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Abstract
It iswell known that theHilbertmatrixH is bounded from the logarithmicallyweighted
Bergman space A2

logα into Bergman space A2 when α > 2. In this paper, we calculate
lower bound and upper bound for the norm of the Hilbert matrix operatorH from the
logarithmically weighted Bergman space A2

logα into Bergman space A2 when α > 2.
We also calculate lower bound and upper bound for the norm of the Hilbert matrix
operator from Ap

logα into Ap, for 2 < p < ∞ and α > 1.

Keywords Operator norm · Hilbert matrix · Logarithmically weighted Bergman
spaces

Mathematics Subject Classification 47B38 · 30H20

1 Introduction and Preliminaries

In recent years, the study for Hilbert matrix operator H’s boundedness and norm
on different analytic function spaces has been under active investigation (see [1–8]).
Diamantopoulus and Siskakis [7] studiedH is bounded on Hardy space H p(1 < p <

∞) and also obtained an upper bound estimate for its norm. In [6], Diamantopoulus
began consider the boundedness of H on the Bergman spaces Ap(2 < p < ∞), and
obtained the upper bound estimate for the norm ofH. Then Dostanić, Jevtić, Vukotić
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[8] established the precise value of the norm ofH in the Hardy space H p(1 < p < ∞)

and also gave exact value of the norm of H in the Bergman space Ap(4 < p < ∞).
In 2017, Boz̆in and Karapetrović [3] solved the question of exact value of the norm
of H in the Bergman space Ap, for 2 < p < 4. The norm of Hilbert matrix operator
H has also been studied in other analytic function spaces like Korenblum spaces H∞

α

[5, 19].
The study of boundedness ofH on Ap

α was initiated in [10] and some partial results
were obtained. The boundedness of the Hilbert matrix on Ap

α for 1 < 2 + α < p was
also studied by Jevtić M and Karapetrović B in [12]. In [13], Karapetrović obtained
the exact norm of H on Ap

α when 4 ≤ 2(2 + α) ≤ p < ∞. Additionally, he showed
that the same lower bound holds for all p > 2 + α > 1. He also conjectured that the
upper bound for the norm of H is the same as above also for the case 1 < 2 + α <

p < 2(2 + α) in [13]. In [18] Lindström, Miihkinen and Wikman confirmed the

conjecture in the positive for 2 + α +
√

α2 + 7
2α + 3 ≤ p < 2(2 + α). Recently

Karapetrović generalized the work of [18] by showing that the conjecture holds for 2+
α+

√
(2 + α)2 − (

√
2 − 1

2 )(2 + α) ≤ p < 2(2+α). In [2], Bralović andKarapetrović
provide a new upper bound for the norm of the Hilbert matrix H on the weighted
Bergman spaces Ap

α when −1 < α < 0, which represents an improvement.
We also realized the Hilbert matrix operator is unbounded on A2 in [6]. And the

situation is actually even worse: the series defining H f (0) is divergent in [8]. Then
in [16] Łanucha, Nowak and Pavlović considered H acts as a bounded operator from
A2
logα to A2 for α > 3 and this was improved in [11, Theorem 4.5], where it is proved

thatHmaps A2
logα into A2 for α > 2. The last result is also improved in [15, Theorem

3.2] by Karapetrović, where it is proved that H maps A2
logα into A2

logα−2−ε for α > 2

and 0 < ε ≤ α − 2. In this paper, we obtained the upper bound for the norm from
logarithmically weighted Bergman spaces A2

logα into Bergman spaces A2 for α > 2.

We also find H acts as a bounded operator from Ap
logα into Ap for 2 < p < ∞ and

α > 0, and also calculate the upper bound for the norm ofH.
Let D denote the open unit disk of the complex plane C, and let H(D) denote the

set of all analytic functions in D.
For 0 < p ≤ ∞, the Hardy space H p is the space of all functions f ∈ H(D) for

which

‖ f ‖H p = sup
0≤r<1

Mp(r , f ) < ∞,

where

Mp(r , f ) =
(

1

2π

∫ 2π

0
| f (reit )|pdt

) 1
p

, 0 < p < ∞;
M∞(r , f ) = sup

0≤t<2π
| f (reit )|.
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For 0 < p < ∞ the Bergman space Ap consists of those f ∈ H(D) such that

‖ f ‖Ap
de f=

(∫

D

| f (z)|pd A(z)

)1/p

< ∞.

Here, d A stands for the area measure on D, normalized so that the total area of D is
1. Thus d A(z) = 1

π
dxdy = 1

π
rdrdθ .

Then for 0 < p < ∞ and α > 0 the logarithmically weighted Bergman space
Ap
logα consists of those f ∈ H(D) such that

‖ f ‖Ap
logα

de f=
(∫

D

| f (z)|p
(
log

2

1 − |z|2
)α

d A(z)

)1/p

< ∞.

The relation between these spaceswe introduced above iswell known that Ap
logα ⊂ Ap.

The Hilbert matrix is an infinite matrixH whose entries are an,k = 1
n+k+1 , n, k ≥

0. The Hilbert matrix H can be also viewed as an operator on spaces of analytic
functions by its action on their Taylor coefficients. Hence for those f ∈ H(D), f (z) =∑∞

k=0 akz
k , then we define a transformation H by

H f (z) =
∞∑
n=0

( ∞∑
k=0

ak
n + k + 1

)
zn .

As usual, throughout this paper, C denotes a positive constant which depends only
on the displayed parameters but not necessarily the same from one occurrence to the
next.

2 Norm Estimates of the Hilbert Matrix ‖H‖A2
log˛

→A2

In this section, we drive norm estimates for Hilbert matrix operator acting from A2
logα

into A2 for α > 2.
According to [16, Lemma 4.2], we obtain that there exists a constant C > 0 such

that

∞∑
k=0

|ak |
k + 1

≤ C‖ f ‖A2
logα

for every f (z) = ∑∞
k=0 akz

k that belongs to A2
logα , α > 2. Then we obtain a well-

defined analytic function H f (z) on D. Hence, we have that

H f (z) =
∞∑
n=0

( ∞∑
k=0

ak
n + k + 1

)
zn
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=
∞∑
n=0

( ∞∑
k=0

ak

∫ 1

0
tn+kdt

)
zn

=
∫ 1

0

∞∑
k=0

akt
k

∞∑
n=0

tnzndt

=
∫ 1

0

f (t)

1 − t z
dt . (2.1)

2.1 Upper Bound for the Norm ‖H‖A2
log˛

→A2

We know that the Hilbert matrix operatorH has an integral representation in terms of
weighted composition operators Tt (see [6]):

H f (z) =
∫ 1

0
Tt f (z)dt, (2.2)

where

Tt f (z) = wt (z) f (φt (z)), wt (z) = 1

1 − (1 − t)z
, φt (z) = t

1 − (1 − t)z
.

Theorem 2.1 Let α > 2. Then the norm of the Hilbert matrix operator acting from
A2
logα into A2 satisfies the upper estimate

‖H‖A2
logα →A2 ≤

∫ 1

0

2
(
log 2

1−x2

) α
2

(
1

1 − x
+ 1

(x(1 − x))
1
2

)
dx .

Proof By Minkowski’s inequality, we have

‖H f ‖A2 =
(∫

D

|H f (z)|2d A(z)

) 1
2

=
(∫

D

∣∣∣∣
∫ 1

0
Tt (z)dt

∣∣∣∣
2

d A(z)

) 1
2

≤
∫ 1

0

(∫

D

|Tt f (z)|2d A(z)

) 1
2

dt

=
∫ 1

0
‖Tt f ‖A2dt . (2.3)
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Using linear fractional change of variable w = φt (z), z ∈ D, we obtain that

‖Tt f ‖2A2 =
∫

D

|wt (z)|2| f (φt (z))|2d A(z)

=
∫

φt (D)

|wt (φ
−1
t (w))|2 | f (w)|2

|φ′
t (φ

−1
t (w))|2 d A(w)

= 1

(1 − t)2

∫

φt (D)

|w|−2| f (w)|2d A(w).

Therefore

‖Tt f ‖A2 = 1

1 − t

(∫

Dt

|w|−2| f (w)|2d A(w)

) 1
2

,

here Dt = φt (D). It is easy to find that Dt = D
(

1
2−t ,

1−t
2−t

)
, i.e. Dt is the Euclidean

disc with center on 1
2−t and of radius

1−t
2−t . It is easy to see that |w| ≥ t

2−t , for w ∈ Dt ,
and Dt ⊂ Et , where Et = {w ∈ C : t

2−t < |w| < 1}. Hence, we obtain

‖Tt f ‖A2 ≤ 1

1 − t

(∫

Et

|w|−2| f (w)|2d A(w)

) 1
2

. (2.4)

On the other hand, we also have

(∫

Et

|w|−2| f (w)|2d A(w)

) 1
2 =

(
2

∫ 1

t
2−t

1

r2
· rM2

2 (r , f )dr

) 1
2

.

It is easy to find function r → 1
r2

is decreasing and function r → rM2
2 (r , f ) is

increasing, by using Chebyshev’s inequality, we get

(∫

Et

|w|−2| f (w)|2d A(w)

) 1
2 ≤

(
2

1 − t
2−t

∫ 1

t
2−t

1

r2
dr

∫ 1

t
2−t

r M2
2 (r , f )dr

) 1
2

=
(
2 − t

t
· 2

∫ 1

t
2−t

r M2
2 (r , f )dr

) 1
2

=
(
2 − t

t

∫

Et

| f (w)|2d A(w)

) 1
2

. (2.5)

And by using (2.5), we have that

∫ 1

0
‖Tt f ‖A2dt ≤

∫ 1

0

(
1

1 − t
· (2 − t)

1
2

t
1
2

) (∫

Et

| f (w)|2d A(w)

) 1
2

dt
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=
∫ 1

0

(
1

1 − t
·
(
1 + 2(1 − t)

t

) 1
2
)(∫

Et

| f (w)|2d A(w)

) 1
2

dt

≤
∫ 1

0

(
1

1 − t
·
(
1 +

(
2(1 − t)

t

) 1
2
)) (∫

Et

| f (w)|2d A(w)

) 1
2

dt

=
∫ 1

0

(
1

1 − t
+

√
2

(t(1 − t))
1
2

) (∫

Et

| f (w)|2d A(w)

) 1
2

dt

=
∫ 1

0

(
1

1 − t
+

√
2

(t(1 − t))
1
2

) (∫

Et

(
log

2

1 − |w|2
)−α

| f (w)|2

×
(
log

2

1 − |w|2
)α

d A(w)

) 1
2

dt . (2.6)

Since functionw →
(
log 2

1−|w|2
)−α

is decreasing, by simple calculation we found

that,

∫ 1

0
‖Tt f ‖A2dt ≤

∫ 1

0

(
1

1−t +
√
2

(t(1−t))
1
2

)

(
log 2

1−( t
2−t )

2

) α
2

(∫

Et

| f (w)|2
(
log

2

1 − |w|2
)α

d A(w)

) 1
2

dt

≤
∫ 1

0

⎛
⎜⎜⎜⎝

1

(1 − t)

(
log 2

1−( t
2−t )

2

) α
2

+
√
2

(t(1 − t))
1
2

(
log 2

1−( t
2−t )

2

) α
2

⎞
⎟⎟⎟⎠ dt‖ f ‖A2

logα
,

(2.7)

Making the change of variable in (2.7), we obtain that

∫ 1

0
‖Tt f ‖A2dt ≤

∫ 1

0

2

(1 − t2)
(
log 2

1−t2

) α
2
dt‖ f ‖A2

logα

+
∫ 1

0

2

(t + 1)(t(1 − t))
1
2

(
log 2

1−t2

) α
2
dt‖ f ‖A2

logα

=
∫ 1

0

2

(1 + t)
(
log 2

1−t2

) α
2

(
1

1 − t
+ 1

(t(1 − t))
1
2

)
dt‖ f ‖A2

logα
.

(2.8)
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From (2.3) and (2.8), we have that

‖H f ‖A2 ≤
∫ 1

0

2

(1 + t)
(
log 2

1−t2

) α
2

(
1

1 − t
+ 1

(t(1 − t))
1
2

)
dt‖ f ‖A2

logα

≤
∫ 1

0

2
(
log 2

1−t2

) α
2

(
1

1 − t
+ 1

(t(1 − t))
1
2

)
dt‖ f ‖A2

logα
.

It means that

‖H‖A2
logα →A2 ≤

∫ 1

0

2
(
log 2

1−x2

) α
2

(
1

1 − x
+ 1

(x(1 − x))
1
2

)
dx,

and the last integral converges for α > 2.
This finishes the proof of the theorem. ��
This result improves Theorem 4.3 in [16], and we also give a new proof method of

Theorem 4.5 in [11].

2.2 Lower Bound for the Norm ‖H‖A2
log˛

→A2

Before we get lower bound for the norm ‖H‖A2
logα →A2 , we need find a special function

in A2
logα .

Lemma 2.1 Let α > 2, b ≥ 1 and 1 < γ < 2. Then the function

f (z) =
(
1

z
log

b

1 − z

)− α
2

(1 − z)−
γ
2 ,

belongs to A2
logα .

Proof First we recall a well known result of Littlewood [17, pp.93–96]: Shows the
function has an an integral mean with growth [9, p49]

M2(r , f )2 = 1

2π

∫ 2π

0

∣∣∣∣∣
(

1

reiθ
log

b

1 − reiθ

)−α

(1 − reiθ )−γ

∣∣∣∣∣ dθ

≤ 1

2π

∫ 2π

0

∣∣∣∣∣
(

1

reiθ
log

1

1 − reiθ

)−α

(1 − reiθ )−γ

∣∣∣∣∣ dθ

∼ C
1

(1 − r)γ−1

(
log

1

1 − r

)−α

, r → 1.
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Since

(a + b)p ≤ 2p(a p + bp), a ≥ 0, b ≥ 0,

we have

M2(r , f )2
(
log

2

1 − r2

)α

≤ C
1

(1 − r)γ−1

(
log

1

1 − r

)−α

2α

(
log 2α +

(
log

1

1 − r

)α)

= C
2α log 2α

(1 − r)γ−1

(
log

1

1 − r

)−α

+ C
2α

(1 − r)γ−1 , r → 1.

Thus we can find the integral
∫ 1
0 M2(r , f )2

(
log 2

1−r2

)α

dr converges while α > 2,

b ≥ 1 and 1 < γ < 2, this shows that f (z) ∈ A2
logα . It is also easy to see that

lim
γ→2

‖ f ‖A2
logα

= ∞.

��
Corollary 2.1 Let α > 1, b ≥ 1 and 1 < γ < 2. Then the function

f (z) =
(
1

z
log

b

1 − z

)− α
p

(1 − z)−
γ
p ,

belongs to Ap
logα (p > 2).

Theorem 2.2 Let α > 2. Then the norm of the Hilbert matrix operator acting from
A2
logα into A2 satisfies the lower estimate

‖H‖A2
logα →A2 ≥ Cα

∫ 1

0

x
α
2

(1 − x)
(
log 1

1−x

) α
2
dx .

where

Cα = lim sup
γ→2

∥∥∥(1 − z)−
γ
2

∥∥∥
A2∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
2

∥∥∥∥
A2
logα

.

Proof Let α > 2, we begin by selecting a family of test functions. Choose an arbitrary
γ such that 1 < γ < 2. It is a standard exercise to check that the function

fγ (z) =
(
1

z
log

1

1 − z

)− α
2

(1 − z)−
γ
2 ,
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and Lemma 2.1 shows that fγ (z) ∈ A2
logα . It is also easy to see that

lim
γ→2

‖ fγ ‖A2
logα

= ∞.

And we let

Fγ (z) = (1 − z)−
γ
2 ,

belong to A2, and

lim
γ→2

‖Fγ ‖A2 = ∞,

we obtain a relationship between fγ (z) and Fγ (z) by the proof of Lemma 2.1, that

lim sup
γ→2

‖Fγ ‖A2

‖ fγ ‖A2
logα

= lim sup
γ→2

∥∥∥(1 − z)−
γ
2

∥∥∥
A2∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
2

∥∥∥∥
A2
logα

≤ C lim sup
γ→2

∫ 1
0

1
(1−r)γ−1 dr

∫ 1
0 M2(r , f )2

(
log 1

1−r

)α

dr

≤ C lim sup
γ→2

∫ 1
0

1
(1−r)γ−1 dr∫ 1

0
1

(1−r)γ−1 dr
= C < ∞. (2.9)

Thus, we let Cα = lim supγ→2

∥∥∥∥(1−z)−
γ
2

∥∥∥∥
A2∥∥∥∥

(
1
z log

1
1−z

)− α
2
(1−z)−

γ
2

∥∥∥∥
A2logα

, and Cα is a constant,

depending only on α.
Using (2.1), we find that

H fγ (z) =
∫ 1

0

fγ (t)

1 − t z
dt

=
∫ 1

0

t
α
2 dt

(
log 1

1−t

) α
2

(1 − t)
γ
2 (1 − t z)

. (2.10)

Then making the change of variable w = (1 − t z)/(1 − t), we calculate that

H fγ (z) = (1 − z)−
γ
2

∫ ∞

1

(w − 1)
α
2 dw

(
log 1

1−( w−1
w−z )

) α
2

w(w − z)
α
2 +1− γ

2

, (2.11)
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we define

φγ (z) =
∫ ∞

1

(w − 1)
α
2 dw

(
log 1

1−( w−1
w−z )2

) α
2

w(w − z)
α
2 +1− γ

2

.

for every z in D, which shows H fγ (z) = Fγ (z)φγ (z).
Knowing that in the definition (2.10) of the function φγ is similar to the function

φγ defined in the [8, Theorm 4], we can let w to be a real number s ≥ 1. Thus we
obtained that φγ belongs to the disk algebra whenever γ ≤ 2, (the case γ = 2 will
also be useful to us although f2 /∈ A2

logα ), we can view φγ is an analytic function of z
that

φγ (z) =
∫ ∞

1

(s − 1)
α
2 ds

(
log 1

1−( s−1
s−z )2

) α
2

s(s − z)
α
2 +1− γ

2

. (2.12)

We will use the test function gγ (z) = fγ (z)
‖Fγ ‖A2 and Gγ (z) = Fγ (z)

‖Fγ ‖A2 , we obtain that

‖H‖A2
logα →A2 ≥ ‖H(gγ )‖A2

‖gγ ‖A2
logα

= ‖Fγ ‖A2

‖ fγ ‖A2
logα

‖H( fγ )‖A2

‖Fγ ‖A2
= ‖Fγ ‖A2

‖ fγ ‖A2
logα

‖Fγ (z)φγ (z)‖A2

‖Fγ ‖A2
.

Letting γ → 2, and by [8, Theorem 4] we get,

‖H‖A2
logα →A2 ≥ lim sup

γ→2

‖Fγ ‖A2

‖ fγ ‖A2
logα

‖Fγ (z)φγ (z)‖A2

‖Fγ ‖A2
= Cα lim

γ→2
‖Gγ φγ ‖A2 = Cα‖φ2‖∞

= Cα sup
z∈D

∫ ∞

1

(s − 1)
α
2

(
log 1

1−( s−1
s−z )2

) α
2

s(s − z)
α
2

ds

≥ Cα sup
0≤r≤1

∫ ∞

1

(s − 1)
α
2

(
log 1

1−( s−1
s−z )2

) α
2

s(s − z)
α
2

ds

≥ Cα

∫ ∞

1

(s − 1)
α
2

s
α
2 +1

(
log 1

1−( s−1
s )2

) α
2
ds.

Then making the change of variable x = (s − 1)/s, we calculate that

∫ ∞

1

(s − 1)
α
2

s
α
2 +1

(
log 1

1−( s−1
s )2

) α
2
ds =

∫ 1

0

x
α
2

(1 − x)
(
log 1

1−x

) α
2
dx .
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Thus we obtained that,

‖H‖A2
logα →A2 ≥ Cα

∫ 1

0

x
α
2

(1 − x)
(
log 1

1−x

) α
2
dx,

where

Cα = lim sup
γ→2

∥∥∥(1 − z)−
γ
2

∥∥∥
A2∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
2

∥∥∥∥
A2
logα

.

and the last integral converges for α > 2.
This concludes the proof. ��

Corollary 2.2 Let α > 2. Then the norm of the Hilbert matrix operator acting from
A2
logα into A2 satisfies

Cα

∫ 1

0

x
α
2

(1 − x)
(
log 1

1−x

) α
2
dx ≤ ‖H‖A2

logα →A2

≤
∫ 1

0

2
(
log 2

1−x2

) α
2

(
1

1 − x
+ 1

(x(1 − x))
1
2

)
dx .

where

Cα = lim sup
γ→2

∥∥∥(1 − z)−
γ
2

∥∥∥
A2∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
2

∥∥∥∥
A2
logα

.

3 Norm Estimates of the Hilbert Matrix ‖H‖Ap
log˛

→Ap

Then we consider the boundedness of Hilbert matrix from into Ap
logα into Ap, for

p > 2 and α > 0. That can easy obtain Lemma 3.1.

Lemma 3.1 If p > 2 and α > 0, then H acts as a bounded operator from Ap
logα into

Ap.

Since Ap
logα ⊂ Ap, that the lemma is obviously established.
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Lemma 3.2 [3, 6] Let 2 < p < ∞. Then the norm of the Hilbert matrix operator
acting on Ap satisfies

‖H‖Ap→Ap = π

sin 2π
p

.

Then we give the upper bound for the norm estimates of the Hilbert matrix
‖H‖Ap

logα →Ap .

Theorem 3.1 Let 2 < p < ∞ and α > 1. Then the norm of the Hilbert matrix
operator acting from Ap

logα into Ap satisfies

Cα,p

∫ 1

0

x
α
p

(1 − x)
2
p

(
log 1

1−x

) α
p
dx ≤ ‖H‖Ap

logα →Ap ≤
∫ 1

0

2
2
p x

2
p −1

(1 − x)
2
p

(
log 2

1−x2

) α
p
dt,

where

Cα,p = lim sup
γ→2

∥∥∥(1 − z)−
γ
p

∥∥∥
Ap∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
p

∥∥∥∥
A2
logα

.

Proof First, we establish the lower bound for the norm ‖H‖Ap
logα →Ap . We also con-

struct a family of test functions like Theorem 2.2. Choose an arbitrary γ such that
1 < γ < 2. It is a standard exercise to check that the function

f 1γ (z) =
(
1

z
log

1

1 − z

)− α
p

(1 − z)−
γ
p ,

After some elementary calculations, we can also establish that f 1γ (z) belongs to Ap
logα .

It is also easy to observe that

lim
γ→2

‖ f 1γ ‖Ap
logα

= ∞.

And we let

F1
γ (z) = (1 − z)−

γ
p ,

belong to Ap, have that

lim
γ→2

‖F1
γ ‖Ap = ∞.



Norm of the Hilbert Matrix on Logarithmically… Page 13 of 16 97

We also obtain a relationship between f 1γ (z) and F1
γ (z) by the Theorem 2.2 and

Corollary 2.1, that

lim sup
γ→2

‖F1
γ ‖Ap

‖ f 1γ ‖Ap
logα

≤ C < ∞.

Thus, we let Cα,p = lim supγ→2

∥∥∥∥(1−z)
− γ

p

∥∥∥∥
Ap∥∥∥∥

(
1
z log

1
1−z

)− α
2
(1−z)

− γ
p

∥∥∥∥
A2logα

and Cα,p is a constant,

depending only on α and p.
It can be seen from the proof of Theorem 2.2, we define

φ1
γ (z) =

∫ ∞

1

(w − 1)
α
p

(
log 1

1−( w−1
w−z )

) α
p

w(w − z)
α
p +1− γ

p

dw

for every z in D, which shows H f 1γ (z) = F1
γ (z)φ1

γ (z).
According the proof of Theorem 2.2, we can let w to be a real number s ≥ 1. And

we view φ1
γ is an analytic function of z that

φ1
γ (z) =

∫ ∞

1

(s − 1)
α
p

(
log 1

1−( s−1
s−z )2

) α
p

s(s − z)
α
p +1− γ

p

ds.

We will use the test function g1γ (z) = f 1γ (z)
‖Fγ ‖Ap and G1

γ (z) = F1
γ (z)

‖F1
γ ‖Ap , we have that

‖H‖Ap
logα →Ap ≥ ‖H(g1γ )‖Ap

‖g1γ ‖Ap
logα

= ‖F1
γ ‖Ap

‖ f 1γ ‖Ap
logα

‖H( f 1γ )‖Ap

‖F1
γ ‖Ap

= ‖F1
γ ‖Ap

‖ f 1γ ‖Ap
logα

‖F1
γ (z)φ1

γ (z)‖Ap

‖F1
γ ‖Ap

.

Letting γ → 2, and by [8, Theorem 4] we get,

‖H‖Ap
logα →Ap ≥ lim sup

γ→2

‖F1
γ ‖Ap

‖ f 1γ ‖Ap
logα

‖F1
γ (z)φγ (z)‖Ap

‖F1
γ ‖Ap

= Cα,p lim
γ→2

‖G1
γ φ1

γ ‖Ap = Cα,p‖φ1
2‖∞

= Cα,p sup
z∈D

∫ ∞

1

(s − 1)
α
p

(
log 1

1−( s−1
s−z )

) α
p

s(s − z)
α−2
p +1

ds
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≥ Cα,p sup
0≤r≤1

∫ ∞

1

(s − 1)
α
p

(
log 1

1−( s−1
s−r )

) α
p

s(s − r)
α−2
p +1

ds

≥ Cα,p

∫ ∞

1

(s − 1)
α
p

s
α−2
p +2

(
log 1

1−( s−1
s )

) α
p
ds.

Then making the change of variable x = (s − 1)/s, we calculate that

∫ ∞

1

(s − 1)
α
p

s
α−2
p +2

(
log 1

1−( s−1
s )

) α
p
ds =

∫ 1

0

x
α
p

(1 − x)
2
p

(
log 1

1−x

) α
p
dx .

Thus we obtained that,

‖H‖Ap
logα →Ap ≥ Cα,p

∫ 1

0

x
α
p

(1 − x)
2
p

(
log 1

1−x

) α
p
dx .

where

Cα,p = lim sup
γ→2

∥∥∥(1 − z)−
γ
p

∥∥∥
Ap∥∥∥∥

(
1
z log

1
1−z

)− α
2

(1 − z)−
γ
p

∥∥∥∥
A2
logα

.

On the other hand, we give the upper bound for the norm ‖H‖Ap
logα →Ap . We using

the method in the proof of Theorem 2.1 and Lemma 3.2, by simple calculation we
found that

‖H f ‖Ap ≤
∫ 1

0
‖Tt f ‖Ap dt =

∫ 1

0

t
2
p −1

(1 − t)
2
p

(∫

Dt

|w|p−4| f (w)|pd A(w)

) 1
p

dt

≤
∫ 1

0

t
2
p −1

(1 − t)
2
p

(
log 2

1−( t
2−t )

2

) α
p
dt

(∫

Dt

|w|p−4| f (w)|p
(
log

2

1 − |w|2
)α

d A(w)

) 1
p

.

By Theorem 3.2 in [3] and Lemma 2 in [6] we can find when 2 < p < 4 and
4 ≤ p < ∞, we have that

‖H f ‖Ap ≤
∫ 1

0

t
2
p −1

(1 − t)
2
p

(
log 2

1−( t
2−t )

2

) α
p
dt

(∫

D

| f (w)|p
(
log

2

1 − |w|2
)α

d A(w)

) 1
p
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=
∫ 1

0

2
2
p t

2
p −1

(1 + t)(1 − t)
2
p

(
log 2

1−t2

) α
p
dt‖ f ‖Ap

logα
.

≤
∫ 1

0

2
2
p t

2
p −1

(1 − t)
2
p

(
log 2

1−t2

) α
p
dt‖ f ‖Ap

logα
.

Hence, in this case, we conclude that

‖H‖Ap
logα →Ap ≤

∫ 1

0

2
2
p x

2
p −1

(1 − x)
2
p

(
log 2

1−x2

) α
p
dt .

and this concludes the proof. ��
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