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Abstract
Recently in Amri (Product formula for one-dimensional (k, a)-generalized Fourier
kernel. arXiv:2301.06587), the author proved the product formula for the one dimen-
sional (k, a)-generalized Fourier kernel. Profiting for this result, the primary aim of
the present paper, is to develop the harmonic analysis associated with (k, a) the gener-
alized Fourier transform. Firstly we study the (k, a)-generalized translation operator
associated with the (k, a)-generalized Fourier transform. By means of the generalized
translation operator, we define and we investigate the generalized convolution product
in the setting of the (k, a)-generalized Fourier transform. Nevertheless, significant
attention is also devoted to the time-frequency analysis by examining some applica-
tions on the wavelet transform in the (k, a)-generalized Fourier transform setting.
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1 Introduction

Harmonic analysis in Rd is governed by the following three operators

� :=
d∑

j=1

∂2x j , ||x ||2 :=
d∑

j=1

x2j , E :=
d∑

j=1

x j∂x j ,

where � is the Laplace operator and E is the Euler operator. As observed in [25], the
operators

E = ||x ||2
2

, F = −�
2

, and H = E + d

2

are invariant under O(d) and generate the Lie algebra sl2:

[H , E] = 2E, [H , F] = −2F, [E, F] = H .

Recently, there has been a lot of interest in other differential or difference operator
realizations of sl2 or other Lie (super) algebras. The focus is in particular on the gen-
eralized Fourier transforms that subsequently arise. We mention the Dunkl transform
[17], various discrete Fourier transforms [26], Fourier transforms in Clifford analysis
[15], etc. For a more detailed review, we refer the reader to [16].

A hard problem in this context is to find explicit closed formulas for the integral
kernel of the associated Fourier transforms.

The classical Fourier transform in R
d can be defined in many ways. In its most

basic formulation, it is given by the integral transform

F( f )(λ) = 1

(2π)
d
2

∫

Rd
e−i〈λ,x〉 f (x)dx .

Alternatively, one can rewrite the transform as

F( f )(λ) = 1

(2π)
d
2

∫

Rd
K(λ, x) f (x)dx,

where K(λ, x) is the unique solution to the system of partial differential equations

{
∂x jK(λ, x) = −iλ jK(λ, x), j = 1, ..., d,

K(λ, 0) = 1, λ ∈ R
d .

A third description was discovered by Howe [25],

F = exp

(
iπd

4

)
exp

(
iπ

4
(� − ||x ||2)

)
.
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Both of the previous representations have their uses, and it is explained in the
overview paper [16] how to construct various extensions such as a fractional Fourier
transform and Clifford algebra-valued analogues.

Recently, Ben Said and all in [4], have given a foundation of the deformation
theory of the classical situation, by constructing a generalization Fk,a of the Fourier
transform, and the holomorphic semigroup Ik,a(z) with infinitesimal generator

Lk,a := ||x ||2−a�k − ||x ||a, a > 0,

acting on a concrete Hilbert space deforming L2(Rd). Here �k is the Dunkl Laplace
operator (see [17]). The authors have analyzed these operators Fk,a and Ik,a(z) in the
context of integral operators as well as representation theory. The deformation param-
eters consist of a real parameter a coming from the interpolation of theminimal unitary
representations of two different reductive groups by keeping smaller symmetries (see
Diagram 1), and a parameter k coming fromDunkl’s theory of differential-difference
operators associated with a finite Coxeter group; also the dimension d and the complex
variable z may be considered as a parameter of the theory. (See [4]).

A lot of attention has been given to various generalizations of the Fourier transform.
This paper focuses on the (k, a)-generalized Fourier transform associated with the
operator Lk,a .

As of now, the (k, a)-generalized Fourier transform Fk,a has witnessed an ample
amount of research in the realm of harmonic analysis, which include study of the ker-
nel of the (k, a)-generalized Fourier transform [1, 12, 24], the generalized translation
operator [7, 10, 39], the generalized maximal function [6, 7, 9], the Flett potentials
[8], Pitt’s inequalities [23], uncertainty principles [23, 27], the (k, a)-Fourier mul-
tipliers [29], the (k, a)-generalized wavelet multipliers [33], the (k, a)-generalized
wavelet transform [34, 38], the (k, a)-generalizedGabor transform [36, 37], the (k, a)-
generalized Stockwell transform [39], the (k, a)-generalized Wigner transform [44],
Hardy inequalities for fractional (k, a)-generalized harmonic oscillator [47] and many
more.

Yet there are still several gaps in our knowledge of the harmonic analysis asso-
ciated with the (k, a)-generalized Fourier transform. One of the main reasons is the
lack of tools related to the generalized translation operator. Unfortunately, the L p-
boundedness and the positivity of this generalised translation operator are not obtained
in general. At the moment an explicit formula for the generalised translation operator
is known only in the following cases:

• a = 2, d ≥ 1, k ≡ 0. The generalized translation operator is the Euclidean
translation operator. (See [45]).

• a = 2, d = 1, k > 0. Then we recover the Dunkl translation (see [42]).
• a = 1, d ≥ 1, k ≡ 0. Then the generalized translation operator is the multivari-
able Bessel translation. (See [11, 32]).

• a = 1, d = 1, k > 0. The generalized translation operator is the k-Hankel
translation studied in [5].

• a = 2
n , d = 1, k > 0. The generalized translation operator is the deformed

Hankel translation studied in [10, 39].
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We note that when d > 1, the generalized translation operators are defined for the
suitable radial functions only in the spacial cases a = 1 and a = 2 (see [7, 46]).

This paper is a continuation of the papers [34, 39] on the study of the generalized
translation operators and its applications. Indeed, we note that in [34], we have defined
the generalized translation operators on the Lebesgue space L2

k,a(R
d), next we defined

and studied the generalized wavelet transform in the setting of the (k, a)-generalized
Fourier transform, and we gave many applications on this transformation. Also, in
[39], we have studied the positivity of the generalized translation operators in the
special case a = 2

n , n ∈ N and d = 1, next we defined and study the generalized
Stockwell transform in the setting of the (k, a)-generalized Fourier transform and we
give many applications on this transformation.

In this paper, we consider the case a > 0 and d = 1. The purpose of this document
is twofold. On one hand and profiting from the product formula proved in [1], we
want to develop the harmonic analysis associated with the (k, a)-generalized Fourier
transform. In particular, we introduce andwe study the generalized translation operator
on the (k, a)-generalized Fourier transform setting. Next, we introduce the generalized
convolution operator and we prove its fundamental properties. The inversion theorem
for the (k, a)-generalized Fourier transform is also proven. Profiting of the harmonic
analysis associatedwith the (k, a)-generalizedFourier transform, the aimof the second
part of this paper is to consider the generalized wavelet transform in the setting of the
(k, a)-generalized Fourier transform, study its harmonic analysis and to give many
applications for this transformation. The applications on the wavelet transforms have
been studied by many authors for various Fourier transforms, for examples (cf. [3, 13,
14, 20–22, 43, 48, 49]) and others.

The main contributions of this article are as follows:

• To study the generalized translation operator on the Lebesgue spaces L p
k,a(R).

• To define and to study the generalized convolution operator on the Lebesgue spaces
L p
k,a(R).

• To prove the inversion and Plancherel’s formulas for the (k, a)-generalized Fourier
transform.

• To study the harmonic analysis associated with the (k, a)-generalized wavelet
transform.

• To introduce and to study the (k, a)-generalized Hardy operator.

The remainder of this paper is arranged as follows.
In Sect. 2, we recall the main results about the (k, a)-generalized Fourier transform.

Section 3 is exclusively dedicated to study the generalized convolution operator. In
Sect. 4, we give many applications for the generalized wavelet transform. Firstly, we
prove the inversion, Plancherel’s and Lieb’s formulas. Next we develop the concept
of the generalized wavelet transform in L p-space and we derive the Parseval’s and
the inversion formulas. We define the composition of the (k, a)-generalized wavelet
transforms and we obtain its Parseval’s identity. Further, we discuss the generalized
convolution operator and (k, a)-generalizedwavelet transformas time-invariant filters.
Finally, the (k, a)-generalized Hardy operator is investigated.
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Fig. 1 Special values of holomorphic semigroup Ik,a(z)

2 Preliminaries

We shall take a survey of the (k, a)-generalized Fourier transform together with the
fundamental properties. Main references are [4, 24]. To facilitate the narrative, we set
some notations as under:

• For p ∈ [1,∞], p′ denotes as in all that follows, the conjugate exponent of p.
• Mk,a := 1

2a
2k−1
a �( 2k+a−1

a )
,

• dγk,a(x) := Mk,a |x |2k+a−2dx , k ≥ 2−a
2 .

• L p
k,a(R), 1 ≤ p ≤ ∞, denotes the space ofmeasurable functions f onR satisfying

|| f ||L p
k,a(R) :=

(∫

R

∣∣ f (x)
∣∣pdγk,a(x)

)1/p
< ∞, if 1 ≤ p < ∞,

∥∥ f
∥∥
L∞
k,a(R)

:= ess sup
x∈R

| f (x)| < ∞.

In case p = 2, the inner product on the space L p
k,a(R) is given by

〈
f , g
〉
L2
k,a(R)

:=
∫

R

f (x) g(x) dγk,a(x).
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• Cb(R) the space of bounded continuous functions on R.
• Cb,e(R) the space of even bounded continuous functions on R.
• C p(R) the space of functions of class C p on R.
• S(R) the Schwartz space of rapidly decreasing functions on R.
• Se(R) the Schwartz space of even rapidly decreasing functions on R.
• Let E be a measurable subset of R, χE denotes the characteristic function of the
set E .

The Dunkl operator Tk , on R is given for f in C1(R) by

Tk f (x) := f ′(x) + 2k
f (x) − f (−x)

x
. (2.1)

We define the Dunkl Laplace operator �k on R for f in C2(R), by

�k f (x) := T 2
k f (x) = f ′′(x) + 2k

( f ′(x)
x

− f (x) − f (−x)

x2

)
.

Consider the operator

�k,a := |x |2−a�k − |x |a . (2.2)

In the following we recall some spectral properties of the operator �k,a .

Proposition 2.1 Let a and k be as above.
(1) The differential-difference operator �k,a is an essentially self-adjoint operator

on L2
k,a(R).

(2) There is no continuous spectrum of �k,a.
(3) The discrete spectrum of −�k,a is given by

{2ma + 2k + a ± 1 : m ∈ N}.

For k ≥ max( 2−a
2 , 0), the (k, a)-generalized kernel Bk, a (λ, x) is given by

Bk, a (x, y) = j 2k−1
a

(
2

a
|xy| a

2 )

+�( 2k+ a −1
a )

�( 2k+ a +1
a )

xy

(i a )
2
a

j 2k+1
a

(
2

a
|xy| a

2 ). (2.3)

Here jν is the normalized Bessel function given by

jν(t) = �(ν + 1)
∞∑

n=0

(−1)nt2n

22nn!�(n + ν + 1)
. (2.4)

Let n ∈ Z, we denote by Xn,a the set defined by

Xn,a := e
inπ
a R.
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It is clear that X0,a = R, Xn,1 = R and Xn,2 = iR.
We extend the definition of the (k, a)-generalized kernel Bk, a on Xn,a as follow:

∀ x, y ∈ R, Bk, a (e
inπ
a x, y) = j 2k−1

a

(
e
inπ
2

2

a
|xy| a

2

)

+�( 2k+ a −1
a )

�( 2k+ a +1
a )

e
inπ
a xy

(i a )
2
a

j 2k+1
a

(
e
inπ
2

2

a
|xy| a

2

)
. (2.5)

In the following result, we present some important properties of the (k, a)-
generalized kernel Bk, a .

Proposition 2.2 [4, 24] (i) For x, y ∈ R, we have

Bk, a (x, y) = Bk, a (y, x), Bk, a (x, 0) = 1,

and Bk, a (λx, y) = Bk, a (x, λy) for all λ ∈ R.
ii) If a = 2

n , n ∈ N and k ≥ 1
2 , then for all x, y ∈ R, we have

|Bk,a(x, y)| ≤ 1. (2.6)

iii) The conditions

0 < a ≤ 2, k ≥ 1

2
− a

4
, or a ≥ 2, k ≥ 0, (2.7)

are necessary and sufficient for boundedness of the kernel Bk,a(x, y).
iv) If k and a satisfying (2.7), there exists a finite positive constant C only depends

on a and k, such that

∀ x, y ∈ R, |Bk,a(x, y)| ≤ C . (2.8)

v) The distribution Bk,a(., .) solves the following differential-difference equations
on R × R

{ |λ|2− a �λ
k Bk, a (λ, x) = −|x | a Bk, a (λ, x),

|x |2− a �x
k Bk, a (λ, x) = −|λ| a Bk, a (λ, x).

(2.9)

Here, the superscript in �x
k , etc indicates the relevant variable.

Remark 2.1 (i) Gorbachev and all in [24], proved that in either of the following cases

• 0 < a ≤ 1, and k = 1
2 − a

4 , or• a ∈ (1, 2) ∪ (2,∞), and k ≥ 0,

we have

||Bk,a ||∞ := sup
x,y∈R

|Bk,a(x, y)| > 1.
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(ii) For x, y ∈ R, we have

Bk,a(x, y) = j 2k−1
a

( 2
a |xy| a

2 ) + �( 2k+ a −1
a )

�( 2k+ a +1
a )

e
iπ
a

xy

( a )
2
a

j 2k+1
a

( 2
a |xy| a

2 )

= j 2k−1
a

( 2
a |xy| a

2 ) + �( 2k+ a −1
a )

�( 2k+ a +1
a )

e
2iπ
a xy

(i a )
2
a

j 2k+1
a

( 2
a |xy| a

2 ).

Thus involving (2.5), we derive that

Bk,a(x, y) = Bk,a(e
2iπ
a x, y). (2.10)

(iii) For x, y ∈ R, we have

Bk,a(x, y) =
⎧
⎨

⎩

Bk,a(ξ, x), if a = 1
r , r ∈ N,

Bk,a(−ξ, x), if a = 2
2r+1 , r ∈ N0.

(2.11)

Convention: When k and a satisfy (2.7), we shall replace dγk,a by the rescaled
version dγk,a/C but continue to use the same symbol dγk,a .

For k ≥ max( 2−a
2 , 0), and f ∈ L1

k,a(R), the (k, a)-generalized Fourier transform
is defined by

Fk,a( f )(λ) =
∫

R

f (x)Bk,a(λ, x)dγk,a(x), for all λ ∈ R. (2.12)

Remark 2.2 (i) We note that the previous Proposition implies that the (k, a)-
generalized Fourier transform is bounded on the space L1

k,a(R), and we have

||Fk,a( f )||L∞
k,a(R) ≤ || f ||L1

k,a(R), (2.13)

for all f in L1
k,a(R).

(ii) The (k, a)-generalized Fourier transformFk,a provides a natural generalization of
the Hankel transform. Indeed, if we set

Beven
k,a (x, y) = 1

2
(Bk,a(x, y) + Bk,a(x,−y))

= j 2k−1
a

(
2

a
|xy| a2 ).

Then, the transform Fk,a of an even function f on the real line specializes to a
Hankel type transform on R+.

The authors in [4] have proved the following.
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Proposition 2.3 (i) (Plancherel’s theorem for Fk,a). The (k, a)-generalized Fourier
transform f → Fk,a( f ) is an isometric isomorphism on L2

k,a(R) and we have

∫

R

| f (x)|2dγk,a(x) =
∫

R

|Fk,a( f )(λ)|2dγk,a(λ). (2.14)

(ii) (Parseval’s formula for Fk,a). For all f , g in L2
k,a(R), we have

∫

R

f (x)g(x)dγk,a(x) =
∫

R

Fk,a( f )(λ)Fk,a(g)(λ)dγk,a(λ). (2.15)

(iii) (Inversion formula). The (k, a)-generalized Fourier transform Fk,a is of finite
order if and only if a ∈ Q. If a ∈ Q is of the form a = s

t , with s, t positive, then
F2 s
k,a = I d. In particular

F−1
k,a = F2s−1

k,a . (2.16)

L1
k,a(R), we

Proposition 2.4 Let f be in L p
k,a(R), p ∈ [1, 2]. Then Fk,a( f ) belongs to L p′

k,a(R)

and we have

∥∥Fk,a( f )
∥∥
L p′
k,a(R)

≤ ‖ f ‖L p
k,a(R) . (2.17)

3 Generalized Convolution Operator

On the follow we recall the definition and the properties of the (k, a)-generalized
translation operator.

Definition 3.1 ([34]) Let x ∈ R. The (k, a)-generalized translation operator f →
τ
k,a
x f is defined on L2

k,a(R) by

Fk,a(τ
k,a
x f )(ξ) = Bk,a(ξ, x)Fk,a( f )(ξ). (3.1)

It is useful to have a class of functions in which (3.1) holds pointwise. One such
class is given by the generalized Wigner space Wk,a(R) given by

Wk,a(R) :=
{
f ∈ L1

k,a(R) : Fk,a( f ) ∈ L1
k,a(R)

}
.

On the follow we give several properties of the generalized translation operator.

Proposition 3.1 [34]
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(i) Let f be in L2
k,a(R), we have

‖τ k,ax f ‖L2
k,a(R) ≤ ‖ f ‖L2

k,a(R), ∀x ∈ R. (3.2)

(ii) For all f inWk,a(R) or for all f in L2
k,a(R) such thatFk,a( f ) belongs to L1

k,a(R)

and x ∈ R, we have for almost every y ∈ R

τ k,ax f (y) =
∫

R

Bk,a(ξ, x)Bk,a(ξ, y)Fk,a( f )(ξ)dγk,a(ξ). (3.3)

(iii) For all f in Wk,a(R) and for all x, y ∈ R, we have

τ k,ax f (y) = τ k,ay f (x). (3.4)

On the follow we give the (k, a)-generalized translation of the generalized Gaussian
(the generalized heat kernel associated with �k,a):

Proposition 3.2 For every δ > 0 and for every x ∈ R, we have

τ k, ax [e− |s| a
δ a 2 ](y) = e

− |x | a +|y| a
δ a 2 Bk, a

(
x

(δ a )
2
a

, e
iπ
a y

)
.

Before proving this proposition we need the following lemma:

Lemma 3.1 Let δ > 0 and x, y ∈ R. Then

∫

R

e−δ|ξ | a Bk, a (x, ξ)Bk, a (y, ξ)dγk, a (ξ)

= e−(1/δ a 2)(|x | a +|y| a )

(δ a )
2k+ a −1

a

Bk, a (x/(δ a )
2
a , e

−iπ
a y). (3.5)

Proof Involving the following formula

∫ ∞

0
e−δξ2 jν(xξ) jν(yξ)dγk, a (ξ) = �(ν + 1)

2δν+1 e−(1/4δ)(|x |2+|y|2) jν(i xy/2δ)

(3.6)

and the fact that

Bk, a (x, y) = j 2k−1
a

(
2

a
|xy| a

2 ) + �( 2k+ a −1
a )

�( 2k+ a +1
a )

xy

(i a )
2
a

j 2k+1
a

(
2

a
|xy| a

2 ),

we derive that the left term of the equation (3.5) takes when δ > 0 the following form:
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∫

R

e−δ|ξ | a Bk, a (x, ξ)Bk, a (y, ξ)dγk, a (ξ)

=
∫

R

e−δ|ξ | a j 2k−1
a

( 2
a

|xξ | a
2
)
j 2k−1

a

( 2
a

|yξ | a
2
)
dγk, a (ξ)

+ xy

(i a )
4
a

(�( 2k+ a −1
a )

�( 2k+ a +1
a )

)2
∫

R

ξ2e−δ|ξ | a j 2k+1
a

( 2
a

|xξ | a
2
)
j 2k+1

a

( 2
a

|yξ | a
2
)
dγk, a (ξ).

(3.7)

After the change of variables ξ = t
2
a the relation (3.6), implies that

∫

R

e−δ|ξ | a j 2k−1
a

( 2
a

|xξ | a
2
)
j 2k−1

a

( 2
a

|yξ | a
2
)
dγk, a (ξ)

= 1

(δ a )
2k−1+ a

a

e−(1/δ a 2)(|x | a +|y| a ) j 2k−1
a

(2i |xy| a
2 / a 2δ)

and

∫

R

ξ2e−δ|ξ | a j 2k+1
a

( 2
a

|xξ | a
2
)
j 2k+1

a

( 2
a

|yξ | a
2
)
dγk, a (ξ)

= �( 2k+1+ a
a )

δ
2
a �( 2k−1+ a

a )(δ a )
2k−1+ a

a

e−(1/δ a 2)(|x | a +|y| a ) j 2k+1
a

(2i |xy| a
2 / a 2δ).

Thus involving equation (3.7) and (2.5), we derive the result. ��
Proof of Proposition 3.2. Using (3.3) and the identity

Fk, a (e− |.| a
a )(λ) = e− |λ| a

a ,

we derive that for every δ > 0 and for every x ∈ R, we have

τ k, ax [e− |s| a
δ a 2 ](y) = (δ a )

2k+ a −1
a

∫

R

Bk, a (ξ, x)Bk, a (ξ, y)e−δ|ξ | a dγk, a (ξ).

Thus, the result is obtained by using Lemma 3.1 and the formula (2.5). ��
Recently, the author in [1] has obtained the product formula for the one-dimensional

(k, a)-generalized Fourier kernel, his result extending the special case of [10] when
a = 2

n , n ∈ N. More precisely, the author has proved the following:

Theorem 3.1 The (k, a)-generalized kernel Bk, a satisfies the product formula

Bk,a(λ, x)Bk,a(λ, y) =
∫

R

Bk,a(λ, z)dζ k,a
x,y (z), (3.8)
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where

dζ k,a
x,y (z) =

⎧
⎨

⎩

�k,a(x, y, z)dγk,a(z) if xy �= 0
δx (z) if y = 0
δy(z) if x = 0.

(3.9)

Here

�k, a (x, y, z) := a
2k−1+ a

a 2
2k−1− a

a
(
�(

2k − 1

a
+ 1)
)2
⎧
⎨

⎩
R 2k−1

a , 2k−1
a

(|x | a2 , |y| a2 , |z| a2 )
|xyz| 2k−1

2

+e
−2iπ
a sgn(xy)

R 2k−1
a , 2k+1

a
(|x | a2 , |y| a2 , |z| a2 )

|xyz| 2k−1
2

+sgn(xz)
R 2k−1

a , 2k+1
a

(|x | a2 , |z| a2 , |y| a2 )
|xyz| 2k−1

2

+ sgn(yz)
R 2k−1

a , 2k+1
a

(|y| a2 , |z| a2 , |x | a2 )
|xyz| 2k−1

2

⎫
⎬

⎭ , (3.10)

and Rμ,ν is the Macdonal integral, given by

∀ x, y, z > 0, Rμ,ν(x, y, z) := 1

22ν+μ(�(ν + 1))2�(μ + 1)∫ ∞

0
jν(xt)jν(yt)jμ(zt)t2ν+1dt,

provided Reμ > −1
2 and Re ν > −1

2 .

Corollary 3.1 For all f inWk,a(R) or for all f in L2
k,a(R) such that Fk,a( f ) belongs

to L1
k,a(R) and x ∈ R, we have for almost every y ∈ R

τ k,ax f (y) =
∫

R

f (z)dζ
k,a
x,y (z).

Proof When x = 0 or y = 0, the result is trivial from the definition of the measure
dζ

k,a
x,y . Let x, y ∈ R

∗, involving the relations (3.3), (3.8), Fubini’s theorem and the
inversion formula, we derive that

τ
k,a
x f (y) =

∫

R

�k, a (x, y, z)
( ∫

R

Bk,a(ξ, z)Fk,a( f )(ξ)dγk,a(ξ)
)
dγk,a(z)

=
∫

R

�k, a (x, y, z) f (z)dγk,a(z).

Thus, the proof is finished. ��
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Profiting the fact that for all x, y ∈ R,
∫

R

|dζ k,a
x,y (z)| is finite and uniformly bounded,

we extend the (k, a)-generalized translation operator on the space of functions locally
integrable as follow:

Definition 3.2 Let x ∈ R and f ∈ L1
loc(dγk,a). For k ≥ max( 2−a

2 , 0), we define the

(k, a)-generalized translation operator τ
k,a
x by

τ k,ax f (y) =
∫

R

f (z)dζ
k,a
x,y (z). (3.11)

Remark 3.1 For all x, y, λ ∈ R, we have the product formula

τ k,ax Bk,a(λ, y) = Bk,a(λ, x)Bk,a(λ, y). (3.12)

Notation. We denote by Pμ
ν and Qμ

ν the Legendre functions given in term of hyper-
geometric function as follow

Pμ
ν (x) = 1

�(1−μ)
( 1+x
1−x )

μ
2 2 F1(ν + 1,−ν, 1 − μ, 1−x

2 ), −1 < x < 1,

Qμ
ν (x) = eiπμ

√
π�(1+ν+μ)(x2−1)

μ
2

2ν+1xν+μ+1�( 32+ν)
( 1+x
1−x )

μ
2 2F1(

ν+μ+2
2 ,

ν+μ+1
2 , ν + 3

2 , x
−2), 1 < x .

On the follows we will prove the “trigonometric-hyperbolic” form of the (k, a)-
generalized translation operator.

Theorem 3.2 For all f in Cb,e(R), we have

τ k, ax f (y) =
∫ π

0
f
(〈〈x, y〉〉φ, a

)Nk, a (x, y, φ)(sin φ)
2(2k−1)+ a

2 a dφ

+
∫ ∞

0
f
(〈〈x, y〉〉φ, a )Mk, a (x, y, φ)(sinh φ)

2(2k−1)+ a
2 a dφ,

where

Nk, a (x, y, φ) = a�( 2k−1
a +1)

21− 2k−1
a

√
2π

{
2
1
2 − 2k−1

a

�( 2k−1
a + 1

2 )
(sin φ)

2(2k−1)− a
2 a + e

2iπ
a sgn(xy)√

2π
P

1
2− 2k−1

a
2k+1
a − 1

2

(
cosφ

)}
,

Mk, a (x, y, φ) = a�( 2k−1
a +1)

21− 2k−1
a

e−( 4k−2− a
2 a )iπ sin( 2πa )sgn(xy)√

( 12π)3
Q

1
2− 2k−1

a
2k+1
a − 1

2

(
cosh φ

)
,

〈〈x, y〉〉φ, a :=
(
|x | a + |y| a − 2|xy| a /2 cosφ

)1/ a
(3.13)

and

〈〈x, y〉〉φ, a :=
(
|x | a + |y| a + 2|xy| a /2 cosh φ

)1/ a
. (3.14)
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Proof By (3.10), the even and odd parts of the function�k, a (x, y, ·) are given respec-
tively by

�k, a,e(x, y, z) := a
2k−1+a

a 2
2k−1− a

a

(
�(

2k − 1

a
+ 1)

)2{ R 2k−1
a , 2k−1

a
(|x | a2 , |y| a2 , |z| a2 )

|xyz| 2k−1
2

+ e
−2iπ
a sgn(xy)

R 2k−1
a , 2k+1

a
(|x | a2 , |y| a2 , |z| a2 )

|xyz| 2k−1
2

}
,

�k, a,o(x, y, z) := a
2k−1+a

a 2
2k−1−a

a
(
�(

2k − 1

a
+ 1)
)2
{
sgn(xz)

R 2k−1
a , 2k+1a

(|x | a2 , |z| a2 , |y| a2 )

|xyz| 2k−1
2

+ sgn(yz)
R 2k−1

a , 2k+1
a

(|y| a2 , |z| a2 , |x | a2 )

|xyz| 2k−1
2

}
.

Hence, equation (3.11) turns into

τ k, ax f (y) = a�( 2k−1
a + 1)

21− 2k−1
a

⎡

⎣
∫ ∞

0
f (z)

⎧
⎨

⎩
R 2k−1

a , 2k−1
a

(|x | a2 , |y| a2 , |z| a2 )
|xyz| 2k−1

2

+ e
2iπ
a sgn(xy)

R 2k−1
a , 2k+1

a
(|x | a2 , |y| a2 , z a

2 )

|xyz| 2k−1
2

⎫
⎬

⎭ dz

⎤

⎦ .

Noting that the Macdonal integral can be written as

∀ x, y, z > 0, Rμ,ν(x, y, z)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if z < |x − y|
(xy)μ−1 sinμ− 1

2 φ√
2π zμ

P
1
2−μ

ν− 1
2

(
cosφ

)
, if |x − y| < z < |x + y|

e(μ− 1
2 )iπ sin((ν−μ)π)(xy)μ−1 sinh

μ−1
2 φ√

( 12π)3zμ
Q

1
2−μ

ν− 1
2
(cosh φ), if x + y < z,

where |x |2 +|y|2 −|z|2 = 2xy cosφ if |x − y| < z < |x + y| and |z|2 −|x |2 −|y|2 =
2xy cosh φ if x + y < z.

Moreover, that if ν − μ = n is a nonnegative integer we have for all x, y, z > 0,

Rμ,ν(x, y, z)

=
⎧
⎨

⎩
2
1
2−μ

�(2μ)n!(xy)μ−1 sin2μ−1 φ

�(ν+μ)�(
μ+1
2 )

√
2π zμ

Cμ
n
(
cosφ

)
, if |x − y| < z < |x + y|

0, if x + y < z or z < |x − y|,

where Cμ
n is the Gegenbauer polynomial.
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Involving these properties of the Macdonal integral, we will derive the
"trigonometric-hyperbolic" formof the (k, a)-generalized translation operator. Indeed,
for

| |x | a2 − |y| a2 | < z
a
2 < |x | a2 + |y| a2 ,

we substitute

cosφ := |x | a + |y| a − |z| a
2|xy| a2 (3.15)

with φ ∈ [0, π ].
For

|x | a2 + |y| a2 < z
a
2 ,

we may substitute

cosh φ := |z| a − |x | a − |y| a
2|xy| a2 (3.16)

with φ ∈ [0,∞). Using, for z > 0, sgn(xz) = sgn(x) and sgn(yz) = sgn(y), the
(k, a)-generalized translation operator takes the desired form. ��

Involving the previous Theorem, we infer the following expression for the generalized
heat kernel associated with �k,a :

Lemma 3.2 For every λ > 0 and for every x ∈ R, we have

τ k, ax (e−λ|.| a )(y) = e−λ
(
|x | a +|y| a

)
Vk, a (λ; x, y),

where

Vk, a (λ; x, y) : =
∫ π

0
e2λ|xy| a2 cosφNk, a (x, y, φ)(sin φ)

2k−1+ a
2 a dφ

+
∫ ∞

0
e−2λ|xy| a2 cosh φMk, a (x, y, φ)(sinh φ)

2k−1+ a
2 a dφ.

Remark 3.2 Involving the previous lemma, the properties of the Gegenbauer polyno-
mials and by simple calculations we infer that there exist a positive constant C(k, a )

such that

|τ k, ax (e−λ|.| a )(y)| ≤ C(k, a )e−λ
(
|x | a2 −|y| a2

)2
.
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Proposition 3.3 (i) For all x, y ∈ R
∗, we have

∫

R

�k,a(x, y, z)dγk,a(z) = 1. (3.17)

(ii) For all x, y, z ∈ R
∗, we have

�k,a(x, y, z) = �k,a(y, x, z). (3.18)

(iii) For all x, y, z ∈ R
∗, we have

�k,a(x, y, z) = �k,a(e
2iπ
a x, z, y). (3.19)

(iv) There exist a positive constant C(k, a) independent of x, y such that

∫

R

|�k,a(x, y, z)| dγk,a(z) ≤ C(k, a). (3.20)

Proof (i) By taking λ = 0 in the product formula (3.8), we derive the result.
(ii) Involving the symmetry of the Macdonald function with respect to the first two
variables, the relation (3.18) is immediate.
(iii) For all x, y, z ∈ R

∗, we write

sgn(xy) = xy

|xy| , sgn(xz) = xz

|xz| and sgn(yz) = yz

|yz|

and as the modulus of the complex number e
−2iπ
a is equal to 1, we write the term

e
−2iπ
a sgn(xy) as e

−2iπ
a xy

|e−2iπ
a xy|

, where |e−2iπ
a xy| denote the modulus of the complex num-

ber which equal the absolute value of the real number xy. On the other hand as

|e−2iπ
a | = 1, we deduce that the modulus |e−2iπ

a x | a2 and |e−2iπ
a x | 2k−1

2 are respectively

equal |x | a2 and |x | 2k−1
2 . Thus by simple calculus we derive (3.19).

(iv) The result is proved in [1]. ��
Remark 3.3 (i) When 2

a ∈ N, the authors in [10] have proved that C(k, a) ≤ 4.
(ii) Involving the definition of the function �k,a , it is easy to see that for any

x, y ∈ R
∗ we have

∫

R

|�k,a(x, z, y)| dγk,a(z) ≤ C(k, a), (3.21)

where C(k, a) is the constant given by the formula (3.20).
(iii) Using (3.19) and proceeding as in [1], we prove that

Bk,a(λ, x)Bk,a(λ, y) =
∫

R

Bk,a(λ, z)�k,a(e
2iπ
a x, z, y)dγk,a(z). (3.22)
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Now, let us go back to the properties of the (k, a)-generalized translation product.

Theorem 3.3 Let k ≥ max( 2−a
2 , 0), then

(i) For all f ∈ L1
loc(dγk,a) and for all x, y ∈ R, we have

τ k,ax f (y) = τ k,ay f (x) and τ
k,a
0 f = f .

(ii) For all 1 ≤ p ≤ ∞ and f ∈ L p
k,a(R),

‖τ k,ax f ‖L p
k,a(R) ≤ C(k, a)‖ f ‖L p

k,a(R) (3.23)

with x ∈ R and C(k, a) is the constant given by the formula (3.20).
(iii) If f ∈ L1

k,a(R), and x ∈ R, then Fk,a(τ
k,a
x f )(λ) = Bk,a(λ, x)Fk,a( f )(λ) for

every λ ∈ R.

(iv) If f ∈ L2
k,a(R), and x ∈ R, then Fk,a(τ

k,a
x f )(λ) = Bk,a(λ, x)Fk,a( f )(λ) for

almost every λ ∈ R.

(v) If f ∈ L p
k,a(R), 1 ≤ p ≤ 2 and x ∈ R, then

Fk,a(τ
k,a
x f )(λ) = Bk,a(λ, x)Fk( f )(λ), a.e. λ ∈ R. (3.24)

(vi) Let x, y ∈ R. For all f in L p
k,a(R), 1 ≤ p ≤ ∞, we have

τ k,ax τ k,ay ( f ) = τ k,ay τ k,ax ( f ). (3.25)

Proof (i) When x = 0 or y = 0, the result is trivial from the definition of the measure
dζ

k,a
x,y . Let x, y ∈ R

∗, we have

τ k,ax f (y) =
∫

R

�k,a(x, y, z) f (z)dγk,a(z).

Involving (3.18), we derive the result.
(ii) Using Hölder’s inequality and (3.20), we obtain

∣∣∣
∫

R

�k,a(x, y, z) f (z)dγk,a(z)
∣∣∣
p ≤ (C(k, a)

) p
p′
∫

R

|�k,a(x, y, z)| | f (z)|p dγk,a(z).

Thus by Fubini–Tonelli’s theorem and (3.21), we deduce that

∫

R

∣∣
∫

R

�k,a(x, y, z) f (z)dγk,a(z)
∣∣pdγk,a(y) ≤ (C(k, a)

)p|| f ||L p
k,a(R).

(iii) The result is trivial if x = 0. If f ∈ L1
k,a(R), and x ∈ R

∗, we have

Fk,a(τ
k,a
x f )(λ) =

∫

R

τ k,ax f (y)Bk,a(λ, y)dγk,a(y).
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Using the relations (3.11), (3.19) and product formula (3.22), we get

Fk,a(τ
k,a
x f )(λ) =

∫

R

( ∫

R

�k,a(x, y, z) f (z)dγk,a(z)
)
Bk,a(λ, y)dγk,a(y)

=
∫

R

∫

R

�k,a(e
2iπ
a x, z, y) f (z)dγk,a(z)Bk,a(λ, y)dγk,a(y)

=
∫

R

f (z)
( ∫

R

Bk,a(λ, y)�k,a(e
2iπ
a x, z, y)dγk,a(y)

)
dγk,a(z)

=
∫

R

f (z)Bk,a(λ, x)Bk,a(λ, z)dγk,a(z)

= Bk,a(λ, x)Fk,a( f )(λ).

Thus the assertion is proved.

(iv) Using the fact that themappings f −→ Fk,a(τ
k,a
x f ) and f −→ Bk,a(λ, x)Fk,a( f )

are continuous from L2
k,a(R) into itself, and from (iii) these mappings are equal

on L1
k,a(R)

⋂
L2
k,a(R), we derive the result by the density of L1

k,a(R)
⋂

L2
k,a(R)

in L2
k,a(R).

(v) The cases p = 1 and p = 2 are proved in above. For 1 < p < 2, we have

‖Fk,a(τ
k,a
x f ) − Bk,a(λ, x)Fk,a( f )‖L p′

k,a(R)
≤ ‖Fk,a(τ

k,a
x f )‖

L p′
k,a(R)

+ ‖Fk,a( f )‖L p′
k,a(R)

.

Involving (2.17) and (3.23), we derive that

‖Fk,a(τ
k,a
x f ) − Bk,a(λ, x)Fk,a( f )‖L p′

k,a(R)
≤ (C(k, a) + 1)‖ f ‖L p

k,a(R).

Thus by a density argument we prove the assertion.
Nowwewill to prove (vi). Using (3.24) and the injectivity for the (k, a)-generalized

Fourier transform, we derive the result for p ∈ [1, 2]. Next, by duality we deduce the
result for any p ∈ [2,∞]. ��

Notation. Let us denote by Ra be the set defined by

Ra := R ∪ e
−2iπ
a R ∪ e

2iπ
a R, a > 0.

Remark 3.4 (i) Using Proposition 3.3, we can extend the formula (3.11) of the gener-
alized translation operator τ

k,a
x for x ∈ Ra .
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By means of the generalized translation operator, we define the generalized convo-
lution product of two suitable functions f and g by

f ∗k,a g(x) =
∫

R

τ
k,a

e
2iπ
a y

f (x)g(y)dγk,a(y). (3.26)

Now, let us go back to the properties of the generalized convolution product.

Theorem 3.4 Let k ≥ max( 2−a
2 , 0), then

(i) For two suitable functions f and g we have

f ∗k,a g = g ∗k,a f . (3.27)

(ii) (Young inequality). For p, q, r such that 1 ≤ p, q, r ≤ ∞ and 1/p + 1/q =
1+1/r , and for f ∈ Lq

k,a(R) and g ∈ L p
k,a(R), the convolution product f ∗k,a g

is a well defined element in Lr
k,a(R) and

‖ f ∗k,a g‖Lrk,a(R) ≤ C(k, a)‖ f ‖Lq
k,a(R)‖g‖L p

k,a(R), (3.28)

where C(k, a) is the constant given by the formula (3.20).
(iii) For p, q, r such that 1 ≤ p, q, r ≤ 2 and 1/p + 1/q = 1 + 1/r , and for

f ∈ Lq
k,a(R) and g ∈ L p

k,a(R), we have

Fk,a( f ∗k,a g) = Fk,a( f )Fk,a(g). (3.29)

(iv) For p, q, r such that 1 ≤ p, q, r ≤ 2 and 1/p + 1/q + 1/r = 2, and for
f ∈ Lq

k,a(R), g ∈ L p
k,a(R) and h ∈ Lr

k,a(R), we have

∣∣∣
∫

R

f (x)
(
g ∗k,a h(x)

)
dγk,a(y)

∣∣∣ ≤ C(k, a)‖ f ‖Lq
k,a(R)‖g‖L p

k,a(R)‖h‖Lrk,a(R).

Proof (i) Involving the relations (3.26), (3.11), the fact that

�k,a(e
2iπ
a z, x, y) = �k,a(e

2iπ
a y, x, z),

we derive that

f ∗k,a g(x) =
∫

R

τ
k,a

e
2iπ
a y

f (x)g(y)dγk,a(y)

=
∫

R

∫

R

�k,a(e
2iπ
a y, x, z) f (z)dγk,a(z)g(y)dγk,a(y)

=
∫

R

f (z)
( ∫

R

�k,a(e
2iπ
a y, x, z)g(y)dγk,a(y)

)
dγk,a(z)

=
∫

R

f (z)
( ∫

R

�k,a(e
2iπ
a z, x, y)g(y)dγk,a(y)

)
dγk,a(z)
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=
∫

R

f (z)τ k,a
e
2iπ
a z

g(x)dγk,a(z).

Thus the assertion is proved.
For part (ii), if r = ∞ then 1/p + 1/q = 1. Hence, by Hölder’s inequality and

(3.23), f ∗k,a g exists and

‖ f ∗k,a g‖∞ ≤ C(k, a)‖ f ‖Lq
k,a(R)‖g‖L p

k,a(R).

Assume r < ∞, which implies p, q ≤ r . Let s = p(1 − 1/q) = 1 − p/r and note
that 0 ≤ s < 1. We have

| f ∗k,a g(x)| ≤
∫

R

| f (y)| |τ k,ax g(e
2iπ
a y)|1−s |τ k,ax (g)(e

2iπ
a y)|s dγk,a(y)

≤
( ∫

R

| f (y)|q |τ k,ax (g)(e
2iπ
a y)|q(1−s) dγk,a(y)

)1/q‖ |τ k,ax (g)(e
2iπ
a .)|s‖

Lq′
k,a(R)

.

If s = 0 then q = 1. If s �= 0 then sq ′ = p. In either cases taking the q th power we
obtain

| f ∗k,a g(x)|q ≤
( ∫

R

| f (y)|q |τ k,ax (g)(e
2iπ
a y)|q(1−s) dγk,a(y)

)
‖τ k,ax (g)(e

2iπ
a .)‖sq

L p
k,a(R)

≤ (C(k, a)
)sq ‖g‖sq

L p
k,a(R)

( ∫

R

| f (y)|q |τ k,ax (g)(e
2iπ
a y)|q(1−s) dγk,a(y)

)
.

Thus, for t := r/q, by the generalized Minkowski inequality we have

‖ f ∗k,a g‖qLqt
k,a(R)

= ‖ | f ∗k,a g|q‖Lt
k,a(R)

≤ (C(k, a)
)sq ‖g‖sq

L p
k,a(R)

∫

R

( ∫

R

| f (y)|qt |τ k,ax (g)(e
2iπ
a y)|qt(1−s)dγk,a(x)

)1/t
dγk,a(y)

≤ (C(k, a)
)q‖ f ‖q

Lq
k,a(R)

‖g‖q
L p
k,a(R)

since qt = r and (1 − s)r = p, we derive the result.
On the follow we prove the assertion (iii) for p = q = 1. Indeed, we have

Fk,a( f ∗k,a g)(λ) =
∫

R

f ∗k,a g(x)Bk,a(λ, x)dγk,a(x).

Involving the relations (3.26), (3.8), Fubini’s theorem, (3.19) and (2.10), we get

Fk,a( f ∗k,a g)(λ)

=
∫

R

( ∫

R

τ
k,a

e
2iπ
a y

f (x)g(y)dγk,a(y)
)
Bk,a(λ, x)dγk,a(x)
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=
∫

R

( ∫

R

∫

R

�k,a(e
2iπ
a y, x, z) f (z)dγk,a(z)

)
g(y)dγk,a(y))Bk,a(λ, x)dγk,a(x)

=
∫

R

f (z)
( ∫

R

∫

R

�k,a(y, z, x)Bk,a(λ, x)dγk,a(x)
)
dγk,a(z)g(y)dγk,a(y)

=
∫

R

f (z)
∫

R

Bk,a(λ, y)Bk,a(λ, z)dγk,a(z))g(y)dγk,a(y)

=
( ∫

R

f (z)Bk,a(λ, z)dγk,a(z)
)( ∫

R

Bk,a(λ, y)g(y)dγk,a(y)
)

= Fk,a( f )(λ)Fk,a(g)(λ).

Thus the result is proved when p = q = 1. For p �= 1 and/or q �= 1, using Hölder’s
inequality, (2.17) and (3.28), we get

‖Fk,a( f ∗k,a g) − Fk,a( f )Fk,a(g)‖Lr ′k,a(R)

≤ ‖Fk,a( f ∗k,a g)‖Lr ′k,a(R)
+ ‖Fk,a( f )Fk,a(g)‖Lr ′k,a(R)

≤ ‖ f ∗k,a g‖Lrk,a(R) + ‖Fk,a( f )‖Lq′
k,a(R)

‖Fk,a(g)‖L p′
k,a(R)

≤ (C(k, a) + 1)‖ f ‖Lq
k,a(R)‖g‖L p

k,a(R),

so that a density argument proves (iii) for p �= 1 and/or q �= 1.

Now we will to prove (iv). Using Hölder’s inequality, we get

∣∣∣
∫

R

f (x)(g ∗k,a h(x))dγk,a(y)
∣∣∣ ≤ ‖ f ‖Lq

k,a(R)‖g ∗k,a h‖
Lq′
k,a(R)

.

Therefore using (3.28), we have

|
∫

R

f (x)(g ∗k,a h(x))|dγk,a(y ≤ C(k, a)‖ f ‖Lq
k,a(R)‖g‖L p

k,a(R)‖h‖Lrk,a(R),

1

q ′ = 1

p
+ 1

r
− 1.

Thus the assertion is proved. ��
Theorem 3.5 Inversion formula. If f belongs in L1

k,a(R) such that Fk,a( f ) belongs

to L1
k,a(R), then we have the following inversion formula

∀ x ∈ R, f (x) =
∫

R

Fk,a( f )(y)Bk,a(x, y)dγk,a (y). (3.30)

Proof For ε > 0, we introduce the function Fε : R × R → R given by

∀ (y, x) ∈ R × R, Fε(y, x) := e−ε|y|a Bk,a(x, y)Fk,a( f )(y).
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Then we have

• For all x ∈ R, the functions Fε(., x) belong to L1
k,a(R);

• ∀ x ∈ R, limε→0 Fε(y, x) = Bk,a(x, y)Fk,a( f )(y);
• ∀ (y, x) ∈ R × R, |Fε(y, x)| ≤ |Fk,a( f )(y)| ∈ L1

k,a(R).

Then from the dominated convergence theorem we have

lim
ε→0

∫

R

Fε(y, x)dγk,a(y) =
∫

R

Bk,a(x, y)Fk,a( f )(y)dγk,a(y). (3.31)

We note that for all x ∈ R, we have
∫

R

Fε(y, x)dγk,a(y) =
∫

R

e−ε|y|a Bk,a(x, y)Fk,a( f )(y)dγk,a(y)

=
∫

R

e−ε|y|a(
∫

R

f (s)Bk,a(s, y)dγk,a(s)
)
Bk,a(x, y)dγk,a(y).

Let x ∈ R. We put Gε(x, y, s) = e−ε|y|a f (s)Bk,a(s, y)Bk,a(x, y) where y, s ∈ R.
From the Fubini–Tonelli theorem, we have

∫

R×R

|Gε(x, y, s)|dγk,a(y)dγk,a(s) ≤
∫

R

∫

R

e−ε|y|a | f (s)|dγk,a(y)dγk,a(s)

≤
( ∫

R

| f (s)|dγk,a(s)
)( ∫

R

e−ε|y|a dγk,a(y)
)
.

As f ∈ L1
k,a(R), then

∫

R

| f (s)|dγk,a(s) < ∞. On the other hand using the fact that

∫

R

e−ε|y|a dγk,a(y) = C(k, ε, a),

we derive that
∫

R×R

|Gε(x, y, s)|dγk,a(y)dγk,a(s) < ∞.

Thus we can apply the Fubini’s theorem for the functionGε(x, ., .) on the spaceR×R

and we deduce that
∫

R×R

Gε(x, y, s)dγk,a(y)dγk,a(s) =
∫

R

( ∫

R

Gε(x, y, s)dγk,a(y)
)
dγk,a(s)

=
∫

R

( ∫

R

Gε(x, y, s)dγk,a(s)
)
dγk,a(y).

On the other hand it is easy to see that

∫

R

Fε(y, x)dγk,a(y) =
∫

R

(∫

R

Gε(x, y, s)dγk,a(s)

)
dγk,a(y).
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Thus, from above we deduce that

∫

R

Fε(y, x)dγk,a(y) =
∫

R×R

Gε(x, y, s)dγk,a(y)dγk,a(s)

=
∫

R

∫

R

e−ε|y|a f (s)Bk,a(s, y)Bk,a(x, y)dγk,a(y)dγk,a(s)

=
∫

R

f (s)
( ∫

R

e−ε|y|a Bk,a(s, y)Bk,a(x, y)dγk,a(y)
)
dγk,a(s).

(3.32)

Moreover using the Hecke identity proved in [4], we derive that

∫

R

e−ε|y|a Bk,a(s, y)Bk,a(x, y)dγk,a(y) = ( 1
aε

)
2k−1+a

a τ
k,a
x (e

− 1
a2ε

|.|a
)(e

2iπ
a s).

(3.33)

Combining the relations (3.32) and (3.33), we get

∫

R

Fε(y, x)dγk,a(y) = ( 1
aε

)
2k−1+a

a

∫

R

f (s)τ k,ax (e
− 1

a2ε
|.|a

)(e
2iπ
a s)dγk,a(s).

(3.34)

Using the change of variable s = (a2ε)
1
a v in the second member of the formula (3.34)

we obtain

∫

R

Fε(y, x)dγk,a(y) = a
2k−1+a

a

∫

R

τ k,ax f (e
2iπ
a (a2ε)

1
a v)e−|v|a dγk,a(v).

Therefore by applying the dominated convergence theorem we get

limε→0

∫

R

Fε(y, x)dγk,a(y) = a
2k−1+a

a f (x)
∫

R

e−|v|a dγk,a(v).

Moreover using the formula

∫

R

e−|v|a dγk,a(v) = (
1

a
)
2k−1+a

a ,

we deduce that

∀ x ∈ R, limε→0

∫

R

Fε(y, x)dγk,a(y) = f (x). (3.35)
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Finally combining the relations (3.31) and (3.35), we derive that

∀ x ∈ R, f (x) =
∫

R

Fk,a( f )(y)Bk,a(x, y)dγk,a(y)

which achieves the proof. ��
On the follow we give another proof of the Proposition 2.3.

Corollary 3.2 (i) If f ∈ L1
k,a(R) ∩ L2

k,a(R) then Fk,a( f ) belongs to L2
k,a(R) and

||Fk,a( f )||L2
k,a(R) = || f ||L2

k,a(R).

(ii) There exists a unique isometry on L2
k,a(R) that coincides with on Fk,a on

L1
k,a(R) ∩ L2

k,a(R).

Proof (i) From the previous theorem, we have

f (x)g(x) =
∫

R

Fk,a( f )(y)Bk,a(x, y)g(x)dγk,a (y).

The application of Fubini’s theorem yields

∫

R

f (x)g(x)dγk,a (x) =
∫

R

Fk,a( f )(y)
( ∫

R

Bk,a(x, y)g(x)dγk,a (x)
)
dγk,a (y)

=
∫

R

Fk,a( f )(y)Fk,a(g)(y)dγk,a (y).

Thus, we derive the result.
(ii) Let f ∈ L2

k,a(R), then f j = f χ[− j, j] belongs to L1
k,a(R) and

lim
j→∞ || f − f j ||L2

k,a(R) = lim
j→∞

∫

|x |≥ j
| f (x)|2dγk,a (x) = 0.

From (i) we deduce that the operator

Fk,a : L1
k,a(R) ∩ L2

k,a(R) → L2
k,a(R)

is continuous for the norm ||.||L2
k,a(R). As the space L

1
k,a(R) ∩ L2

k,a(R) is a dense part

of L2
k,a(R) and L2

k,a(R) is complete, so by the theorem of extension of uniformly con-

tinuous applications there exists a unique extension ofFk,a in L2
k,a(R). The extension

is still an isometry of the norm ||.||L2
k,a(R) by passing through the limit in the equality

of (i). If we also know that the image is dense, then the operator is surjective and the
inverse is continuous because Fk,a is an isometry. ��
We close this section by giving the following new results:



Generalized Convolution Operator Associated with the… Page 25 of 43 36

Proposition 3.4 Let φ ∈ Se(R). Then there exist a positive constant C, such that for
all x, y ∈ R we have

||τ k, ax φ − τ k, ay φ||L1
k, a (R) ≤ C |x − y|||φ||L1

k, a (R).

Proof Involving Theorem 3.2, mean value theorem, the properties of the Gegenbauer
polynomials and by simple calculations we derive the result. ��
Proposition 3.5 Let f ∈ L1

k, a (R) and t > 0 such that supp(Fk, a ( f )) ⊂ [−t, t].
Then there exist a positive constant M(k, a), such that for all x, y ∈ R we have

||τ k, ax f − τ k, ay f ||L1
k, a (R) ≤ M(k, a)t |x − y||| f ||L1

k, a (R).

Proof Choose φ ∈ Se(R) such that Fk, a (φ) = 1 in [−1, 1] and put φt (x) =
t2k+ a −1φ(t x).
Thus

Fk, a (φt )(x) = Fk, a (φ)
( x
t

)
= 1 on [−t, t],

and we can write

τ
k, a
x f (z) − τ

k, a
y f (z) = φt ∗k, a (τ

k, a
x f − τ

k, a
y f )(z)

= f ∗k, a (τ
k, a
x (φt ) − τ

k, a
y (φt ))(z).

Involving (3.28) and the previous proposition, we derive that

||τ k, ax f − τ
k, a
y f ||L1

k, a (R) ≤ C(k, a)|| f ||L1
k, a (R)||τ k, ax (φt ) − τ

k, a
y (φt )||L1

k, a (R)

≤ C(k, a)|| f ||L1
k, a (R)||τ k, atx φ − τ

k, a
ty φ||L1

k, a (R)

≤ CC(k, a)t |x − y||| f ||L1
k, a (R)

which finishes the proof of the proposition. ��

4 Applications

4.1 (k, a)-GeneralizedWavelet Transform in Lpk,a(R)

In this subsection, we shall study the basic results on the (k, a)-generalized wavelet
transform. For typographical convenience, we fix some notations as under:

• R
2+ =

{
(b, x) ∈ R

2 : b > 0
}
.

• L p
μk,a (R

2+), p ∈ [1,∞], the space of measurable functions f on R2+ such that

‖ f ‖L p
μk,a (R2+) :=

(∫

R
2+

| f (b, x)|pdμk,a(b, x)

) 1
p

< ∞, 1 ≤ p < ∞,
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‖ f ‖L∞
μk,a

(R2+) := ess sup
(b,x)∈R2+

| f (b, x)| < ∞,

where the measure μk,a is defined by

∀ (b, x) ∈ R
2+, dμk,a(b, x) = dγk,a(x)db

b2k+a
.

Definition 4.1 ([34]). A (k, a)-generalized wavelet on R is a measurable function h
on R satisfying for almost all x ∈ R, the condition

0 < Ch :=
∫ ∞

0
|Fk,a(h)(λx)|2 dλ

λ
< ∞. (4.1)

Let b > 0 and h be a measurable function. We consider the function hb defined by

∀ x ∈ R, hb(x) := 1

b2k+a−1 h(
x

b
). (4.2)

Proposition 4.1 (i) For every h ∈ L p
k,a(R), p ∈ [1,∞]. The function hb belongs to

L p
k,a(R) and we have

||hb||L p
k,a(R) = b(2k+a−1)( 1

p −1)||h||L p
k,a(R). (4.3)

(ii) Let b > 0 and h be in L1
k,a(R)

⋃
L2
k,a(R). We have

∀ y ∈ R, Fk,a(hb)(y) = Fk,a(h)(by). (4.4)

Let b > 0 and h be in L p
k,a(R), p ∈ [1,∞]. We consider the family hb,x , x ∈ R, of

(k, a)-generalized wavelets on R in L p
k,a(R), p ∈ [1,∞] defined by

∀ y ∈ R, hb,x (y) := b
2k+a−1

2 τ k,ax hb(e
2iπ
a y), (4.5)

where τ
k,a
x , x ∈ R, are the generalized translation operators.

Definition 4.2 Let h be a (k, a)-generalized wavelet on R in L2
k,a(R). The (k, a)-

generalized continuous wavelet transform �
k,a
h on R is defined for regular functions

f on R by

∀ (b, x) ∈ R
2+, �

k,a
h ( f )(b, x) =

∫

R

f (y)hb,x (y)dγk,a(y). (4.6)
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This transform can also be written in the form

�
k,a
h ( f )(b, x) = b

2k+a−1
2 f ∗k,a hb(x), (4.7)

where ∗k,a is the generalized convolution product given by (3.26).

Remark 4.1 (i) Let h be a (k, a)-generalized wavelet in L2
k,a(R). Then from (3.28) and

(4.7), for all f in L2
k,a(R) we have

‖�k,a
h ( f )‖L∞

μk,a
(R2+)

≤ C(k, a)‖ f ‖L2
k,a(R)‖h‖L2

k,a(R). (4.8)

(ii) For any f ∈ L2
k,a(R), we have

Fk,a

(
�

k,a
h ( f )(b, .)

)
(ξ) = b

2k+a−1
2 Fk,a(h)(bξ)Fk,a( f )(ξ). (4.9)

Proposition 4.2 Let h be a (k, a)-generalizedwavelet. Then for all f and g in L2
k,a(R),

there holds

∫

R
2+

�
k,a
h ( f )(b, x)�k,a

h (g)(b, x)dμk,a(b, x) = Ch

∫

R

f (x)g(x)dγk,a(x),

(4.10)

where

Ch :=
∫ ∞

0
|Fk,a(h)(bξ)|2 db

b
. (4.11)

Proof Using Fubini’s Theorem, relation (4.7), Parseval’s formula (2.15) and (3.29),
we get

∫

R
2+

�
k,a
h ( f )(b, x)�k,a

h (g)(b, x)dμk,a(b, x)

=
∫ ∞

0
b2k+a−1

∫

R

(
f ∗k,a hb(x)

)
g ∗k,a hb(x)dμk,a(b, x)

=
∫ ∞

0

∫

R

(
f ∗k,a hb(x)

)
g ∗k,a hb(x)dγk,a(x)

db

b

=
∫ ∞

0

∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)|Fk,a(hb)(ξ)|2dγk,a(ξ)
db

b

=
∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)
( ∫ ∞

0
|Fk,a(hb)(ξ)|2 db

b

)
dγk,a(ξ).
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On the other hand using the relations (4.1) and (4.4) we deduce that

∫

R
2+

�
k,a
h ( f )(b, x)�k,a

h (g)(b, x)dμk,a(b, x) = Ch

∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)dγk,a(ξ).

Finally using Proposition 2.3 ii) we obtain the result. ��
Remark 4.2 If h is a (k, a)-generalized wavelet and f = g we obtain the following
Plancherel’s formula

∫

R
2+

|�k,a
h ( f )(b, x)|2dμk,a(b, x) = Ch

∫

R

| f (x)|2dγk,a(x). (4.12)

We generalize the notion of the (k, a)-generalized wavelet as follows.

Definition 4.3 Let u and v be in L2
k,a(R). We say that the pair (u, v) is a (k, a)-

generalized two-wavelet on R if the following integral, noted by Cu,v ,

∫ ∞

0
Fk,a(v)(λx)Fk,a(u)(λx)

dλ

λ
(4.13)

is constant for almost all x ∈ R. We call the number Cu,v the (k, a)-generalized
two-wavelet constant associated with the functions u and v.

Theorem 4.1 Let (u, v) be a (k, a)-generalized two-wavelet. Then for all f and g in
L2
k,a(R)

∫

R
2+

�k,a
u ( f )(b, x)�k,a

v (g)(b, x)dμk,a(b, x) = Cu,v

∫

R

f (x)g(x)dγk,a(x),

(4.14)

where

Cu,v :=
∫ ∞

0
Fk,a(u)(bξ)Fk,a(v)(bξ)

db

b
. (4.15)

Proof Using Fubini’s Theorem, relation (4.7), Parseval’s formula (2.15) and (3.29),
we get

∫

R
2+

�k,a
u ( f )(b, x)�k,a

v (g)(b, x)dμk,a(b, x)

=
∫ ∞

0
b2k+a−1

∫

R

f ∗k,a ūb(x)g ∗k,a v̄b(x)dμk,a(b, x)

=
∫ ∞

0

∫

R

f ∗k,a ūb(x)g ∗k,a v̄b(x)dγk,a(x)
db

b
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=
∫ ∞

0

∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)

Fk,a(ūb)(ξ)Fk,a(vb)(ξ)dγk,a(ξ)
db

b
.

Using the definitionof the (k, a)-generalized two-wavelet and relation (4.4),wededuce
that

∫

R
2+

�k,a
u ( f )(b, x)�k,a

v (g)(b, x)dμk,a(b, x)

=
∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)

Fk,a(v)(bξ)Fk,a(u)(bξ)
db

b

)
dγk,a(ξ)

= Cu,v

∫

R

Fk,a( f )(ξ)Fk,a(g)(ξ)dγk,a(ξ).

Finally using Parseval’s formula (2.15) we obtain the result. ��
Proposition 4.3 Let h be a (k, a)-generalized wavelet, f ∈ L2

k,a(R) and p belongs in
[2,∞]. We have

‖�k,a
h ( f )‖L p

μk,a (R2+) ≤ (Ch)
1
p (C(k, a)‖h‖L2

k,a(R))
p−2
p ‖ f ‖L2

k,a(R). (4.16)

Proof Using relations (4.12) and (4.8) the result follows by applying the Riesz–Thorin
interpolation theorem. ��
Theorem 4.2 (Inversion formula) Let h be a (k, a)-generalized wavelet. For all f in
L1
k,a(R) (resp. L2

k,a(R)) such thatFk,a( f )belongs to L1
k,a(R) (resp. L1

k,a(R)
⋂

L∞
k,a(R))

we have

Ch f (y) =
∫

R

( ∫ ∞

0
�

k,a
h ( f )(b, x)hb,x (y)

db

b
2k+a+1

2

)
dγk,a(x), a.e. (4.17)

where for each y ∈ R, both the inner integral and the outer integral are absolutely
convergent, but eventually not the double integral.

Proof Using similar ideas as in the proof for Theorem 6.III.3 of [48] page 99, we
obtain the relation (4.17). ��

Composition of wavelet transforms have been studied by Pathak [40] for the Fourier
transform and later Prasad and Kumar [41] has been studied the same subject for the
fractional Fourier transform. On the follow we will study the composition of the
(k, a)-generalized wavelet transforms. Indeed, if h1 and h2 ∈ L2

k,a(R) are two (k, a)-

generalized wavelets and �
k,a
h1

( f )(b, x), �
k,a
h2

( f )(c, y) are the (k, a)-generalized

wavelet transforms of f ∈ L2
k,a(R), respectively, then from (4.9) we derive that the

composition of these wavelet transforms is given by
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W
k,a
h1,h2

( f )(b, x, c) = �
k,a
h1

(
�
k,a
h2

( f )(., c)
)
(b, x)

=
∫

R

Bk,a(x, λ)Fk,a
(
�
k,a
h2

( f )(., c)
)
(λ)(Fk,a(h1))(bλ)dγk,a(λ)

=
∫

R

Bk,a(x, λ)Fk,a( f )(λ)(Fk,a(h1))(bλ)(Fk,a(h2))(cλ)dγk,a(λ).

Thus, formally we can write

(Wk,a
h1,h2

f )(b, x, c) = ( f ∗k,a h1,b ∗k,a h2,c)(x), (4.18)

where h j,t , j = 1, 2, is defined by Fk,a(h j,t )(λ) = t
2k+a−1

2 Fk,a(h j )(λt).

Admissibility condition: Let h1, h2 ∈ L2
k,a(R). Consequently, the following

definition serves as the admissibility requirement for the composition of two (k, a)-
generalized wavelet transforms:

Ch1,h2 =
∫ ∞

0

∫ ∞

0
|Fk,a(h1)(bλ)|2|Fk,a(h2)(cλ)|2 db

b

dc

c
< ∞. (4.19)

Theorem 4.3 (Parseval’s relation) Let h1, h2 ∈ L2
k,a(R) be two (k, a)-generalized

wavelets. Then, given f , g ∈ L2
k,a(R), we have

∫

R

∫ ∞

0

∫ ∞

0
Wk,a

h1,h2
f (b, x, c)Wk,a

h1,h2
g(b, x, c)dγk,a(x)

db

b
2k+a+1

2

dc

c
2k+a+1

2

= Ch1,h2

∫

R

f (x)g(x)dγk,a(x),

where Ch1,h2 is defined as (4.19).

Proof Using (4.18), Parseval’s formula for the (k, a)-generalized Fourier transform
and (3.29), we get

∫

R

∫ ∞

0

∫ ∞

0
Wk,a

h1,h2
f (b, x, c)Wk,a

h1,h2
g(b, x, c)dγk,a(x)

db

b
2k+a+1

2

dc

c
2k+a+1

2

=
∫

R

∫ ∞

0

∫ ∞

0
Fk,a( f )(λ)Fk,a(h1)(bλ)Fk,a(h2)(cλ)

Fk,a(g)(λ)Fk,a(h1)(bλ)Fk,a(h2)(cλ)dγk,a(λ)
db

b

dc

c
.

Now from (4.19) the above equality is written as

Ch1,h2

∫

R

Fk,a( f )(λ)Fk,a(g)(λ)dγk,a(λ) = Ch1,h2

∫

R

f (x)g(x)dγk,a(x).

(4.20)
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This completes the proof. ��

Remark 4.3 When f = g, we derive the following Plancherel’s formula

∫

R

∫ ∞

0

∫ ∞

0
|Wk,a

h1,h2
f (b, x, c)|2dγk,a(x)

db

b
2k+a+1

2

dc

c
2k+a+1

2

= Ch1,h2 || f ||2L2
k,a(R)

.

The characterization of L p
k,a(R), for 1 < p < ∞, by themean of the (k, a)-generalized

wavelet transform is given by the following theorem. A function h ∈ L2
k,a(R) is said

to satisfy (H1) if

∫

| |y|−|x ||≥2|x−x0|
|τ k,ax h(y) − τ k,ax0 h(y)|dγk,a(y) ≤ C, x, x0 ∈ R.

In the rest of this subsection, we assume that the (k, a)-generalized wavelet h satisfy
(H1).

Theorem 4.4 Let h be a real (k, a)-generalized wavelet. Then the (k, a)-generalized
wavelet transform �

k,a
h is a bounded linear operator

L p
k,a(R) → L2(R+, db

b2k+a ) × L p
k,a(R),

f −→ �
k,a
h ( f ),

moreover, for any f ∈ L p
k,a(R), 1 < p < ∞

‖ f ‖L p
k,a(R) �

( ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p
. (4.21)

Proof Let W p
k,a denote the space L2(R+, db

b2k+a ) × L p
k,a(R) associated to the norm

‖ f ‖W p
k,a

=
{ ∫

R

( ∫ ∞

0
| f (b, x)|2 db

b2k+a

) p
2
dγk,a(x)

} 1
p
.

If we take p = 2, then from Plancherel’s formula (4.12):

‖�k,a
h ( f )‖W 2

k,a
=
{ ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

)
dγk,a(x)

} 1
2 = √Ch‖ f ‖L2

k,a(R).

Then the singular integral theorem, (see [45]), applied to operators with values in
L2(R+, db

b2k+a ), leads to the:

‖�k,a
h ( f )‖W p

k,a
≤ A(p, h)‖ f ‖L p

k,a(R), 1 < p ≤ 2,
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where the constant A(p, h) depends only on p and h. Due to duality the inequality is
also valid for 1 < p < ∞. It follows that

( ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p ≤ A(p, h)‖ f ‖L p

k,a(R). (4.22)

Conversely suppose that f ∈ L2
k,a(R) ∩ L p

k,a(R). Since the (k, a)-generalized

wavelet transform being an isometry, for every g ∈ L2
k,a(R) ∩ L p′

k,a(R), we can write

1

Ch

∫

R

∫ ∞

0
�

k,a
h ( f )(b, x)�k,a

h (g)(b, x)
db

b2k+a
dγk,a(x) =

∫

R

f (x)g(x)dγk,a(x).

(4.23)

Now,

∣∣∣
∫

R

f (x)g(x)dγk,a(x)
∣∣∣

= 1

Ch

∣∣∣
∫

R

∫ ∞

0
�

k,a
h ( f )(b, x)�k,a

h (g)(b, x)
db

b2k+a
dγk,a(x)

∣∣∣

≤ 1

Ch

∫

R

∫ ∞

0
|�k,a

h ( f )(b, x)�k,a
h (g)(b, x)| db

b2k+a
dγk,a(x).

Involving Cauchy-Schwarz’s inequality, Hölder’s inequality and (4.22), we get

∣∣∣
∫

R

f (x)g(x)dγk,a(x)
∣∣∣

≤ 1

Ch

( ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p

( ∫

R

( ∫ ∞

0
|�k,a

h (g)(b, x)|2 db

b2k+a

) p′
2
dγk,a(x)

) 1
p′

≤ A(p, h)

Ch

( ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p ‖g‖

L p′
k,a(R)

.

By density the inequality is valid for all g ∈ L p′
k,a(R), remember that:

‖ f ‖L p
k,a(R) = sup

g∈L p′
k,a(R)

|
∫

R

f (x)g(x)dγk,a(x)|
||g||

L p′
k,a(R)

then, we get

‖ f ‖L p
k,a(R) ≤ A(p, h)

Ch

( ∫ ∞

0

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p
.
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��

In the rest of this subsection, we assume that a = 2
n .

Theorem 4.5 (Parseval’s formula) Let us assume f ∈ L p
k,a(R), g ∈ L p′

k,a(R) with
1 < p < ∞. If h is a real (k, a)-generalized wavelet, then

1

Ch

∫

R

∫ ∞

0
�

k,a
h ( f )(b, x)�k,a

h (g)(b, x)
db

b2k+a
dγk,a(x) =

∫

R

f (x)g(x)dγk,a(x).

(4.24)

Proof Consider the bilinear transform L:

L : L p
k,a(R) × L p′

k,a(R) −→ R

( f , g) −→ 〈�k,a
h ( f ),�k,a

h (g)〉dμk,a .

where 〈., .〉dμk,a is defined by

〈u, χ〉dμk,a(b,x) =
∫

R

∫ ∞

0
u(b, x)χ(b, x)dμk,a(b, x), (u, χ) ∈ W p

k,a × W p′
k,a .

Involving Hölder’s inequality two times, we get

|L( f , g)| = |〈�k,a
h ( f ), �k,a

h (g)〉dμk,a |

≤
∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) 1
2
( ∫ ∞

0
|�k,a

h (g)(b, x)|2 db

b2k+a

) 1
2
dγk,a(x)

≤
( ∫

R

( ∫ ∞

0
|�k,a

h ( f )(b, x)|2 db

b2k+a

) p
2
dγk,a(x)

) 1
p

( ∫

R

( ∫ ∞

0
|�k,a

h (g)(b, x)|2 db

b2k+a

) p′
2
dγk,a(x)

) 1
p′

.

Using Theorem 4.4, we have

|L( f , g)| ≤ C‖ f ‖L p
k,a(R)‖g‖L p′

k,a(R)
. (4.25)

Moreover for all f ∈ L2
k,a(R) ∩ L p

k,a(R) and g ∈ L2
k,a(R) ∩ L p′

k,a(R) we get

L( f , g) = 〈�k,a
h ( f ),�k,a

h (g)〉dμk,a = Ch〈 f , g〉L2
k,a(R). (4.26)

From equations (4.25), (4.26) and density of spaces L2
k,a(R) ∩ L p

k,a(R) in L p
k,a(R)

gives the result. ��



36 Page 34 of 43 H. Mejjaoli

Corollary 4.1 (An inversion formula) Let h be a real (k, a)-generalized wavelet. For
all f in L p

k,a(R), 1 < p < ∞, we have

f (y) = 1

Ch

∫

R

∫ ∞

0
�

k,a
h ( f )(b, x)hb,x (y)dμk,a(b, x). (4.27)

The equality holds in L p
k,a(R) sense and the integral of right hand side have to be

taken in the sense of distributions.

Proof The proof follows from Theorem 4.5. ��
Remark 4.4 We note that the authors in [31], have studied the analogues of the results
presented in this section in the setting of a class of singular differential-difference
operators on the real line.

4.2 Time-Invariant Filter

Definition 4.4 Let f be any signal and b ∈ R. Then the linear operator L is said to be
time-invariant filter if it satisfies

L(τ
k,a
b f )(t) = τ

k,a
b (L f )(t), for all t ∈ R.

As follows theorem, we will show that the (k, a)-generalized convolution operator is
time-invariant filter.

Lemma 4.1 Let L be a linear time-invariant filter. Then, there exist a function g ∈
L1
k,a(R) such that

L(Bk,a(λ, t)) = Fk,a(g)(λ)Bk,a(λ, t). (4.28)

Proof Set

gλ(t) = L(Bk,a(λ, t)). (4.29)

Applying operator L to (3.8) and using (4.29), we have

L(Bk,a(λ, t)Bk,a(λ, y)) =
∫

R

L(Bk,a(λ, x))dζ
k,a
t,y (x)

=
∫

R

gλ(x)dζ
k,a
t,y (x). (4.30)

As, L is linear, then by (4.29), we get

L(Bk,a(λ, t)Bk,a(λ, y)) = Bk,a(λ, y)gλ(t). (4.31)
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Thus (4.30) and (4.31) give us

∫

R

gλ(x)dζ
k,a
t,y (x) = Bk,a(λ, y)gλ(t). (4.32)

Put t = 0 in (4.32) and using (3.9), we obtain

gλ(y) = gλ(0)Bk,a(λ, y).

Now replacing y by t and assume gλ(0) = Fk,a(g)(λ) for some function g ∈ L1
k,a(R),

we obtain

gλ(t) = Fk,a(g)(λ)Bk,a(λ, t). (4.33)

Thus, involving (4.29) and (4.33) the result is proved. ��

Theorem 4.6 Let L be a linear time-invariant filter. For each signal f , we have

L f (t) = f ∗k,a g(t),

where g is the function given by (4.28).

Proof We have

f (t) =
∫

R

Fk,a( f )(λ)Bk,a(λ, t)dγk,a(λ).

Applying operator L to both sides of the last identity

L f (t) = L
[ ∫

R

Fk,a( f )(λ)Bk,a(λ, t)dγk,a(λ)
]
.

Using (4.28), we obtain

L f (t) =
∫

R

Fk,a( f )(λ)Fk,a(g)(λ)Bk,a(λ, t)dγk,a(λ)

=
∫

R

Fk,a( f ∗k,a g)(λ)Bk,a(λ, t)dγk,a(λ).

Using inversion formula for the (k, a)-generalized Fourier transform, we derive that

L f (t) = f ∗k,a g(t).

��
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Theorem 4.7 Let f ∈ L2
k,a(R) and h ∈ L2

k,a(R) be a (k, a)-generalized wavelet. Let

(b, x) ∈ R
2+, there exist a linear time-invariant filter Lb such that we can write the

(k, a)-generalized wavelet transform as

�
k,a
h ( f )(b, x) = Lb f (x). (4.34)

Proof Involving (4.9) and the inversion formula for the (k, a)-generalized Fourier
transform, we get

�
k,a
h ( f )(b, x) =

∫

R

Fk,a( f )(λ)Fk,a(h)(bλ)Bk,a(λ, x)dγk,a(λ).

From above, we can prove that there exist a linear time-invariant filter Lb satisfying

Lb[Bk,a(λ, x)] = Fk,a(h)(bλ)Bk,a(λ, x).

So, we derive that

�
k,a
h ( f )(b, x) =

∫

R

Fk,a( f )(λ)Lb[Bk,a(λ, x)]dγk,a(λ).

By linearity property of Lb, we have

�
k,a
h ( f )(b, x) = Lb

[ ∫

R

Fk,a( f )(λ)Bk,a(λ, x)dγk,a(λ)
]
.

Hence

�
k,a
h ( f )(b, x) = Lb f (x).

This completes the Theorem. ��
Example 4.1 Let h be a function with a finite support. For a signal f , we put

L f (t) = h ∗k,a f (t). (4.35)

The operator L is a time-invariant filter.

Proof On the followwewill to prove that the operator L is time-invariant filter. Indeed,
for any b ∈ R, we have

τ
k,a
b (L f )(t) =

∫

R

L f (z)�k,a(b, t, z)dγk,a(z)

=
∫

R

∫

R

h(x)τ k,a
e
2iπ
a x

f (z)�k,a(b, t, z)dγk,a(x)dγk,a(z)
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=
∫

R

h(x)
( ∫

R

τ
k,a

e
2iπ
a x

f (z)�k,a(b, t, z)dγk,a(z)
)
dγk,a(x)

=
∫

R

h(x)τ k,ab τ
k,a

e
2iπ
a x

f (t)dγk,a(x)

=
∫

R

h(x)τ k,a
e
2iπ
a x

(τ
k,a
b f )(t)dγk,a(x)

= τ
k,a
b f ∗k,a h(t)

= L(τ
k,a
b f )(t).

This completes the proof. ��
Remark 4.5 We note that Prasad and Kumar [41], have studied the time-filter for the
fractional wavelet transform.

4.3 (k, a)-Generalized Hausdorff Operator

Themain purpose of this subsection is to extend some results of the classical Hausdorff
operator given in [19, 30] in the (k, a)-generalized Fourier setting.

Definition 4.5 Let ϕ ∈ L1(R) and f ∈ L1
k,a(R). The (k, a)-generalized Hausdorff

operator is defined as:

Hk,a
ϕ f (x) :=

∫

R

ϕ(t)

|t |2k+a−1 f (
x

t
)dt, x ∈ R. (4.36)

By simple calculations we prove the following:

Lemma 4.2 If f belongs to L1
k,a(R) and ϕ belongs to L1(R), we have

Fk,a(Hk,a
ϕ f )(t) =

∫

R

Fk,a( f )(t x)ϕ(x)dx . (4.37)

Definition 4.6 For f ∈ L2
k,a(R), the Riesz transformRk,a is defined as:

Rk,a( f )(x) = Ck,a lim
ε→0

∫

|y|>ε

τ
k,a
x f (y)

|y|2k+a
dγk,a(y), (4.38)

where Ck,a = a
2k+a−1

a
�( 2k+a

a )

�( 1a )
.

The Hardy type space H1
k,a(R) associated with the (k, a)-generalized Fourier trans-

form is defined by

H1
k,a(R) :=

{
f ∈ L1

k,a(R); Rk,a( f ) ∈ L1
k,a(R)

}
,
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endowed with the norm

‖ f ‖H1
k,a(R) := ‖ f ‖L1

k,a(R) + ‖Rk,a( f )‖L1
k,a(R). (4.39)

We note that in [2], we have proved that Rk,a is a multiplier operator given by

Fk,a(Rk,a f )(t) = (e
−iπ
a sgn t)Fk,a( f )(t). (4.40)

Thus, it follows immediately that if f ∈ H1
k,a(R), then

Fk,a( f )(0) = 0 (4.41)

and by uniqueness of the (k, a)-generalized Fourier transform

Rk,a(Rk,a f )(t) = e
−2iπ
a f (t). (4.42)

In particular, if f ∈ H1
k,a(R), then Rk,a f ∈ H1

k,a(R) and

‖Rk,a f ‖H1
k,a(R) = ‖ f ‖H1

k,a(R).

Theorem 4.8 Let p ∈ [1,∞] and ϕ be a measurable function on R such that

C(p, k, a, ϕ) =
∫

R

|ϕ(x)||t |(2k+a−1)( 1
p −1)dt < ∞.

The Hausdorff operator Hk,a
ϕ is bounded linear operator on L p

k,a(R), with

‖Hk,a
ϕ f ‖L p

k,a(R) ≤ C(p, k, a, ϕ)‖ f ‖L p
k,a(R).

Proof Let us note ft (x) := f (x/t), dγk,a(t) := |t |−2k−a+1|ϕ(t)|dt and let’s consider
the integral

I =
( ∫

R

( ∫

R

| ft (x)|dγk,a(t)
)p

dγk,a(x)
)1/p

.

Using Minkowski’s inequality for the measure dγk,a , we get

I = ‖
∫

R

| ft (.)|dγk,a(t)‖L p
k,a(R) ≤

∫

R

‖ ft (.)‖L p
k,a(R)dγk,a(t)

=
∫

R

( ∫

R

| ft (x)|pdγk,a(x)
)1/p

dγk,a(t).
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For t �= 0 fixed, the change of variable x → u = x/t in the last integral gives

∫

R

| ft (x)|pdγk,a(x) =
∫

R

| f (x/t)|pdγk,a(x) = |t |2k+a−1
∫

R

| f (u)|pdγk,a(u)

= |t |2k+a−1‖ f ‖p
L p
k,a(R)

.

Thus

I ≤ ‖ f ‖L p
k,a(R)

∫

R

|ϕ(t)||t |(2k+a−1)( 1
p −1)dt = C(p, k, a, ϕ)‖ f ‖L p

k,a(R).

Going back to the definition of I , we deduce that the integral Hk,a
ϕ f (x) =∫

R

ft (x)dγk,a(t) is absolutely convergent for almost all x ∈ R, and defines a function

Hk,a
ϕ f ∈ L p

k,a(R) with

‖Hk,a
ϕ f ‖L p

k,a(R) ≤ I ≤ C(p, k, a, ϕ)‖ f ‖L p
k,a(R).

��
Remark 4.6 When p = 1, C(p, k, a, ϕ) = ||ϕ||L1(R).

Lemma 4.3 Let ϕ ∈ L1(R) and ϕ̃(t) := (sgn t)ϕ(t), t ∈ R. Then for f ∈ L1
k,a(R)

Rk,aHk,a
ϕ f = Hk,a

ϕ̃ Rk,a f .

Proof Let ϕ ∈ L1(R). By Theorem 4.8, for p = 1, we have Hk,a
ϕ f ∈ L1(R). From

(4.40) and (4.37) it follows that

Fk,aRk,aHk,a
ϕ f (y) = e

−iπ
a (sgn y)Fk,aHk,a

ϕ f (y) = e
−iπ
a (sgn y)

∫

R

Fk,a( f )(t y)ϕ(t)dt

and analogously,

Fk,aHk,a
ϕ̃ Rk,a f (y) =

∫

R

Fk,a(Rk,a f )(t y)ϕ̃(t)dt

= e
−iπ
a

∫

R

(sgn t y)Fk,a( f )(t y)ϕ̃(t)dt

= e
−iπ
a (sgn y)

∫

R

(sgn t)Fk,a( f )(t y)ϕ̃(t)dt

= e
−iπ
a (sgn y)

∫

R

Fk,a( f )(t y)ϕ(t)dt .
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Involving the injectivity of the generalized Fourier transformFk,a , we derive the result.
��

On the follow we will to prove the boundedness of the (k, a)-generalized Hausdorff
operators on the Hardy space H1

k,a(R).

Theorem 4.9 Let ϕ ∈ L1(R). Then for f ∈ H1
k,a(R)

‖Hk,a
ϕ f ‖H1

k,a(R) ≤ ‖ϕ‖L1(R)‖ f ‖H1
k,a(R).

Proof Let f ∈ H1
k,a(R). Then Rk,a f ∈ L1

k,a(R) hence by Theorem 4.8, for p = 1,
and Lemma 4.3 we have

‖Hk,a
ϕ f ‖H1

k,a(R) = ‖Hk,a
ϕ f ‖L1

k,a(R) + ‖Rk,aHk,a
ϕ f ‖L1

k,a(R)

= ‖Hk,a
ϕ f ‖L1

k,a(R) + ‖Hk,a
ϕ̃ Rk,a f ‖L1

k,a(R)

≤ ‖ϕ‖L1(R)‖ f ‖L1
k,a(R) + ‖ϕ̃‖L1(R)‖Rk,a f ‖L1

k,a(R).

This shows the theorem, since ‖ϕ‖L1(R) = ‖ϕ̃‖L1(R). ��

Proposition 4.4 Let h ∈ L2
k,a(R) be a (k, a)-generalized wavelet and f ∈ L1

k,a(R),
then the generalized convolution f ∗k,a h is a (k, a)-generalized wavelet.

Proof Using Theorem 3.4, we derive that f ∗k,a h ∈ L2
k,a(R) and we have

‖ f ∗k,a h‖L2
k,a(R) ≤ C(k, a)‖ f ‖L1

k,a(R)‖h‖L2
k,a(R).

Next, we have to show that

∫ ∞

0
|Fk,a( f ∗k,a h)(λ)|2 dλ

λ
< ∞.

Involving Plancherel’s formula (2.15) and (2.13), we get

∫ ∞

0
|Fk,a( f ∗k,a h)(λ)|2 dλ

λ
=
∫ ∞

0
|Fk,a( f )(λ)Fk,a(h)(λ)|2 dλ

λ
< ∞

≤ ‖Fk,a( f )‖L∞
k,a(R)

∫ ∞

0
|Fk,a(h)(λ)|2 dλ

λ

≤ ‖ f ‖L1
k,a(R)

∫ ∞

0
|Fk,a(h)(λ)|2 dλ

λ
.

This shows that f ∗k,a h is a (k, a)-generalized wavelet. ��
We obtain a relation between the (k, a)-generalized wavelet transformation and the
(k, a)-generalized Hausdorff operator.
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Theorem 4.10 Let f ∈ L2
k,a(R), h ∈ L1

k,a(R)∩ L2
k,a(R) a (k, a)-generalized wavelet

and a measurable function ϕ on R such that
∫

R

|ϕ(t)||t |− 2k+a−1
2 dt < ∞. Then, we

have

�
k,a
h (Hk,a

ϕ f )(b, x) =
∫

R

�
k,a
h ( f )

(
b

t
,
x

t

)
t−2k−a+1ϕ(t)dt .

Proof Let h ∈ L2
k,a(R) be a (k, a)-generalized wavelet. By Parseval’s formula (2.15)

and (4.4) we have

�
k,a
h ( f )(b, x) =

∫

R

Fk,a( f )(λ)Fk,a(h)(bλ)Bk,a(x, λ)dγk,a(λ).

Therefore,

�
k,a
h (Hk,a

ϕ f )(b, x) =
∫

R

Fk,a(Hk,a
ϕ f )(λ)Fk,a(h)(bλ)Bk,a(x, λ)dγk,a(λ)

=
∫

R

∫

R

Fk,a( f )(λt)ϕ(t)dtFk,a(h)(bλ)Bk,a(x, λ)dγk,a(λ).

Putting λt = u, we obtain

�
k,a
h (Hk,a

ϕ f )(b, x) =
∫

R

ϕ(t)

t2k+a−1

( ∫

R

Fk,a( f )(u)Fk,a(h)(
b

t
u)Bk,a(

x

t
, u)
)
dγk,a(u)

=
∫

R

�
k,a
h ( f )

(
b

t
,
x

t

)
t−2k−a+1ϕ(t)dt .

Thus the theorem is proved. ��

5 Conclusion

In the present paper we have successfully studied the generalized translation operator
and the generalized convolution product associatedwith the (k, a)-generalized Fourier
transform. Profiting of the harmonic analysis presented in this paper, we have studied
the analogues of the results of [35]. In the forthcoming papers, we will focus on some
problems of time-frequency analysis, harmonic analysis and PDE.
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