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Abstract
This paper is devoted to the study of the S-eigenvalue of finite type of a bounded
right quaternionic linear operator acting in a right quaternionic Hilbert space. The
study is based on the different properties of the Riesz projection associated with the
connected part of the S-spectrum. Furthermore,we introduce the left and rightBrowder
S-resolvent operators. Inspired by the S-resolvent equation, we give the Browder’s S-
resolvent equation in quaternionic setting.
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1 Introduction

In the theory of complex Banach spaces, the search for the eigenvalues of finite type
of linear operator aroused the interest and attracted the attention of many researchers,
see for instance [7, 8, 11, 12, 25–29] and references therein. Sometimes this type
of eigenvalue is known as a Riesz point. In doing so, one can develop the spectral
theory of operators. An attractive characterization of eigenvalues of finite type by
using Riesz projection is discussed and determined in [25]. In particular, they show
that this part of the spectrum is only the set of isolated point of the spectrum such
that the corresponding Riesz projections are finite dimensional. Thus an extension of
the usual resolvent is studied in [29]. We refer to [15, 27] for the applications to the
Frobenius Schur factorization for 2 × 2 Matrices and to the transport operators.

In the quaternionic setting, there has long been an apparent problem in defining the
concept of spectrum of a quaternionic operator. In fact, the quaternionic multiplication
is not commutative. This makes it possible to observe three types of Banach spaces:
right, left and bilateral, according to the operation of the multiplication on the vectors.
It was only in 2006 that F. Colombo and I. Sabadini succeed in giving a new attractive
and useful concept for the study of quaternionic operators, namely the S-spectrum.
We refer to [18, Section 1.2.1], see also [19] for the precise history and motivation
of this new concept. Some years later, Alpay, Colombo and Kimsey in [5] gave the
spectral theorem for the bounded and unbounded quaternionic operator related to the
concept of S-spectrum. In the book [17], the authors have studied and discussed the
spectral theory for the Clifford operators.We refer to [14] for some results on operators
perturbation, to [20] for a version of functional calculus for bounded and unbounded
normal operators on a Clifford module, and to [21] for the study and discussion of
slice monogenic functions of a Clifford variable.

The first aim of this article is to study the S-eigenvalues of finite type of a bounded
right quaternionic linear operator acting in a right quaternionic Hilbert space. In fact,
if T ∈ B(V R

H
) (the set of all right bounded operator) and q ∈ σS(T ) \ R (where

σS(T ) denote the S-spectrum of T ), then [q] := {hqh−1 : q ∈ H
∗} ⊂ σS(T )

since the S-spectrum of T is axially symmetric. In particular, q is never isolated in
σS(T ). However, we can speak of an isolated 2-sphere in σS(T ). Doing so, we can
define the Riesz projector corresponding to [q] ⊂ σS(T ). Under these circumstances,
the S-eigenvalue of finite type will be considered as an isolated 2-sphere with an
associated Riesz projection P[q] of finite rank. Especially, if T ∈ B(VC) (i.e. T is a
linear operator acting on complex Banach space) and λ is in the complex spectrum of
T , then [λ] = {λ} and this gives the usual version of the Riesz point in the complex
case. We turn to the understanding of the S-eigenvalue of finite type. To begin with, let
T ∈ B(V R

H
) and q ∈ σ S

d (T ) (the set of S-eigenvalues of finite type), we refer to Sect. 3
for precise definition. The first result of this paper characterizes the range of the Riesz
projection P[q] associated with the 2-sphere [q] and the operator T . Next, thank to
the S-spectral mapping theorem [18, Theorem 4.2.1], we show that if we perturb the
pseudo-resolventQq(T ) := T 2−2Re(q)T +|q|2IV R

H

by the Riesz projection P[q] we
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obtain an invertible operator. We end the first part of the paper with a discussion on the
localization of the S-eigenvalue of finite type of sequence of quaternionic operators.

The second aim of this article is to determine the quaternionic version of Browder’s
resolvent equation. Let T be a linear operator acting on a complex Banach space VC.
The spectrum of T will be denoted by σ(T ) and the Riesz point will be denoted by
σd(T ) (the set of isolated point λ ∈ C in the spectrum such that the corresponding
Riesz projection P{λ} are finite dimensional). For λ, μ ∈ (C \ σ(T )) ∪ σd(T ), the
Browder’s resolvent equation is given by

R−1
B (λ, T ) − R−1

B (μ, T ) = (λ − μ)RB(λ, T )RB(μ, T ) + MT (λ, μ), (1.1)

where

R−1
B (λ, T ) = (T − λ |P−1

{λ} ({0}))
−1(I − P{λ}) + P{λ}

and

MT (λ, μ) = R−1
B (λ, T )([T − (λ + 1)]P{λ} − [T − (μ + 1)]P{μ})R−1

B (μ, T ).

We refer to [29] for a brief discussion and for a full proof. We turn to the quaternionic
case. Set T ∈ B(V R

H
) and q ∈ σ S

d (T ). Let P[q] denote the corresponding Riesz
projector with range and kernel denoted by R(P[q]) and N (P[q]), respectively. Thanks
to the Riesz decomposition theorem [33, Theorem 6] in quaternionic setting, we have

σS(T |R(P[q])) = [q] and σS(T |N (P[q])) = σS(T ) \ [q].

In this way, we can define the left Browder S−resolvent operator

S−1
L,B(q, T ) := −[Qq(T ) |N (P[q])]−1(T − qIV R

H

)(IV R
H

− P[q]) − P[q]

and the right Browder S−resolvent operator

S−1
R,B(q, T ) := −(T − qIV R

H

)[Qq(T ) |N (P[q])]−1(IV R
H

− P[q]) − P[q].

Motivated by this, we obtain a generalization of the classical Browder’s resolvent
equation (1.1). Precisely, we have

S−1
R,B(s, T )S−1

L,B(p, T )Qs(p)

= [S−1
R,B(s, T ) − S−1

L,B(p, T )]p + s[S−1
L,B(p, T ) − S−1

R,B(s, T )]
+ [S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p] − (T − (s + 1)IV R
H

)P[s]S−1
L,B(p, T )]p

+ s[(T − (s + 1)IV R
H

)P[s]S−1
L,B(p, T ) − S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p]],
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where p, s ∈ (H\σS(T )) ∪ σ S
d (T ) andQs(p) = p2 − 2Re(s)p+ |s|2. The technique

of the proof is inspired from the proof of [18, Theorem 3.1.15]. It is remarkable that
the Browder’s resolvent equation extend [18, Theorem 3.1.15] to (H\σS(T ))∪σ S

d (T ).
Indeed, if q ∈ H \ σS(T ) with the convention P[q] = 0, then

S−1
L,B(q, T ) = S−1

L (q, T ) = −(T 2 − 2Re(q)T + |q|2IV R
H

)−1(T − qIV R
H

)

and

S−1
R,B(q, T ) = S−1

R (q, T ) = −(T − qIV R
H

)(T 2 − 2Re(q)T + |q|2IV R
H

)−1.

As for the rest of this paper, it is structured as follows. The next Section is devoted
to some basic notions of operator theory and slice functional calculus. In Sect. 3, we
discuss some properties of the S-eigenvalue of finite type. Finally, in Sect. 4, we give
and provide the Browder’s S-resolvent equation in quaternionic setting.

2 Mathematical Preliminaries

In order to make the paper detailed, we collect some definitions and recall some results
needed in the rest of the paper. We refer to [1, 4, 5, 9, 16, 18, 19, 22, 24, 31] for surveys
on the matter.

2.1 Quaternions

We denote by H the Hamiltonian skew field of quaternions with the standard basis
{1, i, j, k}. Formally, we have

H =
{
q = x0 + x1i + x2 j + x3k : xi ∈ R, i = 0, 1, 2, 3

}
.

The three imaginary units i, j, k satisfy the relations

i2 = j2 = k2 = i jk = −1, i j = − j i = k, ki = −ik = j, jk = −k j = i .

Let q = x0 + x1i + x2 j + x3k ∈ H. The real part of q is given by Re(q) = x0 and
its imaginary part is defined as Im(q) = x1i + x2 j + x3k, then the conjugate and the
usual norm of q are defined, respectively, by

q = Re(q) − Im(q) and |q| =
√
x20 + x21 + x22 + x23 .

The unit sphere of purely imaginary quaternions is given by

S =
{
q ∈ H : Re(q) = 0 and qq = 1

}
.



Browder S-Resolvent Equation... Page 5 of 23 60

It is remarkable that S is a two-dimensional sphere in R4. If q ∈ H \ R, then

q = Re(q) + Iq |Im(q)|,

where Iq = Im(q)
|Im(q)| ∈ S. In this way we can associated to q a two-dimensional sphere

defined by

[q] = Re(q) + S|Im(q)|.

Note that [q] has center at the real point Re(q) and has radius |Im(q)|. This sphere [q]
coincides with the set {hqh−1 : h ∈ H

∗}, where H∗ = H\{0}. We refer the reader to
[6] for the full proof. For I ∈ S, we set

CI = R + IR.

In this case, we have

H =
⋃
I∈S

CI .

2.2 Operators Acting on Right Quaternionic Hilbert Space

Let V R
H

be a right quaternionic Hilbert space andO = {φk : k ∈ N} be a Hilbert basis
of V R

H
. The left scalar multiplication on V R

H
induced by O is defined as the map

H × V R
H

−→ V R
H

(q, φ) −→ qφ =
∑
k∈N

φkq〈φk, φ〉.

A function T : V R
H

−→ V R
H

is said to be quaternionic right linear if

T (φ + ψq) = T (φ) + T (ψ)q,

for all φ, ψ ∈ V R
H

and q ∈ H. We call a quaternionic right operator T bounded if

‖T ‖ = sup
φ∈V R

H
\{0}

‖Tφ‖
‖φ‖ < +∞.

The set of all bounded right operators on V R
H

is denoted by B(V R
H

) and the identity
operator on V R

H
will be denoted by IV R

H

. If T ∈ B(V R
H

), then we write N (T ) and R(T ),
respectively, for the null space and range of T . We set

α(T ) = dim N (T ) and β(T ) = codim R(T ).
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Definition 2.1 [30, 32] Let T ∈ B(V R
H

), then

(1) T is a Fredholm operator if both α(T ) and β(T ) are finite.
(2) If T is a Fredholm operator, then the index of T is the number

i(T ) = α(T ) − β(T ).

(3) T is a Weyl operator if T is a Fredholm operator and i(T ) = 0.

Let �(V R
H

) denote the set of Fredholm operators and W(V R
H

) be the set of Weyl
operators.

Definition 2.2 [30, 32] Let T ∈ B(V R
H

).

(1) T is said a finite rank if dim R(T ) < ∞.
(2) T is said compact if T maps bounded set into precompact sets.

We denote by K(V R
H

) the set of all compact operators on V R
H
. In the sequel of the

paper, we equip V R
H

with a Hilbert basis O. In this way, B(V R
H

) is a two-sided ideal
quaternionic Banach algebras with respect to the two multiplications:

(qT )φ =
∑
ψ∈O

ψq〈ψ, Tφ〉 and (Tq)φ =
∑
ψ∈O

T (ψ)q〈ψ, φ〉.

for all φ ∈ V R
H
. In the next proposition we will recall some well-known properties of

the compact and Fredholm-set, see [30, 32].

Proposition 2.3

(1) K(V R
H

) is a closed two-sided ideal of B(V R
H

).

(2) If A ∈ �(V R
H

) and K ∈ K(V R
H

), then A + K ∈ �(V R
H

) and i(A + K ) = i(A).

2.3 The Quaternionic Functional Calculus

In this subsection, we recall some definitions and basic properties for the Sabadini
spectrum (S-spectrum), slice regular functions and Riesz projectors necessary for
development of this manuscript. For more details see [3, 5, 17–19].

ForT ∈ B(V R
H

) andq ∈ H,wedefine the associatedoperatorQq (T ) : V R
H

−→ V R
H

by setting

Qq(T ) := T 2 − 2Re(q)T + |q|2IV R
H

.

Definition 2.4 Let T ∈ B(V R
H

).

(i) The S-spectrum of T is defined as

σS(T ) =
{
q ∈ H : Qq(T ) is not invertible in B(V R

H
)
}
.
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(ii) We define the S-resolvent set of T as

ρS(T ) = H \ σS(T ).

The concept of S-spectrum is motivated by both the left Cauchy kernel series

+∞∑
n=0

T nq−n−1 = −(T 2 − 2Re(q)T + |q|2IV R
H

)−1(T − qIV R
H

), |q| >‖ T ‖

and the right Cauchy kernel series

+∞∑
n=0

q−n−1T n = −(T − qIV R
H

)(T 2 − 2Re(q)T + |q|2IV R
H

)−1, |q| >‖ T ‖ .

We refer to [18] for a full explanation. Note that σS(T ) is a non-empty compact set,
see [19]. If Tu = uq for some u ∈ V R

H
\{0} and q ∈ H, then u is called eigenvector

of T with right eigenvalue q.

Definition 2.5 A set 
 ⊂ H is called
(i) axially symmetric if {hqh−1 : h ∈ H} ⊂ 
 for any q ∈ 
 and
(ii) a slice domain (or s-domain for short) if 
 is open, 
 ∩ R �= ∅ and 
 ∩ CI is a
domain in CI , for any I ∈ S.

Note that the S-spectrum σS(T ) and the S-resolvent set ρS(T ) are axially symmetric,
see [18].

Definition 2.6 [18, Definition 2.1.2] (Slice hyperholomorphic functions) Let 
 ⊂ H

be an axially symmetric open set and f : 
 −→ H be a function. Set


R2 :=
{
(u, v) ∈ R

2 : u + Iv ∈ 
, for all I ∈ S

}
.

We say that f is a left slice hyperholomorphic function if it is of the form

f (q) = P(u, v) + Iq Q(u, v), for q = u + Iqv ∈ 


with P ,Q take value in H such that

P(u,−v) = P(u, v), Q(u,−v) = −Q(u, v) (2.1)

and satisfy the Cauchy Riemann equation

∂P

∂u
− ∂Q

∂v
= 0,

∂P

∂v
+ ∂Q

∂u
= 0. (2.2)

We say that f is a right slice hyperholomorphic function if it is of the form

f (q) = P(u, v) + Q(u, v)Iq for q = u + Iqv ∈ 
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with P ,Q : 
R2 −→ H satisfy (2.1) and (2.2).
If f is left or right with P(u, v), Q(u, v) ∈ R for all (u, v) ∈ 
R2 , then f is said

intrinsic function.

LetSHL(
) (resp.SHR(
))denote the set of left (resp. right) slice hyperholomorphic
functions on 
 and N (
) be the set of intrinsic functions. This class of functions is
a generalization of the set of holomorphic functions in the complex setting.

Definition 2.7 Let T ∈ B(V R
H

) andq ∈ ρS(T ). The left S-resolvent operator is defined
by

S−1
L (q, T ) := −(T 2 − 2Re(q)T + |q|2IV R

H

)−1(T − qIV R
H

),

and the right S-resolvent operator is given by

S−1
R (q, T ) := −(T − qIV R

H

)(T 2 − 2Re(q)T + |q|2IV R
H

)−1.

Proposition 2.8 [18, Lemma 3.1.11] The left S-resolvent operator q �−→ S−1
L (q, T )

is right slice hyperholomorphic and the right S-resolvent operator q −→ S−1
R (q, T )

is left slice hyperholomorphic.

Let SHL(σS(T )), SHR(σS(T )) and N (σS(T )) denote, respectively, the set of all
left, right and intrinsic slice hyperholomorphic functions f such that σS(T ) ⊂ D( f ),
where D( f ) denote the domain of f .

Definition 2.9 [19, Definition 2.1.30] (Slice Cauchy domain) An axially symmetric
open set 
 ⊂ H is called a slice Cauchy domain, if 
 ∩ CI is a Cauchy domain in
CI for any I ∈ S. More precisely, 
 is a slice Cauchy domain if, for any I ∈ S, the
boundary ∂(
 ∩ CI ) of (
 ∩ CI ) is the union of a finite number of non-intersecting
piecewise continuously differentiable Jordan curves in CI .

Remark 2.10 [18, Remark 3.2.4] Let f ∈ SHL(σS(T ))∪SHR(σS(T ))∪N (σS(T )),
then there exists a bounded slice Cauchy domain 
 such that

σS(T ) ⊂ 
 and 
 ⊂ D( f ).

Now, we can give the version of the quaternionic functional calculus.

Definition 2.11 [18, Definition 3.2.5] Let T ∈ B(V R
H

). We define

f (T ) = 1

2π

∫

∂(
∩CI )

S−1
L (q, T )dqI f (q), ∀ f ∈ SHL(σS(T )) (2.3)

and

f (T ) = 1

2π

∫

∂(
∩CI )

f (q)dqI S
−1
R (q, T ), ∀ f ∈ SHR(σS(T )) (2.4)

where dqI = −dq I and 
 is a slice Cauchy domain as in the Remark 2.10.
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Theorem 2.12 (Riesz’s projectors) [18, Theorem 4.1.5] Let T ∈ B(V R
H

) and assume
that σS(T ) = σ1 ∪ σ2 with

dist(σ1, σ2) > 0.

Let O be an open axially symmetric set with σ1 ⊂ O and O ∩ σ2 = ∅. We define
χσ1(s) = 1 for s ∈ O and χσ1(s) = 0 for s /∈ O, Then, χσ1 ∈ N (σS(T )), and

Pσ1 := χσ1(T ) = 1

2π

∫

∂(O∩CI )

S−1
L (q, T )dqI .

Further, Pσ1 is a continuous projection operator that commute with T and Pσ1V
R
H

is
a right linear subspace of V R

H
that is invariant under T .

Theorem 2.13 [18, Lemma 4.1.1] Let T ∈ B(V R
H

), then

(1) If f , g ∈ SHL(σS(T )) and q ∈ H, then

( f + g)(T ) = f (T ) + g(T ) and ( f q)(T ) = f (T )q.

(2) If f , g ∈ SHR(σS(T )) and q ∈ H, then

( f + g)(T ) = f (T ) + g(T ) and (q f )(T ) = q f (T ).

Theorem 2.14 (The spectral mapping theorem) [18, Theorem 4.2.1] Let T ∈ B(V R
H

)

and f ∈ N (σS(T )), then

σS( f (T )) = f (σS(T )).

Definition 2.15 Let T ∈ B(V R
H

). A subset σ ⊂ σS(T ) is called an isolated part of
σS(T ) if both σ and σS(T )\σ are closed subsets of σS(T ).

Remark 2.16 Let Pσ be a Riesz projector associated to the isolated part σ of σS(T ),
then

qPσ = Pσq, for all q ∈ H.

In particular R(Pσ ) is a left linear subspace of V R
H

. Indeed,

(qPσ )(T ) = qPσ (T ) = qχσ (T ) = (χσq)(T ) = χσ (T )q = Pσq.

3 Eigenvalue of Finite Type

Let

R
2+ := {(x, y) ∈ R

2 : y ∈ R+}.
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We consider the following function

� : H −→ R
2+

q �−→ (Re(q), |Im(q)|).

We refer to [23] for more properties of �. In particular, the author prove that � is
continuous, open, closed and

[
] = �−1(�(
)) for all 
 ⊂ H,

see [23, Corollary 3.16 and Lemma 3.18].
We start with the following result:

Proposition 3.1 Let T ∈ B(V R
H

) and q ∈ σS(T ), then [q] is an isolated part of σS(T )

if, and only if, there exist ε > 0 such that

[B(q, ε)] ∩ σS(T ) = [q], (3.1)

where B(q, ε)denote the open ball of center q and radius ε.

Proof If [q] is an isolated 2-sphere of σS(T ), then [q] is an open set of σS(T ). LetUq

be an open set of H such that

[q] = σS(T ) ∩Uq .

Since q ∈ Uq , then there exists ε > 0 such that B(q, ε) ⊂ Uq . This implies that

[B(q, ε)] ∩ σS(T ) = [q].

Indeed, assume that there exists p ∈ [B(q, ε)] ∩ σS(T )\[q]. So, p ∈ [q ′] for some
q ′ ∈ Uq\[q]. Since σS(T ) is axially symmetric, then q ′ ∈ σS(T ), contradiction.

Conversely, if (3.1) is satisfied, then [q] is open in σS(T ) because [B(q, ε)] =
�−1(�(B(q, ε))) and B(q, ε) is open. Since [q], is closed, we deduce that [q] is an
isolated part of σS(T ). ��

We recall that in a complex setting, the eigenvalue of finite type is introduced and
studied in [25]. In particular, the authors gave a characterization of this type of spectrum
by using the Riesz projection. A version in the quaternionic case is introduced in [10]
in the following definition.

Definition 3.2 Let T ∈ B(V R
H

). A point q ∈ σS(T ) is called a S-eigenvalue of finite
type if V R

H
is a direct sum of T -invariant subspaces V R

1,H and V R
2,H such that

(H1) dim(V R
1,H) < ∞,

(H2) σS(T |V R
1,H

) ∩ σS(T |V R
2,H

) = ∅,
(H3) σS(T |V R

1,H
) = [q].
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We start by recalling the following decomposition theorem:

Theorem 3.3 [2, Theorem 4.4] Let T ∈ B(V R
H

). Suppose that P1 is a projector in
B(V R

H
) commuting with T and set P2 = IV R

H

− P1. Let Vj = Pj (V R
H

), j = 1, 2, and

define the operators Tj = T Pj = Pj T . Denote by T̃j := Tj |Vj , j = 1, 2, then

σS(T ) = σS(T̃1) ∪ σS(T̃2).

Remark 3.4 Let T ∈ B(V R
H

) and assume that [q] is an isolated part of σS(T ). By using
Theorem 3.3 and [19, Theorem 3.7.8], we have

σS(T ) = [q] ∪ σS(T (IV R
H

− P[q])) and [q] ∩ σS(T (IV R
H

− P[q])) = ∅,

where P[q] is the Riesz projection related to [q] and T .

We recall:

Theorem 3.5 [10, Theorem3.10]Let T ∈ B(V R
H

) and [q] be an isolated part of σS(T ),
then q is a right eigenvalue of finite type if and only if dim R(P[q]) < ∞.

We turn to the pseudo S-resolvent operator

Qq(T )−1 := (T 2 − 2Re(q)T + |q|2IV R
H

)−1, q ∈ ρS(T ).

As in complex case, one generalizes this concept by using the Riesz projection. Let
σ S
d (T ) be denote the set of all S-eigenvalues of T ∈ B(V R

H
) of finite type. By using

[19, Theorem 3.7.8], we have

σS(T |R(P[q])) = [q] and σS(T |N (P[q])) = σS(T )\[q]

for all q ∈ σ S
d (T ). Thus, q ∈ ρS(T |N (P[q])) for every q ∈ σ S

d (T ). This allows us to
extend the pseudo S-resolvent operator. More precisely, set

ρB,S(T ) := ρS(T ) ∪ σ S
d (T ).

If q ∈ ρB,S(T ), then the operator

PQq(T ) := (T 2 − 2Re(q)T + |q|2IV R
H

)(IV R
H

− P[q]) + P[q]

is invertible and its inverse is given by

PRB,S(q, T ) = ((T 2 − 2Re(q)T + |q|2IV R
H

) |N (P[q]))
−1(IV R

H

− P[q]) + P[q].

Using this new concept, we prove the following result.
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Proposition 3.6 Let T ∈ B(V R
H

). If q ∈ σ S
d (T ) and x ∈ V R

H
, then

x ∈ R(P[q]) if and only if lim
n−→+∞ ‖(Qq(T ))nx‖ 1

n = 0,

where P[q] is the Riesz projection related to [q] and T .

Proof Using the Riesz decomposition [33, Theorem 6], we have

σS(T P[q]|R(P[q])) = [q] and σS(T (IV R
H

− P[q])|N (P[q])) = σS(T )\[q].

Set

Qq(X) = X2 − 2Re(q)X + |q|2.

Observe that X �−→ Qq(X) ∈ N (σS(T P[q] |R(P[q]))). On the other hand, the polyno-
mialQq vanishes exactly at [q], see [6, Lemma 4.2.3]. Now, by the S-spectral mapping
Theorem 2.14, we have

σS(Qq(T )P[q] |R(P[q])) = Qq(σS(T P[q] |R(P[q]))) = Qq([q]) = {0}.

In particular, for 0 �= x ∈ R(P[q]), we have

lim
n−→+∞ ‖(Qq(T ))nx‖ 1

n = lim
n−→+∞ ‖(Qq(T ))n P[q] |R(P[q]) x‖

1
n

≤ lim
n−→+∞ ‖(Qq(T ))n P[q] |R(P[q]) ‖ 1

n ‖x‖ 1
n

= rS(Qq(T )P[q] |R(P[q])) = 0.

Conversely, set 0 �= x ∈ V R
H

such that limn−→+∞ ‖(Qq(T ))nx‖ 1
n = 0. Take

xn := P[q](Qq(T ))nx = (Qq(T ))n(IV R
H

− P[q])x + P[q]x .

It is clear that

‖(IV R
H

− P[q])xn‖ 1
n ≤ ‖(IV R

H

− P[q])‖‖(Qq(T ))nx‖ 1
n .

In this way, we say that

lim
n−→+∞ ‖(IV R

H

− P[q])xn‖ 1
n = 0.

Since q ∈ ρS
B(T ), then

x = PRn
B,S(q, T )xn = (Qq(T ) |N (P[q]))

−n(IV R
H

− P[q])xn + P[q]xn .
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Finally, we obtain

‖(IV R
H

− P[q])x‖ 1
n ≤ ‖(IV R

H

− P[q])xn‖ 1
n × ‖(Qq(T )P[q]|N (P[q]))

−1‖.

This implies that limn−→+∞ ‖(IV R
H

− P[q])x‖ 1
n = 0 and so x ∈ R(P[q]). ��

We recall that T is quasi-nilpotent if σS(T ) = {0}.
Proposition 3.7 Let T ∈ B(V R

H
) and [q] be an isolated 2-sphere of σS(T ). Then,

(1) Qq(T ) + P[q] and Qq(T ) + [2T + (1 − 2Re(q))IV R
H

]P[q] are invertible,
(2) Qq(T )P[q] and Qq(T )[2T + (1 − 2Re(q))IV R

H

]P[q] are quasi-nilpotent.

Proof (1) Since [q] is an isolated 2-sphere of σS(T ), then there exist ε > 0 such that
[B(q, ε)] ∩ σS(T ) = [q]. Set

U := [B(q, ε)] and V := H\[B(q, ε)].

Observe that U and V are two axially symmetric open sets,

U ∩ V = ∅, [q] ⊂ U and σS(T ) \ [q] ⊂ V .

Let us define the functions

g(p) :=
⎧
⎨
⎩
1 for p ∈ U ,

0 for p ∈ V .

and

h(p) := p2 − 2Re(q)p + |q|2, p ∈ H.

Then

g(T ) = P[q] and h(T ) = Qq(T ).

Recall that h(p) = 0 if, and only, if p ∈ [q], see [6, Lemma 4.2.3]. So, (g+h)(p) �= 0
for all p ∈ σS(T ). Indeed, if p ∈ [q] ⊆ U , then g(p) = 1 and h(p) = 0. If
p ∈ σS(T )\[q], then g(p) = 0 and h(p) �= 0. Now, by using the algebraic properties
of the quaternionic functional calculus [18, Lemma 4.1.1], we have

Qq(T ) + P[q] = (g + h)(T ).

Finally, since g + h ∈ N (σS(T )), then thanks to the S-spectral mapping Theorem
2.14, we conclude that Qq(T ) + P[q] is an invertible operator.
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We turn to the operatorQq(T )+[2T+(1−2Re(q))IV R
H

]P[q].We consider the function

k(p) :=
⎧
⎨
⎩
2p + 1 − 2Re(q) if p ∈ U ,

0 if p ∈ V .

A similar argument as before, we have

k(T ) = [2T + (1 − 2Re(q))IV R
H

]P[q]

and

(h + k)(T ) = Qq(T ) + [2T + (1 − 2Re(q))IV R
H

]P[q].

On the other hand, we have (k + h)(p) �= 0 for all p ∈ σS(T ). Indeed, if p =
Re(q) + Ip|Im(q)| for some Ip ∈ S (i.e, p ∈ [q]), then h(p) = 0 (by using [6,
Lemma 4.2.3]) and

k(p) := 1 − 2Re(q) + 2p

= 1 + 2Iq |Im(q)| �= 0.

Now, if p ∈ σS(T )\[q], then we have easily h(p) �= 0 and k(p) = 0. Finally, we can
conclude that Qq(T ) + [1 − 2Re(T ) + 2T ]P[q] is an invertible operator.

(2) Since (hg)(p) = h(p)g(p) = 0 and (hk)(p) = 0 for all p ∈ σS(T ), then by using
[18, Lemma 3.2.8] and the S-spectral mapping Theorem 2.14, we have

σS(Qq(T )P[q]) = σS(h(T )g(T )) = {0}

and

σS(Qq(T )[2T + (1 − 2Re(q))IV R
H

]P[q]) = σS(h(T )k(T )) = {0}.

This completes the proof. ��
Proposition 3.8 Let T ∈ B(V R

H
) and [q] be an isolated 2-sphere of σS(T ). Then,

q ∈ σ S
d (T ) if and only if Qq(T ) ∈ W(V R

H
).

Proof Suppose that q ∈ σ S
d (T ). By using the previous Proposition 3.7, we have

Qq(T )+P[q] is an invertible operator. In thisway,we see thatQq (T )+P[q] ∈ W(V R
H

).
Since P[q] ∈ K(V R

H
), then thanks to Proposition 2.3 we deduce thatQq(T ) ∈ W(V R

H
).
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Conversely, Let ε > 0 such that σS(T )∩[B(q, ε)] = [q], then the Riesz projection
P[q] associated with T and q is given by

P[q] = −1

2π

∫

∂([B(q,ε)]∩CI )

Q−1
p (T )(T − pIV R

H

)dpI .

Now, denote by π the natural quotient map into the Calkin algebra C(V R
H

) =
B(V R

H
)/K(V R

H
), then q ∈ ρS(π(T )) and, by Cauchy’s integral theorem [19, Theo-

rem 2.1.20],

π(P[q]) = −1

2π

∫

∂([B(q,ε)]∩CI )

Q−1
p (π(T ))(π(T ) − pIC(V

HR ))dpI = 0.

So, P[q] ∈ K(V R
H

). This implies that IR(P[q]) : R(P[q]) −→ R(P[q]) is compact, we
deduce that dim(R(P[q])) < ∞. ��
Remark 3.9 As in the complex setting, we have if T ∈ B(V R

H
) is invertible and N is a

nilpotent operator that commute with T , then T + N is also invertible. Indeed, let
m ∈ N

∗ such that Nm = 0. Then, IV R
H

+ N is invertible and its inverse is given by

(I + N )−1 =
m−1∑
k=0

(−1)k Nk .

Since T N = NT , then T−1N is nilpotent. In this way, we see that T + N = T (IV R
H

+
T−1N ) is invertible.

Theorem 3.10 Let Tn and T belong to B(V R
H

) with n ∈ N and ‖Tn − T ‖ −→ 0. We
suppose that 0 ∈ σ S

d (T ). For an axially symmetric V ⊂ H, we set

E
V

⋂
σS(T )

T = (V ∩ σS(T ))/ ∼=,

where p ∼= q if, and only, if p ∈ [q], then there exist N ∈ N and an open axially
symmetric V0 ⊂ H such that �EV0∩σS(Tn)

Tn
< ∞ and V0

⋂
σS(Tn) ⊂ σ S

d (Tn) for all
n ≥ N .

To prove this theorem, we first need to show the following results.

Lemma 3.11 Let T and S ∈ I nv(B(V R
H

)) (i .e. 0 ∈ ρS(T ) ∩ ρS(S)). We assume that
‖T − S‖ ≤ 1

2‖S−1‖−1, then

‖T−1 − S−1‖ ≤ 2‖S−1‖2‖T − S‖.

Proof The proof is exactly similar to the proof of [13, Lemma 5, p.11] in the complex
setting.
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Definition 3.12 [13, Definition 15, p.25] Let X , Y be two topological spaces and let
φ be a function defined on the space X and whose values are subsets of the space Y.
The mapping φ is upper semi-continuous on x0 if for each neighborhood Vφ(x0) of
φ(x0), there exist a neighborhood Ux0 of x0 such that

φ(x) ⊂ Vφ(x0), x ∈ Ux0 .

φ is said to be upper semi-continuous if x is a point of upper semi-continuity for φ for
each x ∈ X .

Lemma 3.13 [13, Lemma 16, p.25] Let X, Y be metric spaces, let Y be compact and
let φ be a mapping of X into the closed subsets of Y , then φ is upper semi-continuous
if and only if the following conditions holds

xn ∈ X , yn ∈ φ(xn), x = lim
n−→+∞ xn, y = lim

n−→+∞ yn �⇒ y ∈ φ(x).

Proposition 3.14 Let ψB(V R
H

): T −→ σS(T ) be the function defined on the space

B(V R
H

) and whose values are in the compact subset of H. Then, ψB(V R
H

) is upper
semi-continuous.

Proof Let (Tn)n be a sequence of operators in B(V R
H

), qn ∈ σS(Tn),

lim
n−→+∞ ‖Tn − T ‖ = 0 and lim

n−→+∞ |qn − q| = 0.

We have to show that q ∈ σS(T ). Indeed, we assume that Qq(T ) ∈ I nv(B(V R
H

)),

then

Qq(T ) = lim
n−→+∞Qqn (Tn).

In fact,

‖Qq(T ) − Qqn (Tn)‖ ≤ ‖T 2
n − T 2‖ + ‖2Re(qn)Tn − 2Re(q)T ‖ + ||qn|2 − |q|2|.

In this way, we see that

‖Qq(T ) − Qqn (Tn)‖ −→ 0 since T −→ T 2 is continuous.

Let ε > 0 be such that B(Qq(T ), ε) ⊂ I nv(B(V R
H

)). Then, there exist Nq ∈ N such
thatQqn (Tn) ∈ B(Qq(T ), ε) for all n ≥ Nq . This is a contradiction since qn ∈ σS(Tn)
for all n ∈ N. ��
Lemma 3.15 Let P and Q be two projections inB(V R

H
).Weassume that ‖P−Q‖ < 1,

then

(1) R(P) ∼= R(Q).
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(2) The operator T = QP + (IV R
H

− Q)(IV R
H

− P) is bijective.
(3) T (R(P)) ⊂ R(Q) and T (N (P)) ⊂ N (Q).

Proof The proof is exactly similar to the proof of [34, Theorem 12.4] in the complex
setting. ��
Lemma 3.16 [19, Lemma 3.1.3] Let T ∈ B(V R

H
). The functions q −→ Qq(T )−1

and q −→ TQq(T )−1 which are defined on ρS(T ) and take values in B(V R
H

) are
continuous.

Proof of Theorem 3.10. Let ε ∈]0, 1[ andU ⊂ H be an open axially symmetric subset
withU ∩ B(0, ε) = ∅ and σS(T )\{0} ⊂ U . By using Lemma 3.16 for all I ∈ S, there
is MI ≥ 1 such that

sup
q∈∂(CI

⋂
B(0,ε))

‖Qq(T )−1‖ ≤ MI .

On the other hand, U ∪ B(0, ε) is a neighborhood of σS(T ). By using Proposition
3.14, there exist Nε > 0 such that

σS(Tk) ⊂ B(0, ε) ∪U

for all k ≥ Nε. We choose Nε large enough such that

‖T 2
k − T 2 + 2Re(q)(Tk − T )‖‖T − qIV R

H

‖ + ‖T − Tk‖ ≤ 1

4M2
I

,

for all q ∈ ∂(CI
⋂

B(0, ε)).
In view of Lemma 3.11, we have

‖Qq(T )−1 − Qq(Tk)
−1‖ ≤ 2M2

I ‖T 2
k − T 2 + 2Re(q)(Tk − T )‖,

q ∈ ∂(CI
⋂

B(0, ε)). In this way, we see that

‖S−1
L (q, T ) − S−1

L (q, Tk)‖ ≤ MI‖T − Tk‖ + ‖Q−1
q (T ) − Q−1

q (Tk)‖‖T − qIV R
H

‖‖

≤ 2M2
I × 1

4M2
I

= 1

2
< 1.

Let P0 be the Riesz projection associated to 0 and T . Set

Pσ k
Nε

:= 1

2π

∫

∂(B(0,ε)
⋂

CI)

S−1
L (s, Tk)dsI ,

where σ k
Nε

:= B(0, ε)
⋂

σS(Tk).
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By using Lemma 3.15, we have

R(P0) ∼= R(Pσ k
Nε

).

In particular, dim R(Pσ k
Nε

) < ∞ for all k ≥ Nε. Applying [10, Theorem 3.17], we

have

�E
σ k
Nε

Tk
< ∞,

q ∈ σ S
d (Tk) for all k ≥ Nε and q ∈ σ k

Nε
. ��

4 Browder S-Resolvent Equation in Quaternionic Setting

Let T ∈ B(V R
H

). For s ∈ ρS
B(T ) := ρS(T ) ∪ σ S

d (T ), we define the left Browder
S-resolvent operator as

S−1
L,B(s, T ) = −[Qs(T )|N (P[s])]−1(T − sIV R

H

)(IV R
H

− P[s]) − P[s].

and the right Browder S-resolvent operator as

S−1
R,B(s, T ) = −(T − sIV R

H

)[Qs(T )|N (P[s])]−1(IV R
H

− P[s]) − P[s].

Remark 4.1 The Browder S-resolvent operator extend the S-resolvent operator to
ρS(T ) ∪ σ S

d (T ). Indeed, if q ∈ ρS(T ) with the convention P[q] = 0, we have

S−1
R,B(q, T ) = S−1

R (q, T ) and S−1
L,B(q, T ) = S−1

L (q, T ).

Theorem 4.2 Let T ∈ B(V R
H

) and q ∈ ρS
B(T ) := σ S

d (T ) ∪ ρS(T ). Then, the left
Browder S-resolvent operator satisfy the left Browder S-resolvent equation

S−1
L,B(q, T )(IV R

H

− P[q])q − T (IV R
H

− P[q])S−1
L,B(q, T ) + P[q] = IV R

H

.

and the right Browder S-resolvent operator satisfy the right Browder S-resolvent
equation

q(IV R
H

− P[q])S−1
R,B(q, T ) − S−1

R,B(q, T )(IV R
H

− P[q])T + P[q] = IV R
H

.

Proof Let q ∈ ρS
B(T ). It is clear that,

(IV R
H

− P[q])q = q(IV R
H

− P[q]), P[q](IV R
H

− P[q]) = (IV R
H

− P[q])P[q] = 0
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and

T (Qq(T )|N (P[q]))
−1 = (Qq(T )|N (P[q]))

−1T |N (P[q]) .

We obtain

S−1
L,B(q, T )(IV R

H

− P[q])q − T (IV R
H

− P[q])S−1
L,B(q, T )

= −[Qq(T )|N (P[q])]−1(Tq − |q|2IV R
H

)(IV R
H

− P[q])

+ [Qq(T )|N (P[q])]−1(T 2 − Tq)(IV R
H

− P[q])

= [Qq(T )|N (P[q])]−1Qq(T )|N (P[q])(IV R
H

− P[q])

= IV R
H

− P[q].

The right S-resolvent equation follows by similar computations. ��
Remark 4.3 (1) The left and the right S-resolvent equation implies,

S−1
L,B(q, T )q − T S−1

L,B(q, T ) − (T − (q + 1)IV R
H

)P[q] = IV R
H

and

qS−1
R,B(q, T ) − S−1

R,B(q, T )T − (T − (q + 1)IV R
H

)P[q] = IV R
H

.

(2) If q ∈ ρS(T ), then P[q] = 0. In this case, we obtain the two equations in [18,
Theorem 3.1.14]:

S−1
L (q, T )q − T S−1

L (q, T ) = IV R
H

and

qS−1
R (q, T ) − S−1

R (q, T )T = IV R
H

.

Now, we give the Browder S-resolvent equation in quaternionic setting.

Theorem 4.4 Let T ∈ B(V R
H

) and let s, p ∈ σ S
d (T ) ∪ ρS(T ) with p /∈ [s], then the

left and right Browder S−resolvent operators satisfies the following equation

S−1
R,B(s, T )S−1

L,B(p, T )Qs(p) = [S−1
R,B(s, T ) − S−1

L,B(p, T )]p
+ s[S−1

L,B(p, T ) − S−1
R,B(s, T )]

+ [S−1
R,B(s, T )(T − (p + 1)IV R

H

)P[p] − (T − (s + 1)IV R
H

)P[s]S−1
L,B(p, T )]p

+ s[(T − (s + 1)IV R
H

)P[s]S−1
L,B(p, T ) − S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p]].
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Proof In Remark 4.3 it is stated that

S−1
L,B(p, T )p − T S−1

L,B(p, T ) − (T − (p + 1)IV R
H

)P[p] = IV R
H

(4.1)

and

sS−1
R,B(s, T ) − S−1

R,B(s, T )T − (T − (s + 1)IV R
H

)P[s] = IV R
H

. (4.2)

From this it follows that

S−1
R,B(s, T )S−1

L,B(p, T )p2

= S−1
R,B(s, T )

(
T S−1

L,B(p, T ) + (T − (p + 1)IV R
H

)P[p] + IV R
H

)
p

=
(
sS−1

R,B(s, T ) − (T − (s + 1)IV R
H

)P[s] − IV R
H

)
S−1
L,B(p, T )p

+ S−1
R,B(s, T )

(
(T − (p + 1)IV R

H

)P[p] + IV R
H

)
p, (4.3)

where we used (4.1) in the first and (4.2) in the second equation. Analogously we get

|s|2S−1
R,B(s, T )S−1

L,B(p, T )

= s
(
S−1
R,B(s, T )T + (T − (s + 1)I

V
R

H

)P[s] + IV R
H

)
S−1
L,B(p, T )

= sS−1
R,B(s, T )

(
S−1
L,B(p, T )p − (T − (p + 1)IV R

H

)P[p] − IV R
H

)

+ s
(
(T − (s + 1)IV R

H

)P[s] + IV R
H

)
S−1
L,B(p, T ). (4.4)

Shifting now the respective first terms of the right hand sides of (4.3) and (4.4) to the
left and adding these two equations, leads to

S−1
R,B(s, T )S−1

L,B(p, T )p2 − (s + s)S−1
R,B(s, T )S−1

L,B(p, T )p + |s|2S−1
R,B(s, T )S−1

L,B(p, T )

=
(
S−1
R,B(s, T )

(
(T − (p + 1)IV R

H

)P[p] + IV R
H

) − (
(T − (s + 1)IV R

H

)P[s] + IV R
H

)
S−1
L,B(p, T )

)
p

+ s
((

(T − (s + 1)IV R
H

)P[s] + IV R
H

)
S−1
L,B(p, T ) − S−1

R,B(s, T )
(
(T − (p + 1)IV R

H

)P[p] + IV R
H

))
.

Since the left hand side obviously reduces to S−1
R,B(s, T )S−1

L,B(p, T )Qs(p), this is
exactly the stated resolvent equation. ��

Remark 4.5 (1) If s, p ∈ ρS(T ), then P[s] = P[p] = 0.Hence, we find the S-resolvent
equation, see [18, Theorem 3.1.15]:
S−1
R (s, T )S−1

L (p, T )

= [(S−1
R (s, T ) − S−1

L (p, T ))p − s[S−1
R (s, T ) − S−1

L (p, T )](p2 − 2Re(s)p + |s|2)−1.
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(2) Let’s test the Browder S-resolvent equation in the commutative case, if Tq=qT
for all q ∈ H, then for s, q ∈ ρS(T ), we have

M(s, p) := [S−1
R,B(s, T )(T − (p + 1)IV R

H

)P[p] − (T − (s + 1)IV R
H

)P[s]S−1
R,B(p, T )]p

+ s[(T − (s + 1)IV R
H

)P[s]S−1
L,B(p, T ) − S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p]]
= p[S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p] − S−1
L,B(p, T )(T − (s + 1)IV R

H

)P[s]]
+ s[S−1

L,B(p, T )(T − (s + 1)IV R
H

)P[s] − S−1
R,B(s, T )(T − (p + 1)IV R

H

)P[p]]
= (p − s)[S−1

R,B(s, T )(T − (p + 1)IV R
H

)P[p] − S−1
L,B(p, T )(T − (s + 1)IV R

H

)P[s]].

In particular in the complex case, if T ∈ B(VC) then,

S−1
R,B(p, T ) = R−1

B (p, T ) and S−1
L,B(s, T ) = R−1

B (s, T ).

Therefore, we obtain
M(s, p)

= (p − s)R−1
B (s, T )[(T − (p + 1)IV R

H

)P[p]

− RB(s, T )(T − (s + 1)IV R
H

)P[s]R−1
B (p, T )]

= (p − s)R−1
B (s, T )[(T − (p + 1)IV R

H

P[s]RB(p, T ) − RB(s, T )

(T − (s + 1)IV R
H

)P[s]]R−1
B (p, T ).

Hence,

P[p]RB(p, T ) = P[p] and RB(s, T )P[s] = P[s].

So, we get

M(s, p) := (p − s)R−1
B (s, T )[(T − (p + 1)IV R

H

)P[p] − (T − (s + 1)IV R
H

)P[s]]R−1
B (p, T ).

Thus, we obtain the classic Browder resolvent equation in the complex case.
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