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Abstract
We study the Schrödinger operators Hγ λμ(K ), K ∈ T being a fixed (quasi)momentum
of the particles pair, associated with a system of two identical bosons on the one-
dimensional lattice Z, where the real quantities γ , λ and μ describe the interactions
between pairs of particles on one site, two nearest neighboring sites and next two
neighboring sites, respectively. We found a partition of the three-dimensional space
(γ, λ, μ) of interaction parameters into connected components and the exact number
of eigenvalues of this operator that lie below and above the essential spectrum, in each
component. Moreover, we show that for any K ∈ T the number of eigenvalues of
Hγ λμ(K ) is not less than the corresponding number of eigenvalues of Hγ λμ(0).

Keywords Two-particle system · Discrete Schrödinger operator · Essential
spectrum · Bound states · Fredholm determinant

1 Introduction

Lattice models of physical systems are one of the widely used mathematical models
in mathematical physics. Few-body Hamiltonians [29], among such models may be
viewed as the simplest version of the corresponding Bose-Hubbard model involving
a finite number of particles of a certain type. The few-body lattice Hamiltonians have
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been intensively studied over the past several decades [2–5, 10, 11, 17, 19–23, 25, 27,
30].

Another reason for studying the discrete Hamiltonians is that they can provide a
natural approximation for their continuous counterparts [9], which allows studying
few-body systems. It is well known that the Efimov effect [8] was originally attributed
to the three-body systems moving in the three-dimensional continuous space R

3. A
rigorous mathematical proof of the Efimov effect has been given in [32, 35, 36, 39].
The celebrated Efimov’s phenomenon to take place also in lattice three-particle sys-
tems [2, 4, 7, 19]. Discrete Schrödinger operators also represent a simple model for
description of few-body systems formed by particles traveling through periodic struc-
tures, such as ultracold atoms injected into optical crystals created by the interference
of counter-propagating laser beams [6, 38]. The study of ultracold few-atom systems
in optical lattices have became popular in the last years due to availability of con-
trollable parameters, such as temperature, particle masses, interaction potentials etc.
(see e.g., [6, 13, 14, 28] and references therein). These possibilities give an opportu-
nity to experimentally observe stable repulsively bound pairs of ultracold atoms ( [31,
38], which is not the case for the traditional condensed matter systems, where stable
composite objects are formed by means attractive forces. Lattice Hamiltonians are
of particular interest in fusion physics too. For example, in [30], a one-dimensional
one-particle lattice Hamiltonian has been successfully employed to show that certain
class of molecules in lattice structures may enhance nuclear fusion probability.

In the continuous case, the center-of-mass motion can be separated, which is not the
case for lattice few-body problems. However, for the lattice Hamiltonian H acting in
the functional Hilbert space Twe have a von Neumann direct integral decomposition

H �
⊕∫

K∈T
H(K ) d K , (1.1)

where T is the one-dimensional torus. The so called fiber Hamiltonians H(K ) acting
on theHilbert spaceT nontrivially depends on the quasimomentum K ∈ T (see e.g., [2,
3, 33]). This decomposition allows us to reduce the problem to studying the operators
H(K ).

In this work, we study the spectral properties of the fiber Hamiltonians H(K ), K ∈
T acting in the Hilbert space L2,e(T) as

Hγ λμ(K ) := H0(K ) + Vγ λμ, (1.2)

where H0(K ) is the fiber kinetic-energy operator,

(
H0(K ) f

)
(p) = EK (p) f (p),

with

EK (p) := 2(1 − cos K
2 cos p) (1.3)
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and Vγ λμ is the combined interaction potential. The parameters γ , λ andμ, called cou-
pling constants, describe interactions between the particles which are located on one
site, on the nearest neighboring sites of the lattice and in the next nearest neighboring
sites, respectively.

Within this new model, we find both the exact number of eigenvalues and their
locations of the operator Hγ λμ(0). We describe the mechanisms of emission and
absorption of the eigenvalues of Hγ λμ(0) at the thresholds of its essential (continuous)
spectrum depending on the interaction parameters. Furthermore, we establish sharp
lower bounds for the number of isolated eigenvalues Hγ λμ(K ) depending on the
quasimomentum K ∈ T, which lie both below the essential spectrum and above that.

For this, we apply the results obtained for the operator Hγ λμ(0) and the nontrivial
dependence of the dispersion relation EK on the (quasi)momentum K ∈ T. We recall
that the two-particle Schrödinger operator Hμ(K ) = −�+μV , μ > 0 on the lattice
Z

d associated to a system of two bosons with zero-range repulsive interactions μ > 0
has been considered as a theoretical basis for explanation of the experimental results
obtained in [31, 38].

Note that the continuous counterpart of the two-particle Schrödinger operators on
lattices, which associated with a system of two quantum-mechanical particles on R

d

interacting via short-range potential v(x) has isolated eigenvalues lying only below
the essential spectrum fulfilling the semi-axis [0,+∞) and hence this model is well
adapted to describe systems of two-particles with attractive interactions.

To study the eigenvalues of the discrete Schrödinger operator Hγ λμ(K ), we apply
analytic function theory, namely, we investigate the corresponding Fredholm deter-
minant �γλμ(K , z), as there is a one-to-one mapping between the sets of eigenvalues
of the operator Hγ λμ(K ) and the zeros of �γλμ(K , z) (see [23]). Correspondingly,
the change in the number of zeros of Fredholm determinant �γλμ(0, z) results in the
change of the number of isolated eigenvalues of Schrödinger operator Hγ λμ(0).

Our main finding is that the number of zeros of the determinant �γλμ(0, z) located
below (resp. above) the essential spectrum changes if and only if the principal term
C−(γ, λ, μ) (resp. C+(γ, λ, μ)) of the asymptotics of the Fredholm determinant
�γλμ(0, z) vanishes as z approaches the lower (resp. upper) threshold of the essential
spectrum (see Lemma 4.3).

Using this property, we establish a partition of the three-dimensional (γ, λ, μ)-
space into four disjoint connected components by means of surfaces C−(γ, λ, μ) = 0
or C+(γ, λ, μ) = 0. This allows us to prove that the number of zeros of the Fredholm
determinant is constant in each connected component.

In [23, 25], it was studied the Schrödinger operators on the lattice Zd , d = 1, 2,
associated to a systemof twobosonswith the zero-range on one site interaction (λ ∈ R)
and interactions on the nearest neighboring sites (μ ∈ R) of the d- dimensional lat-
tice Z

d . We emphasize that, our results is an extension of [23, 25]. The authors of
[23] consider the Schrödinger operators Hλμ(K ) on two-dimensional lattice Z2. The
operator Hλμ(K ) can have one or two eigenvalues, lying as below the essential spec-
trum, as well as above it. The connected components, which split the two-dimensional
plane R2 of interaction parameters are described by means of a second order elemen-
tary curves (hyperbolas). Similar results for the number of eigenvalues of one-particle
Schrödinger operators in Z

d , d ≥ 1 have been obtained, for instance in [22] with
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attractive interactions and d = 3 and also with attractive and repulsive interaction
cases in [11] for all d ≥ 1 considering only negative eigenvalues.

In the present work, the connected components are described by implicit func-
tions (third-order polynomials) of three variables defined on R

3, and therefore we
have find an algorithm for describing the connected components given by third-order
polynomials (see, Section Main results).

The discrete two-particle Schrödinger operator Hμ(k) associated to a system of one
and two quantum-mechanical particles on Z

d interacting via short-range potentials
have been studied in recent years [3, 5, 18, 20, 30].

Note that some results such as the existence of eigenvalues and their finiteness
can be received for a large class of Schrödinger type operators (see e.g., [15, 16, 18,
24]). However, our results show that the study of a qualitative change in the number
of eigenvalues of Hγμλ(K ), even for K = 0, is very delicate: There is ball, with
arbitrarily small radius, in the three-dimensional (γ, λ, μ)-space in which the number
of eigenvalues has a jump (see Theorem 3.6).

The paper is organized as follows: The Sect. 1 is introduction. In Sect. 2, we intro-
duce the two-particle Hamiltonian Hγ λμ of a system of two bosons in the position
and momentum space representations and also the Schrödinger operator Hγ λμ(K )

associated to the HamiltonianHγ λμ. The main results of the paper are stated in Sect. 3
and their proofs are contained in Sect. 4.

2 The Two-Particle Hamiltonian

2.1 The Position-Space Representation

LetZ be the one-dimensional lattice andZ×Z be cartesian square ofZ. Let �2,s(Z×Z)

be the Hilbert space of square-summable symmetric functions on Z × Z.
The free Hamiltonian Ĥ0 of a system of two identical particles (bosons), in the

position space representation, is usually associated with the following self-adjoint
(bounded) Toeplitz-type operator on the Hilbert space �2,s(Z × Z):

(Ĥ0 f̂ )(x1, x2) =
∑
s1∈Z

ε̂(x1 − s1) f̂ (s1, x2)

+
∑
s2∈Z

ε̂(x2 − s2) f̂ (x1, s2), f̂ ∈ �2,s(Z × Z)

where

ε̂(s) =

⎧⎪⎨
⎪⎩
2 if |s| = 0,

− 1
2 if |s| = 1,

0 if |s| > 1.

(2.1)
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The interaction operator V̂γ λμ, in the position space representation, is the multipli-
cation operator by the function v̂ ∈ �1(Z), i .e.,

V̂γ λμ f̂ (x, y) = v̂γ λμ(x − y) f̂ (x, y), f̂ ∈ �2,s(Z × Z),

where

v̂γ λμ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2γ if |s| = 0,

λ if |s| = 1,

μ if |s| = 2,

0 if |s| > 2.

(2.2)

The total Hamiltonian Ĥγ λμ of a system of two identical particles is described as
a bounded self-adjoint operator on �2,s(Z × Z):

Ĥγ λμ = Ĥ0 + V̂γ λμ, γ, λ, μ ∈ R.

2.2 The Two-Particle Hamiltonian: The (quasi)Momentum-Space Representation

Let T = R/2πZ ≡ (−π, π ] be the one-dimensional torus, the Pontryagin dual group
of Z. Let L2(T) be the Hilbert space of square-integrable functions on T and let

F : �2(Z) → L2(T), F f̂ (p) = 1

2π

∑
x∈Z

f̂ (x)eipx .

is the standard Fourier transform with the inverse

F∗ : L2(T) → �2(Z), F∗ f (p) = 1

2π

∫
T

f (x)eipx dx .

The free Hamiltonian H0 = (F ⊗ F)Ĥ0(F∗ ⊗ F∗) of a system of two identical
particles,in the momentum space representation, is the multiplication operator by the
function ε(p) + ε(q) in the Hilbert space L2,s(T×T) of symmetric functions on the
cartesian square T × T of the torus T:

H0 f (p, q) = [ε(p) + ε(q)] f (p, q),

where the continuous function (dispersion relation) ε is given by

ε(p) = [F ε̂](p) = 1 − cos p, p ∈ T.

The interaction operator Vγ λμ = (F ⊗F)V̂γ λμ(F∗ ⊗F∗) is the integral operator
of convolution type acting in L2,s(T × T) as

(Vγ λμ f )(p, q) = 1

2π

∫
T

vγλμ(p − u) f (u, p + q − u)du,
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where the kernel function vγλμ(·) is given by

vγλμ(p) = [F v̂γ λμ](p) = 1

2π

∑
x∈Z

v̂γ λμ(x)eipx

= 1

π
(γ + λ cos p + μ cos 2p), p ∈ T.

The total two-particle Hamiltonian Hγ λμ of a system of two identical quantum-
mechanical particles interacting via a finite range attractive potentials v̂γ λμ, in
the momentum space representation, is the bounded self-adjoint operator acting in
L2,s(T × T) as

Hγ λμ := (F ⊗ F)Ĥγ λμ(F ⊗ F)∗ = H0 + Vγ λμ.

2.3 The Floquet-Bloch Decomposition ofH��� and Discrete Schrödinger
Operators

Since the operator Ĥγ λμ commutes with the shift operators on the lattice Z × Z, we
can decompose the space L2,s(T × T) and Hamiltonian Hγ λμ into the von Neumann
direct integrals as

L2,s(T × T) �
⊕∫

K∈T
L2,e(T) dK and Hγ λμ �

⊕∫

K∈T
Hγ λμ(K ) dK , (2.3)

respectively, where L2,e(T) is the Hilbert space of square-integrable even functions
on T (see, e.g., [3]).

The fiber operator Hγ λμ(K ), K ∈ T is a self-adjoint operator defined in L2,e(T)

as

Hγ λμ(K ) := H0(K ) + Vγ λμ,

where the unperturbed operator H0(K ) is the multiplication operator by the function

EK (p) := 2(1 − cos K
2 cos p)

and the perturbation Vγ λμ is defined as

Vγ λμ f (p) = 1

π

∫
T

(γ + λ cos p cos q + μ cos 2p cos 2q) f (q)dq.

In some literature, the parameter K is called quasimomentum and the fiber Hγ λμ(K )

is called discrete Schrödinger operator associated to the two-particle Hamiltonian
Hγ λμ.
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2.4 The Essential Spectrum of Discrete Schrödinger Operators

Since Vγ λμ is a finite rank operator, by well knownWeyl’s Theorem (see [34, Theorem
XIII.14]) for any K ∈ T the essential spectrum σess(Hγ λμ(K )) of Hγ λμ coincides
with the spectrum of H0(K ), i.e.,

σess(Hγ λμ(K )) = σ(H0(K )) = [Emin(K ), Emax(K )], (2.4)

where

Emin(K ) :=min
p∈T EK (p) = 2(1 − cos K

2 ) ≥ 0 = Emin(0),

Emax(K ) :=max
p∈T EK (p) = 2(1 + cos K

2 ) ≤ 4 = Emax(0).

3 Main Results

Let K ∈ T and n+(Hγ λμ(K )) resp. n−(Hγ λμ(K )) be the number of eigenvalues of
the operator Hγ λμ(K ) above resp. below its essential spectrum.

Our first main result is a generalization of Theorem 2 in [3].

Theorem 3.1 Suppose that Hγ λμ(0) has n eigenvalues below resp. above the essential
spectrum for some γ, λ, μ ∈ R. Then for each K ∈ T the operator Hγ λμ(K ) has at
least n eigenvalues below resp. above its essential spectrum. In other words,

n−(Hγ λμ(K )) ≥ n−(Hγ λμ(0))

and

n+(Hγ λμ(K )) ≥ n+(Hγ λμ(0)).

Let us consider the cubic polynomial C± of three-variable defined by

C±(γ, λ, μ) := ∓(γ + λ + μ + γ λμ) + γ λ + 2γμ + λμ. (3.1)

Lemma 3.2 The set of points R3 satisfying the equation C±(γ, λ, μ) = 0 coincides
with the graph of function

γ ±(λ, μ) = − Q±
0 (λ, μ)

Q±
1 (λ, μ)

, (3.2)

where Q±
0 (λ, μ) and Q±

1 (λ, μ) are defined as

Q±
0 (λ, μ) = ∓(λ + μ) + λμ,

Q±
1 (λ, μ) = ∓(λ + 2μ) + 1 + λμ. (3.3)
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Proof We observe that C± can be decomposed by means Q±
0 and Q±

1 as follows:

C±(γ, λ, μ) = Q±
0 (λ, μ) + γ Q±

1 (λ, μ). (3.4)

Now we prove that the equality C±(γ, λ, μ) = 0 implies the inequality Q±
1 (λ, μ) 
=

0, i.e., the following system of equations has no solutions

{
Q±

1 (λ, μ) = 0

C±(γ, λ, μ) = 0.
(3.5)

Indeed. The system (3.5) yields

{
Q±

1 (λ, μ) = 0

Q±
0 (λ, μ) = 0.

(3.6)

This implies the system

{
μ = 0

μ = ±1,
(3.7)

which is impossible.
Thus, the equality C±(γ, λ, μ) = 0 yields the inequality Q±

1 (λ, μ) 
= 0, which
implies the representation (3.2) and vice versa. ��
Lemma 3.3 The set of points of R2 satisfying the equation Q±

1 (λ, μ) = 0 coincides
with the graph of the function

λ±(μ) = −2μ ∓ 1

1 ∓ μ
. (3.8)

Proof Lemma 3.3 can be proved as Lemma 3.2. ��
The straight lines μ = −1 and μ = 1 separate the graph of the functions λ−(·)

and λ+(·) on the (λ, μ)-plane into two (different) continuous curves {τ−
1 , τ−

2 } and
{τ+

1 , τ+
2 }:

τ−
1 = {(λ, μ) ∈ R

2 : λ = −1 + 2μ

1 + μ
, μ > −1},

τ−
2 = {(λ, μ) ∈ R

2 : λ = −1 + 2μ

1 + μ
, μ < −1}

and

τ+
1 = {(λ, μ) ∈ R

2 : λ = 1 − 2μ

1 − μ
, μ < 1},
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τ+
2 = {(λ, μ) ∈ R

2 : λ = 1 − 2μ

1 − μ
, μ > 1}.

The curves {τ−
1 , τ−

2 } and {τ+
1 , τ+

2 } divide the (λ, μ)- plane into the domains
D−
1 , D−

2 , D−
3 and D+

1 , D+
2 , D+

3 of the functions λ−(·) and λ+(·), respectively:

D−
1 = {(λ, μ) ∈ R

2 : Q−
1 (λ, μ) > 0, μ > −1},

D−
2 = {(λ, μ) ∈ R

2 : Q−
1 (λ, μ) < 0},

D−
3 = {(λ, μ) ∈ R

2 : Q−
1 (λ, μ) > 0, μ < −1} (3.9)

and

D+
1 = {(λ, μ) ∈ R

2 : Q+
1 (λ, μ) > 0, μ < 1},

D+
2 = {(λ, μ) ∈ R

2 : Q+
1 (λ, μ) < 0},

D+
3 = {(λ, μ) ∈ R

2 : Q+
1 (λ, μ) > 0, μ > 1}. (3.10)

The following lemma summarizes the locations of the domains D±
α , α = 1, 2, 3

defined in (3.9) and (3.10) and also their relations.

Lemma 3.4 The followings are true:

(i) D−
3 ⊆ D+

1 ,
(ii) D+

3 ⊆ D−
1 ,

(iii) D−
3 ∩ D+

3 = ∅,
(iv) For any α = 1, 2, 3 the regions D−

α and D+
α are symmetric with respect to origin.

Proof The definitions of D±
α , α = 1, 2, 3 yield the proofs of items (i)–(iii) of Lemma

3.4 and the equality Q+
1 (λ, μ) = Q−

1 (−λ,−μ) yields (iv) (see Fig. 1). ��

Recall that, the domain of the function γ ±(·, ·) is an open set

R
2 \ (τ±

1 ∪ τ±
2 ) = D±

1 ∪ D±
2 ∪ D±

3 .

The curves τ±
1 and τ±

2 inR2 are define the corresponding surfacesϒ±
j ⊂ R

3, j = 1, 2

ϒ±
j := {(γ, λ, μ) ∈ R

3, (λ, μ) ∈ τ±
j }.

Further, the surfaces ϒ±
1 and ϒ±

2 will separate the graph of the function γ ±(·, ·)
into three different continuous (connected) surfaces �±

1 , �
±
2 and �±

3 in R3:

�±
j = {(γ, λ, μ) ∈ R

3 : γ = − Q±
0 (λ, μ)

Q±
1 (λ, μ)

, (λ, μ) ∈ D±
j }, j = 1, 2, 3.



92 Page 10 of 20 S. N. Lakaev, M. O. Akhmadova

Fig. 1 The domains D±
α , α = 1, 2, 3 of the principle functions γ ± in the (λ, μ)-plane of the parameters

λ, μ ∈ R

The surfaces �−
1 , �−

2 , �−
3 and �+

1 , �+
2 , �+

3 divides the three dimensional space R3

into four separated connected components G−
0 , G

−
1 , G

−
2 , G

−
3 and G

+
0 , G

+
1 , G

+
2 , G

+
3

respectively:

G
−
0 := {(γ, λ, μ) ∈ R

3 : C−(γ, λ, μ) > 0, (λ, μ) ∈ D−
1 },

G
−
1 := {(γ, λ, μ) ∈ R

3 : C−(γ, λ, μ} < 0, (λ, μ) ∈ D−
1 ∪ D−

2 },
G

−
2 := {(γ, λ, μ) ∈ R

3 : C−(γ, λ, μ) > 0, (λ, μ) ∈ D−
2 ∪ D−

3 },
G

−
3 := {(γ, λ, μ) ∈ R

3 : C−(γ, λ, μ) < 0, (λ, μ) ∈ D−
3 } (3.11)

and

G
+
0 := {(γ, λ, μ) ∈ R

3 : C+(γ, λ, μ) > 0, (λ, μ) ∈ D+
1 },

G
+
1 := {(γ, λ, μ) ∈ R

3 : C+(γ, λ, μ} < 0, (λ, μ) ∈ D+
1 ∪ D+

2 },
G

+
2 := {(γ, λ, μ) ∈ R

3 : C+(γ, λ, μ) > 0, (λ, μ) ∈ D+
2 ∪ D+

3 },
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G
+
3 := {(γ, λ, μ) ∈ R

3 : C+(γ, λ, μ) < 0, (λ, μ) ∈ D+
3 }. (3.12)

Theorem 3.5 Let C− be one of the above connected components G−
α , α = 0, 1, 2, 3,

of the partition of the (γ, λ, μ)-space. Then for any (γ, λ, μ) ∈ C− the num-
ber n−(Hγ λμ(0)) of eigenvalues of Hγ λμ(0) lying below the essential spectrum
σess

(
Hγ λμ(0)

)
remains constant.

Analogously, let C+ be one of the above connected components G+
α , α = 0, 1, 2, 3,

of the partition of the (γ, λ, μ)-space. Then for any (γ, λ, μ) ∈ C+ the number
n+(Hγ λμ(0)) of eigenvalues of Hγ λμ(0) lying above σess

(
Hγ λμ(0)

)
remains constant.

Now we study the number of eigenvalues of Hγ λμ(0) in (−∞, 0) and (4,+∞)

depending on the potential parameters γ , λ and μ.

Theorem 3.6 For any α = 0, 1, 2, 3 the following statements are true:

(i) if (γ, λ, μ) ∈ G
−
α , then n−(Hγ λμ(0)) = α;

(ii) if (γ, λ, μ) ∈ G
+
α , then n+(Hγ λμ(0)) = α.

We set

Cαβ = G
−
α ∩ G

+
β , α, β = 0, 1, 2, 3.

Recall that by the min-max principle Hγ λμ(K ) can have at most three eigenval-
ues outside its essential spectrum. The following theorem provides the sharp lower
bound for the number of eigenvalues lying outside the essential spectrum of Hγ λμ(K )

depending only on γ , λ and μ.

Theorem 3.7 Let K ∈ T and (γ, λ, μ) ∈ R
3. For all α, β = 0, 1, 2, 3 satisfying the

condition α + β ≤ 3 the following relations are true:

(i) if (γ, λ, μ) ∈ Cαβ and α+β < 3, then n−(Hγ λμ(K )) ≥ α, n+(Hγ λμ(K )) ≥
β;

(ii) if (γ, λ, μ) ∈ Cαβ and α+β = 3, then n−(Hγ λμ(K )) = α, n+(Hγ λμ(K )) =
β.

4 Proof of theMain Results

4.1 The Discrete Spectrum of H���(0)

In the case of K = 0, the Fredholm determinant �γλμ(0, z) is easier to study. Note
that the essential spectrum of Hamiltonian Hγ λμ(0) coincides with the segment [0, 4].

We try to find an (implicit) equation for the discrete eigenvalues of Hγ λμ(0), i.e.,
for the non-zero solutions of equation

Hγ λμ(0) f = z f

in z ∈ R \ [0, 4].
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We apply the Fredholm’s determinants method to study the number and location of
eigenvalues (see, e.g., [1, 26]). The Fredholm determinant associated to Hγ λμ(0) can
be written as

�γλμ(0; z) =
∣∣∣∣∣∣
1 + γ a(z) λb(z) μc(z)

γ b(z) 1 + λd(z) μe(z)
γ c(z) λe(z) 1 + μ f (z)

∣∣∣∣∣∣ , (4.1)

where

a(z) :=
∫

T

2dt

ε(t) − z
, b(z) :=

∫

T

2 cos tdt

ε(t) − z
,

c(z) :=
∫

T

2 cos 2tdt

ε(t) − z
, d(z) :=

∫

T

2 cos2 tdt

ε(t) − z
,

e(z) :=
∫

T

2 cos t cos 2tdt

ε(t) − z
, f (z) :=

∫

T

2 cos2 2tdt

ε(t) − z
. (4.2)

Functionsa(·),d(·) and f (·) are analytic inR\[0, 4], strictly decreasing inR\[0, 4],
positive in the interval (−∞, 0) and negative in (4,+∞). The functions b(·), c(·) and
e(·) are analytic in R\[0, 4] too. Their behaviour near z = 0 and z = 4 are described
in the following proposition.

Proposition 4.1 The functions defined in (4.2) have the following asymptotics

a(z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

+ O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ O((z − 4)
1
2 ), as z ↘ 4

,

b(z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

− 1 + O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ 1 + O((z − 4)
1
2 ), as z ↘ 4

,

c(z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

− 2 + O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ 2 + O((z − 4)
1
2 ), as z ↘ 4

,

d(z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

− 1 + O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ 1 + O((z − 4)
1
2 ), as z ↘ 4

,

e(z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

− 2 + O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ 2 + O((z − 4)
1
2 ), as z ↘ 4

,
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f (z) =

⎧⎪⎨
⎪⎩

1

(−z)
1
2

− 2 + O((−z)
1
2 ), as z ↗ 0

− 1

(z−4)
1
2

+ 2 + O((z − 4)
1
2 ), as z ↘ 4

.

Here (−z)
1
2 and (z − 4)

1
2 are denote those branches of analytic functions that are

positive for −z > 0 and z − 4 > 0.

Proposition 4.1 can be proved as [21, Proposition 4].

Lemma 4.2 For all γ, λ, μ ∈ R the determinant �γλμ(0; z) has asymptotics

�γλμ(0; z) =
{

C−(γ, λ, μ)(−z)− 1
2 + D−(γ, λ, μ) + O((−z)

1
2 ), as z ↗ 0,

C+(γ, λ, μ)(z − 4)− 1
2 + D+(γ, λ, μ) + O((z − 4)

1
2 ), as z ↘ 4,

(4.3)

where C± is defined in (3.1) and

D±(γ, λ, μ) = 1 − (γ λ + 2λμ + 4γμ) ∓ (λ + μ + γ λμ).

The proof of Lemma 4.2 can be derived by using the asymptotics of functions
a(·), b(·), c(·), d(·), e(·) and f (·) in Proposition 4.1.

Corollary 4.3 For all (γ, λ, μ) ∈ R
3 the relations

(i). lim
z→−∞ �γλμ(0; z) = 1,

(ii). lim
z↗0

√−z�γλμ(0; z) = C−(γ, λ, μ),

(iii). lim
z↘4

√
z − 4�γλμ(0; z) = C+(γ, λ, μ)

hold.

Proof of Corollary 4.3 The first item follows from the Lebesgue dominated conver-
gence theorem. Lemma 4.2 yields the proof of other items. ��

The next lemma describes a one-to-one correspondence between the eigenvalues
of the operator Hγ λμ(0) and the zeros of the Fredholm determinant �γλμ(0; z).

Lemma 4.4 The number z ∈ R \ [0, 4] is an eigenvalue of Hγ λμ(0) if and only if it is
a zero of �γλμ(0; ·). Moreover, in R\[0, 4] the function �γλμ(0; ·) has at most three
zeros.

Proof The first assertion follows from the theory of Fredholm determinants (see, for
example, [1]). Since the operator Hγ λμ(0) has rank at most three, by the min-max
principle it has at most three eigenvalues outside the essential spectrum. So, according
to the first part of the proposition, �γλμ(0; ·) has at most three zeros in R \ [0, 4]. ��

The following lemma determine the number and arrangement of eigenvalues of the
operator Hγ λ0(0) that lie below the essential spectrum.
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Lemma 4.5 Let (γ, λ) ∈ R
2, then the following relations hold.

(i) If γ + λ + γ λ > 0 and γ + 1 > 0, then Hγ λ0(0) has no eigenvalues in (−∞, 0).
(ii) If γ + λ + γ λ < 0 or γ + λ + γ λ = 0 and γ + 1 > 0, then Hγ λ0(0) has one

eigenvalue in (−∞, 0).
(iii) If γ + λ + γ λ ≥ 0 and γ + 1 ≤ 0, then Hγ λ0(0) has two eigenvalues in (−∞, 0).

The following lemma provides the dependence of the number of eigenvalues of the
operator Hγ λ0(0) in (4,+∞) on γ and λ:

Lemma 4.6 Let (γ, λ) ∈ R
2, then the following relations hold.

(i) If −γ −λ+γ λ > 0 and γ −1 < 0, then Hγ λ0(0) has no eigenvalues in (4,+∞).
(ii) If −γ − λ + γ λ < 0 or −γ − λ + γ λ = 0 and γ − 1 < 0, then Hγ λ0(0) has one

eigenvalue in (4,+∞).
(iii) If −γ −λ+γ λ ≥ 0 and γ −1 ≥ 0, then Hγ λ0(0) has two eigenvalues in (4,+∞).

Lemmas 4.5 and 4.6 can be proved as in [25, Theorem 5.5].

Proof of Theorem 3.5. Let us assume, without loss of generality, that C−(γ, λ, μ) < 0
for all (γ, λ, μ) ∈ C. The definition of determinant and Lemma 4.3 yield

lim
z→−∞ �γλμ(0, z) = 1, lim

z↗0
�γλμ(0, z) < 0. (4.4)

Since for any (γ, λ, μ) ∈ C the equalities (4.4) are hold and the determinant
�γλμ(z) is real analytic function in (−∞, 0), there exist such negative numbers
B1 < B2 < 0 that all roots of �γλμ(z) lay in (B1, B2).

Let (γ0, λ0, μ0) ∈ C be a point of C and z0 < 0 be a zero of the function�γ0λ0μ0(z)
of multiplicity m ≥ 1. For each fixed z < 0 the determinant �γλμ(z) is a real analytic
function in (γ, λ, μ) ∈ C and for each fixed γ, λ, μ ∈ R the function �γλμ(z) is real
analytic in z ∈ (−∞, 0). Hence, for each ε > 0 there are numbers δ > 0, η > 0 and
an open neighborhood Wη(z0) of z0 with radius η such that for all z ∈ Wη(z0) and
(γ, λ, μ) ∈ C obeying the conditions |z − z0| = η and ||(γ, λ, μ)− (γ0, λ0, μ0)|| < δ

the following two inequalities |�γ0λ0μ0(z)| > η and |�γλμ(z) − �γ0λ0μ0(z)| < ε

hold. Then by Rouché’s theorem the number of zeros of the function �γλμ(z) in
Wη(z0) remains constant for all (γ, λ, μ) ∈ C satisfying the inequality ||(γ, λ, μ) −
(γ0, λ0, μ0)|| < δ. Since the root z0 < 0 of the function �γλμ(z) is arbitrary in
(B1, B2) we conclude that the number of its zeros remains constant in (B1, B2) for all
(γ, λ, μ) ∈ C satisfying ||(γ, λ, μ) − (γ0, λ0, μ0)|| < δ.

Further each Jordan curve � ⊂ C connecting any two points of C is a compact set,
so the number of zeros of the function�γλμ(z) lying below the bottom of the essential
spectrum for any (γ, λ, μ) ∈ � remains constant. Therefore, Lemma 4.4 yields that
the number of eigenvalues n−

(
Hγ λμ(0)

)
of the operator Hγ λμ(0) below the essential

spectrum is constant.
The proof in the case of n+

(
Hγ λμ(0)

)
is done in the same way. ��

Proof of Theorem 3.6. Let us prove Theorem 3.6 in the cases α = 0, 1, 2, 3 succes-
sively. According to (3.11) and (3.1) we have (0, 0, 1) ∈ G

−
0 .The representation (4.1)
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of the determinant �γλμ(0; z) yields that

�001(0; z) = 1 + f (z).

By definition (4.2) of f (z), for all z ∈ (−∞, 0) the inequalities f (z) > 0 and
�001(0; z) > 0 hold, i.e., the determinant �001(0; z) has no negative zeros in z ∈
(−∞, 0). Lemma 4.4 yields that the operator H001(0) has no eigenvalues below the
essential spectrum. Theorem 3.5 gives that the operator Hγ λμ(0) has no eigenvalues
below the essential spectrum for all (γ, λ, μ) ∈ G

−
0 .

Due to (3.11) we have (0,−1, 0) ∈ G
−
1 . Lemma 4.5 gives that the operator

H0(−1)0(0) has exactly one eigenvalue. Theorem 3.5 yields that for any (γ, λ, μ) ∈
G

−
1 , the operator Hγ λμ(0) has exactly one eigenvalue below the essential spectrum.
We note (−3,−3, 0) ∈ G

−
2 . According to (iii) of Lemma 4.5 the operator

H(−3)(−3)0(0) has two eigenvalues. Theorem 3.5 yields that for any (γ, λ, μ) ∈ G
−
2

the operator Hγ λμ(0) has two eigenvalues below the essential spectrum.
Now assume that (γ, λ, μ) ∈ G

−
3 .

Due to (3.11) we have

C−(γ, λ, μ) < 0, (λ, μ) ∈ D−
3 .

Definition 3.9 and inclusion (λ, μ) ∈ D−
3 give

μ < −1, Q−
1 (λ, μ) > 0. (4.5)

Inequalities (4.5) and C−(γ, λ, μ) < 0 guarantee that

γ < − Q−
0 (λ, μ)

Q−
1 (λ, μ)

= μ + 1

Q−
1 (λ, μ)

− 1 < 0. (4.6)

According to negativity of γ the function �γ 00(0; z) = 1 + γ a(z) is continuous and
monotone decreasing in (−∞, 0).

By (3.1) and (4.6) we have that C−(γ, 0, 0) = γ < 0. Corollary 4.3 yields that

lim
z→−∞ �γ 00(0; z) = 1 and lim

z↗0
�γ 00(0; z) = −∞. (4.7)

Since the function�γ 00(0; z) is continuous andmonotone decreasing in the interval
(−∞, 0) it has exactly one zero z11 below the essential spectrum. Obviously

�γ 00(0; z) = 1 + γ a(z) > 0 if z < z11,

�γ 00(0; z) = 1 + γ a(z) < 0 if z > z11.
(4.8)

Observe

�γλ0(0; z11) = (1 + γ a(z11))(1 + λd(z11)) − γ λ(b(z11))
2 = −γ λ(b(z11))

2 < 0.

(4.9)
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According to inequalities (4.5) we have

C−(γ, λ, 0) = γ + λ + γ λ = Q1(λ, μ) − (μ + 1) > 0.

Corollary 4.3 and inequality (4.9) give

lim
z→−∞ �γλ0(0; z) = 1, �γλ0(0; z11) < 0 and lim

z↗0
�γλ0(0; z) = +∞.

Thus, the continuous function �γλ0(0; z) has at least one zero in each intervals
(−∞, z11) and (z11, 0). Therefore there exists real numbers satisfying the inequalities

z21 < z11 < z22 < 0 (4.10)

such that the following equalities hold:

�γλ0(0; z21) = �γλ0(0; z22) = 0.

Lemma 4.4 and the min-max principle yield that Hγ λ0(0) has at least two eigenvalues
below the essential spectrum. Hence the determinant�γλ0(0; z) has exactly two zeros
z21 and z22 in (−∞, 0), which yields

(1 + γ a(z21))(1 + λd(z21)) = γ λ(b(z21))
2 > 0,

(1 + γ a(z22))(1 + λd(z22)) = γ λ(b(z22))
2 > 0.

(4.11)

The relations (4.8), (4.10) and (4.11) yield

1 + γ a(z21) > 0 and 1 + λd(z21) > 0,

1 + γ a(z22) < 0 and 1 + λd(z22) < 0.

We note that (γ, λ, μ) ∈ G
−
3 and so C−(γ, λ, μ) > 0. Applying Corollary 4.3 we

have that

lim
z→−∞ �γλμ(0; z) = 1 and lim

z↗0
�γλμ(0; z) = −∞.

Observe that

�γλμ(0; z21) = �γλ0(0; z21)[1 + μ f (z21)] + 2γ λμb(z21)c(z21)e(z21)

− γμ[1 + λd(z21)]c2(z21) − λμ[1 + γ a(z21)](e(z21))2
= μ

[√−γ [1 + λd(z21)]c(z21) + √−λ[1 + γ a(z21)]e(z21)
]2

< 0.

Similarly can be shown

�γλμ(0; z22) = −μ
[√

γ [1 + λd(z22)]c(z22) + √
λ[1 + γ a(z22)]e(z22)

]2
> 0.
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Then the relations

lim
z→−∞ �γλμ(0; z) = 1, �γλμ(0; z21) < 0, �γλμ(0; z22) > 0,

lim
z↗0

�γλμ(0; z) = −∞

yield the existence of zeros z31, z32 and z33 of function �γλμ(0; z) satisfying the
inequalities z31 < z21 < z32 < z22 < z33 < 0, i.e

�γλμ(0; z31) = �γλμ(0; z32) = �γλμ(0; z33) = 0.

Hence the function �γλμ(0; z) has three single zeros less than 0. Lemma 4.4 gives
that the operator Hγ λμ(0) has three eigenvalues below the essential spectrum.

The proof of item (ii) of the theorem is carried out similarly to the proof of item
(i). ��

4.2 The Discrete Spectrum of H���(K)

For every n ≥ 1 define

en(K ; γ, λ, μ) := sup
φ1,...,φn−1∈L2(T)

inf
ψ∈[φ1,...,φn−1]⊥, ‖ψ‖=1

(Hγ λμ(K )ψ,ψ)

(4.12)

and

En(K ; γ, λ, μ) := inf
φ1,...,φn−1∈L2(T)

sup
ψ∈[φ1,...,φn−1]⊥, ‖ψ‖=1

(Hγ λμ(K )ψ,ψ).

(4.13)

By the minimax principle, en(K ; γ, λ, μ) ≤ Emin(K ) and En(K ; γ, λ, μ) ≥
Emax(K ). Since, the rank of Vγ λμ does not exceed three, by choosing φ1 ≡ 1, φ2(p) =
cos p and φ3(p) = cos 2p we immediately see that en(K ; γ, λ, μ) = Emin(K ) and
En(K ; γ, λ, μ) = Emax(K ) for all n ≥ 4.

Lemma 4.7 Let n ≥ 1. Then the maps

K ∈ T �→ Emin(K ) − en(K ; γ, λ, μ)

and

K ∈ T �→ En(K ; γ, λ, μ) − Emax(K )

is non-increasing in (−π, 0] and non-decreasing in [0, π ].
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Proof For ψ ∈ L2(T), we consider

((H0(K ) − Emin(K ))ψ,ψ) =
∫
T

2 cos K
2

(
1 − cos q

)|ψ(q)|2 dq.

Then, the map K ∈ T �→ ((H0(K ) − Emin(K ))ψ,ψ) is non-decreasing in (−π, 0]
and is non-increasing in [0, π ]. Since Vγ λμ is independent of K , from the definition
of en(K ; γ, λ, μ), the map K ∈ T �→ en(K ; γ, λ, μ)− Emin(K ) is non-decreasing in
(−π, 0] and is non-increasing in [0, π ]. ��
Proof of Theorem 3.1. For any K ∈ T and m ≥ 1 Lemma 4.7 gives

0 ≤ Emin(0) − em(0; γ, λ, μ) ≤ Emin(K ) − em(K ; γ, λ, μ), (4.14)

and

0 ≤ Em(0; γ, λ, μ) − Emax(0) ≤ Em(K ; γ, λ, μ) − Emax(K ). (4.15)

By assumption en(0; γ, λ, μ) is an discrete eigenvalue of Hγ λμ(0) lying below
the bottom Emin(K ). So Emin(0) − en(0; γ, λ, μ) > 0 and hence, by (4.14) and
(2.4), en(K ; γ, λ, μ) is a discrete eigenvalue of Hγ λμ(K ) for any K ∈ T. Since
e1(K ; γ, λ, μ) ≤ . . . ≤ en(K ; γ, λ, μ) < Emin(K ), it follows that Hγ λμ(K ) has at
least n eigenvalue below the essential spectrum. The case of En(K ; γ, λ, μ) is similar.

��
Proof of Theorem 3.7 is obtained by combining Theorem 3.1 and Theorem 3.6. ��
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