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Abstract
Let L ⊂ C

n be a Lagrangian plane. In this article, we give structure for L-invariant
operators on the Fock space F2(Cn). With the help of this structure, we study Toeplitz
operators Ta on F2(Cn) with L-invariant symbols a ∈ L∞(Cn). We show that every
operator in the C∗-algebra generated by Toeplitz operators with L-invariant symbols,
denoted by TL(L∞), can be represented as an integral operator of the form

(HX
ϕ f )(z) =

∫
Cn

f (w)ϕ(z + X∗Xw)ezwdλ(w)

for some ϕ ∈ F2(Cn) and X ∈ U(n,C) such that XL = iRn . In fact, we prove that
HX

ϕ ∈ TL(L∞) if and only if there exists m ∈ Cb,u(Rn) such that

ϕ(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− Xz
2 )2dx, z ∈ C

n .

Here Cb,u(Rn) denotes all functions on R
n which are bounded uniformly continuous

with respect to the standard metric on R
n .
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1 Introduction and Preliminaries

The Fock space F2 := F2(Cn) consists of all entire functions f on C
n which are

square integrable with respect to the Gaussian measure

dλ(z) = π−ne−|z|2dz.

The space F2(Cn) is a closed subspace of the Hilbert space L2(λ) := L2(Cn, dλ) of
all Lebesgue measurable functions f over Cn such that

∫
Cn

| f (z)|2dλ(z) < ∞.

The norm and inner product on F2(Cn) are inherited from L2(Cn, dλ) and they are
respectively denoted by ‖ · ‖F2 and 〈·, ·〉F2 . This space is a reproducing kernel Hilbert
space (in short, RKHS) with reproducing kernel given by

K (z, w) = Kw(z) = ezw, ∀z, w ∈ C
n .

For each fixed w ∈ C
n , the function Kw is called reproducing kernel at the point w

and it belongs to F2(Cn) := F2. For ϕ ∈ L∞(Cn) := L∞, the Toeplitz operator
Tϕ on F2(Cn) is defined by Tϕ f = Pϕ f , where P is the orthogonal projection on
L2(Cn, dλ) with range F2(Cn) and it is given by

(P f )(z) =
∫
Cn

f (w)ezwdλ(w)

for all f ∈ L2(Cn, dλ) and z ∈ C
n .

Since few decades, Toeplitz operators on holomorphic function spaces (Hardy
space, Bergman space, Fock space, etc.) have been widely studied. To obtain deeper
results, these operators are studied by restricting the defining symbols to specific subset
of L∞. We observe that the Berezin symbols of these Toeplitz operators also belong to
a specific subset of L∞. We refer to [4, 5, 7–11, 13] and references therein for similar
problems studied in Fock space, Bergman spaces and weighted Bergman spaces.

If S is a bounded linear operator on F2(Cn), then it’s Berezin symbol (also called
as Berezin transform), denoted by S̃, is a bounded function in L∞(Cn) given by

S̃(z) = 〈Skz, kz〉F2 , (1.1)

where kz = Kz/‖Kz‖F2 is called normalized reproducing kernel at z. Let
B(F2(Cn)) := B(F2) denote the space of all bounded linear operators on F2(Cn).
For every S ∈ B(F2), there exists a unique operator S∗ ∈ B(F2) such that
〈S f , g〉F2 = 〈 f , S∗g〉F2 for all f , g ∈ F2. This operator S∗ is known as adjoint
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of S. Due to the existence of the reproducing kernel, every operator S ∈ B(F2) can
be uniquely written as an integral operator as shown below.

For S ∈ B(F2) and z ∈ C
n , we have

(S f )(z) = 〈S f , Kz〉F2

= 〈 f , S∗Kz〉F2

=
∫
Cn

f (w)(S∗Kz)(w)dλ(w).

Let KS(z, w) := (S∗Kz)(w) = 〈S∗Kz, Kw〉F2 = 〈Kz, SKw〉F2 = 〈SKw, Kz〉F2 for
all z, w ∈ C

n . Then we have

(S f )(z) =
∫
Cn

f (w)KS(z, w)dλ(w), ∀z, w ∈ C
n . (1.2)

In this article, we consider various classes of integral operators of the form (1.2)
such that Berezin symbols of operators in each class belong to a specific subset of
L∞(Cn). In Sect. 2, we study operators with Berezin symbols invariant under imagi-
nary translations. Such operators are called horizontal operators. We show that every
horizontal operator on F2(Cn) can be represented as an integral operator of the form

(Hϕ f )(z) =
∫
Cn

f (w)ϕ(z + w)ezwdλ(w), (1.3)

where ϕ ∈ F2, f ∈ F2 and z ∈ C
n (See Theorem 2.12). Let B consists of all

bounded operators of the form (1.3). We show thatB is a maximal commutative C∗-
subalgebra of B(F2(Cn)). Let Thor (L∞) denote theC∗-algebra generated by Toeplitz
operators Ta with horizontal symbols a ∈ L∞(Cn). As every Toeplitz operator Ta
with horizontal symbol a ∈ L∞(Cn) is horizontal operator, we get Thor (L∞) ⊆ B
(See Lemma 2.15). We give explicit representation of operators in Thor (L∞) in the
form Hϕ .

Let L be a Lagrangian plane of Cn . In Sect. 3, we consider operators on the Fock
space having Berezin symbols invariant under translations over the Lagrangian plane
L. These operators are called L-invariant operators. We show that every L-invariant
operator on F2 is of the form

(HX
ϕ f )(z) =

∫
Cn

f (w)ϕ(z + X∗Xw)ezwdλ(w), (1.4)

where ϕ ∈ F2, X is unitary matrix of order n over C such that XL = iRn . Let BX

be the collection of all bounded linear operators of the form (1.4). As every Toeplitz
operator withL-invariant symbol is anL-invariant operator, the C∗-algebra generated
by these operators, denoted by TL(L∞), is a subalgebra of BX . We give explicit
integral representation of the form (1.4) for operators in the collection TL(L∞).
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2 Horizontal Toeplitz Operators

We first give some basic notations, definitions and results which will be used through-
out the section. Let L2(Rn) := L2 denote the space of all complex valued measurable
functions such that

‖ f ‖2L2 =
∫
Rn

| f (x)|2dx < ∞,

where dx = dx1dx2 . . . dxn is the Lebesgue measure on R
n . If f is a suitable

measurable function on R
n , then it’s Fourier transform is defined by

(F f )(x) = 1

(π)n/2

∫
Rn

f (y)e−2i xydy.

The Fourier transform F : L2(Rn) → L2(Rn) is a unitary operator and the inverse
Fourier transform is given by

(F−1 f )(x) = 1

(π)n/2

∫
Rn

f (y)e2i xydy.

Let a, b ∈ R
n and f be a measurable function on R

n . Then the translation and
modulation of f are given respectively by

(Ta f )(x) = f (x − a), (Me2π ib(·) f )(x) = e2π ibx f (x), x ∈ R
n . (2.1)

The operators Ta and Me2π ib(·) defined above are unitary operators on L2(Rn). The
following theorem is well known.

Theorem 2.1 For any real numbers a, b ∈ R
n, we have

FTaF−1 = M
e−2π i aπ (·) , FMe2π ib(·)F−1 = T−πb

Thus, the Fourier transform intertwines the operators Ta and M
e−2π i aπ (·) for all a ∈ R

n .

Definition 2.2 (Weyl operator) For a ∈ C
n , the Weyl operator, denoted by Wa , is a

unitary operator on F2(Cn) given by

(Wa f )(z) = f (z − a)ezae− |a|2
2 , z ∈ C

n, f ∈ F2(Cn). (2.2)

Bargmann transform: In [2], V. Bargmann introduced a transform B, known as
Bargmann transform, which is an isometric isomorphism from L2(Rn) onto the Fock
space F2(Cn) and it is defined by

(B f )(z) =
( 2

π

) n
4
∫
Rn

f (x)e2xz−x2− z2
2 dx, z ∈ C

n, f ∈ L2(Rn).
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The inverse of the Bargamann transform is given by

(B−1 f )(x) =
( 2

π

) n
4
∫
Rn

f (z)e2xz−x2− z2
2 dλ(z), x ∈ R

n, f ∈ F2(Cn).

We refer to [1] for recent application of Bargamann transform on L2(R2n). We refer
to [6, 14] for more information about the Bargmann transform and it’s various appli-
cations in mathematics. The following properties of the Bargmann transform are well
known and can be found in [15].

Theorem 2.3 For any real numbers a, b ∈ R
n we have

1. BTaB−1 = Wa.

2. BMe2π ib(·) B
−1 = W−πbi .

3. B(Me2π ib(·)Ta)B
−1 = eπabiWa−πbi .

4. (BFB−1 f )(z) = f (−i z), f ∈ F2(Cn), z ∈ C
n.

5. (BF−1B−1 f )(z) = f (i z), f ∈ F2(Cn), z ∈ C
n.

The following lemma gives a necessary condition for boundedness of linear operator
on the space F2.

Lemma 2.4 [14, Proposition 3.1] The linear mapping T → T̃ is one-to-one, order
preserving and bounded operator from B(F2(Cn)) to L∞(Cn) with ‖T̃ ‖L∞(Cn) ≤
‖T ‖F2→F2 .

Letm be a measurable function onRn and Mm be a multiplication operator on L2(Rn)

defined by Mm f = m · f for all f ∈ L2(Rn). Then the operator Mm is bounded on
L2(Rn) if and only if m ∈ L∞(Rn). Moreover, ‖Mm‖L2→L2 = ‖m‖L∞(Rn). The
following theorem is well known.

Theorem 2.5 [10, Lemma 2.1] Let M ∈ B(L2(Rn)). Then MMe2π ia(·) = Me2π ia(·)M
for all a ∈ R

n if and only if M = Mm for some m ∈ L∞(Rn).

Now we give definitions of horizontal function and horizontal operator.

Definition 2.6 (Horizontal function [5]) A function ϕ ∈ L∞(Cn) is said to be hori-
zontal if it is invariant under imaginary translations. That is, for every h ∈ R

n , we
have ϕ((·) − ih) = ϕ(·) almost everywhere on C

n .

Definition 2.7 (Horizontal operator) Let T ∈ B(F2(Cn)). Then T is said to be
horizontal operator if it’s Berezin symbol is a horizontal function on C

n .

We have the following criteria for a bounded operator on F2(Cn) to be horizontal.

Theorem 2.8 [5, Theorem 3.7] Let T ∈ B(F2(Cn)). Then the following are
equivalent:

(1) T is horizontal operator.
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(2) T commutes with Weyl operators Wia for all a ∈ R
n. That is,

TWia = WiaT , ∀a ∈ R
n .

(3) (B−1T B) commutes with modulations on L2(Rn). That is,

(B−1T B)Me2π ib(·) = Me2π ib(·) (B
−1T B), ∀b ∈ R

n .

(4) There exists m ∈ L∞(Rn) such that BMmB−1 = T .

Remark 2.9 Let σ ∈ L∞(Rn). Then a straight forward calculation shows that

(BMσ B
−1 f )(z) =

∫
Cn

f (w)

(∫
Rn

σ(x)e−2(x− z+w
2 )2dx

)
ezw̄dλ(w), z ∈ C

n .

Motivated by the Remark 2.9, we consider the following class of integral operators on
the Fock space F2(Cn).

For ϕ ∈ F2(Cn), consider the operator Hϕ on F2(Cn) formally defined by

(Hϕ f )(z) =
∫
Cn

f (w)ϕ(z + w)ezwdλ(w), z ∈ C
n .

We observe that if Hϕ is bounded operator then it’s Berezin transform, denoted by
H̃ϕ , is a horizontal function given by

H̃ϕ(z) = ϕ(z + z), ∀z ∈ C
n .

Hence, every bounded operator Hϕ is horizontal operator.

Lemma 2.10 Let m ∈ L∞(Rn). Define

ϕ(z) =
∫
Rn

m(x)e−2(x− z
2 )2dx

for all z ∈ C
n. Then ϕ ∈ F2(Cn).

Proof Let z = u + iv ∈ C
n . Then we have

ϕ(z) =
∫
Rn

m(x)e−2(x− z
2 )2dx

=
∫
Rn

m(x)e−2(x− u+iv
2 )2dx

=
∫
Rn

m
(
x + u

2

)
e−2x2+2i xv+ v2

2 dx

= πn/2e
v2
2 F−1

(
m

(
x + u

2

)
e−2x2

)
(v).
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Therefore

‖ϕ‖2F2 = πn/2
∫
Rn

e−u2
∫
Rn

∣∣∣F−1
(
m

(
x + u

2

)
e−2x2

)
(v)

∣∣∣2dvdu

= πn/2
∫
Rn

e−u2
∫
Rn

∣∣∣m
(
x + u

2

)
e−2x2

∣∣∣2dxdu
≤ ‖m‖∞

( ∫
Rn

e−u2du
)( ∫

Rn
e−4x2dx

)

< ∞.

�
Lemma 2.11 Let ϕ1, ϕ2 ∈ F2(Cn) such that the operators Hϕ1 , Hϕ2 are bounded on
F2(Cn). Then Hϕ1 = Hϕ2 if and only if ϕ1 = ϕ2.

Proof If ϕ1 = ϕ2, then it is trivial to check that Hϕ1 = Hϕ2 . Conversely, suppose
Hϕ1 = Hϕ2 . Then for every f ∈ F2(Cn), we have (Hϕ1 f )(0) = (Hϕ2 f )(0). Define
ϕ∗
1 (z) = ϕ1(z) and ϕ∗

2 (z) = ϕ2(z) for all z ∈ C
n . Clearly, ϕ∗

1 , ϕ
∗
2 ∈ F2(Cn). We

observe that

〈 f , ϕ∗
1 〉F2 = (Hϕ1 f )(0) = (Hϕ2 f )(0) = 〈 f , ϕ∗

2 〉F2 , ∀ f ∈ F2(Cn).

So we have 〈 f , ϕ∗
1 − ϕ∗

2 〉F2 = 0 for all f ∈ F2(Cn). In particular, if f = ϕ∗
1 − ϕ∗

2
then we get ϕ∗

1 = ϕ∗
2 and hence ϕ1 = ϕ2. �

Let A = {
T : T is horizontal operator on F2

}
and B = {

Hϕ ∈ B(F2) : ϕ ∈ F2
}
.

Now we show that A = B.

Theorem 2.12 Let T be a bounded linear operator on the Fock space F2(Cn). Then
T is horizontal if and only if there exists a unique ϕ ∈ F2(Cn) such that T = Hϕ .

Proof Suppose T ∈ A. Then by Theorem 2.8, we have that there exists σ ∈ L∞(Rn)

such that T = BMσ B−1. Define

ϕ(z) =
∫
Rn

σ(x)e−2(x− z
2 )2dx, ∀z ∈ C

n .

By Lemma 2.10, we get ϕ ∈ F2(Cn) and Remark 2.9 implies that T = Hϕ . The
uniqueness of ϕ follows from Lemma 2.11.

Conversely, suppose T = Hϕ for some Hϕ ∈ B. We know that every bounded Hϕ

is horizontal. Hence T is horizontal operator. �
Corollary 2.13 Let ϕ ∈ F2(Cn). Then the operator Hϕ given by (1.3) is bounded on
F2(Cn) if and only if there exists m ∈ L∞(Rn) such that

ϕ(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx (2.3)
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for all z ∈ C
n. Moreover, we have

‖Hϕ‖F2→F2 = ‖m‖L∞(Rn).

Proof Let ϕ ∈ F2(Cn) such that Hϕ is bounded operator. Then Hϕ is horizontal
operator. By Theorem 2.8, it follows that there exists m ∈ L∞(Rn) such that

Hϕ = BMmB
−1. (2.4)

By Remark 2.9, we get

(BMmB
−1 f )(z) =

∫
Cn

f (w)

( ∫
Rn

m(x)e−2(x− z+w
2 )2dx

)
ezw̄dλ(w).

Define

ψ(z) =
∫
Rn

m(x)e−2(x− z+w
2 )2dx, z ∈ C

n .

It follows from Lemma 2.10 that ψ ∈ F2(Cn). This implies that

BMmB
−1 = Hψ. (2.5)

Combining (2.4) and (2.5), we get Hϕ = Hψ . Then, using Lemma 2.11, we get ϕ = ψ .
That is,

ϕ(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx, z ∈ C

n .

Conversely, suppose ϕ ∈ F2(Cn) and it satisfies (2.3) for some m ∈ L∞(Rn). Then
Mm ∈ B(L2(Rn)) and, by Remark 2.9, it follows that Hϕ = BMmB−1 ∈ B(F2(Cn)).

Also, ‖Hϕ‖F2→F2 = ‖Mm‖L2→L2 = ‖m‖L∞(Rn). �
Corollary 2.14 The collectionB is a maximal commutative C∗-subalgebra of B(F2).

Proof Consider the map η : L∞(Rn) → B defined by m → Hϕ , where

ϕ(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx, z ∈ C

n .

Notice that η(m) = Hϕ̃ , where ϕ̃ ∈ F2(Cn) and it is given by

ϕ̃(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx, z ∈ C

n .
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Let m1,m2 ∈ L∞(Rn). Then m1m2 ∈ L∞(Rn) and η(m1m2) = Hϕ , where ϕ ∈
F2(Cn) and it is given by

ϕ(z) =
(
2

π

)n/2 ∫
Rn

m1(x)m2(x)e
−2(x− z

2 )2dx, z ∈ C
n .

By (2.4), we get

η(m1m2) = Hϕ = BMm1m2B
−1 = (BMm1B

−1)(BMm2B
−1) = η(m1)η(m2).

This implies that the map η is well-defined ∗-preserving onto isometric isomorphism.
Since L∞(Rn) is a maximal commutative C∗-algebra (see [12, Proposition 1.14]), it
follows that B is also maximal commutative C∗-subalgebra of B(F2). �
For horizontal Toeplitz operator Ta(a ∈ L∞(Cn)), the following two results are proved
in [5].

Lemma 2.15 [5, Lemma 3.6] Let a ∈ L∞(Cn). Then Ta is horizontal Toeplitz operator
on F2(Cn) if and only if a is horizontal function.

Combining [5, Theorem 3.7(iv)] and [5, Theorem 3.8] we have the following.

Lemma 2.16 Let Ta be Toeplitz operator on F2(Cn)with horizontal symbol then there
exists γa ∈ L∞(Rn) such that

T̃a(z) = π−n/2
∫
Rn

γa(x)e
−(x− z+z√

2
)2

dx,

where

γa(x) = π−n/2
∫
Rn

a
(

y√
2

)
e−(x−y)2dy, x ∈ R

n .

In the next theorem, we give an alternative representation of the form (1.3) for Toeplitz
operator on F2(Cn) with horizontal symbol.

Theorem 2.17 For every Toeplitz operator Ta with horizontal symbol a, there exists
ϕ ∈ F2(Cn) such that Ta = Hϕ , where

ϕ(z) =
(
2

π

)n ∫
Rn

( ∫
Rn

a(y)e−2(x−y)2dy

)
e−2(x− z

2 )2dx .

Proof Let Ta be a Toeplitz operatorwith horizontal symbol a. ByLemma2.16, Berezin
transform of Ta is given by

T̃a(z) = π−n/2
∫
Rn

γa(x)e
−(x− z+z√

2
)2

dx, z ∈ C
n,
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where γa ∈ L∞(Rn) and it is given by

γa(x) = π−n/2
∫
Rn

a
(

y√
2

)
e−(x−y)2dy, x ∈ R

n .

We observe that

T̃a(z) = π−n/2
∫
Rn

γa(
√
2x)e−2(x− z+z

2 )22n/2dx

=
(
2

π

)n/2 ∫
Rn

γa(
√
2x)e−2(x− z+z

2 )2dx, z ∈ C
n .

Define

ϕ(z) =
(
2

π

)n/2 ∫
Rn

γa(
√
2x)e−2(x− z

2 )2dx, z ∈ C
n . (2.6)

By Lemma 2.10, we have that ϕ ∈ F2(Cn). Also, Corollary 2.13 implies that the
operator Hϕ ∈ B(F2(Cn)) and it’s Berezin transform is given by

H̃ϕ(z) = ϕ(z + z)

=
(
2

π

)n/2 ∫
Rn

γa(
√
2x)e−2(x− z+z

2 )2dx .

Therefore, we get T̃a = H̃ϕ and using Theorem 2.4 we get Ta = Hϕ . Thus, we proved
that every Toeplitz operator Ta with horizontal symbol a ∈ L∞(Cn) is of the form Hϕ

for some ϕ ∈ F2(Cn). The functions a and ϕ are related as follows.

ϕ(z) =
(
2

π

)n/2 ∫
Rn

γa(
√
2x)e−2(x− z

2 )2dx

=
(
2

π

)n/2 ∫
Rn

(
π−n/2

∫
Rn

a
(

y√
2

)
e−(

√
2x−y)2dy

)
e−2(x− z

2 )2dx

=
(
2

π

)n ∫
Rn

( ∫
Rn

a(y)e−2(x−y)2dy

)
e−2(x− z

2 )2dx .

�
Let f1, f2 be suitable measurable functions on R

n . Then the convolution of f1 and
f2, denoted by f1 ∗ f2, is given by

( f1 ∗ f2)(x) =
∫
Rn

f1(x − y) f2(y)dy, x ∈ R
n .

By [5, Lemma 3.6], we have that every horizontal function a ∈ L∞(Cn) is of the form
a(z) = b(�z) for some b ∈ L∞(Rn) and vice versa. In fact, it can be easily seen that
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b = a|n
R
. So hereafter we identify horizontal functions in L∞(Cn) by functions in

L∞(Rn). Consider the function

g(x) =
(
2

π

)n/2

e−2x2 , x ∈ R
n . (2.7)

Clearly g ∈ L1(Rn). Let ĝ denote the Fourier transform of g. It is easy to see that
ĝ(y) �= 0 for all y ∈ R

n .
Let Cb,u(Rn) := Cb,u denote the collection of all Lebesgue measurable functions

m on R
n that are bounded uniformly continuous with respect to the standard metric

on R
n . Clearly, Cb,u(Rn) ⊆ L∞(Rn). The following result is well known and gives

some of the dense subsets of Cb,u(Rn).

Lemma 2.18 [5, Proposition 5.4] Let h ∈ L1(Rn) such that ĥ(x) �= 0 for all x ∈ R
n.

Then the collection
{
h ∗ f : f ∈ L∞(Rn)

}
is dense in Cb,u(Rn).

Theorem 2.19 The C∗-algebra generated by Toeplitz operators on F2(Cn) with
horizontal symbols, denoted by Thor (L∞), is given by

Thor (L∞) =
{
Hϕ : ϕ(z) =

(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx for some m ∈ Cb,u(Rn)

}
.

Proof Let J = {
a ∗ g : a ∈ L∞(Cn) is a horizontal function and a|Rn = a

}
. By

Theorem 2.17 and Corollary 2.14, we have η(J) is equal to the collection of all
Toeplitz operator with horizontal symbols. Therefore, Thor (L∞) is equal to the image
of C∗-algebra generated by the collection J under the map η. But, by Lemma 2.18,
the C∗-algebra generated by J is equal to Cb,u(Rn). Therefore, we get Thor (L∞) =
η(Cb,u(Rn)). That is,

Thor (L∞) =
{
Hϕ : ϕ(z) =

(
2

π

)n/2 ∫
Rn

m(x)e−2(x− z
2 )2dx for some m ∈ Cb,u(Rn)

}
.

This proves the theorem. �
Now, we recall the example of horizontal Toeplitz operator Ta given in [5, Example
5.7] which does not belong to the C∗-algebra Thor (L∞). By Theorem 2.19, we have
that the defining symbol a of such Toeplitz operator is unbounded. We now find the
function ϕ ∈ F2(C) so that the operator Ta can be represented as an integral operator
Hϕ given by (1.3).

Example 2.20 Let a(x) = e(i+1)x2 , x ∈ R. Clearly, a /∈ L∞(R). Also, we have

γa(x) = √
1 + iei x

2
, x ∈ R.

Let xn = n and yn = n + π
2n for each n ∈ N. Then it is easy to see that limn→∞ |xn −

yn| = 0 but limn→∞ |γa(xn) − γa(yn) = 25/4 �= 0.
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Since ‖γa‖L∞(R) ≤ ∣∣√1 + i
∣∣, we define

ϕ(z) =
(
2

π

)1/2 ∫
R

γa(
√
2x)e−2(x− z

2 )2dx

=
(
2

π

)1/2 ∫
R

√
1 + ie2i x

2
e−2(x− z

2 )2dx .

By Lemma 2.10, we get ϕ ∈ F2(C) and proceeding as in the proof of Theorem 2.17
it follows that T̃a = H̃ϕ . Then Theorem 2.4 implies that Ta = Hϕ .

3 L-Invariant Toeplitz Operators

In this section, we consider slight change in our notations. We identify C
n with R

2n

via the mapping (z1, z2, . . . , zn) → (x, y), where x = (�z1, . . . ,�zn) and y =
(�z1, . . . ,�zn). Thus, iRn is identified with {0} × R

n . Let K = R or C. The set
M(n,K) denote the collection of all n × n square matrices with entries in K. Let
J ∈ M(2n,R) be such that

J =
[

0 In
−In 0

]
,

where 0 and In are n × n zero and identity matrices respectively. Let S ∈ M(2n,R).
Then S is said to be symplectic matrix if it satisfies

ST J S = SJ ST = J , (3.1)

where the matrix J is as above. The set of all symplectic matrices is denoted by
Sp(2n,R). The matrix J given above is also a symplectic matrix and it is known as
standard symplectic matrix.

Let ω denote a bilinear form on R
2n . Then ω is said to be symplectic form if it is

antisymmetric and non-degenerate. The standard symplectic form onR2n , denoted by
ω0, is given by

ω0(z, w) = J z · w = u · y − v · x

for all z = (x, y), w = (u, v) ∈ R
2n and J is the standard symplectic matrix. A

symplectic space (V , ω) is a vector space V equipped with a symplectic form ω. We
now define Lagrangian planes of the standard symplectic space (R2n, ω0).

Definition 3.1 (Lagrangian plane [5]) An n-dimensional linear subspace L of R2n is
said to be a Lagrangian plane of the symplectic space (R2n, ω0) if for every z, w ∈ L
we have ω0(z, w) = 0. We denote the set of all Lagrangian planes in (R2n, ω0) by
Lag(2n,R).

For L ∈ Lag(2n,R), we define below L-invariant functions on R
2n .
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Definition 3.2 (L-invariant functions [5]) Let L ∈ Lag(2n,R). A function ϕ ∈
L∞(R2n) is said to be L-invariant if for every a ∈ L we have ϕ((·) − a) = ϕ(·)
almost everywhere on R

2n .

A matrix A ∈ M(2n,R) is said to preserve the standard symplectic form ω0 if
ω0(Az, Aw) = ω0(z, w) for all z, w ∈ R

2n . Let U(2n,R) = Sp(2n,R) ∩ O(2n,R)

denote the set of all symplectic rotations which is a group and every matrix in it pre-
serves the standard symplectic form,whereO(2n,R) is the collection of all orthogonal
matrices inM(2n,R). LetU(n,C) be the set of all unitarymatrices inM(n,C). From
[3, Proposition 30], we have that U(2n,R) is isomorphic to the unitary group U(n,C)

via the isomorphism η : U(n,C) → U(2n,R) given by

η(U + iV ) =
[
U −V
V U

]

for all U , V ∈ M(n,R) such that U + iV ∈ U(n,C). Using the isomorphism η :
U(n,C) → U(2n,R), we now identify each Lagrangian plane L of R2n with a subset
of Cn , which will also be denoted by L.

LetL be any Lagrangian plane ofR2n . Then the transitive property ofU(2n,R) and
the isomorphism η : U(n,C) → U(2n,R) implies that there exists a unitary matrix
X ∈ U(n,C) such that

XL = iRn .

We refer to [3] for more information about the symplectic forms and the symplectic
matrices. From now on, for simplicity of calculations, we use this fact and rewrite the
definition of L-invariant function as follows:

A function ϕ ∈ L∞(Cn) is said to be L-invariant if for every h ∈ L we have

ϕ((·) − h) = ϕ(·)

almost everywhere on C
n .

The horizontal case corresponds toL = iRn . Nowwe give definition ofL-invariant
operators in B(F2(Cn)).

Definition 3.3 (L-invariant operator) Let L be a Lagrangian plane. A bounded oper-
ator T on the Fock space F2(Cn) is said to be L-invariant if it’s Berezin transform
is an L-invariant function on C

n . That is, for each h ∈ L, the Berezin transfrom T̃
satisfies

T̃ (z − h) = T̃ (z)

for almost all z ∈ C
n .

Let O(n,R) be the collection of all othogonal matrices in M(n,R) and O(n) is
the image of O(n,R) by the restriction of the embedding η : U(n,C) → U(2n,R).
Then we have the follwing:



99 Page 14 of 18 S. R. Bais, D. Venku Naidu

Proposition 3.4 [3, Proposition 46] The collection Lag(2n, R) is homeomorphic to
the coset space U(2n,R)/O(n).

For ϕ ∈ F2(Cn) and a Lagrangian plane L, we define formally an integral operator
HX

ϕ : F2(Cn) → F2(Cn) as

HX
ϕ f (z) =

∫
Cn

f (w)ϕ(z + X∗Xw)ezwdλ(w),

where X ∈ U(n,C) such that XL = iRn . Note that the operator defined by (1.3)
corresponds to X = In .

Remark 3.5 If L ∈ Lag(2n,R) and X ,Y ∈ U(n,C) such that XL = iRn and YL =
iRn , then it follows from Proposition 3.4 that Y = XO for some O ∈ O(n,R). This
gives us HX

ϕ = HXO
ϕ = HY

ϕ . Hence it is enough to study the operator HX
ϕ by fixing

X ∈ U(n,C) satisfying XL = iRn .

Lemma 3.6 Let ϕ ∈ F2(Cn), L be a Lagrangian plane and X ∈ U(n,C) such that
XL = iRn. Then the Berezin transform of H X

ϕ ∈ B(F2(Cn)), denoted by H̃ X
ϕ , is

given by

H̃ X
ϕ (a) = ϕ(a + X∗Xa)

for all a ∈ C
n. Moreover, H̃ X

ϕ is an L-invariant function on C
n. That is,

H̃ X
ϕ (a − l) = H̃ X

ϕ (a)

for all l ∈ L and a ∈ C
n.

Proof It is a direct verification. �
Definition 3.7 Let X ∈ U(n,C). Define the linear operator UX : F2(Cn) → F2(Cn)

by

UX f (z) = f (X∗z), ∀z ∈ C
n . (3.2)

Since X∗ = X−1 ∈ U(n,C), the operatorUX is unitary on F2(Cn) andU∗
X = UX∗ =

UX−1 .

Definition 3.8 Let ϕ ∈ F2(Cn) and X ∈ U(n,C). Define ϕX on Cn by

ϕX (z) = ϕ(Xz), ∀z ∈ C
n . (3.3)

From Eq. (3.2), we have that

ϕX ∈ F2(Cn) with ‖ϕX‖F2 = ‖ϕ‖F2 .
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Lemma 3.9 Let ϕ ∈ F2(Cn). Let L be a Lagrangian plane and X ∈ U(n,C) such
that XL = iRn. If ϕX∗ = UXϕ, then whenever H X

ϕ ∈ B(F2(Cn)), we have

H X
ϕ = U∗

X HϕX∗UX ,

where HϕX∗ and H X
ϕ are defined by the Eqs. (1.3) and (1.4) respectively.

Proof Given that ϕ ∈ F2(Cn), L be a Lagrangian plane and X ∈ U(n,C) such that
XL = iRn . Suppose HX

ϕ is bounded. Then for all f ∈ F2(Cn) and z ∈ C
n ,

UX H
X
ϕ U∗

X f (z) = HX
ϕ U∗

X f (X∗z)

=
∫
Cn

(U∗
X f )(w)ϕ(X∗z + X∗Xw)e〈X∗z,w〉dλ(w)

=
∫
Cn

f (Xw)ϕ(X∗(z + Xw))e〈z,Xw〉dλ(w)

=
∫
Cn

f (Xw)ϕX∗(z + Xw)e〈z,Xw〉dλ(w).

Using the change of variable w → X∗w we get

UX H
X
ϕ U∗

X f (z) =
∫
Cn

f (w)ϕX∗(z + w)e〈z,w〉dλ(w)

= HϕX∗ f (z).

Hence, we have HX
ϕ = U∗

X HϕX∗UX . �
If L is a Lagrangian plane and X ∈ U(n,C) such that XL = iRn , then as a con-
sequence of Theorem 2.12 and Lemma 3.9, we have the following corollary from
which we get that every L-invariant operator can be respresented in the form 1.4 and
vice-versa.

Corollary 3.10 Let L be a Lagrangian plane and X ∈ U(n,C) such that XL = iRn.
Then a bounded operator T on F2(Cn) is L-invariant if and only if there exists a
unique ϕ ∈ F2(Cn) such that T = HX

ϕ , where H X
ϕ is given by (1.4).

Theorem 3.11 (Boundedness of HX
ϕ ) Let ϕ ∈ F2(Cn), L be a Lagrangian plane and

X ∈ U(n,C) such that XL = iRn. Then the operator H X
ϕ defined by the Eq. (1.4) is

bounded on the Fock space F2(Cn) if and only if there exists m ∈ L∞(Rn) such that

ϕ(z) =
(
2

π

) n
2
∫
Cn

m(x)e−2(x− X(z+w)
2 )2dx (3.4)

for all z ∈ C
n. Also, we have

‖HX
ϕ ‖F2→F = ‖m‖L∞(Rn).
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Proof From Theorems 2.13 and 3.9, we have HX
ϕ ∈ B(F2(Cn)) if and only if HϕX∗ ∈

B(F2(Cn)) if and only if there exists m ∈ L∞(Rn) such that

ϕX∗(z) =
(
2

π

) n
2
∫
Cn

m(x)e−2(x− z
2 )2dx .

Since ϕX∗(z) = ϕ(X∗z), we get

ϕ(z) =
(
2

π

) n
2
∫
Cn

m(x)e−2(x− Xz
2 )2dx

for all z ∈ C
n . Also,

‖HX
ϕ ‖F2→F2 = ‖HϕX∗ ‖F2→F2 = ‖m‖L∞(Rn).

�
Lemma 3.12 Let L be a Lagrangian plane and X ∈ U(n,C) such that XL = iRn.
Let a ∈ L∞(Cn). Then we have

Ta = U∗
XTaX∗UX . (3.5)

From Lemma 3.12, we have the following remark.

Remark 3.13 LetLbe aLagrangian plane anda ∈ L∞(Cn). Then theToeplitz operator
Ta is L-invariant if and only if a is L-invariant function.

Let L be a Lagrangian plane and X ∈ U(n,C) is such that XL = iRn . Now we show
that every Toeplitz operator T X

a with an L-invariant symbol a ∈ L∞(Cn) is of the
form HX

ϕ given by (1.4) for some ϕ ∈ F2(Cn).

Theorem 3.14 Let L be a Lagrangian plane and X ∈ U(n,C) such that XL = iRn.
For every Toeplitz operator T X

a on F2(Cn) with L-invariant symobl a ∈ L∞(Cn),
there exists ϕ ∈ F2(Cn) such that T X

a = HX
ϕ , where

ϕ(z) =
(
2

π

)n ∫
Rn

( ∫
Rn

aX∗(y)e−2(x−y)2dy

)
e−2(x− Xz

2 )2dx, z ∈ C
n .

Proof Let T X
a be Toeplitz operator on F2(Cn) with L-invariant symbol. By Lemma

3.12, we have UXT X
a U∗

X = TaX∗ is Toeplitz operator with horizontal symbol aX∗ .
Then Theorem 2.17 implies that TaX∗ = HϕX∗ , where

ϕX∗(z) =
(
2

π

)n ∫
Rn

( ∫
Rn

aX∗(y)e−2(x−y)2dy

)
e−2(x− z

2 )2dx .



A Note on C∗-Algebra of Toeplitz Operators with… Page 17 of 18 99

Using Theorem 3.9, we get UXT X
a U∗

X = UX HX
ϕ U∗

X . Hence, T
X
a = HX

ϕ , where

ϕ(z) = ϕ(X∗Xz)
= ϕX∗(Xz)

=
(
2

π

)n ∫
Rn

(∫
Rn

aX∗(y)e−2(x−y)2dy

)
e−2(x− Xz

2 )2dx .

This proves the theorem. �
Let L be a Lagrangian plane, X ∈ U(n,C) such that XL = iRn and TL(L∞) denote
the C∗-algebra generated by Toeplitz operators with L-invariant symbols. From The-
orem 3.14, we observe that a bounded operator T on the Fock space F2(Cn) belongs
to TL(L∞) if and only if UXTU∗

X ∈ Thor (L∞). Hence, we have

TL(L∞) = U∗
X (Thor (L∞))UX = {

HX
ϕ = U∗

X HϕUX : Hϕ ∈ Thor
}
. (3.6)

As a consequence of Theorem 3.14 and Eq. (3.6) we have the following:

Corollary 3.15 Let L be a Lagrangian plane and X ∈ U(n,C) such that XL = iRn.
Then the C∗-algebra generated by Toeplitz operators with L-invariant symbols is
given by

TL(L∞) =
{
HX

ϕ : ϕ(z) =
(
2

π

)n/2 ∫
Rn

m(x)e−2(x− Xz
2 )2dx for some m ∈ Cb,u(Rn)

}
.
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