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Abstract
We analyze the “eigenbundle” (localization bundle) of certain Hilbert modules over
bounded symmetric domains of rank r , giving rise to complex-analytic fibre spaces
which are stratified of length r+1.Thefibres are described in terms ofKähler geometry
as line bundle sections over flag manifolds, and the metric embedding is determined
by taking derivatives of reproducing kernel functions. Important examples are the
determinantal ideals defined by vanishing conditions along the various strata of the
stratification.
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0 Introduction

Jörg Eschmeier was a master in the interplay between operator theory and multi-
variable complex analysis, in particular in its modern sheaf-theoretic form. An
interesting concept in this respect is the “eigenbundle” of a Hilbert module arising
from a commuting tuple of non-selfadjoint operators T1, . . . , Td . Just as the spectral
theorem is the basic tool for the analysis of self-adjoint operators, the eigenbundle plays
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a similar role in the non-selfadjoint case, naturally involving multi-variable complex
analysis instead of “real” measure theory.

In the original approach by Cowen-Douglas [6] for Hilbert modules H of holo-
morphic functions on a bounded domain D ⊂ Cd , the eigenbundle, denoted by H

˜

,

is a genuine holomorphic vector bundle on D whose hermitian geometry determines
the underlying operator tuple. In more general situations [8, 9] the eigenbundle will
have singularities along certain subvarieties of D,making the geometric aspects more
complicated. For example, if H = I is the Hilbert closure of a prime ideal I of poly-
nomials, whose vanishing locus X is smooth, then by a result of Duan-Guo [8] the
eigenbundle H

˜

has rank 1 on the regular set D\X , whereas H
˜

|X is isomorphic to the
(dual) normal bundle of X .Thuswe have a “stratification” of length 2. In this paper, we
study K -invariant Hilbert modules H over bounded symmetric domains D = G/K
of rank r , leading to singular vector bundles which are stratified of length r + 1. This
study was initiated in [23] where the eigenbundle of certain polynomial ideals Jλ,

for a given partition λ of length � r , was determined explicitly. These ideals are not
prime ideals except for the “fundamental” partitions λ = (1, . . . , 1, 0, . . . , 0). The
main result of [23] describes the fibres of the eigenbundle using representation theory
of the compact Lie group K .

The current paper extends and generalizes this analysis. For the partition ideals

Jλ and Hilbert closures H = J
λ
we construct a Hilbert space embedding of the

eigenbundle by taking certain derivatives of the reproducing kernel function of H .

This is important to study the hermitian structure and is related to the “jet construction”
introduced in [9].Moreover,wegive aholomorphic characterizationof the eigenbundle
in terms of holomorphic sections of line bundles over a flagmanifold. Such a geometric
characterization may also hold in more general situations. Beyond the setting of the
partition ideals we consider arbitrary K -invariant polynomial ideals, in particular the
so-called “determinantal” ideals which have a direct geometric meaning.

1 Hilbert Modules and Their Eigenbundle

Let D be a bounded domain in a finite dimensional complex vector space E ≈ Cd .

Denote by PE ≈ C[z1, . . . , zd ] the algebra of all polynomials on E . A Hilbert space
H of holomorphic functions f on D (supposed to be scalar-valued) is called a Hilbert
module if for any polynomial p ∈ PE the multiplication operator Tp f := p f leaves
H invariant and is bounded. Using the adjoint operators T ∗

p , the closed linear subspace

H
˜

ζ
:= { f ∈ H : T ∗

p f = p(ζ ) f ∀ p ∈ PE } (1.1)

is called the joint eigenspace at ζ ∈ D. Since TpTq = Tpq for polynomials p, q it
suffices to consider linear functionals or just the coordinate functions. The disjoint
union

H
˜

=
⋃

ζ∈D
H
˜

ζ
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becomes a subbundle of the trivial vector bundle D × H , which is called the eigen-
bundle of H , although it is not locally trivial in general. One also requires that the
fibres have finite dimension and their union is total in H . The map φ �→ [φ] from H

˜

ζ

to H/Mζ H is a Hilbert space isomorphism, with inverse map

H/Mζ H → H
˜

ζ
, f + Mζ H �→ πζ f ,

where πζ : H → H
˜

ζ
is the orthogonal projection. Thus H

˜

ζ
becomes the “quotient

module” for the submodule Mζ H .

Classical examples of Hilbert modules are the Bergman space H2(D) of square-
integrable holomorphic functions, whose reproducing kernel is called the Bergman
kernel, and the Hardy space H2(∂D) if D has a smooth boundary ∂D. For general
Hilbert modules H , a reproducing kernel function is a sesqui-holomorphic function
K(z, ζ ) on D × D such that for each ζ ∈ D the holomorphic function

Kζ (z) := K(z, ζ )

belongs to H , and we have

ψ(z) = (Kz |ψ)H

for all ψ ∈ H and z ∈ D. Here (φ|ψ)H is the inner product, anti-linear in φ. Thus H
is the closed linear span of the holomorphic functions Kζ , where ζ ∈ D is arbitrary.
If φα is any orthonormal basis of H then

K(z, ζ ) =
∑

α

φα(z)φα(ζ ).

For each ζ ∈ D we have Kζ ∈ H
˜

ζ
, as follows from the identity

(T ∗
pKζ |ψ)H = (Kζ |pψ)H = p(ζ )ψ(ζ ) = p(ζ )(Kζ |ψ)H = (p(ζ )Kζ |ψ)H

for p ∈ PE and ψ ∈ H .

If the reproducing kernel K has no zeros (e.g., the Bergman kernel of a strongly
pseudo-convex domain) then the eigenbundle H

˜

is spanned by the functions Kζ and
hence becomes a hermitian holomorphic line bundle. In more general cases the kernel
function vanishes along certain analytic subvarieties of D and the eigenbundle is not
locally trivial, its fibre dimension can jump along the varieties and we obtain a singular
vector bundle on D, also called a “linearly fibered complex analytic space” [13]. Such
singular vector bundles are important in Several Complex Variables since they are
in duality with the category of coherent analytic module sheaves, whereas (regular)
vector bundles correspond to locally free sheaves. In [4] the connection to coherent
analytic module sheaves associated with H is made explicit.

An important class of Hilbert modules is given by the Hilbert closure H = I of a
polynomial ideal I ⊂ PE . In this case the fibres (1.1) of the eigenbundle have finite



74 Page 4 of 33 H. Upmeier

dimension. More precisely, by [8] we have H
˜

≈ I |̃D for the “localization bundle” I
˜over E, with fibre

I
˜

ζ
:= I/Mζ I

at ζ ∈ E . For any set of generators p1, . . . , pt of I the linear map

Ct → I
˜

ζ
, (a1, . . . , at ) �→ Mζ I +

t
∑

i=1

ai pi

is surjective, showing that dim I
˜

ζ
� t . In [4, Lemma 2.3] it is shown that f ∈ H

˜

ζ
satisfies

pi (ζ ) f = (pi | f )H Kζ

for all i . This implies that the eigenbundle H
˜

restricted to the open dense subset

Ď :=
t

⋃

j=1

{ζ ∈ D : p j (ζ ) 	= 0}

of D is a holomorphic line bundle spanned by the reproducing kernel Kζ , ζ ∈ Ď.

The behavior of H
˜

on the singular set D\Ď is more complicated and has so far
been studied mostly when the vanishing locus of the reproducing kernel is a smooth
subvariety of D, for example given as a complete intersection of a regular sequence
of polynomials. The case where I is a prime ideal whose vanishing locus X consists
of smooth points has been studied by Duan-Guo [8]. They showed that for ζ ∈ D\X

H
˜

ζ
= 〈Kζ 〉

is the 1-dimensional span of the reproducing kernel vector, whereas for ζ ∈ X

H
˜

ζ
≈ T⊥

ζ (X)

is isomorphic to the normal space (more precisely its linear dual.) Thus we have
a stratification of length 2. We consider a more complicated situation for bounded
symmetric domains D of arbitrary rank r , where we have a stratification of length
r + 1, the relevant varieties are not smooth and the ideal I is not prime in general.

2 K -invariant Ideals on Bounded Symmetric Domains

Let D = G/K be an irreducible bounded symmetric domain of rank r , realized as
the (spectral) unit ball of a hermitian Jordan triple (J ∗-triple) E . Let {uv∗w} ∈ E
denote the Jordan triple product of u, v, w ∈ E . The compact Lie group K acts by
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linear transformations on E preserving the Jordan triple product. For background on
the Jordan theoretic approach towards symmetric domains, see [2, 5, 12, 17, 21]. Let
PE denote the algebra of all polynomials on E . Under the natural action

(k · f )(z) := f (k−1z)

of k ∈ K on functions f on E the polynomial algebra PE has a Peter–Weyl decom-
position [11, 20]

PE =
∑

λ∈Nr+

Pλ
E

into pairwise inequivalent irreducible K -modules Pλ
E . Here Nr+ denotes the set of all

partitions

λ = (λ1, . . . , λr )

of integers λ1 � . . . � λr � 0. The polynomials in Pλ
E are homogeneous of degree

|λ| := λ1 + . . . + λr . We often identify a partition λ with its Young diagram

[λ] = {(i, j) : 1 � i � r , 1 � j � λi }.

For fixed μ ∈ Nr+ denote by

πμ : PE → Pμ
E , f �→ πμ f =: f μ

the K -invariant projection ontoPμ
E .As a consequence of Schur orthogonality we have

[23, Lemma 3.1]

f μ(z) =
∫

K

dk χμ(k) f (kz), (2.1)

where χμ denotes the character of the K -representation on Pμ
E .

An ideal I ⊂ PE is called K -invariant if k · f ∈ I for all k ∈ K and f ∈ I . A
similar definition applies to Hilbert modules of holomorphic funtions on a K -invariant
domain. The formula (2.1) implies that a K -invariant ideal (resp., Hilbert module) is
a direct sum (resp., Hilbert sum) of its Peter-Weyl subspaces Pμ

E .

For a given partition λ denote by Jλ ⊂ PE the K -invariant ideal generated by Pλ
E .

The first main result of [23] asserts that Jλ has the Peter-Weyl decomposition

Jλ =
∑

μ�λ

Pμ
E , (2.2)

where λ � μ means λi � μi for all i . This is equivalent to the inclusion [λ] ⊂ [μ] for
the corresponding Young diagrams. As a consequence, Jμ ⊂ Jλ if and only ifμ � λ.

In this section we show that these “partition” ideals Jλ are fundamental for the study
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of general K -invariant ideals. Given a K -invariant ideal I , define I # := {λ ∈ Nr+ :
Jλ ⊂ I }.
Proposition 2.1 Let I ⊂ PE be a K -invariant ideal. Then there is a finite set 
 ⊂ I #

of partitions such that

I =
∑

λ∈


Jλ.

Proof If f ∈ I then (2.1) shows that f μ also belongs to I for all μ ∈ Nr+. Let
f1, . . . , ft be a finite set of generators of I . Then their non-zero K -homogeneous
parts belong to I and form a finite set of generators. Thus we may assume that each
fs ∈ Pλs

E for some partition λs . We claim that

I =
t

∑

s=1

Jλs =: J .

Since fs ∈ I ∩Pλs
E is non-zero, I is K -invariant and Pλs

E is irreducible, it follows that

Pλs
E ⊂ I and hence Jλs ⊂ I . Thus J ⊂ I . Conversely, each generator fs of I belongs

to J . Therefore I ⊂ J . ��
A subset 
 ⊂ I # is called “full” if

I =
∑

λ∈


Jλ.

A subset A ⊂ I # is called “minimal” if α ∈ A and λ < α implies λ /∈ I #, i.e., Jλ /⊂I .

Lemma 2.2 Let A ⊂ I # be minimal and 
 ⊂ I # be full. Then A ⊂ 
.

Proof Suppose there exists α ∈ A such that α /∈ 
. Let p ∈ Pα
E . Then p ∈ Jα ⊂ I =

∑

λ∈


Jλ and therefore

p =
∑

λ∈


fλ (finite sum)

for some fλ ∈ Jλ. By (2.2) we have f α
λ = 0 unless α � λ. Since α /∈ 
 this implies

p = pα =
∑

λ∈


f α
λ =

∑

λ∈
, α�λ

f α
λ =

∑

λ∈
, α>λ

f α
λ = 0

since {λ ∈ 
 : λ < α} = ∅. This is a contradiction. ��
Corollary 2.3 Every minimal set A ⊂ I # is finite.
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Proof By Proposition 2.1 there exists a full set 
 ⊂ I # which is finite. By Lemma 2.2
we have A ⊂ 
. Hence A is finite. ��
Proposition 2.4 There exists a (finite) set A ⊂ I # which is both full and minimal.

Proof For any finite subset 
 ⊂ I # we put

|
| :=
∑

λ∈


|λ|,

where |λ| := λ1 + . . . + λr . By Proposition 2.1 there exists a finite subset 
 ⊂ I #

which is full. Put

k := min{|
| : 
 ⊂ I # full and finite}.

Then there exists a full and finite set A ⊂ I # such that |A| = k. We claim that A is
minimal. Suppose there exist α ∈ A and λ ∈ I # with λ < α. Then Jα ⊂ Jλ ⊂ I
which shows that the finite set 
 = (A\{α}) ∪ {λ} is still full. On the other hand, we
have |λ| < |α| and hence

|
| = |A\{α}| + |λ| = |A| − |α| + |λ| < |A| = k.

This contradiction shows that A is minimal. ��
The arguments above show that there is a unique finite set I #min ⊂ I # which is both

full and minimal. We formulate this as

Proposition 2.5 Let I ⊂ PE be a K -invariant ideal. There exists a unique finite set

 ⊂ Nr+ such that

I =
∑

λ∈


Jλ (2.3)

and Jμ /⊂I if μ < λ for some λ ∈ 
.

For example, the n-th power of the maximal ideal M0 has the form

Mn
0 =

∑

|λ|=n

Jλ

since the polynomials in Pλ
E are homogeneous of degree |λ|. For n = 1 we have

M0 = I 1,0,...,0 since P1,0,...,0
E = E∗ is the linear dual space of E . More interesting

examples will be studied in the next section.
As an application of Proposition 2.5 we determine for each K -invariant ideal I the

“maximal fibre” I 0̃ = H
˜

0 of the eigenbundle.
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Theorem 2.6 Let I be a K -invariant ideal, written in the “minimal” form (2.3). Then
any Hilbert module closure H = I has the maximal fibre

H
˜

0 =
∑

λ∈


Pλ
E (direct sum)

at the origin.

Proof We first show that Pλ
E ⊂ H

˜

0 for λ ∈ 
. Let p ∈ Pλ
E and � ∈ E∗ a linear form

on E . By [22] we have

T ∗
� p =

r
∑

j=1

(T ∗
� p)λ−ε j .

If T ∗
� p 	= 0 then (T ∗

� p|q) 	= 0 for some q ∈ Jμ with μ ∈ 
. By (2.2) we have

q =
∑

ν�μ

qν .

Therefore

(T ∗
� p|q) =

r
∑

j=1

((T ∗
� p)λ−ε j |q) =

r
∑

j=1

∑

ν�μ

((T ∗
� p)λ−ε j |qν).

It follows that there exists j such that λ − ε j = ν. Therefore λ > ν � μ. Since both
λ,μ ∈ 
 this contradicts the fact that 
 is minimal.

Conversely, suppose there exists φ ∈ H
˜

0 which is orthogonal to
∑

λ∈
 Pλ
E . By

averaging over K we may assume that φ ∈ Pμ
E for some μ /∈ 
. We can write

φ ∈ H = I as

φ =
∑


�λ<μ

φλ

where φλ belongs to the ideal Jλ. Since Jλ is generated by Pλ
E , there exist giλ ∈

M0, aiλ ∈ C and pλ
i ∈ Pλ

E such that

φ =
∑


�λ<μ

∑

i

(giλ + aiλ) pλ
i =

∑


�λ<μ

∑

i

giλ pλ
i +

∑


�λ<μ

∑

i

aiλ pλ
i .

Since φ ∈ Pμ
E applying the projection πμ yields

φ = φμ =
∑


�λ<μ

∑

i

(giλ pλ
i )

μ.
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It follows that

(φ|φ) =
∑


�λ<μ

∑

i

(φ|(giλ pλ
i )

μ) =
∑


�λ<μ

∑

i

(φ|giλ pλ
i ) =

∑


�λ<μ

∑

i

(T ∗
giλ

φ|pλ
i ) = 0.

Therefore φ = 0. ��
As a special case of Theorem 2.6 we have

J
˜

λ
0 = Pλ

E , (2.4)

already proved in [23]
The description of the eigenbundle at non-zero points ζ is more complicated and

depends on the rank of ζ (in a Jordan theoretic sense). For 0 � � � r define the Kepler
manifold

Ě� := {ζ ∈ E : rank(ζ ) = �}.
The complexification ̂K of K is a complex subgroup of GL(E) called the “structure
group.” It acts transitively on each Ě�. An element c ∈ E satisfying {cc∗c} = 2c
is called a tripotent (triple idempotent). Let S� ⊂ Ě� denote the compact K -
homogeneous manifold of all tripotents of rank �. It is shown in [23] that the
eigenbundle H

˜

restricted to each “stratum” Ě� is a homogeneous holomorphic vector
bundle under the ̂K -action, induced by the fibre H

˜

c at any tripotent c of rank �. Hence
it suffices to study the fibre at a tripotent c. In terms of the Peirce decomposition [16,
17]

E = E2
c ⊕ E1

c ⊕ E0
c ,

where E j
c := {z ∈ E : {cc∗z} = j z}, the tangent space at c is given by

Tc(Ě�) = E2
c ⊕ E1

c .

Therefore the Peirce 0-space E0
c can be identified with the normal space at c. We

abbreviate Ec := E2
c , Ec := E0

c and note that Ec and Ec are irreducible J ∗-subtriples
of E having rank � and r − �, respectively. (The Peirce 1-space E1

c is also a Jordan
subtriple, but not necessarily irreducible).

The principal tool to analyze the fibre I c̃ ≈ H
˜

c is the normal projection map

πc : PE → PW , πc f (w) := f (c + w) (2.5)

onto the polynomial algebraPW of the Peirce 0-spaceW := Ec of a tripotent c of rank
�. Since W is an irreducible J ∗-triple of complementary rank r − �, the polynomial
algebra PW has its own Peter-Weyl decomposition

PW =
∑

α∈Nr−�+

Pα
W
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with respect to the automorphism group KW . Here we write partitions α ∈ Nr−�+ in
the form α = (α�+1, . . . , αr )with α�+1 � . . . � αr � 0. For any partition λ of length
r we define the “truncated partition”

λ∗ := (λ�+1, . . . , λr ) ∈ Nr−�+ .

Let Jλ∗
W ⊂ PW denote the ideal generated by Pλ∗

W .

Proposition 2.7 For any K -invariant ideal I , written in the “minimal” form (2.3),
and any tripotent c with Peirce 0-space W , the normal projection map (2.5) maps I
into the KW -invariant ideal

IW :=
∑

λ∈


Jλ∗
W ⊂ PW ,

and hence induces a mapping

I c̃ = I/Mc I
πc−→ IW /MW ,0 IW = IW

˜

0
(2.6)

between the localization of I at c and the maximal fibre IW
˜

0
relative to W .

Proof By [23, Theorem] the normal projection map satisfies

πc : Jλ → Jλ∗
W (2.7)

for any partition λ ∈ Nr+. In other words, if f ∈ PE has only K -components for
μ � λ, then πc f ∈ PW has only KW -components for partitions α ∈ Nr−�+ satisfying
α � λ∗. One can show that each such partition α occurs. Taking the (finite) sum over
λ ∈ 
, the first assertion follows. Since (πc f )(0) = f (c + 0) = f (c) it follows that
πc maps the maximal idealMc to the maximal idealMW ,0 ⊂ PW relative toW . This
implies the second assertion. ��

The main result of [23] asserts that for I = Jλ the map

J
˜

λ
c = Jλ/Mc J

λ πc−→ Jλ∗
W /MW ,0 J

λ∗
W = Jλ∗

W
˜

0
(2.8)

is an isomorphism. Since (2.4) applied to W yields an isomorphism

Jλ∗
W

˜

0

πλ∗
W−−→≈ Pλ∗

W

by taking the lowest KW -type φλ∗ = πλ∗
W φ of φ ∈ Jλ∗

W , (2.8) amounts to the isomor-
phism

J
˜

λ
c

πλ∗
c−−→≈ Pλ∗

W (2.9)
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where πλ∗
c f := (πc f )λ

∗
denotes the lowest KW -type of πc f ∈ Jλ∗

W . It is likely
that in general the map (2.6) is an isomorphism. This would reduce the description
of the fibres I c̃ to the combinatorial problem of finding a mimimal subset of the set
{λ∗ : λ ∈ 
}. This will be carried out separately.

3 Determinantal Ideals

While the ideals Jλ are defined in terms of representation theory and make no sense
beyond the Jordan theoretic setting, we now introduce K -invariant ideals which are
defined by vanishing conditions along certain subvarieties of E . The resulting analysis
could shed some light on more general situations. For any ideal I ⊂ PE define the
vanishing locus

V I := {z ∈ E : p(z) = 0 ∀ p ∈ I }.

A closed subset X ⊂ E of the form X = V I for some ideal I ⊂ PE is called an
algebraic variety. Conversely, for an algebraic variety X ⊂ E consider the vanishing
ideal

MX := {p ∈ PE : p|X = 0} = {p ∈ PE : p(ζ ) = 0 ∀ ζ ∈ X} =
⋂

ζ∈X
Mζ .

Here Mζ ⊂ PE denotes the maximal ideal of all polynomials vanishing at ζ ∈ E .

By Hilbert’s basis theorem, MX has a finite set of generators. Hence any algebraic
variety is the vanishing locus of finitely many polynomials. An ideal I is prime if and
only if the algebraic variety V I is irreducible. Conversely, an algebraic variety X is
irreducible if and only if MX is a prime ideal. In general, we have

VMX = X

and, by Hilbert’s Nullstellensatz,

MV I = √
I (radical).

We say that f ∈ PE has order of vanishing ordζ ( f ) � n at ζ ∈ E if f ∈ Mn
ζ .

Equivalently, ordζ ( f ) > n if the n-th Taylor polynomial of f at ζ vanishes. Given an
irreducible algebraic variety X ⊂ E one defines the n-th symbolic power

M(n)
X := { f ∈ PE : ordζ ( f ) � n ∀ ζ ∈ X} =

⋂

ζ∈X
Mn

ζ

consisting of all polynomials which vanish of order � n on X . These are “primary
ideals” associated to the prime ideal

MX = M(1)
X = { f ∈ PE : ordζ ( f ) > 0 ∀ ζ ∈ X}.
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The algebraic power Mn
X is contained in M(n)

X but is generally smaller if n > 1. For
a thorough discussion of such matters, cf. [7].

For any algebraic variety X let X̌ denote the open dense subset of all smooth
(regular) points. The complement X\X̌ is the singular set of X . A nested sequence
X0 ⊂ X1 ⊂ ⊂ Xr−1 of algebraic varieties is called a stratification if for each � � 1
the algebraic variety X� has the singular set X�−1, i.e., the smoooth points

X̌� = X�\X�−1. (3.1)

We assume that the lowest stratum X0 = X̌0 is smooth, so that X−1 = ∅. We put
X̌r := E\Xr−1 as an open dense subset of E . The sets X̌� for 0 � � � r are called
the strata of the stratification. The �-th stratum X̌� has the closure

X� =
⋃

0�h��

X̌ h .

Thus X0 is the only closed stratum. Now consider an r -tuple

n := (n1, . . . , nr ) ∈ Nr+ (3.2)

of integers n1 � n2 � . . . � nr � 0, and define the joint symbolic power

M(n)
X0,...,Xr−1

:=
r

⋂

j=1

M(n j )

X j−1
(3.3)

consisting of all polynomials which vanish of order � n j along the subvariety X j−1.

As special cases we have

M(n)
X j

= M(n( j+1),0(r− j−1))
X0,...,Xr−1

and in particular, for the prime ideal (if X j is irreducible)

MX j = M(1( j+1),0(r− j−1))
X0,...,Xr−1

.

An irreducible J ∗-triple E has a canonical stratification

{0} = ̂E0 ⊂ ̂E1 ⊂ · · · ⊂ ̂Er−1 ⊂ ̂Er = E,

where ̂E j is the set of all elements ζ ∈ E of rank � j, called the j-th Kepler variety
(in a Jordan theoretic setting). The smooth points of ̂E j form the Kepler manifold
Ě j defined above. Hence the singular set of ̂E j is ̂E j−1 so that the condition (3.1) is
satisfied. As a special case of (3.3) define the joint symbolic power

M(n)
E := M(n1,...,nr )

̂E0,...,̂Er−1
=

r
⋂

j=1

M(n j )

̂E j−1
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associated with the decreasing tuple (3.2). Thus M(n)
E consists of all polynomials on

E which vanish of order � n j along the subvariety ̂E j−1. These ideals are called
“determinantal ideals” since the Kepler varieties are defined by vanishing conditions
for Jordan theoretic determinants and minors. Since the Kepler varieties ̂E j are K -

invariant,M(n)
E is a K -invariant ideal. As such, it is a sum of certain “partition” ideals

Jλ. Our next result makes this precise.
An irreducible Jordan algebra E with unit element e has a unique determinant

polynomial �e : E → C normalized by �e(e) = 1 [12, 19]. For the matrix algebra
E = Cr×r and the symmetric matrices E = Cr×r

sym this is the usual determinant. For

the antisymmetric matrices E = C2r×2r
asym we obtain the Pfaffian determinant instead.

The determinant polynomial �e has the semi-invariance property

�e(kz) = �e(ke)�e(z) (3.4)

for all k ∈ K and z ∈ E . The map χ : K → T defined by

χ(k) := �e(ke)

is a character of K . It follows that for any k ∈ K

�ke(z) := �e(k
−1z)

is a Jordan determinant normalized at ke.

Theorem 3.1 For each tuple (3.2) the joint symbolic power has the decomposition

M(n)
E =

r
⋂

j=1

M(n j )

E j−1
=

∑

λ∈Nr
(n)

Jλ

where

Nr
(n) := {λ ∈ Nr+ : λ j + . . . + λr � n j ∀ 1 � j � r}.

Proof By highest weight theory [21] the space Pλ
E is spanned by polynomials

Nλ := Nλ1−λ2
1 Nλ2−λ3

2 . . . Nλr
r , (3.5)

where e1, . . . , er is any frame of E and

Nm(z) := �e(Pez)

denotes the Jordan theoretic minor for the tripotent e = e[m] = e1 + . . . + em and
its Peirce 2-space Ee. Here Pe : E → Ee is the Peirce 2-projection. Let ζ ∈ ̂E j and
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m > j . By the spectral theorem applied to Ee there exist a frame c1, . . . , cm of Ee

and ai ∈ C such that

Peζ =
m

∑

i=1

ai ci .

Choose k ∈ KEe such that kei = ci for all i � m. By [19, Theorem 1] we have

�e(u +
m

∑

i=1

ai ei ) =
∑

T⊂{1,...,m}
�e−eT (Pe−eT u)

∏

i∈T
ai

for all u ∈ Ee, where eT := ∑

i∈T
ei . For z ∈ E it follows that

Ne(z + ζ ) = �e(Pe(z + ζ )) = �e(Pez +
m

∑

i=1

ai ci ) = �e(k(k
−1Pez +

m
∑

i=1

ai ei ))

= �e(ke) �e(k
−1Pez +

m
∑

i=1

ai ei ) = �e(ke)
∑

T⊂{1,...,m}
�e−eT (Pe−eT k

−1Pez)
∏

i∈T
ai .

Since Peζ has rank � j it follows that at most j coefficients ai are non-zero, and
hence

∏

i∈T
ai = 0 whenever the cardinality |T | > j . Hence in the sum only subsets T

with |T | � j occur. Since the polynomial �e−eT ◦ Pe−eT k
−1Pe on E is homogeneous

of degree m − |T | = rank(Ee−eT ) we obtain

ordζ (Nm) = ord0(Nm(ζ + ·)) � min|T |� j
ord0(�e−eT ◦ Pe−eT k

−1Pe)

= min|T |� j
(m − |T |) = m − j .

It follows that

ordζ (N
λ) =

r
∑

m=1

(λm − λm+1) ordζ (Nm) �
r

∑

m= j+1

(λm − λm+1) ordζ (Nm)

�
r

∑

m= j+1

(λm − λm+1)(m − j) =
r

∑

m= j+1

λm .

Hence the estimate ordζ ( f ) �
∑r

m= j+1 λm holds for all f ∈ Pλ
E and a fortiori for all

f ∈ Jλ. This shows that Jλ ⊂ M(n)
E whenever λ ∈ Nr

(n).

On the other hand, the tripotent c = e[ j] = e1 + . . . + e j ∈ Ě j satisfies

ordc(Nm) = ord0(Nm(c + ·)) =
{

m − j m > j

0 m � j
.
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It follows that

ordc(N
λ) =

r
∑

m=1

(λm − λm+1) ordc(Nm) =
r

∑

m= j+1

(λm − λm+1) ordc(Nm)

=
r

∑

m= j+1

(λm − λm+1)(m − j) =
r

∑

m= j+1

λm . (3.6)

Thus if λ is a partition such that Jλ ⊂ M(n)
E then Nλ ∈ M(n)

E and (3.6) implies

r
∑

m= j+1

λm = ordc(N
λ) � n j+1

for all 0 � j � r − 1. Therefore λ ∈ Nr
(n). ��

The set 
 determined in Theorem 3.1 is not minimal. For example n = (10, 5, 1)
has the minimal partitions (5, 4, 1) and (5, 3, 2), whereas n = (15, 5, 1) has the mini-
mal partitions (10, 4, 1), (9, 5, 1), (8, 6, 1), (10, 3, 2), (9, 4, 2), (8, 5, 2), (9, 3, 3) and
(8, 4, 3).

We next study the normal projection map (2.5) for determinantal ideals. Given
m = (m�+1, . . . ,mr ) ∈ Nn−�+ we put

Nr−�
(m) := {α ∈ Nr−�+ : α j + . . . + αr � m j ∀ � < j � r}.

Since rankE (c + w) = � + rankW (w) it follows that

̂E j−1 ∩ (c + W ) =
{

∅ j � �

c + ̂Wj−�−1 j > �
.

Theorem 3.2 Let c be a tripotent of rank �. For n ∈ Nr+ put

n∗ := (n�+1, . . . , nr ) ∈ Nr−�+ .

Then the normal projection map πc satisfies

M(n)
E

πc−→ M(n∗)
W .

In particular, for j > �

M(n)
̂E j−1

πc−→ M(n)
̂Wj−�−1

. (3.7)

Proof By Theorem 3.1 we may assume that f ∈ M(n)
E belongs to Jλ for a partition

λ = (λ1, . . . , λr ) satisfying
λ j + . . . + λr � n j (3.8)
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for all 1 � j � r .Now fix � and consider the partition λ∗ := (λ�+1, . . . , λr ) of length
r − �. By (2.7) we have

πc f ∈
∑

α�λ∗
Jα
W

where α � λ∗ is the (partial) containment order, i.e. αi � λi for all � < i � r . For
� < j � r we have

α j + . . . + αr � λ j + . . . + λr � n j .

Therefore α satisfies the analogue of (3.8) relative to W . Applying Theorem 3.1 to
W and the sequence n�+1 � · · · � nr of length r − � = rank(W ), it follows that
πc Jλ ⊂ M(n∗)

W . The special case (3.7) corresponds to n1 = · · · = n j = n, n j+1 =
· · · = nr = 0. ��

We now consider the special case of “step 1” partitions. Let n ∈ N and consider
the ideal

M(n)
̂E�

= {p ∈ PE : ordζ (p) � n ∀ ζ ∈ ̂E�}, (3.9)

where 0 � � � r is fixed. This corresponds to n = (n(�+1), 0(r−�−1)). In this case
Theorem 3.1 yields

M(n)
̂E�

=
∑

λ�+1+...+λr�n

Jλ.

For example

M(n)
̂E0

= Mn
0 =

∑

|λ|=λ1+...+λr�n

Jλ

and

M(n)
̂Er−1

=
∑

λr�n

Jλ.

For the K -invariant ideals (3.9) it is easy to find a minimal decomposition:

Theorem 3.3 For 0 � � < r the ideal M(n)
̂E�

is the minimal and finite sum

M(n)
̂E�

=
∑

α

J α̂

taken over the (finitely many) integer tuples α�+1 � . . . � αr � 0 satisfying

|α| := α�+1 + . . . + αr = n.
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Here we put

α̂ := (α
(�)
�+1, α�+1, . . . , αr ) ∈ Nr+.

Proof We first show that the sum is minimal. If α, β ∈ Nr−�+ satisfy |α| = n = |β|
and α̂ � ̂β, then α � β and hence α = β, showing that α̂ = ̂β. Of course there are
only finitely many partitions α = (α�+1, . . . , αr ) satisfying |α| = n. By Theorem 3.1
M(n)

̂E�
corresponds to partitions λ ∈ Nr+ such that the single inequality

λ�+1 + . . . + λr � n (3.10)

holds. Clearly, λ = α̂ satisfies (3.10), since λi � αi for � < i � r . Thus it remains to
show that (3.10) implies λ � α̂ for someα ∈ Nr−�+ with |α| = n. If λ�+1+. . .+λr � n
then there exists α�+1 � . . . � αr such that |α| = n and λi � αi for � < i � r . To
see this, we may assume (by induction) that λ�+1 + . . . + λr = n + 1. Let

λ�+1 � . . . � λm > 0 = λm+1 = · · · = λr ,

where � < m � r . Then α := (λ�+1, . . . , λm−1, λm − 1, 0, . . . , 0) is decreasing,

satisfies |α| = n and λ � α̂ since for 1 � i � �we have α̂i =
{

λ�+1 m > � + 1

λ�+1 − 1 m = � + 1
and therefore α̂i � λ�+1 � λi . ��

In the simplest case n = 1 there is only a single choiceα�+1 = 1, α�+2 = = αr = 0
yielding the “fundamental partition” α̂ = (1(�+1), 0(r−�−1)) ≡ 1(�+1). Thus the prime
ideal M(1)

̂E�
= M

̂E�
has the form

M(1)
̂E�

= J α̂ = J 1
(�+1)

.

For n > 1 we cannot represent M(n)
̂E�

by a single partition.

4 Reproducing Kernels and Hermitian Structure

The main result of [23], formulated as the isomorphism (2.9), determines the localiza-
tion bundle J

˜

λ as an abstract (singular) holomorphic vector bundle, without reference
to a hermitian metric. If H = I is a Hilbert module completion of a K -invariant ideal
I ,with reproducing kernel functionK(z, ζ ), the corresponding eigenbundle H

˜

≈ I |̃D
carries the all-important hermitian structure as a subbundle of D × H . To make the
connection one needs an explicit embedding

I |̃D −→ H
˜

⊂ D × H .
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As suggested by the “jet construction” developed in [9] for smooth submanifolds,
such a map should involve certain derivatives of K(z, ζ ) in the normal direction. In
this section we carry out this program in the more complicated geometric situation
related to an arbitrary partition ideal I = Jλ.

Any polynomial p induces a constant coefficient differential operator p(∂z) on E,

depending in a conjugate-linear way on p. Let (p|q) denote the Fischer-Fock inner
product of polynomials p, q ∈ PE (anti-linear in p) and let Eλ(z, ζ ) = Eλ

ζ (z) denote

the reproducing kernel of Pλ
E .

Every irreducible J ∗-triple E has two “characteristic multiplicities” a, b [2, 16, 17,
21] such that

d

r
= 1 + a

2
(r − 1) + b.

Lemma 4.1 For a Jordan triple E, the determinant function Ne at a maximal tripotent
e ∈ Sr satisfies

Eλ(z, ζ ) = Cn
r (λ) Nn

e (z)Ne(ζ )
n Eλ−n(r)

(z, ζ ) (4.1)

for λ � n(r) and ζ ∈ Ee, where

Cn
r (λ) =

r
∏

j=1

1

(λ j − n + 1 + a
2 (r − j))n

.

Moreover,
N

n
e (∂z)Eλ

ζ = Ne(ζ )
n Eλ−n(r)

ζ . (4.2)

Proof Weuse the Jordan theoretic Pochhammer symbols (s)λ and the “Faraut-Korányi
formula” [11, 12]. Suppose first that E = Ee is unital, with unit element e and
determinant �e. The parameter s = d/r in the continuous Wallach set corresponds
to the Hardy space H2(S) over the Shilov boundary S of D. Since |�e| = 1 on S we
obtain for p, q ∈ Pλ

E

(�
n
e (∂z)(�

n
e p)|q) = (�n

e p|�n
eq) = (d/r)λ+n(r) (�n

e p|�n
eq)S

= (d/r)λ+n(r) (p|q)S = (d/r)λ+n(r)

(d/r)λ
(p|q).

Since q is arbitrary, it follows that

�
n
e (∂z)(�

n
e p) = (d/r)λ+n(r)

(d/r)λ
p

for all partitions λ and p ∈ Pλ
E .An application of Schur orthogonality [12, Proposition

XI.4.1] shows that

Eλ(e, e) = dλ

(d/r)λ
,
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where dλ := dimPλ
E . If λ � n(r) we can write

Eλ(z, ζ ) = aλ �n
e (z)�e(ζ )

n Eλ−n(r)
(z, ζ )

for some coefficient aλ. It follows that

dλ

(d/r)λ
= Eλ(e, e) = aλ �n

e (e)�e(e)
n Eλ−n(r)

(e, e)

= aλ Eλ−n(r)
(e, e) = aλ

dλ−n(r)

(d/r)λ−n(r)
.

Since dλ = dλ−n(r) in the unital case it follows that

aλ = dλ

dλ−n(r)

(d/r)λ−n(r)

(d/r)λ
= (d/r)λ−n(r)

(d/r)λ
= Cn

r (λ).

This proves (4.1). Moreover,

1

Cn
r (λ)

�
n
e (∂z)Eλ

ζ = �
n
e (∂z)

(

�n
e �e(ζ )

n Eλ−n(r)

ζ

)

= �e(ζ )
n

�
n
e (∂z)(�

n
e Eλ−n(r)

ζ ) = �e(ζ )
n 1

Cn
r (λ)

Eλ−n(r)

ζ = 1

Cn
r (λ)

�e(ζ )
n Eλ−n(r)

ζ .

In the non-unital case, let Pe be the Peirce 2-projection onto Ee. Since Ne(z) =
�e(Pez) by definition, applying the unital case to Ee and using Peζ = ζ we obtain

Eλ(z, ζ ) = Eλ(Pez, ζ ) = Cn
r (λ) �n

e (Pez)�e(ζ )
n Eλ−n(r)

(Pez, ζ )

= Cn
r (λ) Nn

e (z)Ne(ζ )
n Eλ−n(r)

(z, ζ ).

The second assertion follows with �
n
e (∂z) f = N

n
e (∂z)( f ◦ Pe). ��

The identity (4.2), written as

N
n
e (∂z)Eλ(z, ζ ) = Ne(ζ )

n Eλ−n(r)
(z, ζ ),

implies

Nn
e (∂ζ )Eλ(z, ζ ) = Nn

e (z) Eλ−n(r)
(z, ζ ),

since Eλ(z, ζ ) = Eλ(ζ, z). Thus for ζ ∈ Ee we have

Nn
e (∂ζ )Eλ

ζ = Nn
e Eλ−n(r)

ζ (4.3)

as holomorphic polynomials in z.
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Lemma 4.2 Let λ ∈ Nr+ be a partition and ζ ∈ E have rank �. Then Eλ
ζ 	= 0 if and

only if λ has length � �.

Proof If λ has length > � then all p ∈ Pλ
E vanish on ̂E�. Therefore

(Eλ
ζ |p) = p(ζ ) = 0

and hence Eλ
ζ = 0 since p is arbitrary. Now suppose λ has length � �. Consider the

spectral decomposition

ζ =
�

∑

i=1

ζi ei

for a frame (ei ). The conical polynomial Nλ defined as in (3.5) satisfies

Nλ(ζ ) = ζ
λ1
1 · · · ζ λ�

� 	= 0.

Since Nλ(ζ ) = (Eλ
ζ |Nλ) it follows that Eλ

ζ 	= 0. ��

For n ∈ N, define n(m) = (n, . . . , n, 0, . . . , 0), with n repeated m times. Thus the
Young diagram [n(m)] = [1,m] × [1, n]. Any partition λ can be written as

λ = (n(�1)
1 , n(�2−�1)

2 , . . . , n(�t−�t−1)
t , 0(r−�t )), (4.4)

where 1 � �1 < · · · < �t � r and n1 > n2 > · · · > nt > 0. Thus t is the number of
“steps” in the partition. In other words,

λ1 = · · · = λ�1 = n1 > λ1+�1 = · · · = λ�2 = n2 > λ1+�2 .

Define for 1 � s � t

�s := {ζ ∈ D : �s−1 � rank(ζ ) < �s} = D ∩
�s−1
⋃

i=�s−1

Ě�.

We also consider the “regular” points

Ď := {ζ ∈ D : rank(ζ ) � �t }.

Since λ has length �t , Lemma 4.2 implies Eλ
ζ 	= 0 if rank(ζ ) � �t . Hence Kζ does

not vanish at ζ ∈ Ď. For the “singular” points ζ ∈ D there exists a unique s � t such
that ζ ∈ �s . For 1 � h � k � t define

λkh := (n(�h−�h−1)

h , n(�h+1−�h)

h+1 , . . . , n(�k−�k−1)

k )
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as a partition of length �k − �h−1. Let μ ∈ N�s+ satisfy μ � λs1. For each s � k � t
consider the partition

(μ, λks+1) = (μ, n(�s+1−�s )

s+1 , n(�s+2−�s+1)

s+2 , . . . , n(�k−�k−1)

k )

of length �k . Here λks+1 is empty for s = k. Starting with the Peter-Weyl expansion

K(z, ζ ) =
∑

μ�λ

aμ Eμ(z, ζ )

of the reproducing kernelK(z, ζ ) of H = J
λ
, with coefficients aμ > 0, we define K -

invariant sesqui-holomorphic functionsKs(z, ζ ) = Ks
ζ (z) on D×D by the Peter-Weyl

expansion

Ks
ζ =

∑

N�s+ �μ�λs1

a(μ,λts+1)
Eμ−n(�s )

s
ζ

t
∏

k=s

Cnk−nk+1
�k

((μ, λks+1) − n(�k )
k+1). (4.5)

More explicitly, the constant is given by

Cnt
�t

(μ, λts+1) · Cnt−1−nt
�t−1

((μ, λt−1
s+1) − n(�t−1)

t ) · Cnt−2−nt−1
�t−2

((μ, λt−2
s+1) − n(�t−2)

t−1 )

· · ·Cns+1−ns+2
�s+1

((μ, n(�s+1−�s )

s+1 ) − n(�s+1)

s+2 ) · Cns−ns+1
�s

(μ − n(�s )
s+1).

Lemma 4.3 The kernel Ks
ζ does not vanish if rank(ζ ) � �s−1 and vanishes if

rank(ζ ) < �s−1. Thus Ks vanishes precisely on �s−1 = ⋃

0�k<s �k .

Proof Since the partitionλs1−n(�s )
s = λs−1

1 has length �s−1 it follows thatE
λs1−n(�s )

s
ζ 	= 0

if rank(ζ ) � �s−1. This implies Ks
ζ 	= 0 since Eλs1−n(�s )

s occurs as the lowest term in

Ks . On the other hand, if rank(ζ ) < �s−1 then Eμ−n(�s )
s

ζ = 0 for all μ � λs1 since

μ − n(�s )
s � λs1 − n(�s )

s = λs−1
1 has length � �s−1. ��

Proposition 4.4 Let rank(ζ ) � �t and write ζ = limε→0 ζε, where ζε ∈ Ěct for some
tripotent ct ∈ S�t . Then Nct (ζε) 	= 0 and

lim
ε→0

Kζε

Nct (ζε)
nt = Nnt

ct Kt
ζ .

Similarly, for 1 � s < t let rank(ζ ) � �s and write ζ = limε→0 ζε, where ζε ∈ Ěcs
for some tripotent cs ∈ S�s . Then Ncs (ζε) 	= 0 and

lim
ε→0

Ks+1
ζε

Ncs (ζε)
ns−ns+1

= Nns−ns+1
cs Ks

ζ .
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Proof Since ζε has rank �t , it follows that Eλ
ζε

= 0 unless λ = (μ, 0(r−�t )), where

μ ∈ N�t+ satisfies μ � λt1. Therefore

Kζε =
∑

N�t+ �μ�λt1

a(μ,0(r−�t )) E
μ
ζε

.

Since μ � n(�t )
t , we may apply (4.1) to Ect and n = nt . This yields

Kζε

Nct (ζε)
nt =

∑

N�t+ �μ�λt1

a(μ,0(r−�t ))

Eμ
ζε

Nct (ζε)
nt = Nnt

ct

∑

N�t+ �μ�λt1

a(μ,0(r−�t )) C
nt
�t

(μ) Eμ−n(�t )
t

ζε
.

It follows that

lim
ε→0

Kζε

Nct (ζε)
nt = Nnt

ct

∑

N�t+ �μ�λt1

a(μ,0(r−�t )) C
nt
�t

(μ) Eμ−n(�t )
t

ζ = Nnt
ct Kt

ζ .

Now let s < t . Let μ ∈ N�s+1+ satisfy μ � λs+1
1 . Since rank(ζε) = �s we have

Eμ−n
(�s+1)

s+1
ζε

= 0 unless μ = (ν, n(�s+1−�s )

s+1 ), where ν ∈ N�s+ satisfies ν � λs1. Applying

definition (4.5) to Ks+1 yields

Ks+1
ζε

=
∑

λs+1
1 �μ∈N�s+1+

a(μ,λts+2)
Eμ−n

(�s+1)

s+1
ζ

t
∏

k=s+1

Cnk−nk+1
�k

((μ, λks+2) − n(�k)
k+1)

=
∑

λs1�ν∈N�s+

a(ν,λts+1)
Eν−n(�s )

s+1
ζ

t
∏

k=s+1

Cnk−nk+1
�k

((ν, λks+1) − n(�k )
k+1),

using (ν, n(�s+1−�s )

s+1 , λts+2) = (ν, λts+1) and (ν, n(�s+1−�s )

s+1 ) − n(�s+1)

s+1 = ν − n(�s )
s+1.

Since ν � (ns − ns+1)
(�s ), we may apply (4.1) to Ecs and n = ns − ns+1. Since

ν − n(�s )
s+1 − (ns − ns+1)

(�s ) = ν − n(�s )
s this yields

Ks+1
ζε

Ncs (ζε)
ns−ns+1

=
∑

λs1�ν∈N�s+

a(ν,λts+1)

Eν−n(�s )
s+1

ζε

Ncs (ζε)
ns−ns+1

t
∏

k=s+1

Cnk−nk+1
�k

((ν, λks+1) − n(�k )
k+1)

= Nns−ns+1
cs

∑

λs1�ν∈N�s+

a(ν,λts+1)
Eν−n(�s )

s
ζε

Cns−ns+1
s (ν − n(�s )

s+1)

t
∏

k=s+1

Cnk−nk+1
�k

((ν, λks+1) − n(�k )
k+1)

= Nns−ns+1
cs

∑

λs1�ν∈N�s+

a(ν,λts+1)
Eν−n(�s )

s
ζε

t
∏

k=s

Cnk−nk+1
�k

((ν, λks+1) − n(�k )
k+1).
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It follows that

lim
ε→0

Ks+1
ζε

Ncs (ζε)
ns−ns+1

= Nns−ns+1
cs

∑

λs1�ν∈N�s+

a(ν,λts+1)
Eν−n(�s )

s
ζ

t
∏

k=s

Cnk−nk+1
�k

((ν, λks+1) − n(�k )
k+1)

= Nns−ns+1
cs Ks

ζ .

��
Let 1 � s � t . For any tripotent chain

cs < cs+1 < · · · < ct

of rank �s < �s+1 < · · · < �t consider the polynomial

Nns ,...,nt
cs ,...,ct :=

t
∏

k=s

Nnk−nk+1
ck = Nns−ns+1

cs Nns+1−ns+2
cs+1 · · · Nnt−1−nt

ct−1 Nnt
ct .

Theorem 4.5 Let 1 � s � t . Then for any ζ ∈ �s we have

H
˜

ζ
= 〈Nns ,...,nt

cs ,...,ct · Ks
ζ : cs < cs+1 < · · · < ct , ζ ∈ Ecs 〉

where the linear span is taken over all tripotent chains of rank �s < �s+1 < · · · < �t
such that ζ ∈ Ecs . In view of (4.2) we can write Nns ,...,nt

cs ,...,ct · Ks
ζ also in the differential

form Nns ,...,nt
cs ,...,ct (∂ζ )˜Ks

ζ for some modified kernel functions ˜Ks
ζ .

Proof We first show that Nns ,...,nt
cs ,...,ct ·Ks

ζ ∈ H
˜

ζ
for all ζ ∈ Ecs . In case s = t let ct ∈ S�t

and ζ ∈ Ect . Writing ζ = limε→0 ζε for some curve ζε ∈ Ěct we have

Kζε

Nct (ζε)
nt −−→

ε→0
Nnt
ct Kt

ζ

by Proposition 4.4. Since Kζε ∈ H
˜

ζε
a continuity argument yields Nnt

ct Kt
ζ ∈ H

˜

ζ
.

Now let s < t and ζ ∈ Ecs . Writing ζ = limε→0 ζε for some curve ζε ∈ Ěcs we have

Ks+1
ζε

Ncs (ζε)
ns−ns+1

−−→
ε→0

Nns−ns+1
cs Ks

ζ

by Proposition 4.4. Hence

Nns+1,...,nt
cs+1,...,ct Ks+1

ζε

Ncs (ζε)
ns−ns+1

−−→
ε→0

Nns+1,...,nt
cs+1,...,ct N

ns−ns+1
cs Ks

ζ = Nns ,...,nt
cs ,...,ct Ks

ζ .
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By (downward) induction we may assume Nns+1,...,nt
cs+1,...,ct Ks+1

ζε
∈ H

˜

ζε
since ζε ∈ Ecs ⊂

Ecs+1 .A continuity argument shows that Nns ,...,nt
cs ,...,ct Ks

ζ ∈ H
˜

ζ
, concluding the induction

step.
Now let ζ ∈ �s so that �s−1 � � = rank(ζ ) < �s . Consider all tripotent chains

cs < cs+1 < · · · < ct of rank �s < �s+1 < · · · < �t such that ζ ∈ Ecs and denote by
� ⊂ PE the linear span of the associated polynomials Nns ,...,nt

cs ,...,ct . Since the kernel Ks
ζ

does not vanish by Lemma 4.4 multiplication byKs
ζ is an injective map � → H

˜

ζ
. To

show surjectivity, assume first that ζ = c is a tripotent such that c < cs . Then

πcN
ns ,...,nt
cs ,...,ct = ˜Nns ,...,nt

cs−c,...,ct−c

where cs − c < . . . < ct − c is a tripotent chain of rank �s − � < . . . < �t − � in
W = Ec and ˜N denotes the conical polynomials relative toW . Since the polynomials
˜Nns ,...,nt
cs−c,...,ct−c span Pλ∗

W it follows that

dim� � dimPλ∗
W = dim J

˜

λ
c = dim H

˜

c.

Here we use (2.9) for the second equation. Thus it follows that H
˜

c = � · Ks
c. In the

general case let ζ ∈ Ecs have rank � < �s . Then there exists h ∈ ̂K such that ζ = h∗c,
where c ∈ Ecs is a tripotent of rank � with c < cs . Moreover, we may assume that
hEc j = Ec j for all s � j � t . By semi-invariance we have Ncj ◦ h−1 = a j Nc j for
some constant a j . This implies

Nns ,...,nt
cs ,...,ct ◦ h−1 =

t
∏

j=s

a
n j−n j+1
j Nns ,...,nt

cs ,...,ct .

On the other hand, the K -invariance of Ks implies Ks
ζ = Ks

h∗c = Ks
c ◦ h. It follows

that

Nns ,...,nt
cs ,...,ct Ks

ζ =
(

(Nns ,...,nt
cs ,...,ct ◦ h−1) Ks

c

)

◦ h =
t

∏

j=s

a
n j−n j+1
j (Nns ,...,nt

cs ,...,ct Ks
c) ◦ h.

Using H
˜

ζ
= H

˜

h∗c = H
˜

c ◦ h the assertion follows in the general case. ��

If �s−1 � � < �s and λ = (λ1, . . . , λr ) = (n(�1−�2)
1 , . . . , n(�t )

t , 0(r−�t )), we put

λ∗ = (λ�+1, . . . , λr ) = (n(�s−�)
s , n(�s+1−�s )

s+1 , n(�t )
t , 0(r−�t ))

and̂λ∗ = (λ
(�)
�+1, λ

∗). For any tripotent c of rank �, with Peirce 0-space W = Ec,

there exists a cross-section [23] τ̂λ∗ : Pλ∗
W → P̂λ∗

E satisfying

τ̂λ∗ ˜Nns ,...,nt
cs−c,...,ct−c = Nns ,...,nt

cs ,...,ct
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for all tripotent chains cs < · · · < ct of rank �s < · · · < �t such that c < cs . Thus
Theorem 4.5 and its proof yield the “embedding theorem”

Theorem 4.6 For each tripotent c ∈ �s there is an isomorphism

Pλ∗
W

�c−→≈ H
˜

c ⊂ H

mapping φ ∈ Pλ∗
W to (τ̂λ∗φ) · Ks

c ∈ H
˜

c.

Beyond the tripotents, for any ζ ∈ �s we define the embedding J
˜

λ
ζ

�ζ−→≈ H
˜

ζ
via

the commuting diagram

J
˜

λ
c

�c

◦h−1

H
˜

c

◦h∗

J
˜

λ
ζ �ζ

H
˜

ζ

where h ∈ ̂K satisfies ζ = hc.

5 Geometric Realization

The famous results of Kodaira [18] show that a compact Kähler manifold M, whose
Kähler form ω satisfies an integrality condition (a so-called Hodge manifold) can
be embedded as an algebraic subvariety of a projective space P(V ). The underlying
finite-dimensional vector spaceV (more precisely its linear dual space) has a geometric
realization in terms of holomorphic sections of a suitable line bundle L over M . For
homogeneous compact Kähler manifolds, the Borel–Weil–Bott theorem [1] gives a
similar construction for the irreducible representations of compact semisimple Lie
groups. In this section we show that such a “geometric” description also holds for the
fibres of the localization bundle J

˜

λ, for any “partition” ideal Jλ.While this realization,
based on the complex geometry of Peirce 2-spaces, still needs Jordan theory, the
underlying idea, using flags of certain subspaces (“slices”) of E, may be susceptible
to generalization.

The collection M� of all Peirce 2-spaces U = Ec, for all tripotents c ∈ S� of fixed
rank �, is a compact Kähler manifold called the �-th Peirce manifold. In the matrix
case E = Cr×s and 0 � � � r we may identify M� ≈ Grass�(Cr ) × Grass�(Cs) as a
product of Grassmann manifolds.

The structure group ̂K acts transitively on eachM� by holomorphic transformations
(h,U ) �→ hU , and the restricted action of K is already transitive. It follows that

M� = ̂K/̂K Ec = K/K Ec
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where ̂K Ec := {γ ∈ ̂K : γ Ec = Ec} is the closed complex subgroup fixing a given
Peirce 2-space Ec.

Lemma 5.1 If γ ∈ ̂K Ec then the minor Nc satisfies

Nc ◦ γ ∗ = χ�(γ ) Nc

where

χ�(γ ) := �c(γ c)

is a holomorphic character of ̂K Ec .

Proof Since γ ∈ ̂K Ec preserves Ec the Peirce 2-projection Pc satisfies γ Pc = Pcγ Pc.
Therefore Pcγ ∗ = Pcγ ∗Pc. Since Pcγ Pc ∈ ̂KEc the semi-invariance of �c implies

Nc(γ
∗z) = �c(Pcγ

∗z) = �c(Pcγ
∗Pcz) = �c(Pcγ

∗c) �c(Pcz) = �c(γ c) Nc(z).

Here we use

�c(Pcγ
∗c) = �c(Pcγ

∗Pcc) = �c((Pcγ Pc)
∗c) = �c(Pcγ Pcc) = �c(γ c).

��
As a consequence we obtain a holomorphic homogeneous line bundle

L� := {[h, ξ ] = [hγ, χ�(γ )ξ ] : h ∈ ̂K , γ ∈ ̂K Ec , ξ ∈ C} (5.1)

over M�, with projection [h, ξ ] �→ hEc. By definition, the holomorphic sections
σ : M� → L� have the form

σhEc = [h, σ̃ (h)]

where the “homogeneous lift” σ̃ : ̂K → C is a holomorphic map satisfying

σ̃ (hγ ) = χ�(γ ) σ̃ (h)

for all h ∈ ̂K , γ ∈ ̂K Ec .

Letλ ∈ Nr+ be apartitionwritten in the form (4.4). ThePeirceflagmanifoldM�1,...,�t

consists of all chains of Peirce 2-spaces U1 ⊂ U2 ⊂ · · · ⊂ Ut such that rank(Us) =
�s for all s � t . The group ̂K acts on M�1,...,�t by holomorphic transformations
(h, (U1, . . . ,Ut )) �→ (hU1, . . . , hUt ) and the restriction to K is already transitive.
Thus

M�1,...,�t = ̂K/̂K Ec1 ,...,Ect = K/K Ec1 ,...,Ect
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where ̂K Ec1 ,...,Ect := {γ ∈ ̂K : γ Ecs = Ecs ∀ 1 � s � t} is the closed complex sub-
group fixing the Peirce 2-flag Ec1 ⊂ · · · ⊂ Ect for a chain of tripotents c1 < · · · < ct
of rank �1 < · · · < �t . We may choose cs := e[�s ]. As a consequence of Lemma 5.1
the conical function

Nλ :=
t

∏

s=1

Nns−ns+1
cs = Nn1−n2

c1 Nn2−n3
c2 Nnt

ct

satisfies
Nλ ◦ γ ∗ = χλ(γ ) Nλ (5.2)

for all γ ∈ ̂K Ec1 ,...,Ect , where

χλ(γ ) :=
t

∏

s=1

�cs (γ cs)
ns−ns+1

is a holomorphic character of ̂K Ec1 ,...,Ect . As a consequence we obtain a holomorphic
homogeneous line bundle

Lλ := {[h, ξ ] = [hγ, χλ(γ )ξ ] : h ∈ ̂K , γ ∈ ̂K Ec1 ,...,Ect , ξ ∈ C} (5.3)

over M�1,...,�t , with projection [h, ξ ] �→ (hEc1, . . . , hEct ). By definition, the holo-
morphic sections σ : M�1,...,�t → Lλ have the form

σhEc1 ,...,hEct
= [h, σ̃ (h)]

where the homogeneous lift σ̃ : ̂K → C is a holomorphic map satisfying

σ̃ (hγ ) = χλ(γ ) σ̃ (h)

for all h ∈ ̂K and γ ∈ ̂K Ec1 ,...,Ect . For t = 1 we obtain the powers Ln
� of the line

bundle (5.1).
We first describe the maximal fibre J

˜

λ
0 = Pλ

E at ζ = 0.

Theorem 5.2 Any p ∈ Pλ
E defines a holomorphic section σ p : M�1,...,�t → Lλ,whose

homogeneous lift σ̃ p : ̂K → C is given by the Fischer-Fock inner product

σ̃ p(h) = (Nλ ◦ h∗|p) = (Nλ|p ◦ h). (5.4)

This yields a ̂K-equivariant isomorphism

Pλ
E

�−→≈ �(M�1,...,�t ,Lλ), p �→ σ p.
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Proof To check the homogeneity condition, let γ ∈ ̂K Ec1 ,...,Ect . Then (5.2) implies

σ̃ p(hγ ) = (Nλ ◦ (hγ )∗|p) = (Nλ ◦ γ ∗ ◦ h∗|p)
= (χλ(γ ) Nλ ◦ h∗|p) = χλ(γ ) (Nλ ◦ h∗|p) = χλ(γ ) σ̃ p(h).

Since Pλ
E is the linear span of polynomials Nλ ◦ h∗ the map � is injective. For any

h, h′ ∈ ̂K we have

σ̃ p◦h(h′) = (Nλ|(p ◦ h) ◦ h′) = (Nλ|(p ◦ (hh′)) = σ̃ p(hh′) = ˜(h−1 · σ p)(h′),

proving invariance

σ p◦h = h−1 · σ p

under h ∈ ̂K . Realizing M�1,...,�t = ̂K/̂K Ec1 ,...,Ect as a Lie theoretic flag manifold
[3] the Borel–Weil–Bott theorem shows that �(M�1,...,�t ,Lλ) is ̂K -irreducible. Thus
the map � is surjective and hence an isomorphism. ��

As an example, consider the partitions

n(�) := (n, . . . , n, 0, . . . , 0)

with n > 0 repeated � times. Here t = 1 and one obtains an isomorphism (cf. [3])

Pn(�)

E ≈ �(M�,Ln
� ),

whereLn
� is the n-th tensor power of the line bundleL� defined by (5.1). If � = r and E

is unital with unit element e, then Mr = {E} is a singleton andPn(r)

E is 1-dimensional,
spanned by Nn

e . If � is arbitrary and n = 1 we have the “fundamental” partitions and

P1(�)

E ≈ �(M�,L�).

In the simplest case � = 1 we obtain a kind of projective space M1 consisting of all
Peirce 2-spaces of rank 1, or equivalently, all lines spanned by tripotents of rank 1.
The associated “tautological” line bundle

T =
⋃

U∈M1

U

has no holomorphic sections. On the other hand each f ∈ E∗ yields a holomorphic
section σ f : M → T ∗ of the dual line bundle

T ∗ =
⋃

U∈M1

U∗
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via

M1 � U �→ σ
f
U := f |U ∈ T ∗

U .

The calculation

σ
f ◦h−1

hU = ( f ◦ h−1)|hU = ( f |U ) ◦ h−1 = σ
f
U ◦ h−1 = (h · σ f )hU

shows that h · σ f = σ f ◦h−1
. The homogeneous lift σ̃ f : ̂K → C is given by

σ̃ f (h) := f (he1).

If γ ∈ ̂K Ee1 then γ e1 = χ1(γ )e1 for the holomorphic character χ1 : ̂K Ee1 → C×
given by χ1(γ ) = (γ e1|e1) = Ne1(γ e1). This is covered by the general formula (5.4):

Lemma 5.3 For each f ∈ E∗ = P1,0,...,0
E we have

σ̃ f (h) = (Ne1 ◦ h∗| f ).

Proof Putting f z := (z|v) the relation

(Ne1 ◦ h∗)(z) = Ne1(h
∗z) = (h∗z|e1) = (z|he1)

implies

(Ne1 ◦ h∗| f ) = ((·|he1)|(·|v)) = (he1|v) = f (he1).

��
In order to describe the localization J

˜

λ
ζ
at non-zero points ζ of rank �, where

�s−1 � � < �s, we pass to certain submanifolds of the Peirce flag manifold. Consider
the “incidence space”

Mζ
�s ,...,�t

:= {(Us, . . . ,Ut ) ∈ M�s ,...,�t : ζ ∈ Us}

and the “polar space”

Mζ∗
�s−�,...,�t−� := {(Ws, . . . ,Wt ) ∈ M�s−�,...,�t−� : Wt�ζ ∗ = 0}.

For a tripotent ζ = c this means that the flag is contained in W = Ec. These compact
submanifolds are closely related: If (Us, . . . ,Ut ) ∈ Mζ

�s ,··· ,�t then the Peirce 0-spaces
Wk := Uc

k form a flag (Ws, · · · ,Wt ) ∈ Mζ∗
�s−�,··· ,�t−�.Conversely, if (Ws, · · · ,Wt ) ∈

Mζ∗
�s−�,··· ,�t−� and we put Wk := W 2

ck for a tripotent chain cs < · · · < ct of rank
�s − � < · · · < �t − � in W , then c + cs < · · · < c + ct is a tripotent chain of
rank �s < · · · < �t in E and Uk := E2

c+ck defines a flag (Us, . . . ,Ut ) ∈ Mζ
�s ,··· ,�t .
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Moreover, if c′
k ∼ ck are Peirce equivalent in W , then c + c′

k ∼ c + ck are Peirce
equivalent in E .

The closed complex subgroup

̂K ζ := {κ ∈ ̂K : κζ = ζ }

acts transitively on the incidence space Mζ
�s ,...,�t

and, similarly, the closed complex
subgroup

̂K ζ∗ := {κ ∈ ̂K : κ∗ ∈ ̂K ζ } = {κ ∈ ̂K : κ∗ζ = ζ }

acts transitively on the polar space Mζ∗
�s−�,...,�t−� since h(z�ζ ∗)h−1 = (hz)�(h−∗ζ )∗

for all h ∈ ̂K . Therefore

Mζ∗
�s−�,...,�t−� = ̂K ζ∗/(̂K ζ∗)Wcs ,...,Wct

where

(̂K ζ∗)Wcs ,...,Wct = {γ ∈ ̂K ζ∗ : γWcj = Wcj ∀ s � j � t}

and Wcs ⊂ . . . ⊂ Wct ⊂ W is the Peirce 2-flag for a given chain of tripotents
cs < . . . < ct in W of type �s − � < . . . < �t − �. We may choose c j := e�+1 + e� j .

The restriction homomorphism

̂K ζ∗ → ̂KW , κ �→ κ|W
defines a biholomorphic map

Mζ∗
�s−�,...,�t−� = ̂K ζ∗/(̂K ζ∗)Wcs ,...,Wct

�−→≈ ̂KW /̂K
Wcs ,Wct
W = MW

�s−�,...,�t−� (5.5)

where

̂K
Wcs ,...,Wct
W = {γ ∈ ̂KW : γWcj = Wcj ∀ s � j � t}

and MW
�s−�,...,�t−� denotes the Peirce flag manifold relative to W . Now consider the

truncated partition λ∗ of length r − �. Then the conical function relative to W is

Nλ∗
W =

t
∏

j=s

˜N
n j−n j+1
c j

and there is a holomorphic character

χλ∗
W (γ ) :=

t
∏

j=s

˜Ncj (γ c j )
n j−n j+1
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on ̂K
Wcs ,...,Wct
W such that

Nλ∗
W ◦ γ ∗ = χλ∗

W (γ ) Nλ∗
W

for all γ ∈ ̂K
Wcs ,...,Wct
W . Let Lλ∗

W denote the associated holomorphic line bundle on
MW

�s−�,...,�t−� defined as in (5.3). A holomorphic section σ : MW
�s−�,...,�t−� → Lλ∗

W is

characterized by its homogeneous lift σ̃ : ̂KW → C satisfying

σ̃ (κγ ) = χλ∗
W (γ ) σ̃ (κ)

for all κ ∈ ̂KW and γ ∈ ̂K
Wcs ,...,Wct
W . Via the isomorphism (5.5) we obtain a

holomorphic pull-back line bundle Lλ∗
ζ = �∗Lλ∗

W such that holomorphic sections

σ : Mζ∗
�s−�,...,�t−� → Lλ∗

ζ are characterized by the homogeneous lift σ̃ : ̂K ζ∗ → C
satisfying

σ̃ (κγ ) = χλ∗
W (γ |W ) σ̃ (κ) =

t
∏

j=s

˜Ncj (γ c j )
n j−n j+1 σ̃ (κ)

for all κ ∈ ̂K ζ∗ and γ ∈ (̂K ζ∗)Wcs ,...,Wct . All of this holds in particular when ζ = c
is a tripotent of rank �.

Theorem 5.4 Write λ ∈ Nr+ in the form (4.4). Let c be a tripotent of rank � with Peirce
0-space W , such that �s−1 � � < �s . Consider the truncated partition

λ∗ = (λ�+1, . . . , λr ) = (n(�s−�)
s , n(�s+1−�s )

s+1 , . . . , n(�t−�t−1)
t ).

Then there is an isomorphism

J
˜

λ
c ≈ Pλ∗

W
�c−→≈ �(Mc∗

�s ,...,�t
,Lλ∗

c )

which is defined as follows: Any φ ∈ Pλ∗
W defines a holomorphic section σφ :

Mc∗
�s ,...,�t

→ Lλ∗
c ,whose homogeneous lift σ̃ φ : ̂Kc∗ → C is given by the Fischer-Fock

inner product

σ̃ φ(κ) = (Nλ∗
W |φ ◦ κ|W )

for all κ ∈ ̂Kc∗.

Proof Applying Theorem 5.2 to W we have

Pλ∗
W

�W−−→≈ �(MW
�s−�,...,�t−�,Lλ∗

W )
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via the map φ �→ σ
φ
W with homogeneous lift

σ̃
φ
W (κ) = (Nλ∗

W |φ ◦ κ)

for all κ ∈ ̂KW . Passing to �(Mc∗
�s ,...,�t

,Lλ∗
c ) via the isomorphism (5.5), the assertion

follows. ��
We finally describe a similar isomorphism for non-tripotent points ζ ∈ Ě�. Write

ζ = hc for some h ∈ ̂K . Then h−∗
̂Kc∗h∗ = ̂K ζ∗ and

h−∗(̂Kc∗)Wcs ,...,Wct h∗ = (̂K ζ∗)h−∗Wcs ,...,h
−∗Wct

for the Peirce 2-flag h−∗Wcs ⊂ . . . ⊂ h−∗Wct ⊂ h−∗W ⊂ E . Thus we obtain a
commuting diagram

̂Kc∗/(̂Kc∗)Wcs ,... Wct

h−∗·h∗

Mc∗
�s−�,...,�t−�

h−∗

̂K ζ∗/(̂K ζ∗)h−∗Wcs ,h
−∗Wct Mζ∗

�s−�,...,�t−�.

Now the isomorphism

J
˜

λ
ζ

�ζ−→≈ �(̂K ζ∗/(̂K ζ∗)h−∗Wcs ,... h
−∗Wct ,Lλ∗

ζ )

is defined via the commuting diagram

J
˜

λ
c ≈

�c
�(̂Kc∗/(̂Kc∗)Wcs ,...,Wct ,Lλ∗

c )

J
˜

λ
ζ ≈

�ζ

≈◦h

�(̂K ζ∗/(̂K ζ∗)h−∗Wcs ,...,h
−∗Wct ,Lλ∗

ζ ).

h∗·h−∗≈

This demonstrates that the bundle J
˜

λ
ζ
depends in an anti-holomorphic way on ζ .
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