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Abstract

Itis well known that the Hilbert matrix H is bounded from the logarithmically weighted
Bergman space Alzo « into Bergman space A% when o > 2. In this paper, we calculate
lower bound and upper bound for the norm of the Hilbert matrix operator H from the
logarithmically weighted Bergman space Alz0 o into Bergman space A> when o > 2.
We also calculate lower bound and upper bound for the norm of the Hilbert matrix
operator from Af;ga into AP, for2 < p <ocoand @ > 1.

Keywords Operator norm - Hilbert matrix - Logarithmically weighted Bergman
spaces

Mathematics Subject Classification 47B38 - 30H20

1 Introduction and Preliminaries

In recent years, the study for Hilbert matrix operator H’s boundedness and norm
on different analytic function spaces has been under active investigation (see [1-8]).
Diamantopoulus and Siskakis [7] studied H is bounded on Hardy space H”(1 < p <
oo) and also obtained an upper bound estimate for its norm. In [6], Diamantopoulus
began consider the boundedness of H on the Bergman spaces A?(2 < p < 00), and
obtained the upper bound estimate for the norm of H. Then Dostanié, Jevti¢, Vukoti¢
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[8] established the precise value of the norm of H in the Hardy space H” (1 < p < 00)
and also gave exact value of the norm of H in the Bergman space A” (4 < p < ).
In 2017, BoZin and Karapetrovi¢ [3] solved the question of exact value of the norm
of H in the Bergman space A?, for 2 < p < 4. The norm of Hilbert matrix operator
‘H has also been studied in other analytic function spaces like Korenblum spaces H°
[5, 19].

The study of boundedness of H on AP was initiated in [10] and some partial results
were obtained. The boundedness of the Hilbert matrix on A} for 1 <2+« < p was
also studied by Jevti¢ M and Karapetrovi¢ B in [12]. In [13], Karapetrovi¢ obtained
the exact norm of { on A2 when 4 < 2(2 + ) < p < oo. Additionally, he showed
that the same lower bound holds for all p > 2 + « > 1. He also conjectured that the
upper bound for the norm of H is the same as above also for the case 1 < 2 4+ o <
p < 22 + «) in [13]. In [18] Lindstrom, Miihkinen and Wikman confirmed the

conjecture in the positive for 2 + a + /a2 + %oz +3 < p < 2(2 + a). Recently
Karapetrovi¢ generalized the work of [ 18] by showing that the conjecture holds for 2 +

a—i—\/ Q+a)?— (V232 +a) < p <2(2+a).In[2], Bralovi¢ and Karapetrovié
provide a new upper bound for the norm of the Hilbert matrix H on the weighted
Bergman spaces Ay when —1 < a < 0, which represents an improvement.

We also realized the Hilbert matrix operator is unbounded on A? in [6]. And the
situation is actually even worse: the series defining H f(0) is divergent in [8]. Then
in [16] Lanucha, Nowak and Pavlovié¢ considered H acts as a bounded operator from

Alzoga to A2 for & > 3 and this was improved in [11, Theorem 4.5], where it is proved

that H maps A120 o into A2 for a > 2. The last result is also improved in [15, Theorem

2 2
log loga727£
and 0 < ¢ < o — 2. In this paper, we obtained the upper bound for the norm from

logarithmically weighted Bergman spaces Alz0 o into Bergman spaces A” for o > 2.

3.2] by Karapetrovié, where it is proved that 7{ maps A; . into A fora > 2

We also find H acts as a bounded operator from Aﬁ) « into AP for 2 < p < oo and
a > 0, and also calculate the upper bound for the norm of H.

Let D denote the open unit disk of the complex plane C, and let H (D) denote the
set of all analytic functions in ID.

For 0 < p < oo, the Hardy space H? is the space of all functions f € H (D) for
which

| fllzr = sup M,(r, f) < oo,

0<r<l

where

1 [ . 7
My(r, f) = (E/o If(re”)l”dt> , 0<p<oo;

Moo(r, f) = sup |f(re')|.

0<t<2m
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For 0 < p < oo the Bergman space A” consists of those f € H (D) such that

1/p
1flar < ( fD If(z)l”dA(z)) < o

Here, d A stands for the area measure on ID, normalized so that the total area of ID is
1. Thus dA(z) = Ldxdy = Lrdrdo.

Then for 0 < p < oo and @ > 0 the logarithmically weighted Bergman space
« consists of those f € H(ID) such that

” 2 o 1/p
1, 2 ([ror (o= ) dae) " <o

The relation between these spaces we introduced above is well known that Al’;ga C AP,

The Hilbert matrix is an infinite matrix { whose entries are a, y = ﬁ n, k>
0. The Hilbert matrix H can be also viewed as an operator on spaces of analytic
functions by its action on their Taylor coefficients. Hence for those f € H(D), f(z) =
> 72 akzk, then we define a transformation H by

Hf@) =Y. (Z nf#) "

n=0 \k=0

p
Alog

As usual, throughout this paper, C denotes a positive constant which depends only
on the displayed parameters but not necessarily the same from one occurrence to the
next.

2 Norm Estimates of the Hilbert Matrix || 1|52 _ 42

log?

In this section, we drive norm estimates for Hilbert matrix operator acting from Alzo o
into A% for o > 2.
According to [16, Lemma 4.2], we obtain that there exists a constant C > 0 such

that

o
Sy,
Lkt g

for every f(z) = Y poaxz that belongs to Alzog"" a > 2. Then we obtain a well-
defined analytic function H f (z) on D. Hence, we have that

Hf@) =) (Z nfﬁ) z"

n=0 \k=0
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0o [ oo 1
= Z (Z ak/ t"+kdt) 7"
n=0 0

1 o0 0
= [ Yt yrerar
O k=0  n=0

AQNSS

- 0 1—1z

2.1)

2.1 Upper Bound for the Norm || H [ 2 _ 42
a

log

We know that the Hilbert matrix operator H has an integral representation in terms of
weighted composition operators 7; (see [6]):

1
Hf() = /0 T, f (z)dt, (2.2)
where
1
T/@=w@f @@, w@ =gy @)= m

Theorem 2.1 Let o > 2. Then the norm of the Hilbert matrix operator acting from
A2, into A? satisfies the upper estimate

log
! 2 1 1
||H||A2 5 A2 S[ ] + 1 dx.
log® 0 ( ) )7 1 —x (x(1 = x))2

log 1—x2

Proof By Minkowski’s inequality, we have

IH fll 42 = ( IHf(z)|2dA(z))
2 3
< Tt(z)dl dA(z))
/ ( / ITzf(z)Isz(z)> dt

- /O 1T, f 1 . 2.3)
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Using linear fractional change of variable w = ¢,(z), z € D, we obtain that

17, £12, = /D e () PLf (1 ()P A)

_ | f (w)[?
= lw (¢ (w)) | ———————d A(w)
/¢,<ID>> e I s e T

=;/ I =21 £ () PdA(w).
(1 =12 Jg,m)

Therefore

1 -2 2 %
ITiflae = 7 / lw ™ f(w)"dAw) | ,
—\Up,

here D; = ¢;(D). It is easy to find that D, = D ( 1= ’) i.e. Dy is the Euclidean

2=1’ 2=t
disc with center on 2 ; and of radius 1=£ = t .Itis easy to see that |w| > z—t,for w € Dy,
and D; C E;, where E; = {w € C: # < |w| < 1}. Hence, we obtain
17: fllg2 = — (/ [w|™ If(w)lsz(w)> : 2.4

On the other hand, we also have

1
i 1 3
( ; le‘zlf(w)lsz(w))z - (2/ r%.rM%u,f)dr) .
! 2=t

It is easy to find function r — lz is decreasing and function r — er2 (r, f)is
increasing, by using Chebyshev’s inequality, we get

1

1 2
(/ |w|2|f<w)|2dA(w>> <(1 / —dr / rM;(r, f)dr>
E, - 2= ’_
1
2t 1 5 2
= _t -Z/Ler(r,f)dr

2—t
1

(Z / |f(w>|2dA<w>)2 . @.5)
t E,

And by using (2.5), we have that

! 1 @-nt 5 :
[itsiar< [ 55 ( F ) dA(w)) dr
0 0 —1 12 E,
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1

(22 ) i)
(e (e >%>> (o)
(i
(

A ) , 2
_ [ 1 1) dA(w)) di

o \1=7 7 (t(1 —1)?
—/1 1 2 2 >_a|f(w)|2
o \1 — " (1 —1))2 = lwl?

x (1ogl+w|2> dA(w)) dt. (2.6)

—
Since function w — (log ﬁ) is decreasing, by simple calculation we found
that,

1 (%,4’ /2 2) ) o 1
- o ( [ If(w)|2< _|w|2> dA(w)) dt
<10g - (2r )2>

1 1 ﬁ

+ = [anfie .
2 1 2 2 °
(1—1) log@ (t(1—1))2 (| log TGo7

1
/ 1T, £l ods 5/
0 0

IA

IR

2.7)

Making the change of variable in (2.7), we obtain that

1 1
2
[ sar < [ il fle,
2 2 ©
(1 =) (log 2;)

! 2
+f Zdilfllgz
© @+ D -3 (log 2

1
-/ . (1 )druqulz R
O (40 10g 1 2 - (- t))2 o8

(2.8)
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From (2.3) and (2.8), we have that

1 ) | 1
sl < | 7 ( + l)dtllfll :
A 0 (1 + t) (l()g ﬁ) 2 1—1 (t(l _ t))7 Alog

<f1 2 ( L, 1 )dtllfll
= 2 .

%
log 27

It means that

1 2 1 1
||H”A12 LA S 7 | ] + T dx,
* © (g 25) N7

—X

and the last integral converges for o > 2.
This finishes the proof of the theorem. O

This result improves Theorem 4.3 in [16], and we also give a new proof method of
Theorem 4.5 in [11].

2.2 Lower Bound for the Norm || H|l ;2 _
log?
Before we get lower bound for the norm ||| A2 o> A2> WE need find a special function
og¥
A2
in Aj oo
Lemma2.1 Leta > 2,b > 1and 1 < y < 2. Then the function

1 b -3 _r
f(z)z(—log > 1-272z,
z 11—z

2

belongs to Alog""

Proof First we recall a well known result of Littlewood [17, pp.93-96]: Shows the
function has an an integral mean with growth [9, p49]

, 1 [T b\ ioy-v| 4
MQ(V,f) :g A re—lelogm (1_}’@ ) 0
1 (2|1 1\ .
— — log ——— 1—reé?y77|do
~2n Jy <re’9 °8 1— re’g) (1=re™)

C ! 1 ! h -1
~ (o) , T .
A—rr 18T,
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Since
(a+b)P <2P@’ +0b”), a>0, b>0,
we have
Ms(r, )% (1o 2 a<c ! lo ! 7(12“ log2% + ( lo Ly
2 E1-2) = a— T (81 g g1,
_ o Xlog2t (1 —“+C 2 o
TS Vi Gl g Q-1 "7

o
Thus we can find the integral fol My(r, f)? (log ﬁ) dr converges while o > 2,
b>1land 1 < y < 2, this shows that f(z) € Alzog"" It is also easy to see that

lim 2 = Q.
lim I f e,

Corollary 2.1 Leta > 1,b > 1 and 1 <y < 2. Then the function

b % v
) (I—=2) »,
11—z

1
f)= (— log
z

belongs to Aﬁ)ga (p > 2).

Theorem 2.2 Let o > 2. Then the norm of the Hilbert matrix operator acting from

A120 o into A? satisfies the lower estimate
1 x%
1Ml a2 = Ca / cdx.
—X) < 0g g x)
where
oo
Cy = limsup a
=2 _r
r=2 (%logl%z) T(l-z) 2 i
Alog"

Proof Let« > 2, we begin by selecting a family of test functions. Choose an arbitrary
y such that 1 < y < 2. It is a standard exercise to check that the function

1 \~%
) (1—2)77,
—Z

1
fy(Z) = <E log 1
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2
log®

and Lemma 2.1 shows that f, (z) € A; . Itis also easy to see that
)}iinz IIfyIIAlzoga = 00.

And we let
F@=0-271,

belong to AZ, and

lim [|Fy |42 = 00,
y—2

we obtain a relationship between f), (z) and F, (z) by the proof of Lemma 2.1, that

Ja-ors
I I Fy Il 42 . ¢
im sup = lim sup

AT -5 y
y—=2 YV Ajoger o H (% log ﬁ) 1-2772

A2

A2

log¥

1 1
Jo 7———dr
. 0 (I—r7r=1
< Clim sup (d=rv

o
y—2 fol My(r, )? (log 1]Tr) dr
1 1

f ——dr
. 0 —r)yr—1
< Clim sup % =C < o0. 2.9)
y—2 0 —(l—r)V*I dr
_Y
“(1—0 2 5
Thus, we let C, = lim sup,, _,» ——4 y , and C,, is a constant,
(Lrogrts) *a-072
i Aloga

depending only on «.
Using (2.1), we find that

1
A0
ny(z)—/o T

1 a
t2dt
= / o . (2.10)
0 (1ogg)2 =051 =1z
Then making the change of variable w = (1 — tz)/(1 — t), we calculate that
o0 w—1)2dw
Hfy(2) = —z)*%/ (w=1) , @2.11)
1

2
1 —_ A5+1-%
(logu;:;)) wlw —2)27
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we define

00 o
(w—1)2dw
¢))/(Z) :‘/; % .
<10g W) w(w _Z)%+17%

w—

for every z in D, which shows H f,, (z) = F), (z)¢, (2).

Knowing that in the definition (2.10) of the function ¢,, is similar to the function
¢, defined in the [8, Theorm 4], we can let w to be a real number s > 1. Thus we
obtained that ¢, belongs to the disk algebra whenever y < 2, (the case y = 2 will

also be useful to us although f> ¢ Alzoga), we can view ¢,, is an analytic function of z
that

00 o
(s —1)2ds
oy (2) = / 7 . (2.12)
1 o Y
1 241-%
<10g W) S(S _Z)2+ 2
: : _ @ _ K@ .
We will use the test function g, (z) = T T and Gy (z) = T2 Ve obtain that
A A

IH@ a2 I1Fylla2 IHUIa2 — IFy a2 [1Fy )¢y (@)1 42

Il 42 = =
log gyl a2 Ifllaz ,  I1Fylla2 £y 1l 42 £y 1l 42
log¥ log¥ log¥

oa"Az_

Letting y — 2, and by [8, Theorem 4] we get,

[y llaz [1Fy )¢y (2)] 42

IHll 42, 42 = limsup = Cq lim [|Gy ¢y [l 42 = CallP2lloo
& y—2

y—2 ||fy||A120ga ||Fy||A2
o (s — D2
= Cqy sup o ds
zeD J1 ) 1 2 g
og [ s(s —z)
00 -1 3
> Cy sup / S 1 ds
0<r<1J1

1 2 &
<10g m) s(s —2)2
00 -1 5
> Ca/ =D ds.
1

%
g+1 1
s2 <10g1(é'x‘)2)

Then making the change of variable x = (s — 1) /s, we calculate that

00 — D3 1 b
/ (s 1) zds :/ u dx.
1 o 2 0 1

5+ <log ﬁ) (1 - ) (log L)

IR
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Thus we obtained that,

1
>
”H”AlzogD‘%Az el CO( k/ov

where

H(l _ )k

Cy = lim sup

N -3 _y
y=2 (% log ﬁ) (1-2)"2
Alzogo‘
and the last integral converges for o > 2.
This concludes the proof. O

Corollary 2.2 Let o > 2. Then the norm of the Hilbert matrix operator acting from

2 . 2 :
Aloga into A< satisfies

zdx < |Hlls2 _ 4
log¥

1 2 < 1 1 )
5/ 7 + - | dx.
0 (log 2 )2 I=x " xa-x)2

1—x2

where

oot

Cy = lim sup
y—2

_q _Z
(%logl%z) -2

2
Alog,

3 Norm Estimates of the Hilbert Matrix || ]| ,» AP
log?

Then we consider the boundedness of Hilbert matrix from into Aﬁ)gu into AP, for
p > 2 and o > 0. That can easy obtain Lemma 3.1.

Lemma3.1 If p > 2 and o > 0, then H acts as a bounded operator from A?
AP,

log® into

Since A{Z) o C AP, that the lemma is obviously established.
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Lemma3.2 [3, 6] Let 2 < p < o0o. Then the norm of the Hilbert matrix operator
acting on AP satisfies

b4
IHllap—ar = I

p

Then we give the upper bound for the norm estimates of the Hilbert matrix
||H||A1’Z)ga_>Ap‘

Theorem3.1 Let 2 < p < oo and a > 1. Then the norm of the Hilbert matrix
operator acting from Af; o into AP satisfies

1 a 1 2 2
xPr 2rxp
CC(,p o dx S ||H||Ap — AP S o dtv
0 1 % 1 1 p log® 0 1 I% 1 2 P
(1 =x)r (log = (I —=x)7 (log ==
where
1 _Y
— 2
la-277],

Cq,p = limsup a ,
— 2 —L£
- H(%longz) (-2

Proof First, we establish the lower bound for the norm ||H|| ,» _, ,,. We also con-
log®

struct a family of test functions like Theorem 2.2. Choose an arbitrary y such that
1 < y < 2. 1Itis a standard exercise to check that the function

1 ~ (1 ),z
— P
1 Z Z b

After some elementary calculations, we can also establish that fy1 (z) belongsto A
It is also easy to observe that

fl()—<llo
y =178

p
log®"

. 1 _
lim 1} lap,, = 0.
And we let
1 _r
F,z)=0-2) »,
belong to A”, have that

lim ||[Fl[ar = oo.
lim 17114
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We also obtain a relationship between fy1 (z) and F)} (z) by the Theorem 2.2 and
Corollary 2.1, that

1y llar
lim su p— <C < o0.

y—2 ”fy ||A]P .
' AL and Cy, p, is a constant,

(%log %_z)_%(l—sz

Thus, we let Cy,, = limsup,,_,, ‘

Alog"‘
depending only on « and p.

It can be seen from the proof of Theorem 2.2, we define

o Y
<z>i<z)=/1 w-D dw

» [
(logl (w 1)> w(w—z)l’+ P

for every z in D, which shows H £} (z) = F}(2)¢,,(2).
According the proof of Theorem 2.2, we can let w to be a real number s > 1. And
we view qb}l, is an analytic function of z that

00 o
(s —Dr
¢y (2) = / . ds.
1 1 p +177
(108 1) 565 = 0
1 1
We will use the test function g},(z) = ”g% and G},(z) = %, we have that
Y

-]l _ I @Plar _ WElar IHGD A IFyllar [1Fy @y @ lar
Ajgga AP = T[0T Ty 1 = A i )
loblar, WA, WE e Ay, 1Fiar

Letting y — 2, and by [8, Theorem 4] we get,

- ~ lim sup IF ar IF} @)y (@)l ar
1’ =
Aogr AT = T ) lap . IF s

1
= Cot,p lim ”Gy¢y lar = Ca,p”¢2”oo
y—2

00 — N7
=Cq,p sup/ (s 7 ) ds
DJ1 a=2
G
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o0 1 >
> Ca,p 0supI/1 (s & ) ; ds
=r=< r a=2 4
<10g ﬁ) S(S—r) P +
) 1 5
> Ca,,,/ =1 _ds.
1 P

=249 1
s P <log 1(‘51)>

Then making the change of variable x = (s — 1) /s, we calculate that

<R

[e'e) _ < 1
/ (s—1)» _ds :/ 2x _dx.
I a2y <log I )” O (1—x)» ( ;)P

s P 7
—=0

Thus we obtained that,

IR

X

1
Mg ~ar = Cor [ 2 ~dx.
0 (1 —x)p logﬁ)p

where

oo

AP

Cy,p = limsup — .
r=2 H (% log 1+z) (-2

A2

log¥

On the other hand, we give the upper bound for the norm ||H|| AP > AP- We using

the method in the proof of Theorem 2.1 and Lemma 3.2, by simple calculation we
found that

2

1 1 3
IHfllar 5/0 1T f llardt =/ ( A |w|p74|f(w)\pdA(w)> dt

2
0O (d=nr
1 2 1

5/ r - dt (/ lwlP~| f (w)|? (mgL) dA(w));.
0 2 5 » D, 1—jw?
(1—1)» (log 7)

1-(55)?

By Theorem 3.2 in [3] and Lemma 2 in [6] we can find when 2 < p < 4 and
4 < p < 00, we have that

1 1

1 %* 2 o 7
IHfllap < / ’ wdt ( / If(w)l”<log—2> dA(w))
0 » D 1 — |wl

: 2
(A =0r{log =
—f
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1 22
2rte
-/ : iy
0 = 2 \r log
A+ =107 (1og m)
! 25197
< 2 il fly .
0 3 2 \» tog
(1—1)r <log m)
Hence, in this case, we conclude that
1 2 2
2rxr
g < [ 2 .
O (1= x)7 (log lfxz)"
and this concludes the proof. O
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