)‖ ≤ ‖y‖ + b ‖x − y‖ + ρ‖y‖ ‖x − y‖,

and consequently,

‖x‖ − ‖y‖
b + ρ‖y‖ ≤ ‖x − y‖. (12)

Similarly,

‖y‖ − ‖x‖
b + ρ‖x‖ ≤ ‖x − y‖. (13)
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Hence, from (12) and (13), one gets

ρ(‖x‖ − ‖y‖)2
(b + ρ‖x‖ + ρ‖y‖)2 ≤ 2‖x − y‖.

Therefore, if ‖xn − x‖ → 0 as n → ∞, then

ρ(‖xn‖ − ‖x‖)2
(b + ρ‖xn‖ + ρ‖x‖)2 ≤ 2‖xn − x‖ → 0 as n → ∞,

and using Remark 1.6 it follows that ‖xn‖ → ‖x‖ as n → ∞, which implies that ‖ · ‖
is a continuous function. �	

Let (Xn, d) be an n-dimensional sb-supranormed linear space and let {u1, . . . , un}
be a base of Xn . For every x ∈ X there exist unique coefficients α1, . . . , αn ∈ R such
that

x =
n∑

i=1
αi ui ,

and define ‖ · ‖0 : X → R+ by

‖x‖0 =
n∑

i=1
ei (|α1|, . . . , |αn|).

Theorem 4.7 Let (Xn, ‖ ·‖) be an n-dimensional sb-supranormed linear space. Then,
there exists β > 0 such that

‖x‖ ≤ β‖x‖0, for all x ∈ X . (14)

Proof Let x ∈ Xn and {u1, . . . , un} be a base of Xn . Then, there exist unique
coefficients α1, . . . , αn ∈ R such that x = ∑n

i=1 αi ui . Hence,

‖x‖ =
∥
∥
∥
∥

n∑

i=1
αi ui

∥
∥
∥
∥

≤ bmax{1, ρn}
n∑

i=1
ei (|α1| ‖u1‖, . . . , |αn| ‖un‖)

≤ bmax{1, ρn}
(

max
1≤ j1< j2<···< ji≤n

i∏

k=1
‖u jk‖

) n∑

i=1
ei (|α1|, . . . , |αn|)

= β ‖x‖0,

where

β := bmax{1, ρn}
(

max
1≤ j1< j2<···< ji≤n

i∏

k=1
‖u jk‖

)
. (15)

�	
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Theorem 4.8 Let (Xn, ‖ ·‖) be an n-dimensional sb-supranormed linear space. Then,
‖ · ‖ and ‖ · ‖0 are equivalent, that is, there exists α, β > 0 such that for all x ∈ X

α‖x‖0 ≤ ‖x‖ ≤ β‖x‖0.

Proof Let x ∈ Xn and {u1, . . . , un} be a base of Xn . Then, there exist unique
coefficients α1, . . . , αn ∈ R such that x = ∑n

i=1 αi ui . Define a set U by

U := {x ∈ X : ‖x‖0 = 1}.

We first show that U is bounded. Let α
j
1 , . . . , α

j
n ∈ R for j = 1, 2 such that x j =

∑n
i=1 α

j
i ui ∈ U . Then

‖x1 − x2‖ =
∥
∥
∥
∥

n∑

i=1
(α1

i − α2
i )ei

∥
∥
∥
∥

≤ bmax{1, ρn}
n∑

i=1
ei (|α1

1 − α2
1 | ‖u1‖, . . . , |α1

n − α2
n | ‖un‖)

≤ β
n∑

i=1
ei (|α1

1 − α2
1 |, . . . , |α1

n − α2
n |)

≤ β
n∑

i=1
ei (|α1

1 | + |α2
1 |, . . . , |α1

n | + |α2
n |)

≤ β K ,

where β is given by (15) and K :=max
{
2kn

(
n
k

) : k = 1, . . . , n
}
, which proves that

U is bounded.
Define now a function φ : X → R+ by φ(x) = ‖x‖. It follows by Lemma 4.6

that f is continuous. Note that U is strongly compact, since it is bounded and closed
subset of R

n . Using Theorem 1.19, we deduce that φ has an infimum α in U , which
is different from zero because ‖x‖0 = 1 for every vector x ∈ U . Hence,

α = inf{φ(x) : x ∈ U } = inf{‖x‖ : x ∈ U } > 0.

Thus, from the fact x
‖x‖0 ∈ U for all x ∈ X , it follows that

∥
∥
∥
∥

x

‖x‖0
∥
∥
∥
∥ ≥ α > 0, for all x ∈ X ,

which implies that

α‖x‖0 ≤ ‖x‖, for all x ∈ X . (16)

Finally, combine (14) and (16), we obtain the result. �	
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Remark 4.9 As an immediate consequence of Theorem 4.8, any two sb-supranorms
on a finite-dimensional space are equivalent.

Lemma 4.10 Let (Xn, ‖ · ‖) be an n-dimensional sb-supranormed linear space, let U
be a bounded set of X. Then, U is compact.

Proof Let x ∈ Xn and {u1, . . . , un} be a base of Xn . Then, there exist unique coeffi-
cients α1, . . . , αn ∈ R such that x = ∑n

i=1 αi ui . Let x = (α1, . . . , αn) ∈ R
n . Define

the function φ : U → R
n by φ(x) = x for all x ∈ U and let V = φ(U ). Since the

function ‖ · ‖1 : X → R+ by ‖x‖1:=‖φ(x)‖n is an sb-supranorm on Xn , where ‖ · ‖n
is an sb-supranorm on R

n . Hence, according to Remark 4.9, ‖ · ‖1 is equivalent to the
sb-supranorm ‖ · ‖. We conclude that there exist α, β > 0 such that

α‖x‖n ≤ ‖x‖ ≤ β‖x‖n . (17)

As consequences of (17), U bounded in X if and only if U bounded in R
n , and a

sequence {xn} is convergent in (X , ‖ · ‖) if and only if the corresponding sequence
{xn} is convergent in R

n . Consequently, the compactness of U bounded in X follows
from the compactness of U bounded in R

n . �	

5 Brouwer and Schauder Fixed Point Principles

We first recall the Brouwer fixed point principle in R
n .

Theorem 5.1 (Brouwer) Let U be a bounded closed convex set of R
n. If a mapping

f : U → U is continuous, then it has a fixed point.

The Brouwer fixed point principle in sb-supranormed space is given next.

Theorem 5.2 Let (Xn, ‖ · ‖) be an n-dimensional sb-supranormed linear space and
let U be a bounded closed convex set of Xn. If a mapping f : U → U is continuous,
then it has a fixed point.

Proof Let x ∈ Xn and {u1, . . . , un} be a base of Xn . Then, there exist unique coeffi-
cients α1, . . . , αn ∈ R such that x = ∑n

i=1 αi ui . Let x = (α1, . . . , αn) ∈ R
n . Define

the function φ : U → R
n by φ(x) = x for all x ∈ U and let V = φ(U ). The function

φ : U → V is bijective, where the mapping φ−1 : V → U is given by φ−1(x) = x
for all x ∈ V . Next, we will prove several claims: �	
Claim 1 φ : U → V is an homeomorphism. Indeed φ is continuous in U , since by
(16), we have

‖φ(x) − φ(x0)‖0 = ‖x − x0‖0 ≤ α−1‖x − x0‖, for all x, x0 ∈ U ,

Similarly, φ−1 is continuous in V , because by (14), we have

‖φ−1(x) − φ−1(x0)‖ = ‖x − x0‖ ≤ β‖x − x0‖0, for all x, x0 ∈ V .

Hence, Claim 1 holds.
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Claim 2 V is convex. Let x = (α1, . . . , αn), y = (β1, . . . , βn) ∈ V , where αi , βi ∈ R

for i = 1, . . . , n. For all λ ∈ [0, 1], we obtain by convexity of U that

λx + (1 − λ)y = (λα1 + (1 − λ)β1, . . . , λαn + (1 − λ)βn)

= φ(λx + (1 − λ)y) ∈ V ,

which implies that Claim 2 holds.

Claim 3 V is bounded. Let x, y ∈ V , then by the boundedness ofU and Theorem 4.7
it follows that

‖x − y‖0 ≤ α−1‖x − y‖ ≤ α−1d(U ),

where d(U ):=max{‖x − y‖ : x, y ∈ U }, which proves Claim 3.

Claim 4 V is closed. Let x = ∑n
i=1 αi ui , x0 = ∑n

i=1 βi ui , x = (α1, . . . , αn) ∈ V ,
x0 = (β1, . . . , βn), where αi , βi ∈ R for i = 1, . . . , n. Assume that ‖x − x0‖0 tends
to zero. Now, by (16), we have

‖x − x0‖ ≤ β‖x − x0‖0,

so it follows that by closedness of U that x0 ∈ U , which implies that x0 ∈ V and this
prove the claim.

Claim 5 f has a fixed point. To show this, define the function F : V → V by F =
φ f φ−1. By Theorem 5.1 and the previous claims, we deduce that there exists x ∈ V
such that F(x) = x , that is,

φ f φ−1(x) = x,

which is equivalent to f (φ−1(x)) = φ−1(x), and since φ−1(x) ∈ U , then f has a
fixed point in U . �	

Before establishing the fixed point principle of Schauder type in sb-supranormed
spaces, we need to develop some auxiliary results. Let (E, ‖·‖) be an sb-supranormed
linear space and N :={c1, . . . , cn} be a finite subset of E . For any fixed ε > 0, define
the set

(N , ε) :=
n⋃

i=1
B(ci , ε),

where

B(ci , ε):= {x ∈ E : ‖x − ci‖ < ε} , i = 1, . . . , n.

Define a mapping μi : (N , ε) → R by

μi (x):=max
[
0, ε − ‖x − ci‖

]
, i = 1, . . . , n.
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Consider the Schauder projection pε : (N , ε) → conv(N ) given by

pε(x) =
[

n∑

i=1
μi (x)

]−1 n∑

i=1
μi (x)ci ,

Note that pε((N , ε)) ⊂ conv(N ) as a convex combination of {c1, . . . , cn}. Moreover,
if x ∈ (N , ε), then there exists i such that x ∈ B(Ci , ε), so

∑n
i=1 μi (x) �= 0, which

means that pε is well defined.

Lemma 5.3 Let (E, ‖ · ‖) be an sb-supranormed linear space, U be a convex subset
of E and N = {c1, . . . , cn} ⊂ U. Then for a sufficiently small ε > 0, we have

(i) ‖x − pε(x)‖ ≤ n b ε max{1, ρn} for all x ∈ (N , ε),
(ii) pε : (N , ε) → conv(N ) ⊂ U is a continuous compact mapping.

Proof Let ε ∈ (0, 1] be sufficiently small such that for every 1≤ i ≤ n and any x in
(N , ε), Pi (x) ≤ P1(x), where Pi (x):=ei (μ1(x), . . . , μn(x)). Then,

‖x − pε(x)‖ =
[

n∑

i=1
μi (x)

]−1 ∥
∥
∥
∥

n∑

i=1
μi (x)(x − ci )

∥
∥
∥
∥

≤ bmax{1, ρn}(P1(x))−1
n∑

i=1
ei (μ1(x)‖x − c1‖, . . . , μn(x)‖x − cn‖)

≤ bmax{1, ρn}(P1(x))−1
n∑

i=1
ei (μ1(x)ε, . . . , μn(x)ε)

≤ b ε max{1, ρn}(P1(x))−1
n∑

i=1
Pi (x)

≤ n b ε max{1, ρn}.

Now, since pε is a finite sum of continuous functions and ‖ · ‖ is continuous according
to Lemma 4.6, then pε is continuous. The compactness of pε follows from Lemma
4.10, since its codomain is with finite-dimension. �	
Lemma 5.4 Let X be a topological space and E be an sb-supranormed linear space.
Let U be a convex set of E and f : X → U be a compact mapping. Then for a
sufficiently small ε > 0, there exists a finite set

N = {c1, . . . , cn} ⊂ f (X) ⊂ U ,

and a finite-dimensional mapping fε : X → U such that:

(i) ‖ fε(x) − f (x)‖ ≤ n b ε max{1, ρn} for all x ∈ X,
(ii) fε(X) ⊂ conv(N ) ⊂ U.

Proof (i): By Theorem 1.20 and for sufficiently small ε ∈ (0, 1) there exists a finite
ε-net {c1, . . . , cn} ⊂ f (X) because f (X) is compact in E . Now, if y ∈ f (X),
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then d(y, ci ) < ε for some i ∈ {1, . . . , n}, thus y ∈ B(ci , ε), so y ∈ (N , ε) and
this proves that f (X) ⊂ (N , ε). Let fε = pε f . We deduce by Lemma 5.3 that

‖ fε(x) − f (x)‖ = ‖pε y − y‖ ≤ n b ε max{1, ρn},

where y = f (x) ∈ (N , ε), for all x ∈ X .
(ii): Let y ∈ fε(X). Thus, there is z = f (x) ∈ (N , ε) for some x ∈ X such that

y = pε(z). Consider

y = pε(z) =
n∑

i=1
λi ci ,

n∑

i=1
λi = 1, λi ∈ R, i = 1, . . . , n.

Thus, y ∈ conv(N ) ⊂ U , and by convexity of U it follows that fε ⊂
conv(N ) ⊂ U . �	

Let (X , d) be an sb-suprametric space, U be a nonempty set of X and f : U → X
be a given mapping. If for a given ε > 0, there exists a point x ∈ U such that
d(x, f (x)) < ε, then we say that x is an ε-fixed point for f .

Theorem 5.5 Let (X , d) be an sb-suprametric space and U be a closed set of X. If a
mapping f : U → X is compact, then f has a fixed point if and only if for each ε > 0
it has an ε-fixed point.

Proof The necessary condition is trivial, so we only show the sufficient condition. Let
εn = 1

n , n ∈ N. Assume there exists un ∈ U for all n ∈ N such that un are εn-fixed
point, that is,

d(un, f (un)) < 1
n , for all n ∈ N. (18)

The mapping f is compact, so there exists a compact K such that f (X) ⊆ K . Thus,
there exists a subsequence {unk } such that f (unk ) converges to some u ∈ X as k tends
to infinity. Now, using (18), it follows that for any ε > 0 there exists k0 ∈ N such that
for k ≥ k0, we have

d(unk , u) ≤ bd(unk , f (unk )) + d( f (unk ), u) + ρ d(unk , f (unk ))d( f (unk ), u)

≤ b
nk

+ ε + ρ ε
nk

< ε(b + 1 + ε),

which implies that {unk } converges to u in U because U is closed. Observe that
{ f (unk )} converges to u and by continuity of f it converges also to f (u), which
means by Proposition 1.11 that u = f (u). �	
Remark 5.6 In Theorem 5.5, if f : U → U is compact, the assumption of closeness
of U may be dropped, since the sequence f (unk ) converges to some u ∈ cl ( f (U ))

which is a subset of U .

Finally, we present a Schauder fixed point principle.
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Theorem 5.7 Let (X , ‖ · ‖) be an sb-supranormed linear space and U be a convex set
(not necessarily closed) of X. If a mapping f : U → U is compact, then it has a fixed
point.

Proof It suffice to show that f has an ε-fixed point. By Lemma 5.4 it follows that for
a sufficiently small ε > 0 there exists fε : U → U such that

(i) ‖ fε(x) − f (x)‖ ≤ n b ε max{1, ρn} for all x ∈ U ,
(ii) fε(U ) ⊂ conv(N ) ⊂ U .

Since conv(N ) ⊂ U , we get fε(conv(N )) ⊂ fε(U ) ⊂ conv(N ), which implies
that fε : conv(N ) → conv(N ) is well defined. Since conv(N ) is bounded closed
convex (see also [24, Propositions C.2 and C5]), we deduce by Theorem 5.2 that there
exists xε ∈ conv(N ) ⊂ U such that fεxε = xε, so by (i), we obtain

‖ f (xε) − xε‖ = ‖ f (xε) − fε(xε)‖ ≤ n b ε max{1, ρn},
and by letting ε tends to zero together with the continuity of f , we obtain the result
by Theorem 5.5 and Remark 5.6. �	
Remark 5.8 Observe that U is not necessary closed, since Theorem 5.2 is applied to
the selfmap fε defined on the closed set conv(N ). Moreover and according to Remark
5.6, Theorem 5.5 can be applied without requiring the closeness of U . This answer
the question in [9, Remark 13].

6 Applications

In this section, we study the existence of a unique solution to an integral equation as
well as to a boundary value problem, as applications to the fixed point theorem proved
in Section 2. We consider the integral equation:

x(t) = λ(t) +
∫ 1

0
G(t, s)h(s, x(s))ds, t ∈ [0, 1]. (19)

The problem of existence of a solution for the integral equation (19) will be discussed
under the following assumptions:

(a1) λ : [0, 1] → R+ is a continuous function.
(a2) h : [0, 1] × R+ → R+ is a continuous function and there exists a continuous

function u : R
2+ → R+ such that for all (s, p, q)∈ [0, 1] × R

2+,

u(p, p) = 0, (20a)

|h(s, p) − h(s, q)| ≤ u(p, q), (20b)

u(p, q)2 + 1
2u(p, q) ≤ |p − q|2 + 1

2 |p − q|. (20c)

(a3) G : [0, 1]2 → R+ is a continuous function such that

c:= max
s,t∈[0,1]G(s, t) < 1.
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Before presenting themain result of this section, we derive an inequality of Chebyshev
type. For more details on Chebyshev inequalities, we refer to Chapter IX of [20] and
for more recent references, see for instance [1, 23].

Lemma 6.1 Let a and b be real numbers such that a < b, and let w(t, ·) be a nonneg-
ative measurable function for every t ∈ [a, b]. Let x(s) = (x1(s), x2(s), . . . , xn(s))
such that {xi }1≤i≤n are nonnegative functions defined on [a, b], and let u be a non-
negative function defined on [a, b] × R

n+ such that s �→ u(s, x(s)) is integrable with
respect to w(t, s) for every t ∈ [a, b]. Then
(∫ b

a
u(s, x(s))w(t, s)ds

)2

≤
∫ b

a
u(s, x(s))2w(t, s)ds

∫ b

a
w(t, s)ds, t ∈ [a, b].

Proof We have

0 ≤
∫ b

a

∫ b

a

(
u(r , x(r)) − u(s, x(s))

)2
w(t, s)w(t, r)dsdr

=
∫ b

a

∫ b

a

(
u(r , x(r))2 − 2u(r , x(r))u(s, x(s)) + u(s, x(s))2

)
w(t, s)w(t, r)dsdr

=
∫ b

a

(
u(r , x(r))2

∫ b

a
w(t, s)ds − 2u(r , x(r))

∫ b

a
u(s, x(s))w(t, s)ds

+
∫ b

a
u(s, x(s))2w(t, s)ds

)
w(t, r)dr

= 2
∫ b

a
u(s, x(s))2w(t, s)ds

∫ b

a
w(t, s)ds − 2

(∫ b

a
u(s, x(s))w(t, s)ds

)2

.

�	
Theorem 6.2 Under assumptions (a1)–(a3), the integral equation (19) has a unique
solution in C+([0, 1]).
Proof Let X = C+([0, 1]) be the set of continuous functions x : [0, 1] → R+,
endowed with the suprametric δ of Examples 1.4. First, by Remark 1.14, (X , δ) is
a complete. Consider the operator T : X → X defined by

T x(t) = λ(t) +
∫ 1

0
G(t, s)h(s, x(s))ds, t ∈ [0, 1].

Observe first that T is well defined. Let x, y ∈ X , then by using the assumptions
(a1)–(a3) and Lemma 6.1, we get

|T x(t) − T y(t)|(|T x(t) − T y(t)| + 1
2 )

=
∣
∣
∣
∣
∣

∫ 1

0
G(t, s)

(
h(s, x(s))−h(s, y(s))

)
ds

∣
∣
∣
∣
∣

(∣
∣
∣
∣
∣

∫ 1

0
G(t, s)

(
h(s, x(s))−h(s, y(s))

)
ds

∣
∣
∣
∣
∣
+ 1

2

)

≤
∫ 1

0
G(t, s)

∣
∣h(s, x(s)) − h(s, y(s))

∣
∣ds

(∫ 1

0
G(t, s)

∣
∣h(s, x(s)) − h(s, y(s))

∣
∣ds+ 1

2

)

≤
∫ 1

0
G(t, s)u(x(s), y(s))ds

(∫ 1

0
G(t, s)u(x(s), y(s))ds+ 1

2

)
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≤
∫ 1

0
G(t, s)ds

∫ 1

0
G(t, s)u(x(s), y(s))2ds+ 1

2

∫ 1

0
G(t, s)u(x(s), y(s))ds

≤
∫ 1

0
G(t, s)

(
u(x(s), y(s))2 + 1

2 u(x(s), y(s))
)
ds

≤
∫ 1

0
G(t, s)|x(s) − y(s)|(|x(s) − y(s)| + 1

2
)
ds

≤ cδ(x, y),

and this implies

δ(T x, T y) ≤ cδ(x, y).

By Theorem 2.1, we conclude that the integral equation (19) has a unique solution in
X . �	
Next by Theorem 6.2, we show the existence of a unique solution in C+[0, 1] to the
following nonlinear third-order boundary value problem:

x ′′′(t) + √
t x(t) + 1(1 − e−t x(t)) = 0, t ∈ [0, 1], (22a)

x(0) = x ′(1) = 0 and x(1) = 1. (22b)

Proposition 6.3 The boundary value problem (22) has a unique solution in C+[0, 1].
Proof The boundary value problem (22) has a solution x ∈ C+[0, 1] if and only if the
operator T : C+[0, 1] → C+[0, 1] defined by

T x(t) =
∫ 1

0
G(t, s)

√
s x(s) + 1(1 − e−s x(s))ds, t ∈ [0, 1],

has a fixed point in C+[0, 1], where the Green’s function associated to the homo-
geneous problem x ′′′(t) = 0 that satisfies the boundary condition (22b) is given
by

G(t, s) =
{ 1

2 s
2(t − 1)2, 0 ≤ s ≤ t ≤ 1,

1
2 t(s − 1)(s(t − 2) + t)), 0 ≤ t ≤ s ≤ 1.

Firstly, observe that T is well defined and (a1) holds, where λ = 0. Moreover, it is
easy to see that G is continuous and satisfies (a3), since we have

0 ≤ G(t, s) ≤ 1
2 , for all t, s ∈ [0, 1].

Consider now the functions h : [0, 1] × R+ → R+ and u : R
2+ → R+ given by

h(s, p) = √
s p + 1(1 − e−s p) and u(p, q) = √|p − q| + 1(1 − e−|p−q|).
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In order to use Theorem 6.2 and conclude that T has a unique solution in C+[0, 1],
we have to check (a2). Note that h and u are continuous and it is not difficult to see
that (20b) and (20c) follow from the next lemma. �	
Lemma 6.4 For all (p, q, s) ∈ R

2+ × [0, 1], we have A ≥ 0 and B ≥ 0, where

A = √|p − q| + 1(1 − e−|p−q|) − |√p + 1(1 − e−p) − √
q + 1(1 − e−q)|,

B = p2 + 1
2 p − (s p + 1)(1 − e−s p)2 − 1

2

√
s p + 1(1 − e−s p).

Proof Suppose, without loss of generality, that p > q. Then,

A = √
p − q + 1(1 − eq−p) − √

p + 1(1 − e−p) + √
q + 1(1 − e−q)

Using the mean value theorem twice, it follows that there exists c ∈ (q, p) such that

A = √
p − q + 1(1 − eq−p) − 1

2 (p − q) 1+e−c+2ce−c√
c+1

,

and also there exists c′ ∈ (p − q, p) such that

A = √
q + 1(1 − e−q) − 1

2q
1+e−c′+2c′e−c′√

c′+1
.

Now, since the function h1 : R+ → R given by h1(t) = 1+e−t+2te−t√
t+1

is decreasing on

R+, we obtain

A ≥ √
p − q + 1(1 − eq−p) − 1

2 (p − q)
1+e−q+2qe−q√

q+1
,

and

A ≥ √
q + 1(1 − e−q) − 1

2q
1+e−(p−q)+2(p−q)e−(p−q)√

p−q+1
.

Hence, it suffice to know the sign of h2(p−q)−h1(q) and h2(q)−h1(p−q), where
the function h2 : R+ → R is given by h2(t) = 2t−1

√
t + 1(1 − e−t ). It is not difficult

to see that h2 is decreasing, so if p−q ≤ q, h2(p−q)−h1(q) ≥ h2(p−q)−h1(p−q)

and if p − q > q, h2(q) − h1(p − q) ≥ h2(q) − h1(q). We conclude from the fact
that t �→ (h2 − h1)(t) is positive that A ≥ 0. Finally, we have

B ≥ p2 + 1
2 p − (s p + 1)(1 − e−s p)2 − √

s p + 1(1 − e−s p)

≥ (s p)2 + 1
2 s p − (s p + 1 − √

s p + 1)(1 − e−s p) ≥ 0.

�	
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