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Abstract

In the algebra of complex quaternions H(C) we consider the left— and right—y—hyper-
holomorphic functions, and left-A — y—hyperholomorphic functions. We justify the
transition in left— and right—y—hyperholomorphic functions to a simpler basis i.e., to
the Cartan basis. Using Cartan’s basis we find the solution of Cauchy—Fueter equation.
By the same method we find representations of left— and right—yr—hyperholomorphic
functions, and representation of left—-A — y—hyperholomorphic functions.

Keywords Complex quaternions - Cartan basis - Left— and
right—yr—hyperholomorphic function - Weighted Dirac operator - Cauchy—Fueter
type equation - Left—-A — ¥ —hyperholomorphic function.

Mathematics Subject Classification Primary 30G35; Secondary 32A10

1 Introduction

Our main object of interest is the set which is usually called the set of complex
quaternions and which is traditionally denoted as H(C). It turns out to be an associative,
non—commutative complex algebra generated by the elements 1, 7, J, K such that the
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following multiplication rules hold:

?=J>=K*=1JK =—1,
IJ=—JI=K, JK=—-KJ=1, KI=—IK=1J,

and the complex imaginary unit i commutes with 7, J and K . For H(C) another name,
the algebra of biquaternions, is used also.
Consider in H(C) another set {ey, e3, e3, e4}, which is Cartan’s basis [1] such that

1 1 1 1
er=3(+iD). e=s(1-iD). &=3G]-K). e=3G]+K). (D)

where i is the complex imaginary unit. It is direct to check that we got a new basis.
The multiplication table can be represented as

s ||€1]€2|€e3|€e4
erllel 0 e3 0
e2||0]ex| 0 |eq| (1.2)
es 0 es 0 el
e4lleq] 0 lex| O

The unit 1 can be decomposed as 1 = e; + e3.

Note that the subalgebra with the basis {e}, >} is the algebra of bicomplex numbers
BC or Segre’s algebra of commutative quaternions (see, e.g., [2, 3]).

The following relations holds:

l=e1+e, I =—iej+tie, J=—lez—ies, K =e4—e3. (1.3)

Of course, formulas (1.1) and (1.3) give the transition from one basis to the other.

Together with the Hamilton and Cartan bases, we will also consider the Pauli basis.
It is a well-known fact that complex quaternions admit the matrix representations via
the famous Pauli spin matrices:

(10 {01 (0 —i (1 0
o)y = 0 1 , O] = 10 , 02 (= i 0 , 03 1= 0 —1 .

In the Pauli basis the multiplication table has the form:

2 2 2 .
0] =05 =03 =00, 010203 =10y,
0107 = —0p0] = 103, 0203 = —030) =10], 0103 = —030] =103.

Formulas for the transition from the Pauli basis to the Cartan basis have the form

1 1 1 . 1 .
e] = 5(00—03), ey = 5(004-03), e3 = z(—(fz—lffl), e4 = 5(—624-101)- (1.4)
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2 Classes of Hyperholomorphic Functions

Let 1, ¥, V3, Y4 be fixed elements in H(C) with the following representations in
the Cartan’s basis:

4 4
Y= Zases’ as; € C, Yo 1= Zﬁses» Bs € C,

s=1 s=1
4 4

V3= yee. v €C. Y= b 8 eC. @.1)
s=1 s=1

Consider a variable 7 = z1e1 +z0e2+273e3+ 2464, z3 € C, s = 1, 2, 3, 4 and consider
a function

4
f@ =Y fizi,22,23,24)e5, fi: Q@ — H(O),

s=1

where € is a domain in C*. Let components fy, s = 1,2,3,4, be holomorphic
functions of four complex variables z1, z2, 23, z4 in 2.
Consider the operators

9f af af af

UDIf1@) i = Y1 + o + Y3 + Ya—, (2.2)
071 022 073 024
d 0 0 d
DV[f1(z): = —fw1+—fwz+—fws+—fw4. (23)
071 022 023 024

Definition 2.1 A function f : @ — H(C), Q C C*, is called left—y—hyperholo-
morphic (or right—y—hyperholomorphic) if components f; are holomorphic functions
of four complex variables z1, z2, 23, 74 in €2, and f satisfies the equation

VD[ f1(z) = 0. (2.4)

(or DY[f1(z) =0.)

The class of y—hyperholomorphic functions in the real quaternions algebra is intro-
duced for the first time by Shapiro and Vasilevski in the papers [4, 5]. Since then, these
functions have attracted the attention of many researchers. K. Giirlebeck and his stu-
dent H. M.Nguyen pay a special attention to the applications of ¥r—hyperholomorphic
functions. See, for example, the papers [6—8] and dissertation of Nguyen [9]. We
note also that operators (2.2) and (2.2) are also called the weighted Dirac operators.
Analysis and application of such operators are studied in papers [10, 11].

There are different generalizations of ¥y—hyperholomorphic functions, which are
being actively researched. Recently, generalizations to the case of fractional derivatives
have become interesting. We will mark the works [12, 13].
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Also, operators of a more general form than (2.2) are considered. Namely, in the
paper [14], an operator of the following form is investigated:

YDIf]: —Af+w1—f+wz—f+w3—f+w4—f, A €H(©). (25)

Definition 2.2 A function f : @ — H(C), Q C C%, is called left—-A — y—hyperholo-
morphic if components f; are holomorphic functions of four complex variables
21, 22, 23, 24 in 2, and f satisfies the equation

A DLf1(z) =0. (2.6)

In the paper [15] it is develop the theory of so-called (¢, ¥)—hyperholomorphic
functions. Following a matrix approach, for such functions a generalized Borel-
Pompeiu formula and the corresponding Plemelj-Sokhotski formulae are established.
Research from paper [15] was continued in the papers [16-19].

At the same time, the problem of representation (or description in the explicit form)
of y—hyperholomorphic and left—-A — y—hyperholomorphic functions is open. This
paper is devoted to solving this problem.

2.1 Examples

At first, we consider examples of left— and right—y—hyperholomorphic functions.

Example 1 Consideradomain Q ¢ C2? ~ BC and consider a variable { = zje1+z2e,
and a function f : Q@ — H(C) of the form

4
f= Zfs(Zl,Zz)es, fs:Q—C.

s=1

This should be understood as follows. We identify C? and BC after which the set
in BC becomes a subset in H(C), not in C?; next we consider some objects as being
situated in H(C). In particular, the set €2 is situated in H(C). When saying that the
domain of f is in H(C) we mean already the previous identifications. Hence we work
with functions with both domains and ranges in H(C). Thus ¢ is in a domain in H(C):
we imbed everything in H(C).

With these agreements we introduce the following definitions.

A function f : Q — H(C), Q C BC, is called right-BC-hyperholomorphic if
there exists an element of the algebra H(C), f,(¢) such that

lim f(§+€h) f(f):h.fr/(;) Vh e BC. 2.7

e—0
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A function f : Q — H(C), Q C BC, is called left-BC-hyperholomorphic if there
exists an element of the algebra H(C), fl’ (¢) such that

f(§+ah) VAC9)

lim L = f/(¢t)-h VheBC. 2.8)
E—>
Condition (2.7) implies
of _
— =e1f.(¢) for h=e 2.9)
024
and g

—f =eyfl(¢) for h=e. (2.10)
022

From (2.9) and (2.10) follows the analog of the Cauchy—Riemann condition

L

. 2.11
am 022 ( )

Analogously, from (2.8) follows

o,

. 2.12
921 - azzl ¢ )

Thus, right— and left-BC—hyperholomorphic function generalize the concepts of
holomorphic functions in the algebra BC (see, e.g., [2, 3]).

It is easy to see that the set of right- and left-BC—hyperholomorphic functions is a
subset of left—yy—hyperholomorphic and right—yr—hyperholomorphic function, respec-
tively. Indeed, for ¢ = zje1 + 22> the equality (2.11) has the form of the equality (2.4)
with ¥ = e, Yo = —ey, ¥3 = Y4 = 0. Analogously, right-BC-hyperholomorphic
functions is a subset of a set of right—y—hyperholomorphic functions.

Another example of mappings from the domain in R into the algebra H(C), which
are a particular case of left— and right—y—hyperholomorphic functions, is considered
in [20, 21].

Example2 In 24)wesety; =1, Yo =1, Y3 = J, ¥4 = K. In this case
ap=ar=1, aa=a4=0, Br=—i, fo=1i, B3=p1=0,

Vi=rn=0, ypy=—i, m=—i, §§=5860=0, &Hs=-1, &=1
Then (2.4) takes the form

af af af af
— 4+ I—+J—+K—=0
971 022 023 024

that is well-known Cauchy—Fueter type equation (see, e.g., [22, 23]).
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2.2 Main Property of Left- and Right-y~Hyperholomorphic functions

Theorem 2.3 Let a function f be left—y—hyperholomorphic (or right—y—hyper-
holomorphic) in some basis of the algebra H(C). Then in another basis of H(C)
there exist a vector ¥V = (W, Wy, W3, W), ¥, € H(C), s = 1, 2, 3, 4, such that the
function f is left—-V—hyperholomorphic (or right—\V—hyperholomorphic).

Proof Let us prove the theorem for the case left—y—hyperholomorphic functions. Let
{e1, ea, e3, eq} be the Cartan basis in H(C) and let {iy, i», i3, i4} be another basis in
H(C). It means that

e1 = ki + koiny + k3iz + kaig,

ey = myi| + maiz + m3i3 + myiq,
ez = nyi| + naio + n3iz + ngiy,
eq = rii] + iy +r3iz + r4iq,

where k;, m;, n;, r;, i = 1,2,3,4, are complex numbers.
Consider the equation

af af of af
" +w27+'/’3a_t3+1/’4£_0’ (2.13)

DIf1) = kve o

where t 1= t1e] + ey + t3e3 + tgeq, t1, 1, 13,14 € C. In the variable r we passing
to the basis {i1, i3, i3, i4}. Then

t =i1(t1ky + tomy + tang + t4r1) + i2(t1ky + thmo + t3no + t41p)

+i3(t1ks + tomsz + 1303 + t473) + ig(t1ky + tomy + 1304 + tar4).

We set

Z1 := ki + tom| + t3n1 + ta4rq,
20 1= tiky + thomy + t3ny + t4ry,
73 1= k3 + tam3z + t3n3 + 1473,
74 = t1kg + tomy 4 t3n4 + t4714. (2.14)

From equalities (2.14) we obtain

an 971 Az 923 324
af af af af af
— =m m m

ot 071 022 023 dz4
af af af of aof
—_— n

13 071 022 023 024

9 9 3 9 9

of _,f L Af L Af L f

o1 321 922 873 | Yoz’
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Then Eq. (2.13) is equivalent to the following equation

d d
DIFIG) = (iky + Yomy + Y3ng + 1/Mn)% + (ka2 + Yoma + Yr3nn + 1//40)%

0 0
+(Wr1ks + Yam3 + Y3nz + 104?3)8*;; + (Yiks + Yamy + Yang + ¢4V4)é-

(2.15)
Using denotation (2.1), we have

4 4
Y1 = Zase‘r = Zis(alks + axmy + azng + o4ry),

s=1 s=1

4 4
V2= Bees =Y is(Biks + foms + Pang + Pars),
s=1

s=1
4 4
Y3 =Y yses = Y is(yiks + vams + yans + yars),
s=1

s=1
4 4
Ya=) 8es =Y is(iks + Samy + Sans + Sars),
s=1

s=1

From (2.15) we obtain

4
DLAI) = Y i [tk +cams asny aar ki + (Biks + Bams + Bang + Bars

s=1

a

+(yiks + yams + y3ng + yargny + (81kg + Samg + 83ng + 54Vs)r1]71
4

+> i I:(Ollks + aomy 4 azng + aars)ky + (Biks + fams + Bans + Pars)my

s=1

J
+(1ks + yamy + y3ng + yars)ng + (81kg + Somg + S3ng + 54%)0]8—1];

4
+> i [(alks + aomy + azng 4 aars)ks + (Biks + fams + Bans + Parg)ms
s=1

d
+(y1ks + yamy + y3ng + yars)nz + (81kg + domg + d3ng + 34Vs)rs]8—i
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4
+ Z Iy [(alks +aomg + azng + agrs)ks + (Brks + Bamg + Bang + Parg)my

s=1
af
+(yiks + yams + yang + yarg)ng + (81ks + Soymy + 83ns + 54rs)r4]—

024
aof af af aof

=¥V —+ ¥ — 4+ Y3— +P,— =0.
Yoz T Az | Caz oz
|
Remark 2.4 In Clifford algebras, it is known that the equations
0 0 0 0
YA A e A (2.16)

dto a1 ar o3

and ¥ D[ f1(t) = 0 coincide, up to an orthogonal transformation. Note that, in essence,
Theorem 2.3 is a similar statement, but formulated in other terms.

Remark 2.5 It follows from Theorem 2.3 that in future investigation it is enough to
consider constants 1 and function f in the simplest basis, i.e., in Cartan basis. The use
of the Cartan basis is of principal importance, because in this basis the multiplication
table has the simplest form. In addition, in the Cartan basis, Egs. (2.4), (2.6) and (2.16)
are reduced to systems of differential equations that we integrate in the explicit form.
This is what we will do next.

3 Application to Solving Cauchy-Fueter Type Equation

Now, we will establish a connection between solutions of the equation

DAl = L 0 O O

0, 3.1
dto 0t ary ot3

wheret :=ty+t11 +1rJ + 13K, tg, 11, 1o, t3 € C, and the solutions of Eq. (2.4). For
this purpose, in ¢ we passing to Cartan basis. We have

t =toler +ex) +ti(—ie; +iex) +tr(—iez —ieq) + 13(eq — €3)

= (tg —ity)e; + (to +it1)er + (—ity — 13)e3 + (—ity + 13)eq.

We set
z1:=tg—ity, Zp:=ty+it, 73:=—itrh —13, Z4:= —il) +13. (3.2)

From equalities (3.2) we obtain

of _of of of _ of of

g dz1 | 9z on dz1 0z’
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of  of af of _ 3f+3f
o, 0z3  dz4 O3 0z3  Oz4
Then Eq. (3.1) is equivalent to the following equation

0f L OF 0 L 0f L 0f 0f  of | of

D = 4+ = —jl—+il— —iJ— —iJ— —K
/] 0z1 022 071 022 023 024 073 0z4

d 0 d d

—a-invavin -0 il
071 9022 023 074

af af af af)
=2l tes - —es - —e3— | =0.
< 2811 ! 022 4323 3 024

Thus, we proved the following theorem

Theorem 3.1 A function f of the variablet = ty+t11 + tpJ + 13K satisfies Eq. (3.1)
if and only if the function f of the variable 7 = z1e1 + z2ea + z3e3 + zaeq satisfies

the equation
aof of of af 0
et

ep— +ej— —eg— — , 33
zam 18@ 48za ’ 024 G-
where z and t are related by equalities (3.2).
Now, we solve Eq. (3.3).
af /1 3 f2 3 f3 3 fa )
er—=e| —e+—ey+ —e3+ —e
021 2(821 ! 021 2 971 . 971 N
/2 0 fa
= —e€ + ¢4,
071 g 0z !
dzo 022 dza
34£ — a_‘fle4 + 8_“f},e2
dz3  0z3 dz3
L2 b, of,
3824 024 3 dza
Then Eq. (3.3) is equivalent to the system
N _3fs 3fa_3fs
9z dz4 0z1  0z3
s _0fH  Afa 3N
9z dz4 0z1  0z3
We have pair of systems
d ] a a
0fi _0fi 0h_f o

022 024 073 71
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and

d d d d
0 _0n 0 _on s
071 073 024 022

In a simple connected domain €2, a solution of system (3.4) is an arbitrary holo-
morphic function

fi = fi(zz,23)

and

In a simple connected domain €2, a solution of system (3.5) is an arbitrary holo-
morphic function

= flz1,z4)

and

Thus, we have the following solution of Eq. (3.3):

(@) = filza,z3)e1 + f2(21, 24)e2
+<Z3%+Z2%) €3+<Z4%+21%>64. 3.6)
21 4 ) 3

Thus, accordingly to Theorem 3.1 we obtain

Theorem 3.2 In a simple connected domain, function (3.6), where z1, 22, 23, 24 are
given by relations (3.2), satisfies Eq. (3.1).

Proposition 3.3 In a simple connected domain, function (3.6) satisfies the four-
dimensional complex Laplace equation

32 32 32 a2

L L A 3.7)
ot ot5 013 ot

About Eq. (3.7) and its relation to the Cauchy-Fueter equation see in [22].

4 Representation of Left-y~hyperholomorphic Functions in a Special
Case

Now we will find a general solution of Eq. (2.4) for a special choice of parameters
¥1, Y2, Y3 and V4. For this purpose, we reduce Eq. (2.4) to a system of four PDEs.
We have

——el+ et et e

af
— = (x1eq1 + azer + azez + aqe
Y1 (aje1 + aper +azes + ageq) o7, oz, . .

<8f1 df> af3 3 fs )
071
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K] ] ] 0
W e+ B e e+ e,
921 9z1 az1 971

9 0 0 d
+ ﬁases + j0136’1 + i0t4€4 + ﬁmez
971 971 071 971
0 0
=—(a1fitasfer+—(frtasfi)es
071 071

0 d
+ — (a1f3tazfr)es + — (2 fa + a4 f1) es.
971 971

Similarly,

d d
Yo — = Py Bifi+Bsfa)er+— Bofo+ Baf3)er
22 022
0 d
+ 37 (B1f3+B3f2)es + — (Bafa + Baf1) eq,
22 o))
0 d
Y3 — = Fy Wnft+rfea+—mh+wnfie
23 023
0 0
+ FP WM f+wrsf)es+— (afa+vafi)es,
23 073
0 d
Ya— = FYR @G1fi+8fa)er + —(6a2fa+84f3)e2
74 074

d d
+—@1f3+8/2)e3+ — (82fa + 84 f1)ea.
024 024
Then Eq. (2.4) is equivalent to the following system

ad d ad a

T(Ollfl +to3fy)+ —BLfi+B3f)+ ——nfi+v3fa)+ —©1/1+383/4) =0,
21 k) 023 0z4
Gl bl Gl Gl

T(dzfz ta4f3)+ ——Bofa+Baf3) + ——(nfat+vafs) + —(©62f2+84f3) =0,
71 022 023 0z4
) ad ad ad

af(alf3 ta3f))+ —B1f3+B3f)+ ——nfat+rifa)+ —01f3+383/2) =0,
41 022 023 024

ad il il 0
T(a2f4 toag fi) + —Bafa+ Baf1) + —(afa+vafi) + —©Gafa+384f1) =0.
71 022 023 024

Theorem 4.1 Let

Y1 = aie; +azer +aze; +ageq, 1o F o3oy,
Yo = Aaje; + pager + pazes + Aageq,
Y3 = Oarer + Vager + Yazes + Oagey,
Y4 = vaje; + nazey + nazes + vagey,

4.1

4.2)
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where a1, a2, o3, a4, A, 4, 0, 9, v, n are arbitrary complex numbers. Then every left—
Yy—hyperholomorphic function is of the form

F@) = fi(©2, &, e+ f2(8a, 3, Ca)ea+ f3(C2, 83, Laes+ fa(Ga, &3, Cades, (4.3)

where

~ ~ ~

=izl — 22, $3:=021—23, {4:=v1 — 24,

$oi=pz1 —z2, §3:=7z1—23, {4:=n21 — 24, “4)

and f1, f2, f3, fa are arbitrary holomorphic functions of three their arguments.

Proof For given parameters (4.2) the first equation of system (4.1) takes the form

0 d
— (a1 fi + a3 f4) + — Aoy f1 + pnas fa)
971 022
d 0
+—— Oar fi +Pa3 fa) + — (vay fi1 + naz fa) = 0. 4.5)
073 024

Similarly, for given parameters (4.2) the fourth equation of system (4.1) takes the
form

d d
— (g f1 + a2 fa) + — (Aog f1 + pan fa)
971 022
0 0
+— (Baa fi + Va2 fa) + — (vau f1 + naz fa) = 0. (4.6)
073 024

Consider the difference between Eq. (4.5) multiplied by a» and Eq. (4.6) multiplied
by «3. Then we obtain the following equation

0
8_(f1 (a1 — azay) + fa(aroz — 0!2063))
21

0
+8_z2<f1 (Aajan — dazag) + fa(pasras — /wtzot3))

0
+£(f1 (Bajon — Bazas) + fa(Paraz — 190!2063))

d
+3—Z4<f1 (varon — vazay) + fa(nonas — na2a3)> —0.

Thus, we obtain the equation

d d ad d
£+k fl +9£+v£

— =0. 4.7
0z1 022 073 024
For Eq. (4.7) consider the characteristic equation
d d d d
R s (4.8)

1 A0 v
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The solutions of system (4.8) are the following integrals

=771 —22, ¢3=021—23, C4 =V — 4.

Therefore, the general solution of Eq. (4.7) has the form

fi = fi(©2, 3, &),

where Ez, 23, 24 are defined by equalities (4.4).

116

Note that polynomials (4.4) are similarly to the well-known Fueter’s polynomials
[24].

Similarly, we obtain the representations for the components f>, f3, fa. O
Thus, formula (4.3) gives a representation of left—iy—hyperholomorphic function
for a special choice of ¥.

Remark 4.2 Using formulas (1.4) we can rewrite representation (4.3) in the Pauli basis:

f@ = (/1. 83. ) + f2(¢2. 83, &a)) 00 + (if3(22. 83, 8a) — ifa(2. 3. £a)) 01
+ (=122, 83, Ca) — f1(82, &, ) 02 + (f2(&2, &3, &a) — f1(82, 3, 8a)) 03

5 Representation of Right-y~hyperholomorphic Functionsin a
Special Case

In this section we will find a general solution of the equation

0 0 0 0
D*”[f]<z>=a—fw1+—fwz+—fw3+—fvf4=o 5.1)
71 022 023 024

for a special choice of parameters 1, Y2, ¥3 and 4. For this purpose, we reduce Eq.
(5.1) to a system of four PDEs. We have

0 a 0 )
_flﬂl—<£el+ f2 f

Ja
—e3+ —ey
071 9z1 071 ’ z
) 0
= iotlel + £a3e3
az1 21

23 d 3 f4 o

/3 fa
+ 8Z1062€3 + aZI06461 + aZI061€4+ aZ1063€2

071 -

0
— (@ fitasfs)er+ — (2fr+azfy)e
971 971

0 0
+ — (a3fi +oxfz)es + — (s fo+a1fs)es
321 321
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Similarly,
0 0 0
8—f Yo=—B1fitBsfz)er+—(Bfa+B3fa)en
22 3922 022
d d
+a— (B3f1+ B2f3)es + — (Bafa + Bifa)eq,
22 92
3f 9 9
FP Y3i=—Wfi+twnfRer+—nfhrt+vifa)er
23 923 023
0 d
+8_ Wi +wv2fi)es+ — (vafa +y1fa) e,
23 023
0 0 0
8—f Ya=—@G1fi+daf3)er+— (B2f2+83fs)e
24 024 074

d d
+— (831 +82f3) e3 + — (84 /o + 81 f4) es.
024 024

Then Eq. (5.1) is equivalent to the following system

d d d d

3o ifitaafs) + o (Bifi+ Paf3) + i fi Hvafs) + 5 @G1fi +64f3) =0,
21 9z 923 024
a d d d

T(azfz t3fa)+ —Bafa+B3f)+ ——nfa+v3fa)+ — (a2 +383/4) =0,
Z1 022 023 0z4
Gl ad ad ad

8*(01341‘1 taf3)+ —B3fi+B2f3)+ ——(3fi+rf3)+ —0©B3/1+8f3) =0,
41 022 023 0z4

ad ) Gl )
T(da&fz tarfa)+ —Bafo+Bife)+ —Wafa+rvifa)+ —@afr+31f4) =0.
71 922 023 024

(5.2)
Theorem 5.1 Let
Y1 = arer +azer +azes +ageq,  a1on # a3,
Yo = pajer + Aazer + pazes + Aogey,
Y3 = Yaje] + Oager + dazes + Oagey,
(5.3)

Y4 = naye; + vages + nazes; + vages,

where oy, a2, 3,04, A, 4, 0,0, v,n are arbitrary complex numbers. Then every
right—yr—hyperholomorphic function is of the form

F@) = fi&2, &, et + (0, 5, Cea+ f35(8, 83, Laes+ fa(82, 83, Cadea, (5.4)

where &3, 3, L4, Ez, Eg, E4 are defined by relations (4.4) and f1, f2, f3, fa arearbitrary
holomorphic functions of their three arguments.

Proof For given parameters (5.3) the first equation of system (5.2) takes the form

0 0
— (o1 f1 + s f3) + — (o f1 + Aag f3)
0z1 Fe)
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0 d
+ — (Pa1 f1 +0as f3) + — (a1 f1 +vag f3) = 0. (5.5)
023 024

Similarly, for given parameters (5.3) the third equation of system (5.2) takes the
form

d d
— (3 f1 + a2 f3) + — (ua3 f1 + Aaa f3)
971 022
d 0
+— (Pasz f1 +0az f3) + — (mas f1 +vaz f3) =0. (5.6)
023 024

Consider the difference between Eq. (5.5) multiplied by o> and Eq. (5.6) multiplied
by «4. Then we obtain the following equation

d
_(fl (ajap — azay) + f3(aoy — 012064))

971
0
+8_12 (Mfl (a1 — azay) + A f3(aroq — 0!2()!4))
0
+a—z3 (l?fl (a1 — azay) + 6 f3(az04 — a2a4)>
0
+3—Z4(77f1 (a1ap — azag) + v f3(onaz — 0t20l3)) =0.

Thus, we obtain the equation

d d 0 d
Of | 0fi L Jf L 0

=0. (5.7
921 022 073 024
For Eq. (5.7) consider the characteristic equation
d d d d
dzy _dzn _dz _du 5.8)

1 u % n
The solutions of system (5.8) are the following integrals
¢y =Mzl — 22, €3 =021 —23, C4 =N — 4.

be of the for Therefore, the general solution of Eq. (5.7) has the form

f1= 122,83, 84),

where &7, {3, {4 are defined by equalities (4.4).
Similarly, we obtain the representations for the components f>, f3, fa. O

Thus, formula (5.4) gives a representation of right—y—hyperholomorphic function
for a special choice of ¥r.

Comparing representations (4.3) and (5.4), we obtain the following statement.
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Proposition 5.2 Let the conditions of Theorem 4.1 be satisfied. Then the function f
is simultaneously left— and right—y—hyperholomorphic if it takes values on the set
{h3e3 + hgeq : h3, hy € C.

Remark 5.3 Using formulas (1.4), we can rewrite representation (5.4) in the Pauli
basis:

F@ = (fi%. 6. + (2. 83, &) 00 + (if3(22. 83, Ea) — if2(2. 63, 8a)) 0
+ (=@ 5.8 — fa(82, 3. 80) 02 + (2(82. 83, 8) — f1(82. 83, 8a)) 03 .

6 Representation of Left-A — y~hyperholomorphic Functions in a
Special Case

In this section we consider operator (2.5) and Eq. (2.6). Now we will find a represen-
tation of left—-A — —hyperholomorphic functions for a special choice of parameters
Y1, ¥2, ¥3, Y4 and A. For this purpose, we reduce Eq. (2.6) to a system of four PDEs.
Denote

A = Aer + Arey + Azez + Agey. 6.1)

Using result of Sect.4, we obtain that Eq. (2.6) is equivalent to the non-
homogeneous system of PDEs:

(@i fi+ a3 fa) + 55 Bifi + B3 fo) + 55 N fi + 13 fa) + 5 G1 fi + 83 f2)

4 / =—A1f1 = A3 fa, ‘
(@ fa+asf3) + 55 Bafa+ Baf3) + 55 fa+ vaf3) + 5= B2 fr + 84 f3)
=—A2fo— Aafs,
(@ fs+asf) + 55 B1fs+ B3 f) + 55N i+ v3f2) + 5561 f3 +83./2)
=—-A1f3—A3f2,
(@ fa+asf) + 55 Bafa+ Baf) + 55 (2 fa + vafi) + 5= Bafa+ 84 f1)
= —A4f1 — Ao fa.
6.2)
Theorem 6.1 Let
Y1 = arel +agep +aze3 +ages, oo # azo,
= Axjel + noaner + paszes + lageq,
Y2 1e1 + pazer + pozes 4e4 63)

Y3 = Oarer + Yaney + Yazes + Oagey,
Y4 = vajer + nones + nazes + vages,

where a1, o, @3, o4, A, L, 0, 0, v, n are arbitrary complex numbers. In additional,
let A be of the form (6.1) such that

ar A3 = a3y, a1 Ay = asy . (6.4)
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Then every left—/\ — —hyperholomorphic function is of the form

~ o~ o~ oa3A\g — o\
f(@) =e1 ®1(&2, 63, Ca) - exp <— Zl)
oo — 0304
g A3 — a1 Ay
+ex P2(82, 83, L4) - €xp (— Zl)
o — 304
~ o~ o~ a3 Ag —oa A
+ e3 P3(82, 83, §4) - exp (— z1>
a0 — 0304

g A3 — a1 Ay
- Z])’

+ e4 D4(52, €3, C4) - exp ( (6.5)

a1 — 030y

where Ez, 23, 24, 82, €3, L4 are defined by relations (4.4), and ®1, O», O3, ©4 are arbi-
trary holomorphic functions of three complex variables.

Proof For given parameters (6.3) the first equation of system (6.2) takes the form

d 0
— (o1 fi + a3 fa) + — (a1 f1 + posz fa)
971 022

0 d
+3_z3 Oay fi + vas f4) + 7 (vay fi +naz fa) = —A1 fi — A3 fa. (6.6)

Similarly, for given parameters (6.3) the fourth equation of system (6.2) takes the
form

d d
— (aa f1 + o2 fa) + — (hog f1 + pas fa)
321 322

0 0
+3_Z§; Oay fi + ay fa) + N (vag f1 +naa fa) = —Ag fi — Az fa. (6.7)

Consider the difference between Eq. (6.6) multiplied by o> and Eq. (6.7) multiplied
by «3. Then, taking into account (6.4), we obtain the following equation

0
8_(f1 (a1 — azay) + fa(aroz — 0120!3))
21

n 0
022

0
+8_z3(f1 Oaror — Oazay) + fa(Paras — 190!2013))

(fl (Aajon — dazag) + fa(paras — /wtza3))

0
+3—Z4<f1(v0610t2 —vazay) + fa(naras — 71062063)> = (Aga3 — A1) f1.

Thus, we obtain the equation

0 d 0 0 Agaz — Ao
O 0 00 0N Ades — Mien (6.8)
0z1 922 923 0z4  ajap —azoy
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For Eq. (6.8) consider the characteristic equation

dap _dz _dz _du (o - d fi 69)
L a0 v (M- M) fi '

The solutions of system (6.9) are the following integrals

2 =Az1 — 22, ¢3=0721—23, C4=V71—24,

or A — a3y
cs=Infi+ ——-"7.
a1y — O304

Therefore, the general solution of Eq. (6.8) has the form

~ o~ o~ a3Ag — a2 Ay

J1=P1(52, 83, 84) - exp <— Z1>,

Qo — a304

where Ez, 23, 24 are defined by equalities (4.4), and ®; is an arbitrary holomorphic
function of three complex variables.

Similarly, we obtain the representations for the components f>, f3, fa1. O

Thus, formula (6.5) gives a representation of left—A — {y—hyperholomorphic func-
tion for a special choice of A and .

Remark 6.2 It is clear from the Egs. (2.2) and (2.5) that for A = 0 a set of left—
A — ¥-hyperholomorphic functions coincide with a set of left—yr—hyperholomorphic
functions. This fact is also confirmed by Theorems 4.1 and 6.1, because representation
(6.5) coincides with representation (4.3) for A = 0.

Remark 6.3 Using formulas (1.4), we can rewrite representation (6.5) in the Pauli
basis:

-~~~ U
f@) =00 (P18, &3, &a) + P2(82, 83, C4)) exp (M Z1>
a0y — 0304

~ o~ o~ Ay —apA
+o1 (iP3(02, 3. &4) — i P4(L2. 3, C4)) exp (Mm)

10 — 0304

-~~~ IV
02 (—®3(2, 83, &a) — Pa(2, 83, §4)) exp <a34—0‘21 Z1>

o0y — Q304

L RN
03 (9222, 3. 84) = P1(22, &3, L) exp (M z )

o0y — 304
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