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Abstract
For α > −1 and 0 < p < ∞, we study weighted Bergman spaces B p

α of harmonic
functions on the real hyperbolic ball. We obtain an atomic decomposition of Bergman
functions in terms of reproducing kernels. We show that an r -separated sequence {am}
with sufficiently large r is an interpolating sequence forB p

α . Using these we determine
precisely when a Bergman space B p

α is included in another Bergman space Bq
β .
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1 Introduction

For x, y ∈ R
n , let 〈x, y〉 = x1y1 + · · · + xn yn be the Euclidean inner product and

|x | = √〈x, x〉 be the corresponding norm. LetB = {x ∈ R
n : |x | < 1} be the unit ball

and S = ∂B be the unit sphere. The hyperbolic ball is B endowed with the hyperbolic
metric

ds2 = 4

(1 − |x |2)2
n∑

i=1

dx2i .
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The Laplacian �h and the gradient ∇h with respect to the hyperbolic metric are given
by (see [13, Chapter 3] for more details)

(�h f )(a) = �( f ◦ ϕa)(0) ( f ∈ C2(B)),

and

(∇h f )(a) = −∇( f ◦ ϕa)(0) ( f ∈ C1(B)),

where � = ∂2/∂x21 + · · · + ∂2/∂x2n and ∇ = (
∂/∂x1, . . . , ∂/∂xn

)
are the usual

Euclidean Laplacian and gradient. Here ϕa is the canonical Möbius transformation
mapping B to B and exchanging a and 0 given in (9). It is easy to show that

�h f (a) = (1 − |a|2)2� f (a) + 2(n − 2)(1 − |a|2)〈a,∇ f (a)〉,

and

∇h f (a) = (1 − |a|2)∇ f (a). (1)

A twice continuously differentiable function f : B → C is called hyperbolic harmonic
or H-harmonic on B if �h f (x) = 0 for every x ∈ B. We denote the set of all H-
harmonic functions by H(B).

Let ν be the Lebesgue measure on R
n normalized so that ν(B) = 1. For α > −1,

define the weighted measure dνα(x) by

dνα(x) = (1 − |x |2)α dν(x),

and for 0 < p < ∞, denote the Lebesgue spacewith respect to dνα by L
p
α = L p(dνα).

The subspace of L p
α consisting of H-harmonic functions is called the weighted H-

harmonic Bergman space and is denoted by B p
α ,

B p
α =

{
f ∈ H(B) : ‖ f ‖p

L p
α

=
∫

B

| f (x)|p dνα(x) < ∞
}
.

These are Banach spaces when 1 ≤ p < ∞, and complete metric spaces with respect
to the metric d( f , g) = ‖ f − g‖p

L p
α
when 0 < p < 1.

Point evaluation functionals are bounded on all B p
α and, in particular, B2

α is a repro-
ducing kernel Hilbert space. Therefore, for every x ∈ B, there exists Rα(x, ·) ∈ B2

α

such that

f (x) =
∫

B

f (y)Rα(x, y) dνα(y) ( f ∈ B2
α). (2)

The reproducing kernel Rα(·, ·) is symmetric in its variables, is real valued (so con-
jugation in (2) can be deleted) and isH-harmonic with respect to each variable.



Harmonic Bergman Spaces on the Real Hyperbolic Ball... Page 3 of 25 40

For a, b ∈ B, let ρ(a, b) = |ϕa(b)| be the pseudo-hyperbolic metric, and for
0 < r < 1, let Er (a) = {x ∈ B : ρ(x, a) < r} be the pseudo-hyperbolic ball of radius
r centered at a. For 0 < r < 1, a sequence {am} of points of B is called r -separated
if ρ(ak, am) ≥ r when k = m. An r -separated sequence {am} is called an r -lattice if⋃∞

m=1 Er (am) = B, that is, if {am} is maximal.
In [6, Theorem 2], it is shown by Coifman and Rochberg that if {am} is an r -lattice

with r sufficiently small, then every holomorphic Bergman function f ∈ Ap on the
unit ball of Cn (more generally on a symmetric Siegel domain of type two) can be
represented in the form f (z) = ∑∞

m=1 λm B̃(z, am), where {λm} ∈ 
p and B̃(z, am)

is determined by B(·, am), the reproducing kernel at the point am . This representation
is called atomic decomposition, B(·, am) being the atoms. They further showed that
a similar decomposition holds for (Euclidean) harmonic functions on the unit ball of
R
n . This last result is extended in [14, 15] to harmonic Bergman spaces on bounded

symmetric domains of Rn .
Our first aim in this work is to show that if {am} is an r -lattice with small enough r ,

then an analogous series representation in terms of the reproducing kernels holds also
for H-harmonic Bergman spaces B p

α . Atomic decomposition of H-harmonic Hardy
spaces on the real hyperbolic ball has been obtained in [7].

Theorem 1.1 Let α > −1 and 0 < p < ∞. Pick s large enough to satisfy

α + 1 < p(s + 1), if p ≥ 1

α + n < p(s + n), if 0 < p < 1.
(3)

There is an r0 < 1/8 depending only on n, α, p, s such that if {am} is an r-lattice with
r < r0, then for every f ∈ B p

α , there exists {λm} ∈ 
p such that

f (x) =
∞∑

m=1

λm
Rs(x, am)

‖Rs(·, am)‖Bp
α

(x ∈ B), (4)

where the series converges absolutely and uniformly on compact subsets of B and in
‖ · ‖Bp

α
, and the norm ‖{λm}‖
p is equivalent to the norm ‖ f ‖Bp

α
.

The decomposition above can be written in other forms. By Lemma 2.10 below, the
estimate ‖Rs(·, am)‖Bp

α
∼ (1 − |am |2)(α+n)/p−(s+n) holds and Theorem 1.1 remains

true if (4) is replaced with (see Remark 3.8)

f (x) =
∞∑

m=1

λm(1 − |am |2)s+n−(α+n)/p Rs(x, am) (x ∈ B). (5)

Also,Rs(am, am) ∼ (1 − |am |2)−(s+n) by (17), and (4) can be replaced with

f (x) =
∞∑

m=1

λm(1 − |am |2)−(α+n)/p Rs(x, am)

Rs(am, am)
(x ∈ B).
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We next consider the interpolation problem. If {am} is r -separated and f ∈ B p
α ,

then the sequence (see Proposition 3.3)

{
f (am)(1 − |am |2)(α+n)/p}

is in 
p. If the converse holds, that is, if for every {λm} ∈ 
p, one can find an f ∈ B p
α

such that f (am)(1−|am |2)(α+n)/p = λm , then {am} is called an interpolating sequence
for B p

α . We show that if the separation constant r is large enough, then {am} is an
interpolating sequence.

Theorem 1.2 Let α > −1 and 0 < p < ∞. There is an r0 with 1/2 < r0 < 1
depending only on n, α, p such that if {am} is an r-separated sequence with r > r0,
then for every {λm} ∈ 
p, there exists f ∈ B p

α such that

f (am)(1 − |am |2)(α+n)/p = λm,

and the norm ‖ f ‖Bp
α
is equivalent to the norm ‖{λm}‖
p .

The holomorphic analogue of the above theorem is proved in [2] for the unit ball
and polydisc, and in [11] for more general domains of Cn . For harmonic Bergman
spaces on the upper half-space of Rn , an analogous result is proved in [5].

Finally,we determine preciselywhen aBergman spaceB p
α is contained in an another

Bergman space Bq
β .

Theorem 1.3 Let α, β > −1 and 0 < p, q < ∞.

(a) If q ≥ p, then

B p
α ⊂ Bq

β if and only if
α + n

p
≤ β + n

q

(b) If q < p, then

B p
α ⊂ Bq

β if and only if
α + 1

p
<

β + 1

q

In both cases the inclusion i : B p
α → Bq

β is continuous.

For holomorphic Bergman spaces on the unit ball of Cn , the counterpart of this
theorem has been proved in [8, Lemma 2.1]. However, this source uses gap series
formed by using the so-called Ryll–Wojtaszczyk polynomials (see [12]). We do not
know whether such type of H-harmonic functions exist on the real hyperbolic ball.
Our proof is based on the above atomic decomposition and interpolation theorems.

2 Preliminaries

In this section we collect some known facts about Möbius transformations and H-
harmonic Bergman spaces that will be used in the sequel.
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2.1 Notation

We denote positive constants whose exact values are inessential with C . The value
of C may differ from one occurrence to another. We write X � Y if X ≤ CY , and
X ∼ Y if both X ≤ CY and Y ≤ CX .

For x, y ∈ R
n , we write

[x, y] :=
√
1 − 2〈x, y〉 + |x |2|y|2,

which is symmetric in the variables x, y, and the following equality holds

[x, y]2 = |x − y|2 + (1 − |x |2)(1 − |y|2). (6)

If either of the variables is 0, then [x, 0] = [0, y] = 1; otherwise

[x, y] =
∣∣∣|y|x − y

|y|
∣∣∣ =

∣∣∣
x

|x | − |x |y
∣∣∣, (7)

and so

1 − |x ||y| ≤ [x, y] ≤ 1 + |x ||y| (x, y ∈ B). (8)

2.2 Möbius Transformations

For more details about the facts listed in this subsection we refer the reader to [1] or
[13].

A Möbius transformation of R̂n = R
n ∪ {∞} is a finite composition of reflections

(inversions) in spheres or planes. We denote the group of all Möbius transformations
mapping B to B by M(B). For a ∈ B, the mapping

ϕa(x) = a|x − a|2 + (1 − |a|2)(a − x)

[x, a]2 (x ∈ B) (9)

is in M(B), exchanges a and 0, and satisfies ϕa ◦ ϕa = Id. The group M(B) is
generated by {ϕa : a ∈ B} and orthogonal transformations. A very useful identity
involving ϕa is ([13, Eqn. 2.1.7])

1 − |ϕa(x)|2 = (1 − |a|2)(1 − |x |2)
[x, a]2 . (10)

The Jacobian Jϕa of ϕa satisfies ([13, Theorem 3.3.1])

|Jϕa (x)| = (1 − |ϕa(x)|2)n
(1 − |x |2)n . (11)

The following lemma is a special case of [10, Theorem 1.1].
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Lemma 2.1 For a, x ∈ B, the following equality holds

[ϕa(x), a] = 1 − |a|2
[x, a] .

Proof Replacing x in (10) with ϕa(x) and noting that ϕa ◦ ϕa = Id shows

[ϕa(x), a]2 = (1 − |a|2)(1 − |ϕa(x)|2)
1 − |x |2 .

Applying (10) again, we obtain the desired result. ��
For a, b ∈ B, the pseudo-hyperbolic metric ρ(a, b) = |ϕa(b)| satisfies

ρ(a, b) = |a − b|
[a, b] , (12)

by (10) and (6). It is Möbius invariant in the sense that ρ(ψ(a), ψ(b)) = ρ(a, b) for
every ψ ∈ M(B). It satisfies not only the triangle inequality, but the following strong
triangle inequality (see [10, Theorem 1.2]).

Lemma 2.2 For a, b, x ∈ B, the following inequalities hold

∣∣ρ(a, x) − ρ(b, x)
∣∣

1 − ρ(a, x)ρ(b, x)
≤ ρ(a, b) ≤ ρ(a, x) + ρ(b, x)

1 + ρ(a, x)ρ(b, x)
.

Lemma 2.3 For x, y ∈ B,

1 − ρ(x, y) ≤ 1 − |x |2
[x, y] ≤ 1 + ρ(x, y).

Proof The lemma clearly holds when x = 0. Otherwise, let x∗ := x/|x |2 be the
inversion of x with respect to the unit sphere S. Multiply the triangle inequality

|x∗ − y| − |y − x | ≤ |x∗ − x | ≤ |x∗ − y| + |y − x |

by |x |. Noting that |x ||x∗ − y| = [x, y] by (7), and |x ||x∗ − x | = 1−|x |2, we deduce

[x, y] − |x ||y − x | ≤ 1 − |x |2 ≤ [x, y] + |x ||y − x |.

The lemma follows from the facts that |y − x | = ρ(x, y)[x, y] by (12), and |x | < 1.
��

The following lemma is a slight modification of [3, Lemma 2.1] and immediately
follows from Lemma 2.3.
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Lemma 2.4 For x, y ∈ B,

1 − ρ(x, y)

1 + ρ(x, y)
≤ 1 − |x |2

1 − |y|2 ≤ 1 + ρ(x, y)

1 − ρ(x, y)
.

The next lemma is proved in [3, Lemma 2.2].

Lemma 2.5 For a, x, y ∈ B,

1 − ρ(x, y)

1 + ρ(x, y)
≤ [x, a]

[y, a] ≤ 1 + ρ(x, y)

1 − ρ(x, y)
.

Let Br = {x ∈ R
n : |x | < r}. The pseudo-hyperbolic ball Er (a) = {x ∈ B :

ρ(x, a) < r} = ϕa(Br ) is also a Euclidean ball with (see [13, Theorem 2.2.2])

center = (1 − r2)a

1 − |a|2r2 and radius = (1 − |a|2)r
1 − |a|2r2 . (13)

2.3 Separated Sequences and Lattices

There exists an r -lattice for every 0 < r < 1 as explained in [6, p. 18], and every
r -separated sequence can be completed to an r -lattice. The following lemma follows
from an invariant volume argument.

Lemma 2.6 Let 0 < r , δ < 1 and {am} be r-separated. There exists N depending only
on n, r , δ such that every x ∈ B belongs to at most N of the balls Eδ(am).

Lemma 2.7 Let {am} be an r-lattice. There exists a sequence {Em} of disjoint sets such
that

⋃∞
m=1 Em = B and

Er/2(am) ⊂ Em ⊂ Er (am). (14)

Proof Let E1 = Er (a1)\⋃∞
m=2 Er/2(am) and given E1, . . . , Em−1, let

Em = Er (am)\
(m−1⋃

i=1

Ei

⋃ ∞⋃

i=m+1

Er/2(ai )

)
.

��
Lemma 2.8 Let γ ∈ R and 0 < r < 1.

(a) If {am} is r-separated and γ > n − 1, then
∑∞

m=1(1 − |am |2)γ < ∞.
(b) If {am} is an r-lattice, then ∑∞

m=1(1 − |am |2)γ < ∞ if and only if γ > n − 1.

Proof To see part (a), note that

∫

Er/2(am)

(1 − |y|2)γ−n dν(y) ∼ (1 − |am |2)γ , (15)
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where the implied constants depend only on the fixed parameters n, γ, r and are
independent of am . This is true because for y ∈ Er/2(am), we have (1 − |y|2) ∼
(1 − |am |2) by Lemma 2.4 and ν(Er/2(am)) ∼ (1 − |am |2)n by (13). Thus

∞∑

m=1

(1 − |am |2)γ �
∫

B

(1 − |y|2)γ−n dν(y),

since the balls Er/2(am) are disjoint. If γ > n − 1, then the above integral is finite.
For part (b), let Em be as given in Lemma 2.7. By (14), we similarly have

∫

Em

(1 − |y|2)γ−n dν(y) ∼ (1 − |am |2)γ (16)

and therefore

∞∑

m=1

(1 − |am |2)γ ∼
∞∑

m=1

∫

Em

(1 − |y|2)γ−n dν(y) =
∫

B

(1 − |y|2)γ−n dν(y).

The last integral is finite if and only if γ > n − 1. ��

2.4 Reproducing Kernels and Bergman Projection

The following upper estimates of the reproducing kernelsRα ofH-harmonic Bergman
spaces have been obtained in [16, Theorem 1.2].

Lemma 2.9 For α > −1, there exists a constant C > 0 such that for all x, y ∈ B,

(a) |Rα(x, y)| ≤ C

[x, y]α+n
,

(b) |∇1Rα(x, y)| ≤ C

[x, y]α+n+1 .

Here ∇1 means the gradient is taken with respect to the first variable.

More is true on the diagonal y = x and the two-sided estimate ([16, Lemma 6.1])

Rα(x, x) ∼ 1

(1 − |x |2)α+n
(17)

holds. The following lemma is part of [16, Theorem 1.3].

Lemma 2.10 If α, s > −1, 0 < p < ∞ and p(s + n) − (α + n) > 0, then

∫

B

∣∣Rs(x, y)
∣∣p dνα(y) ∼ 1

(1 − |x |2)p(s+n)−(α+n)
.

The implied constants depend only on n, α, s, p and are independent of x.
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For s > −1 and suitable f , we define the projection operator Ps and the related
operator Qs by

Ps f (x) =
∫

B

f (y)Rs(x, y) dνs(y),

Qs f (x) =
∫

B

f (y)

[x, y]s+n
dνs(y).

(18)

Lemma 2.11 Let 1 ≤ p < ∞ and α, s > −1. The following are equivalent:

(a) Ps : L p
α → B p

α is bounded,
(b) Qs : L p

α → L p
α is bounded,

(c) α + 1 < p(s + 1).

In case (c) holds, then Ps f = f for every f ∈ B p
α .

Proof (b) ⇒ (a) follows from Lemma 2.9 (a), (a) ⇒ (c) is proved in [16, Theorem
1.1], and (c) ⇒ (b) is well-known and included in the proof of [16, Theorem 1.1]. ��

For a proof of the following estimates, see [9, Proposition 2.2].

Lemma 2.12 Let b > −1 and c ∈ R. For x ∈ B, define

Ic(x) :=
∫

S

dσ(ζ )

|x − ζ |n−1+c
and Jb,c(x) :=

∫

B

(1 − |y|2)b
[x, y]n+b+c

dν(y),

where σ is the normalized surface measure on S. For all x ∈ B,

Ic(x) ∼ Jb,c(x) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

(1 − |x |2)c , if c > 0;
1 + log

1

1 − |x |2 , if c = 0;
1, if c < 0,

where the implied constants depend only on n, b, c and are independent of x.

We record the following elementary facts about the sequence spaces 
p for future
reference.

Lemma 2.13 (i) For 0 < p < q < ∞, ‖{λm}‖
q ≤ ‖{λm}‖
p .
(ii) Let 1 < p < ∞ and p′ be the conjugate exponent of p, 1/p + 1/p′ = 1. If∑∞
m=1|λmκm | < ∞ for every {κm} ∈ 
p

′
, then {λm} ∈ 
p.

3 Atomic Decomposition

The purpose of this section is to prove Theorem 1.1. The main problem is to show
that under the assumptions of the theorem, the operator U : 
p → B p

α defined in (19)
below is onto. We do this through a couple of propositions.
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Proposition 3.1 For α > −1 and 0 < p < ∞, choose s so that (3) holds. If {am} is
r-separated for some 0 < r < 1, then the operator U : 
p → B p

α mapping λ = {λm}
to

Uλ(x) =
∞∑

m=1

λm
Rs(x, am)

‖Rs(·, am)‖Bp
α

(x ∈ B) (19)

is bounded. The above series converges absolutely and uniformly on compact subsets
of B, and also in ‖ · ‖Bp

α
.

Proof Throughout the proof we suppress the constants that depend on the fixed param-
eters n, α, p, s and r . Note that, by Lemma 2.10 and (3), for every 0 < p < ∞,

‖Rs(·, am)‖Bp
α

∼ (1 − |am |2)(α+n)/p−(s+n), (20)

since in (3), the inequality p(s + n) > (α + n) holds also in the case p ≥ 1.
We begin with the case 0 < p ≤ 1. We first show that for λ ∈ 
p, the series in (19)

converges absolutely and uniformly on compact subsets of B which implies that Uλ

isH-harmonic on B since so is eachRs(·, am). If |x | ≤ R < 1, then |Rs(x, am)| � 1
by Lemma 2.9 (a), since [x, am] ≥ 1 − |x | by (8). Thus, using also (20), the fact that
(s + n) − (α + n)/p > 0 by (3), and Lemma 2.13 (i) we obtain

∞∑

m=1

|λm | |Rs(x, am)|
‖Rs(·, am)‖Bp

α

�
∞∑

m=1

|λm |(1 − |am |2)(s+n)−(α+n)/p ≤
∞∑

m=1

|λm | ≤ ‖λ‖
p ,

which proves the assertion. The inequality ‖Uλ‖Bp
α

≤ ‖λ‖
p immediately follows
from Lemma 2.13 (i) and shows also that the series in (19) converges in ‖ · ‖Bp

α
.

We next consider the case 1 < p < ∞. Let p′ be the conjugate exponent of p. The
series in (19) converges absolutely and uniformly on compact subsets of B because
we again have |Rs(x, am)| � 1, and by (20) and Hölder’s inequality,

∞∑

m=1

|λm | |Rs(x, am)|
‖Rs(·, am)‖Bp

α

�
∞∑

m=1

|λm |(1 − |am |2)s+n−(α+n)/p

≤ ‖λ‖
p

( ∞∑

m=1

(1 − |am |2)p′(s+n−(α+n)/p)
)1/p′

.

The last sum is finite by Lemma 2.8 (a) since the inequality p′(s + n − (α + n)/p) >

n − 1 is equivalent to (3). Thus Uλ isH-harmonic on B.
To show ‖Uλ‖B p

α
� ‖λ‖
p , following [4, 6, 15], we use the projection theorem.

Denote by χA the characteristic function of a set A. For λ ∈ 
p, let

g(x) :=
∞∑

m=1

|λm |(1 − |am |2)−(α+n)/p χEr/2(am)(x) (x ∈ B).
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We have ‖g‖L p
α

∼ ‖λ‖
p , since the balls Er/2(am) are disjoint and

‖g‖p
L p

α
=

∞∑

m=1

|λm |p(1 − |am |2)−(α+n)να(Er/2(am)) ∼
∞∑

m=1

|λm |p,

by (15). Next, with Qs as in (18),

Qsg(x) =
∞∑

m=1

|λm |(1 − |am |2)−(α+n)/p
∫

Er/2(am )

(1 − |y|2)s
[x, y]s+n

dν(y)

∼
∞∑

m=1

|λm |(1 − |am |2)s+n−(α+n)/p

[x, am]s+n
,

where in the last line we first use the fact that [x, y] ∼ [x, am] for y ∈ Er/2(am) by
Lemma 2.5, and then use (15). This shows that |Uλ(x)| � Qsg(x) by Lemma 2.9 (a)
and (20). Since Qs is bounded by Lemma 2.11 and (3), we conclude

‖Uλ‖Bp
α

� ‖Qsg‖L p
α

� ‖g‖L p
α

∼ ‖λ‖
p .

��
To verify that the above operatorU : 
p → B p

α is onto under the additional assump-
tion that {am} is an r -latticewith r small enough,we need to consider a second operator.
We first recall the following sub-mean value inequality forH-harmonic functions. For
a proof see [13, Section 4.7]. Here, dτ(x) = (1−|x |2)−ndν(x) is the invariantmeasure
on B.

Lemma 3.2 Let f ∈ H(B) and 0 < p < ∞. For all a ∈ B and all 0 < δ < 1,

| f (a)|p ≤ C

δn

∫

Eδ(a)

| f (y)|p dτ(y),

where C = 1 if p ≥ 1 and C = 2n/p if 0 < p < 1.

Proposition 3.3 Let α > −1, 0 < p < ∞ and {am} be r-separated for some 0 < r <

1. Then the operator T : B p
α → 
p defined by

T f = {
f (am)(1 − |am |2)(α+n)/p} (21)

is bounded.

Proof Applying Lemma 3.2 with δ = r/2 and noting that (1 − |y|2) ∼ (1 − |am |2)
for y ∈ Er/2(am) by Lemma 2.4, we obtain

| f (am)|p(1 − |am |2)α+n �
∫

Er/2(am)

| f (y)|p dνα(y).
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Since the balls Er/2(am) are disjoint, we deduce

‖T f ‖p

p =

∞∑

m=1

| f (am)|p(1 − |am |2)α+n �
∞∑

m=1

∫

Er/2(am )

| f (y)|p dνα(y) ≤ ‖ f ‖p
Bp

α
.

��
We need a slightly modified version of the above operator T .

Proposition 3.4 For α > −1 and 0 < p < ∞, choose s so that (3) holds. If {am}
is an r-lattice for some 0 < r < 1 and {Em} is the associated sequence as given in
Lemma 2.7, then the operator T̂ : B p

α → 
p defined by

T̂ f = {
f (am) ‖Rs(·, am)‖Bp

α
νs(Em)

}
(22)

is bounded.

Proof Since ‖Rs(·, am)‖Bp
α

νs(Em) ∼ (1− |am |2)(α+n)/p by (16) and (20), the result
follows from Proposition 3.3. ��
Proposition 3.5 For α > −1 and 0 < p < ∞, choose s so that (3) holds. There exists
a constant C > 0 depending only on n, α, p, s such that if {am} is an r-lattice with
r < 1/8, then ‖I −UT̂ ‖Bp

α →Bp
α

≤ Cr.

In the proofs of the previous propositions we allowed the constants to depend on the
separation constant r . This time we need to be careful that the suppressed constants
are independent of r . We prove the cases p ≥ 1 and 0 < p < 1 separately.

Proof of Proposition 3.5 when p ≥ 1 By (19) and (22),

UT̂ f (x) =
∞∑

m=1

∫

Em

f (am)Rs(x, am) dνs(y),

and by (3) and Lemma 2.11 we have Ps f = f and so

f (x) =
∞∑

m=1

∫

Em

f (y)Rs(x, y) dνs(y).

Therefore

(I −UT̂ ) f (x) =
∞∑

m=1

∫

Em

(Rs(x, y) − Rs(x, am)
)
f (y) dνs(y)

+
∞∑

m=1

∫

Em

Rs(x, am)
(
f (y) − f (am)

)
dνs(y)

=: h1(x) + h2(x). (23)
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We first estimate h1. Let y ∈ Em . By the mean value theorem of calculus, there exists
ỹ lying on the line segment joining am and y such that

Rs(x, y) − Rs(x, am) = 〈
y − am,∇2Rs(x, ỹ)

〉
,

where∇2 means the gradient is taken with respect to the second variable. Observe that
because r is bounded above by 1/8, there are constants independent of r such that for
y ∈ Em ⊂ Er (am), we have [y, am] ∼ [y, y] = 1 − |y|2 by Lemma 2.5. Thus, by
(12),

|y − am | = ρ(y, am)[y, am] < r [y, am] � r(1 − |y|2).

Next, since am and y are both in the ball Er (am), so is ỹ. Hence ρ(y, ỹ) < 1/4 and by
Lemma 2.5, [x, y] ∼ [x, ỹ] for every x ∈ B with the constants again not depending
on r . Therefore, by Lemma 2.9 (b) and the symmetry of Rs(·, ·),

∣∣∇2Rs(x, ỹ)
∣∣ � 1

[x, ỹ]s+n+1 ∼ 1

[x, y]s+n+1 .

Combining these we see that for y ∈ Em and x ∈ B,

|Rs(x, y) − Rs(x, am)| � r(1 − |y|2)
[x, y]s+n+1 � r

[x, y]s+n
, (24)

where in the last inequality we use [x, y] ≥ 1 − |y| by (8). Thus

|h1(x)| � r
∞∑

m=1

∫

Em

| f (y)|
[x, y]s+n

dνs(y) = r
∫

B

| f (y)|
[x, y]s+n

dνs(y) = r Qs(| f |)(x),

and since Qs is bounded on L p
α by Lemma 2.11, we obtain ‖h1‖L p

α
� r‖ f ‖B p

α
.

We now estimate h2. Let y ∈ Em . As above, we have Ps f = f , and so

f (y) − f (am) =
∫

B

(Rs(y, z) − Rs(am, z)
)
f (z) dνs(z).

Since Rs(·, ·) is symmetric, by (24),

|Rs(y, z) − Rs(am, z)| � r

[y, z]s+n
,

for all z ∈ B with the constants not depending on r . Thus

| f (y) − f (am)| � r
∫

B

| f (z)|
[y, z]s+n

dνs(z) = r Qs(| f |)(y),
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and so

|h2(x)| � r
∞∑

m=1

∫

Em

|Rs(x, am)| Qs(| f |)(y) dνs(y) � r
∞∑

m=1

∫

Em

Qs(| f |)(y)
[x, am]s+n

dνs(y),

where in the last inequality we use Lemma 2.9 (a). By Lemma 2.4 again, we have
[x, am] ∼ [x, y] for y ∈ Em ⊂ Er (am) since r < 1/8. Hence

|h2(x)| � r
∞∑

m=1

∫

Em

Qs(| f |)(y)
[x, y]s+n

dνs(y) = r
∫

B

Qs(| f |)(y)
[x, y]s+n

dνs(y)

= r Qs
(
Qs(| f |)

)
(x),

and since Qs is bounded on L p
α we obtain that ‖h2‖L p

α
� r‖ f ‖B p

α
.

We conclude that ‖(I − UT̂ ) f ‖Bp
α

≤ Cr‖ f ‖B p
α
, with C depending only on

n, α, p, s. This finishes the proof when p ≥ 1. ��
In order to prove the case 0 < p < 1, we need to do some preparation. The

following inequality is proved in [13, Theorem 4.7.4 part (b)].

Lemma 3.6 Let 0 < p < ∞ and 0 < δ < 1/2. There exists a constant C > 0
depending only on n, p, δ such that for all a ∈ B and f ∈ H(B),

|∇h f (a)|p ≤ C

δn

∫

Eδ(a)

| f (y)|p dτ(y).

The next lemma is a special case of Theorem 1.3 part (a).

Lemma 3.7 Let 0 < p < 1 and α > −1. Then B p
α ⊂ B1

(α+n)/p−n and the inclusion is
continuous.

Proof By [13, Eqn. (10.1.5)], there exists a constant C > 0 depending only on n, α, p
such that

| f (x)| ≤ C

(1 − |x |2)(α+n)/p
‖ f ‖Bp

α
, (25)

for all x ∈ B and f ∈ B p
α . In the integral below writing | f (x)| = | f (x)|p| f (x)|1−p

and applying (25) to the factor | f (x)|1−p, we deduce

∫

B

| f (x)|(1 − |x |2)(α+n)/p−n dν(x) ≤ C1−p‖ f ‖1−p
Bp

α

∫

B

| f (x)|p(1 − |x |2)α dν(x)

= C1−p‖ f ‖Bp
α
.

��
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Proof of Proposition 3.5 when 0 < p < 1 In this part of the proof we can not use the
projection theorem which requires p ≥ 1. Instead, we follow [6, p. 19] and use a
suitable rearrangement of the sequence {am} as described below.

Pick a 1/2-lattice {bm} and fix it throughout the proof. Denote the sequence of sets
associated to the lattice {bm} as described in Lemma 2.7 by {Dm}. That is, the sets Dm

are disjoint with
⋃∞

m=1 Dm = B and

E1/4(bm) ⊂ Dm ⊂ E1/2(bm) (m = 1, 2, . . . ).

Given an r -lattice {am}with r < 1/8, renumber {am} in the followingway. Call the ele-
ments of {am} that are in D1 as a11, a12, . . . , a1κ1 and in general call the points of {am}
that are in Dm as am1, am2, . . . , amκm . Denote the sets given in Lemma 2.7 correspond-
ing to this renumbering by Emk . Thus, the sets Emk are disjoint,

⋃∞
m=1

⋃κm
k=1 Emk = B

and

Er/2(amk) ⊂ Emk ⊂ Er (amk) (m = 1, 2, . . . , k = 1, 2, . . . , κm).

By the above construction, since amk ∈ Dm ⊂ E1/2(bm), we have

ρ(amk, bm) < 1/2 (m = 1, 2, . . . , k = 1, 2, . . . , κm), (26)

and by the triangle inequality and the fact that r < 1/8,

Emk ⊂ E5/8(bm). (27)

Suppose now f ∈ B p
α . We claim that Ps f = f . This is true because by Lemma 3.7,

f is in B1
(α+n)/p−n and for this space the required condition in Lemma 2.11 (c) is

s > (α + n)/p − n which holds by (3). Therefore

f (x) =
∫

B

f (y)Rs(x, y) dνs(y) =
∞∑

m=1

κm∑

k=1

∫

Emk

f (y)Rs(x, y) dνs(y).

Next, with the above rearrangement, by (19) and (22),

UT̂ f (x) =
∞∑

m=1

κm∑

k=1

f (amk)νs(Emk)Rs(x, amk)

and so, similar to (23), we have

(I −UT̂ ) f (x) =
∞∑

m=1

κm∑

k=1

∫

Emk

(Rs(x, y) − Rs(x, amk)
)
f (y) dνs(y)

+
∞∑

m=1

κm∑

k=1

∫

Emk

Rs(x, amk)
(
f (y) − f (amk)

)
dνs(y)

=: h1(x) + h2(x).
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We first estimate h1. We will again be careful that in the estimates below the
suppressed constants are independent of the separation constant r . Let y ∈ Emk . First,
as is shown in (24), for all x ∈ B,

|Rs(x, y) − Rs(x, amk)| � r

[x, y]s+n
� r

[x, bm]s+n
, (28)

where in the last inequality we use Lemma 2.5 with (27). Next, applying Lemma 3.2
with δ = 1/8 and noting that E1/8(y) ⊂ E3/4(bm), we obtain

| f (y)|p �
∫

E1/8(y)
| f (z)|p dτ(z) ≤

∫

E3/4(bm)

| f (z)|p dτ(z)

� (1 − |bm |2)−(α+n)

∫

E3/4(bm )

| f (z)|p dνα(z),

(29)

where in the last inequality we use (1 − |z|2) ∼ (1 − |bm |2) for z ∈ E3/4(bm) by
Lemma 2.4. Combining (28) and (29) we deduce

|h1(x)| � r
∞∑

m=1

(1 − |bm |2)−(α+n)/p

[x, bm]s+n

( ∫

E3/4(bm )

| f (z)|pdνα(z)

) 1
p

κm∑

k=1

νs(Emk).

(30)

Since the sets Emk are disjoint and Emk ⊂ E5/8(bm) for every k = 1, . . . , κm by (27),
we have

∑κm
k=1 νs(Emk) ≤ νs(E5/8(bm)). Also νs(E5/8(bm)) ∼ (1 − |bm |2)s+n by

Lemma 2.4 and (13). Using this and then Lemma 2.13 (i) yields

|h1(x)|p � r p
∞∑

m=1

(1 − |bm |2)p(s+n)−(α+n)

[x, bm]p(s+n)

∫

E3/4(bm )

| f (z)|p dνα(z).

Integrating over B with respect to dνα , applying Fubini’s theorem, and noting that

(1 − |bm |2)p(s+n)−(α+n)

∫

B

dνα(x)

[x, bm]p(s+n)
� 1,

by Lemma 2.12 and (3), we obtain

‖h1‖p
L p

α
� r p

∞∑

m=1

∫

E3/4(bm)

| f (z)|p dνα(z). (31)

Finally, by Lemma 2.6, there exists N such that every z ∈ B belongs at most N of
the balls E3/4(bm), and so

∑∞
m=1

∫
E3/4(bm)

| f (z)|p dνα(z) ≤ N
∫
B
| f (z)|p dνα(z). We
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conclude that

‖h1‖p
L p

α
� r p‖ f ‖p

L p
α
. (32)

We next estimate h2. Let y ∈ Emk . By the mean-value theorem of calculus, there
exists ỹ lying on the line segment joining amk and y such that

| f (y) − f (amk)| ≤ |y − amk | |∇ f (ỹ)| = ρ(y, amk)[y, amk] |∇h f (ỹ)|
1 − |ỹ|2

< r
[y, amk]
1 − |ỹ|2 |∇h f (ỹ)|,

where we also use (1), (12) and the fact that ρ(y, amk) < r because Emk ⊂ Er (amk).
Since the point ỹ is also in the ball Er (amk) and r < 1/8, we have

ρ(ỹ, amk) < 1/8, (33)

and therefore (1 − |ỹ|2) ∼ (1 − |amk |2) by Lemma 2.4. Similarly, since ρ(y, amk) <

1/8, we have [y, amk] ∼ [amk, amk] = (1 − |amk |2) by Lemma 2.5 and we conclude

| f (y) − f (amk)| � r |∇h f (ỹ)|.

Next, applying Lemma 3.6 with δ = 1/8 and then using E1/8(ỹ) ⊂ E3/4(bm) which
follows from (33) and (26), we obtain

|∇h f (ỹ)|p �
∫

E1/8(ỹ)
| f (z)|p dτ(z) ≤

∫

E3/4(bm )

| f (z)|p dτ(z)

� (1 − |bm |2)−(α+n)

∫

E3/4(bm )

| f (z)|p dνα(z),

similar to (29). Using also that

|Rs(x, amk)| � 1

[x, amk]s+n
∼ 1

[x, bm]s+n
,

which follows from Lemma 2.9 (a) and Lemma 2.5 with (26), we conclude that

|h2(x)| � r
∞∑

m=1

(1 − |bm |2)−(α+n)/p

[x, bm]s+n

( ∫

E3/4(bm )

| f (z)|pdνα(z)

) 1
p

κm∑

k=1

νs(Emk).

This estimate is same as (30). Thus we again have ‖h2‖p
L p

α
� r p‖ f ‖p

Bp
α
and hence

‖(I −UT̂ ) f ‖p
Bp

α
≤ ‖h1‖p

L p
α

+ ‖h2‖p
L p

α
� r p‖ f ‖p

Bp
α
. We conclude that ‖(I −UT̂ )‖ ≤

Cr , where C depends only on n, p, α, s. ��
Proposition 3.5 immediately implies Theorem 1.1.
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Proof of Theorem 1.1 By Proposition 3.5, if r is small enough, then ‖I − UT̂ ‖ < 1,
and so UT̂ has bounded inverse. Given f ∈ B p

α , let λ = T̂ (UT̂ )−1 f . Then λ ∈ 
p,
Uλ = f , and ‖λ‖
p ∼ ‖ f ‖Bp

α
. We note that in the equivalence ‖λ‖
p ∼ ‖ f ‖Bp

α
, the

suppressed constants depend also on r . ��
Remark 3.8 One can replace (4) in Theorem 1.1 with (5) because of Lemma 2.10. The
only change needed in the above proof is to replace Uλ in (19) with

Uλ(x) =
∞∑

m=1

λm(1 − |am |2)s+n−(α+n)/p Rs(x, am),

and T̂ f in (22) with

T̂ f = { f (am)(1 − |am |2)(α+n)/p−(s+n) νs(Em)}.

Then UT̂ remains the same and so does Proposition 3.5. In the proofs of Proposi-
tions 3.1 and 3.4 we omit the references to (20).

4 Interpolation

To proveTheorem1.2we again consider two operators. One is Û : 
p → B p
α , a slightly

modified version of U given in (19) and the other is T : B p
α → 
p,

T f = {
f (am)(1 − |am |2)(α+n)/p},

given in (21). Our main purpose is to show that the composition TÛ : 
p → 
p is
invertible when the separation constant is large enough.

Proposition 4.1 For α > −1 and 0 < p < ∞, choose s so that (3) holds. If {am} is
r-separated for some 0 < r < 1, then the operator Û : 
p → B p

α mapping λ = {λm}
to

Ûλ(x) =
∞∑

m=1

λm(1 − |am |2)−(α+n)/p Rs(x, am)

Rs(am, am)
(x ∈ B) (34)

is bounded. The above series converges absolutely and uniformly on compact subsets
of B, and also in ‖ · ‖Bp

α
.

We have Rs(am, am)(1 − |am |2)(α+n)/p ∼ ‖Rs(·, am)‖Bp
α
by (17) and Lemma 2.10,

and this proposition can be proved in the same way as Proposition 3.1. The minor
changes required are omitted.

Proposition 4.2 For α > −1 and 0 < p < ∞, choose s so that (3) holds. There
exists 1/2 < r0 < 1 depending only on n, α, p, s such that if {am} is r-separated with
r > r0, then ‖TÛ − I‖
p→
p < 1.
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This proposition immediately implies Theorem 1.2, similar to the proof of Theo-
rem 1.1 above.

To verify Proposition 4.2, let λ = {λm} ∈ 
p. Then the m-th term of the sequence
(TÛ − I )λ is given by

{(TÛ − I )λ}m = (1 − |am |2)(α+n)/p
∞∑

k=1
k =m

λk(1 − |ak |2)−(α+n)/pRs(am, ak)

Rs(ak, ak)
,

and by Lemma 2.9 (a) and (17), we have

∣∣{(TÛ − I )λ}m
∣∣ ≤ C(1 − |am |2)(α+n)/p

∞∑

k=1
k =m

|λk | (1 − |ak |2)s+n−(α+n)/p

[am, ak]s+n
, (35)

where the constant C depends only on n, α, p and s.
To estimate the norm ‖(TÛ − I )λ‖
p , we need an estimate of the series on the

right of (35) (without the |λk | term) as given in Lemma 4.4 below. We first prove this
lemma and complete the proof of Proposition 4.2 at the end of the section.

Observe that by Lemma 2.12, for b > −1 and c > 0, there existsC > 0 (depending
only on n, b, c) such that

(1 − |a|2)c
∫

B

(1 − |y|2)b
[a, y]n+b+c

dν(y) ≤ C,

uniformly for all a ∈ B. The next result will be needed in the proof of Lemma 4.4.

Lemma 4.3 Let b > −1 and c > 0. For ε > 0, there exists 0 < rε < 1 such that if
rε < r < 1, then for all a ∈ B,

(1 − |a|2)c
∫

B\Er (a)

(1 − |y|2)b
[a, y]n+b+c

dν(y) < ε.

Proof Let

F(a, r) := (1 − |a|2)c
∫

B\Er (a)

(1 − |y|2)bdν(y)

[a, y]n+b+c
,

and in the integral make the change of variable y = ϕa(z). Since ϕa(Br ) = Er (a) and
|Jϕa | is as given in (11), we obtain

F(a, r) = (1 − |a|2)c
∫

B\Br

(1 − |ϕa(z)|2)b+n dν(z)

[a, ϕa(z)]n+b+c(1 − |z|2)n .
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Applying Lemma 2.1 and (10), and simplifying shows

F(a, r) =
∫

B\Br

(1 − |z|2)b
[a, z]n+b−c

dν(z) = n
∫ 1

r
tn−1(1 − t2)b

∫

S

dσ(ζ )

|ta − ζ |n+b−c
dt,

where in the second equality we integrate in polar coordinates and use the fact that
[a, tζ ] = |ta − ζ | by (7). By Lemma 2.12 and the inequality 1 − |a|2t2 ≥ 1 − t2,

∫

S

dσ(ζ )

|ta − ζ |n+b−c
≤ Cg(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

(1 − t2)1+b−c
, if 1 + b − c > 0;

1 + log
1

1 − t2
, if 1 + b − c = 0;

1, if 1 + b − c < 0,

where the constant C depends only on n, b, c and do not depend on a. Thus

F(a, r) ≤ Cn
∫ 1

r
tn−1(1 − t2)b g(t) dt .

In all the three cases the integral
∫ 1
0 tn−1(1 − t2)b g(t) dt is finite because b > −1

and c > 0 and hence, one can make F(a, r) < ε by choosing r close to 1. ��
The next lemma is an analogue of Lemma 3.1 of [11].

Lemma 4.4 Let b > n − 1 and c > 0. For 1/2 < r < 1, there exists C(r) > 0
(depending also on n, b and c) such that for every r-separated sequence {am} and for
every m = 1, 2, . . . ,

(1 − |am |2)c
∞∑

k=1
k =m

(1 − |ak |2)b
[am, ak]b+c

≤ C(r).

Moreover, one can choose C(r) to be arbitrarily small by making r sufficiently close
to 1.

Proof By the Lemmas 2.4, 2.5 and (13), there exists C > 0 depending only on n, b, c
such that

(1 − |a|2)b
[x, a]b+c

≤ C
∫

E1/4(a)

(1 − |y|2)b−n

[x, y]b+c
dν(y),

for all a, x ∈ B. If {am} is r -separated with r > 1/2, then the balls E1/4(am) are
disjoint and therefore

(1 − |am |2)c
∞∑

k=1
k =m

(1 − |ak |2)b
[am, ak]b+c

≤ C(1 − |am |2)c
∫

⋃∞
k=1
k =m

E1/4(ak )

(1 − |y|2)b−n

[am, y]b+c
dν(y).
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Set

R := r − 1/4

1 − r/4
.

Clearly, 0 < R < 1. We claim that
⋃∞

k=1
k =m

E1/4(ak) ⊂ B\ER(am). To see this, let

z ∈ E1/4(ak) with k = m. Then, by the strong triangle inequality in Lemma 2.2,

ρ(z, am) ≥ ρ(am, ak) − ρ(z, ak)

1 − ρ(am, ak)ρ(z, ak)
≥ r − ρ(z, ak)

1 − rρ(z, ak)
≥ r − 1/4

1 − r/4
,

where in the second and third inequalities we use ρ(am, ak) ≥ r and ρ(z, ak) < 1/4,
and the elementary fact that for 0 ≤ t0 < 1, the function f (t) = (t − t0)/(1 − t t0) is
increasing on the interval 0 ≤ t < 1 and − f is decreasing. Thus

(1 − |am |2)c
∞∑

k=1
k =m

(1 − |ak |2)b
[am, ak]b+c

≤ C(1 − |am |2)c
∫

B\ER(am)

(1 − |y|2)b−n

[am, y]b+c
dν(y),

and since R → 1− as r → 1−, the desired result follows from Lemma 4.3. ��
We now complete the proof of Proposition 4.2. We consider the cases 0 < p ≤ 1

and p > 1 separately.

Proof of Proposition 4.2 when 0 < p ≤ 1 For λ = {λm} ∈ 
p, by (35), Lemma 2.13
(i) and Fubini’s theorem,

‖(TÛ − I )λ‖p

p ≤ C p

∞∑

m=1

(1 − |am |2)α+n
( ∞∑

k=1
k =m

|λk | (1 − |ak |2)s+n−(α+n)/p

[am, ak]s+n

)p

≤ C p
∞∑

m=1

(1 − |am |2)α+n
∞∑

k=1
k =m

|λk |p (1 − |ak |2)p(s+n)−(α+n)

[am, ak]p(s+n)

= C p
∞∑

k=1

|λk |p(1 − |ak |2)p(s+n)−(α+n)
∞∑

m=1
m =k

(1 − |am |2)α+n

[am, ak]p(s+n)
.

By Lemma 4.4, there exists C(r) such that (note that α + n > n − 1 since α > −1,
and p(s + n) − (α + n) > 0 by (3))

‖(TÛ − I )λ‖p

p ≤ C p C(r)‖λ‖p


p .

SinceC(r) can bemade arbitrarily small bymaking r close enough to 1, the proposition
follows. ��
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We next deal with the case 1 < p < ∞. Let p′ be the conjugate exponent of p. We
employ Schur’s test which, for the sequence space 
p, has the following form (see [11,
Lemma 3.2]): Let A = (Amk)1≤m,k<∞ be an infinite matrix with nonnegative entries
and L A : 
p → 
p be the corresponding operator taking λ = {λm} to

{L Aλ}m =
∞∑

k=1

Amkλk, m = 1, 2, . . . .

If there exists a constant C > 0 and a positive sequence {γm} such that

∞∑

k=1

Amkγ
p′
k ≤ Cγ

p′
m , m = 1, 2, . . . ,

and

∞∑

m=1

Amkγ
p
m ≤ Cγ

p
k , k = 1, 2, . . . ,

then the operator LA : 
p → 
p is bounded and ‖L A‖ ≤ C .

Proof of Proposition 4.2 when 1 < p < ∞ Without loss of generality we can assume
that the r -separated sequence {am} is maximal, that is {am} is an r -lattice and so is an
infinite sequence.

For m, k = 1, 2, . . . , let Amk = 0 if k = m; and if k = m, let

Amk = (1 − |am |2)(α+n)/p (1 − |ak |2)s+n−(α+n)/p

[am, ak]s+n
.

Let A = (Amk) and L A : 
p → 
p be the corresponding operator. Then by (35),

∣∣{(TÛ − I )λ}m
∣∣ ≤ C{L Aλ}m .

To estimate ‖LA‖ with the Schur’s test, we take {γm} = {(1 − |am |2)(n−1)/pp′ }.
Then

∞∑

k=1

Amkγ
p′
k = (1 − |am |2)(α+n)/p

∞∑

k=1
k =m

(1 − |ak |2)s+n−(α+1)/p

[am, ak]s+n
,

and byLemma4.4, there existsC1(r) such that (we check that s+n−(α+1)/p > n−1
by (3), and (α + 1)/p > 0)

∞∑

k=1

Amkγ
p′
k ≤ (1 − |am |2)(α+n)/p C1(r)

(1 − |am |2)(α+1)/p
= C1(r)γ

p′
m .
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Observe next that

∞∑

m=1

Amkγ
p
m = (1 − |ak |2)s+n−(α+n)/p

∞∑

m=1
m =k

(1 − |am |2)(α+n)/p+(n−1)/p′

[am, ak]s+n
.

To apply Lemma4.4we check that (α+n)/p+(n−1)/p′ = (α+1)/p+n−1 > n−1,
and s + n − (

(α + n)/p + (n − 1)/p′) = s + 1 − (α + 1)/p > 0 by (3). Thus there
exists C2(r) such that

∞∑

m=1

Amkγ
p
m ≤ (1 − |ak |2)s+n−(α+n)/p C2(r)

(1 − |ak |2)s+n−(α+n)/p−(n−1)/p′ = C2(r)γ
p
k .

We conclude that L A is bounded and ‖L A‖ ≤ max{C1(r),C2(r)}. Therefore
‖TÛ − I‖ ≤ C max{C1(r),C2(r)} and since both C1(r) and C2(r) can be made
arbitrarily small by making r close enough to 1, we conclude that ‖TÛ − I‖ can be
made small. This finishes the proof of Proposition 4.2. ��

5 Inclusion Relations

In this section we prove Theorem 1.3.

Proof of Theorem 1.3 We first prove part (a). Suppose B p
α ⊂ Bq

β . Since point evalu-

ations are bounded on H-harmonic Bergman spaces, the inclusion i : B p
α → Bq

β is
continuous by the closed graph theorem. For every s > −1 and a ∈ B, the reproduc-
ing kernel Rs(a, ·) is bounded on B by Lemma 2.9 (a) and (8), so belongs to every
Bergman space. By Lemma 2.10, for large enough s, we have

‖Rs(a, ·)‖Bq
β

‖Rs(a, ·)‖Bp
α

∼ (1 − |a|2)(β+n)/q−(α+n)/p, (36)

and the right-hand side is bounded as |a| → 1− only if (β + n)/q ≥ (α + n)/p.
Suppose now that

α + n

p
≤ β + n

q
. (37)

Pick s large enough so that (3) holds both for α, p and β, q. Let r0 be as asserted in
the atomic decomposition theorem for B p

α and let {am} be an r -lattice with r < r0.
Then for every f ∈ B p

α , there exists {λm} ∈ 
p with ‖{λm}‖
p ∼ ‖ f ‖Bp
α
such that

f (x) =
∞∑

m=1

λm
Rs(x, am)

‖Rs(·, am)‖Bp
α

=
∞∑

m=1

κm
Rs(x, am)

‖Rs(·, am)‖Bq
β

,
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where

κm = λm

‖Rs(·, am)‖Bq
β

‖Rs(·, am)‖Bp
α

.

By (36) and (37), |κm | ∼ |λm |(1−|am |2)(β+n)/q−(α+n)/p ≤ |λm |, and so the sequence
{κm} is in 
p. Thus, {κm} ∈ 
q by Lemma 2.13 (i), and it follows from Proposition 3.1
that f ∈ Bq

β with ‖ f ‖Bq
β

� ‖{κm}‖
q ≤ ‖{κm}‖
p � ‖{λm}‖
p � ‖ f ‖Bp
α
.

We next prove part (b). Note first that in this case p/q > 1 and the conjugate
exponent of p/q is p/(p − q). To see the if part, suppose

α + 1

p
<

β + 1

q
. (38)

By Hölder’s inequality,

∫

B

| f (x)|q dνβ(x) ≤
(∫

B

| f (x)|p dνα(x)

) q
p
(∫

B

(1 − |x |2)(β−α
q
p )

p
p−q dν(x)

) p−q
p

,

and since the exponent (β − α
q
p )

p
p−q > −1 by (38), we obtain ‖ f ‖Bq

β
� ‖ f ‖Bp

α
.

Suppose now thatB p
α ⊂ Bq

β . Let r0 be as asserted in the interpolation theorem forB p
α

and let {am} be an r -lattice with r > r0. Given {λm} ∈ 
p/q , we have {|λm |1/q} ∈ 
p

and there exists a function f ∈ B p
α such that

f (am) = |λm |1/q(1 − |am |2)−(α+n)/p.

Since f is also in Bq
β , the sequence { f (am)(1 − |am |2)(β+n)/q} is in 
q by Proposi-

tion 3.3, and so

∞∑

m=1

|λm |(1 − |am |2)(β+n)−(α+n)q/p < ∞.

By Lemma 2.13 (ii), this implies that the sequence {(1 − |am |2)(β+n)−(α+n)q/p} is in

p/(p−q) and by Lemma 2.8 (b) this holds only if

(
(β + n) − (α + n)

q

p

) p

p − q
> n − 1,

which is equivalent to (38). ��

References

1. Ahlfors, L.A.: Möbius Transformations in Several Dimensions. Univ. Minnesota, Minneapolis (1981)



Harmonic Bergman Spaces on the Real Hyperbolic Ball... Page 25 of 25 40

2. Amar, É.: Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de Cn . Can.
J. Math. 30(4), 711–737 (1978)

3. Choe, B.R., Koo, H., Lee, Y.J.: Positive Schatten class Toeplitz operators on the ball. Stud. Math. 189,
65–90 (2008)

4. Choe, B.R., Lee, Y.J.: Note on atomic decompositions of harmonic Bergman functions. In: Complex
Analysis and its Applications, OCAMI Stud., vol. 2, Osaka Munic. Univ. Press, Osaka, pp. 11–24
(2007)

5. Choe, B.R., Yi, H.: Representations and interpolations of harmonic Bergman functions on half-spaces.
Nagoya Math. J. 151, 51–89 (1998)

6. Coifman, R.R., Rochberg, R.: Representation theorems for holomorphic and harmonic functions in
L p . Astérisque 77, 12–66 (1980)

7. Jaming, P.:Harmonic functions on the real hyperbolic ball I.Boundaryvalues and atomicdecomposition
of Hardy spaces. Colloq. Math. 80, 63–82 (1999)

8. Jevtić, M., Massaneda, X., Thomas, P.J.: Interpolating sequences for weighted Bergman spaces of the
ball. Mich. Math. J. 43, 495–517 (1996)

9. Liu, C.W., Shi, J.H.: Invariant mean-value property and M-harmonicity in the unit ball of Rn . Acta
Math. Sin. 19, 187–200 (2003)

10. Ren, G., Kähler, U.: Pseudohyperbolic metric and uniformly discrete sequences in the real unit ball.
Acta Math. Sci. 34B(3), 629–638 (2014)

11. Rochberg, R.: Interpolation by functions in Bergman spaces. Mich. Math. J. 29, 229–236 (1982)
12. Ryll, J., Wojtaszczyk, P.: On homogeneous polynomials on a complex ball. Trans. Am. Math. Soc.

276, 107–116 (1983)
13. Stoll, M.: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball, London Math. Soc.

Lect. Note Series, vol. 431, Cambridge University Press, Cambridge (2016)
14. Tanaka, K.: Atomic decomposition of harmonic Bergman functions. Hiroshima Math. J. 42, 143–160

(2012)
15. Tanaka, K.: Representation theorem for harmonic Bergman and Bloch functions. Osaka J. Math. 50,

947–961 (2013)
16. Üreyen, A.E.:H-Harmonic Bergman projection on the real hyperbolic ball. J. Math. Anal. Appl. 519,

126802 (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Harmonic Bergman Spaces on the Real Hyperbolic Ball: Atomic Decomposition, Interpolation and Inclusion Relations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Möbius Transformations
	2.3 Separated Sequences and Lattices
	2.4 Reproducing Kernels and Bergman Projection

	3 Atomic Decomposition
	4 Interpolation
	5 Inclusion Relations
	References




