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Abstract

We analyze the “eigenbundle” (localization bundle) of certain Hilbert modules over
bounded symmetric domains of rank r, giving rise to complex-analytic fibre spaces
which are stratified of length »+ 1. The fibres are described in terms of Kédhler geometry
as line bundle sections over flag manifolds, and the metric embedding is determined
by taking derivatives of reproducing kernel functions. Important examples are the
determinantal ideals defined by vanishing conditions along the various strata of the
stratification.
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0 Introduction

Jorg Eschmeier was a master in the interplay between operator theory and multi-
variable complex analysis, in particular in its modern sheaf-theoretic form. An
interesting concept in this respect is the “eigenbundle” of a Hilbert module arising
from a commuting tuple of non-selfadjoint operators 77, ..., Ty. Just as the spectral
theorem is the basic tool for the analysis of self-adjoint operators, the eigenbundle plays
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a similar role in the non-selfadjoint case, naturally involving multi-variable complex
analysis instead of “real” measure theory.

In the original approach by Cowen-Douglas [6] for Hilbert modules H of holo-
morphic functions on a bounded domain D C C¢, the eigenbundle, denoted by H,
is a genuine holomorphic vector bundle on D whose hermitian geometry determines
the underlying operator tuple. In more general situations [8, 9] the eigenbundle will
have singularities along certain subvarieties of D, making the geometric aspects more
complicated. For example, if H = I is the Hilbert closure of a prime ideal  of poly-
nomials, whose vanishing locus X is smooth, then by a result of Duan-Guo [8] the
eigenbundle A has rank 1 on the regular set D\ X, whereas H |y is isomorphic to the
(dual) normal bundle of X. Thus we have a “stratification” of length 2. In this paper, we
study K-invariant Hilbert modules H over bounded symmetric domains D = G/K
of rank r, leading to singular vector bundles which are stratified of length » 4- 1. This
study was initiated in [23] where the eigenbundle of certain polynomial ideals J*,
for a given partition A of length < r, was determined explicitly. These ideals are not
prime ideals except for the “fundamental” partitions A = (1,...,1,0,...,0). The
main result of [23] describes the fibres of the eigenbundle using representation theory
of the compact Lie group K.

The current paper extends and generalizes this analysis. For the partition ideals

J* and Hilbert closures H = J~ we construct a Hilbert space embedding of the
eigenbundle by taking certain derivatives of the reproducing kernel function of H.
This is important to study the hermitian structure and is related to the “jet construction”
introduced in [9]. Moreover, we give aholomorphic characterization of the eigenbundle
in terms of holomorphic sections of line bundles over a flag manifold. Such a geometric
characterization may also hold in more general situations. Beyond the setting of the
partition ideals we consider arbitrary K -invariant polynomial ideals, in particular the
so-called “determinantal” ideals which have a direct geometric meaning.

1 Hilbert Modules and Their Eigenbundle

Let D be a bounded domain in a finite dimensional complex vector space E ~ C¢.
Denote by Pr =~ C|z1, .. ., zq] the algebra of all polynomials on E. A Hilbert space
H of holomorphic functions f on D (supposed to be scalar-valued) is called a Hilbert
module if for any polynomial p € Pg the multiplication operator T, f := pf leaves
H invariant and is bounded. Using the adjoint operators T ;’ the closed linear subspace

H ={feH: T,f=p&)fYpePr (1.1)

is called the joint eigenspace at { € D. Since T,T;; = T, for polynomials p, g it
suffices to consider linear functionals or just the coordinate functions. The disjoint
union
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becomes a subbundle of the trivial vector bundle D x H, which is called the eigen-
bundle of H, although it is not locally trivial in general. One also requires that the
fibres have finite dimension and their union is total in H. The map ¢ +— [¢] from H ¢

to H /M H is a Hilbert space isomorphism, with inverse map
H/MgH — tl;’ f ~|—M§H = T[gf,

where 7, : H — H ¢ is the orthogonal projection. Thus H ¢ becomes the “quotient

module” for the submodule M, H.

Classical examples of Hilbert modules are the Bergman space H?(D) of square-
integrable holomorphic functions, whose reproducing kernel is called the Bergman
kernel, and the Hardy space H2(dD) if D has a smooth boundary dD. For general
Hilbert modules H, a reproducing kernel function is a sesqui-holomorphic function
K(z, ¢) on D x D such that for each ¢ € D the holomorphic function

K¢ (z) :=K(z,¢)

belongs to H, and we have

V(@) = K V)n

forall € H and z € D. Here (¢|¥) g is the inner product, anti-linear in ¢p. Thus H
is the closed linear span of the holomorphic functions IC;, where ¢ € D is arbitrary.
If ¢, is any orthonormal basis of H then

K0 =) ¢ua@)a(@).
o
For each { € D we have K; € H ¢ as follows from the identity

(TyKel¥)u = Kelpy)m = pOy @) = p@QOKe[v)m = (p(OK V)

forpe Prand y € H.

If the reproducing kernel /C has no zeros (e.g., the Bergman kernel of a strongly
pseudo-convex domain) then the eigenbundle H is spanned by the functions K; and
hence becomes a hermitian holomorphic line bundle. In more general cases the kernel
function vanishes along certain analytic subvarieties of D and the eigenbundle is not
locally trivial, its fibre dimension can jump along the varieties and we obtain a singular
vector bundle on D, also called a “linearly fibered complex analytic space” [13]. Such
singular vector bundles are important in Several Complex Variables since they are
in duality with the category of coherent analytic module sheaves, whereas (regular)
vector bundles correspond to locally free sheaves. In [4] the connection to coherent
analytic module sheaves associated with H is made explicit.

An important class of Hilbert modules is given by the Hilbert closure H = I of a
polynomial ideal I C Pg. In this case the fibres (1.1) of the eigenbundle have finite



74 Page4of33 H. Upmeier

dimension. More precisely, by [8] we have H = [|p for the “localization bundle” [
over E, with fibre

,L§ =1/ M1
at ¢ € E. For any set of generators py, ..., p; of I the linear map
t
C’ = L. (ar,....a) M;I+Za,~ Di
i=1

is surjective, showing that dim L{ < t. In [4, Lemma 2.3] it is shown that f € H ¢
satisfies

pi) f = (pil NHu K¢

for all i. This implies that the eigenbundle H restricted to the open dense subset
t
D:=JlteD: pi)#0)
j=1

of D is a holomorphic line bundle spanned by the reproducing kernel K, ¢ € D.
The behavior of H on the singular set D\D is more complicated and has so far
been studied mostly when the vanishing locus of the reproducing kernel is a smooth
subvariety of D, for example given as a complete intersection of a regular sequence
of polynomials. The case where I is a prime ideal whose vanishing locus X consists
of smooth points has been studied by Duan-Guo [8]. They showed that for { € D\ X

H, = (Ke)

is the 1-dimensional span of the reproducing kernel vector, whereas for ¢ € X

H, ~ T+ (X)
is isomorphic to the normal space (more precisely its linear dual.) Thus we have
a stratification of length 2. We consider a more complicated situation for bounded
symmetric domains D of arbitrary rank r, where we have a stratification of length
r + 1, the relevant varieties are not smooth and the ideal 7 is not prime in general.
2 K-invariant Ideals on Bounded Symmetric Domains
Let D = G/K be an irreducible bounded symmetric domain of rank r, realized as

the (spectral) unit ball of a hermitian Jordan triple (J*-triple) E. Let {uv*w} € E
denote the Jordan triple product of u, v, w € E. The compact Lie group K acts by
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linear transformations on E preserving the Jordan triple product. For background on
the Jordan theoretic approach towards symmetric domains, see [2, 5, 12, 17, 21]. Let
‘PE denote the algebra of all polynomials on E. Under the natural action

k- @)= fk'2)

of k € K on functions f on E the polynomial algebra Pr has a Peter—Weyl decom-
position [11, 20]

Pg = ZP?}

reN

into pairwise inequivalent irreducible K-modules Pg. Here N/, denotes the set of all
partitions

A=A A)

of integers A > ... > A, > 0. The polynomials in 732- are homogeneous of degree
[A] := A1 4+ ...+ A.. We often identify a partition A with its Young diagram

Al={G H:1<i<r, 1<j<M)
For fixed u € N/, denote by
P — Py, frealf=f"

the K -invariant projection onto ”Pg. As a consequence of Schur orthogonality we have
[23, Lemma 3.1]

) = / dk 1, () F(k2), @1

K

where x, denotes the character of the K-representation on Pg .

Anideal I C Pg is called K-invariant if k- f € [ forallk € K and f € . A
similar definition applies to Hilbert modules of holomorphic funtions on a K -invariant
domain. The formula (2.1) implies that a K -invariant ideal (resp., Hilbert module) is
a direct sum (resp., Hilbert sum) of its Peter-Weyl subspaces PZ.

For a given partition A denote by J* C Pg the K -invariant ideal generated by Pfg.
The first main result of [23] asserts that J* has the Peter-Weyl decomposition

=3Py (2.2)

wz=n

where A < pmeans A; < p; foralli. This is equivalent to the inclusion [A] C [u] for
the corresponding Young diagrams. As a consequence, J* C J* if and only if ;v > A.
In this section we show that these “partition” ideals J* are fundamental for the study
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of general K -invariant ideals. Given a K -invariant ideal /, define / #.= {A eN,:
Jh Iy

Proposition 2.1 Let I C Pg be a K -invariant ideal. Then there is a finite set A C I*
of partitions such that

I = Z J.
LEA

Proof If f € I then (2.1) shows that f# also belongs to I for all © € N’_. Let
fi, ..., fr be a finite set of generators of /. Then their non-zero K-homogeneous
parts belong to / and form a finite set of generators. Thus we may assume that each
fs € 7323 for some partition 1;. We claim that

Since fs € IN 7323' is non-zero, / is K -invariant and 7)2‘ is irreducible, it follows that

7323' C I and hence J* C I.Thus J C I.Conversely, each generator f; of I belongs
to J. Therefore I C J. O

A subset A C I is called “full” if

1=y J~

rEA
A subset A C I* is called “minimal” if « € A and A < o« implies & ¢ I*, ie., J*¢1.
Lemma2.2 Let A C I* be minimal and A C I* be full. Then A C A.

Proof Suppose there exists @ € A suchthata ¢ A.Let p € Pg.Thenp e J* C I =

> J* and therefore
AEA

p= Z f>. (finite sum)

rEA

for some f5 € J*. By (2.2) we have f¥ =0unless o > A. Since o ¢ A this implies

p=p"=) fi= Y fr= > fr=0

AEA AEA, > AEA, a>)

since {. € A : A < «a} = @. This is a contradiction. O

Corollary 2.3 Every minimal set A C I* is finite.
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Proof By Proposition 2.1 there exists a full set A C I* which is finite. By Lemma 2.2
we have A C A. Hence A is finite. O

Proposition 2.4 There exists a (finite) set A C I* which is both full and minimal.

Proof For any finite subset A C I* we put

IA]:= )" IAl,

rEA

where |A| := A; + ... + A,. By Proposition 2.1 there exists a finite subset A C I*
which is full. Put

k :=min{|]A| : A c I* full and finite}.

Then there exists a full and finite set A C I* such that |A| = k. We claim that A is
minimal. Suppose there exist @ € A and A € I* with A < a. Then J* C J* C I
which shows that the finite set A = (A\{«}) U {1} is still full. On the other hand, we
have |A| < || and hence

Al = [A\{a}| + [A] = |A| — |a| + |A] < |A] = k.
This contradiction shows that A is minimal. O

The arguments above show that there is a unique finite set If”-n C I* which is both
full and minimal. We formulate this as

Proposition 2.5 Let I C Pg be a K -invariant ideal. There exists a unique finite set

A C N, such that
1=y J* (2.3)
AeEA

and J*¢ 1 if 1 < A for some A € A.

For example, the n-th power of the maximal ideal M has the form

=y

[A|=n

since the polynomials in Pfg are homogeneous of degree |A|. For n = 1 we have
Mo = 100 since P10 = E* is the linear dual space of E. More interesting
examples will be studied in the next section.

As an application of Proposition 2.5 we determine for each K -invariant ideal / the
“maximal fibre” [, = H , of the eigenbundle.
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Theorem 2.6 Let I bea K -invaria_nt ideal, written in the “minimal” form (2.3). Then
any Hilbert module closure H = I has the maximal fibre

H,= Z 732 (direct sum)
reEA

at the origin.

Proof We first show that Pé CHyforre A Letpe PI);" and £ € E* alinear form
on E. By [22] we have

,
Tip=) (T/p)~*.
j=1
If T p # 0 then (T, plg) # O for some g € J* with u € A. By (2.2) we have
g=> q"
v
Therefore
r r
(TFplg) =Y (TFpY g =Y Y (TFp)“lg").
j=1 j=lvzp

It follows that there exists j such that A — ¢; = v. Therefore A > v > . Since both
A, u € A this contradicts the fact that A is minimal.

Conversely, suppose there exists ¢ € H which is orthogonal to D oaeA Pg. By
averaging over K we may assume that ¢ € PZ for some u ¢ A. We can write
¢pcH=Ias

¢:Z¢A

AsSA<p

where ¢; belongs to the ideal J*. Since J* is generated by P,):i, there exist gi €
Mo, ai € Cand p} € P} such that

o= > D @+a)p= > D g+ D>, D arp

Adi<p i AdAi<p i AdA<p i

Since ¢ € Pg applying the projection 7# yields

p=0"= Y D (g pH".

Asi<p i
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It follows that

@loy= D @I = Y D @lg b= Y D (Tielrh)=0.

Asi<p i Asi<p i Ash<p i

Therefore ¢ = 0. O

As a special case of Theorem 2.6 we have
Ly =Pp. (2.4)

already proved in [23]

The description of the eigenbundle at non-zero points ¢ is more complicated and
depends on the rank of ¢ (in a Jordan theoretic sense). For 0 < £ < r define the Kepler
manifold

E( :={¢ € E : rank(¢) = ¢}.

The complexification KofKisa complex subgroup of GL(E) called the “structure
group.” It acts transitively on each E;. An element ¢ € E satisfying {cc*c} = 2¢
is called a tripotent (triple idempotent). Let S, C E, denote the compact K-
homogeneous manifold of all tripotents of rank £. It is shown in [23] that the
eigenbundle H restricted to each “stratum” Egisa homogeneous holomorphic vector
bundle under the K -action, induced by the fibre H _ at any tripotent ¢ of rank £. Hence
it suffices to study the fibre at a tripotent c. In terms of the Peirce decomposition [16,
17]

E=E’0E ' ®E,
where EL] :={z € E: {cc*z} = jz}, the tangent space at c is given by
Ziéf)::E369E3~

Therefore the Peirce 0-space E” can be identified with the normal space at c. We
abbreviate E, := E2, E° := E? and note that E. and E° are irreducible J*-subtriples
of E having rank ¢ and r — £, respectively. (The Peirce 1-space E cl is also a Jordan
subtriple, but not necessarily irreducible).

The principal tool to analyze the fibre [, ~ H _ is the normal projection map
7e : Pe = Pw, e f(w) := f(c+ w) 2.5

onto the polynomial algebra Py of the Peirce 0-space W := E° of a tripotent ¢ of rank
£. Since W is an irreducible J*-triple of complementary rank  — ¢, the polynomial
algebra Py has its own Peter-Weyl decomposition

Pw= Y Py

r—{
aeN’



74 Page 100f33 H. Upmeier

with respect to the automorphism group Kw. Here we write partitions o € Ni‘e in
the form o = (otg41, ..., o) withayy) > ... > «, > 0. For any partition A of length
r we define the “truncated partition”

A= (st oo ) €N

Let J‘a‘v* C Pyw denote the ideal generated by P‘),‘V* .

Proposition 2.7 For any K -invariant ideal I, written in the “minimal” form (2.3),
and any tripotent ¢ with Peirce 0-space W, the normal projection map (2.5) maps 1
into the Ky -invariant ideal

Iy = ZJ&/* C Pw,

reA
and hence induces a mapping
L= 1/McI =5 Iy /My olw = Iy, (2.6)

between the localization of I at ¢ and the maximal fibre Iy 0 relative to W.

Proof By [23, Theorem] the normal projection map satisfies
et It = T (2.7)

for any partition A € N’_. In other words, if f € Pg has only K-components for
W = X, then . f € Pw has only Ky -components for partitions « € Nf[e satisfying
a > A*. One can show that each such partition « occurs. Taking the (finite) sum over
A € A, the first assertion follows. Since (7. f)(0) = f(c + 0) = f(c) it follows that
7. maps the maximal ideal M. to the maximal ideal My o C Pw relative to W. This
implies the second assertion. O

The main result of [23] asserts that for / = J* the map
I =T MR TS Ty Moy = EZO (2.8)

is an isomorphism. Since (2.4) applied to W yields an isomorphism

¥
* Ty *
Tw = Pw

~

by taking the lowest Ky -type qbk* = n"}; pofp e J%,* , (2.8) amounts to the isomor-
phism
)L*

ITC *
J — Pl (2.9)

~c
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where 7" f 1= (mcf)*" denotes the lowest Kw-type of 7. f € Ji . It is likely
that in general the map (2.6) is an isomorphism. This would reduce the description
of the fibres [ to the combinatorial problem of finding a mimimal subset of the set
{A* : A € A}. This will be carried out separately.

3 Determinantal Ideals

While the ideals J* are defined in terms of representation theory and make no sense
beyond the Jordan theoretic setting, we now introduce K -invariant ideals which are
defined by vanishing conditions along certain subvarieties of E. The resulting analysis
could shed some light on more general situations. For any ideal / C Pg define the
vanishing locus

VIi.={zeE: plr)=0Vpel}.

A closed subset X C E of the form X = V! for some ideal I C Pp is called an
algebraic variety. Conversely, for an algebraic variety X C E consider the vanishing
ideal

Mx:={pePg: plx=0={pePg: p(@:OV{EX}:ﬂMC-
rex

Here M; C Pk denotes the maximal ideal of all polynomials vanishing at { € E.
By Hilbert’s basis theorem, M x has a finite set of generators. Hence any algebraic
variety is the vanishing locus of finitely many polynomials. An ideal [ is prime if and
only if the algebraic variety V! is irreducible. Conversely, an algebraic variety X is
irreducible if and only if M x is a prime ideal. In general, we have

yMx = x
and, by Hilbert’s Nullstellensatz,
My = V1 (radical).
We say that f € Pg has order of vanishing ord;(f) > nat¢ € Eif f € M’g‘

Equivalently, ord; (f) > n if the n-th Taylor polynomial of f at ¢ vanishes. Given an
irreducible algebraic variety X C E one defines the n-th symbolic power

MY = {f €Pp: orde(f) >nVeeX)=[)| M
teX

consisting of all polynomials which vanish of order > n on X. These are “primary
ideals” associated to the prime ideal

sz./\/lg):{fEPE: ord; (f) >0V¢ e X}.
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The algebraic power MY, is contained in Mg?)

a thorough discussion of such matters, cf. [7].

For any algebraic variety X let X denote the open dense subset of all smooth
(regular) points. The complement X \)v( is the singular set of X. A nested sequence
Xo C X1 C C X,_ of algebraic varieties is called a stratification if for each £ < 1
the algebraic variety X, has the singular set X,_1, i.e., the smoooth points

but is generally smaller if n > 1. For

Xe=X\X¢_1. 3.1)

We assume that the lowest stratum Xy = Xo is smooth so that X_| = (. We put
X, := E\X,_1 as an open dense subset of E. The sets X ¢ for 0 < € < r are called
the strata of the stratification. The ¢-th stratum X ¢ has the closure

U %
0<h<e
Thus X is the only closed stratum. Now consider an r-tuple

n:=(ny,...,n;)eN, 3.2)

of integers n; > ny > ... > n, > 0, and define the joint symbolic power
MP ﬂww) (3.3)

consisting of all polynomials which vanish of order > n; along the subvariety X ;_;.
As special cases we have

G+D otr=i=D)

Mg?) — M("

and in particular, for the prime ideal (if X ; is irreducible)

),00r=7=1y

1G+1
MX - M( o Xr—1
An irreducible J*-triple E has a canonical stratification
O}=ECEC-CE_CE =E,

where E j is the set of all elements { € E of rank < J, called the j-th Kepler variety
(in a Jordan theoretic setting). The smooth points of E; form the Kepler manifold

E j defined above. Hence the singular set of E j1s E j—1 so that the condition (3.1) is
satisfied. As a special case of (3.3) define the joint symbolic power

,
M(l;l) = M(fl ----- £;~) — ﬂM%}/)
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associated with the decreasing tuple (3.2). Thus M(E") consists of all polynomials on

E which vanish of order > n; along the subvariety E£;_;. These ideals are called
“determinantal ideals” since the Kepler varieties are defined by vanishing conditions
for Jordan theoretic determinants and minors. Since the Kepler varieties E; are K-

invariant, ./\/lg') is a K -invariant ideal. As such, it is a sum of certain “partition” ideals
J*. Our next result makes this precise.

An irreducible Jordan algebra E with unit element e has a unique determinant
polynomial A, : E — C normalized by A.(e) = 1 [12, 19]. For the matrix algebra

E = C™" and the symmetric matrices £ = Cggyy this is the usual determinant. For

the antisymmetric matrices £ = ngyxrg’ we obtain the Pfaffian determinant instead.

The determinant polynomial A, has the semi-invariance property
Ac(kz) = Ae(ke)Ae(z) (34
forallk € K and z € E. The map x : K — T defined by
x (k) := Ac(ke)
is a character of K. It follows that for any k € K
Are(@) = De(k™'2)

is a Jordan determinant normalized at ke.

eorem 3.1 For each tuple (3.2) the joint symbolic power has the decomposition
Th 3.1 F h tuple (3.2) the joint symbolic p has the d. POSiti
N o)
(n) __ nj) _ A
Mg =M/ = > 7
j=1 AeN(n)
where
Proof By highest weight theory [21] the space 73}3 is spanned by polynomials
N* = NJ'URNPTR N 3.5)
where ey, ..., e, is any frame of E and
Ny (2) := Ae(Pe2)

denotes the Jordan theoretic minor for the tripotent e = e,) = €1 + ... + em and
its Peirce 2-space E,. Here P, : E — E, is the Peirce 2-projection. Let ; S E and
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m > j. By the spectral theorem applied to E, there exist a frame cy, ..., ¢, of E,
and a; € C such that

m
Pt = Z a;c;.
i=1

Choose k € Kg, such that ke; = ¢; for all i < m. By [19, Theorem 1] we have

m
Ae(u + Z aie;) = Z Ae—er (Pe—eT u) l_[ aj
Tc{l

i=1 oot} ieT

forallu € E,, where er := >_ ¢;. For z € E it follows that
ieT

Ne(@48) = Ae(Pe(z +0)) = Ae(Poz + ) _aici) = A (k(k™ Pz + ) aier)

i=1 i=1

m
= Aoke) A (k" Poz+ Y aie) = Aoke) Y Apop(Peerk™ Pe2) [ ]
i=1 Tc(l,...,m} ieT

Since P,¢ has rank < j it follows that at most j coefficients a; are non-zero, and
hence [] a; = 0 whenever the cardinality |7| > j. Hence in the sum only subsets T
ieT
with |T'| < j occur. Since the polynomial A._., o Pe_ng’l P, on E is homogeneous
of degree m — |T'| = rank(E,_., ) we obtain
ord; (Nyy) = ordg(Npy (¢ + ) > errlli<n' ordg(Ae—ep © Poork ™' P,)

<J

= min m — |T|) =m — j.

ITI<j /

It follows that

ordg (N*) = 3" (i = Amg1) 0rde (Np) = (o — Amt) 0rdg (Nn)

m=1 m=j+1
r r
> Z ()Vm - )\m-i-l)(m - ]) = Z Am-
m=j+1 m=j+1

Hence the estimate ord, (f) > Y . _ i1 Am holds for all f € Pg and a fortiori for all
f € J*. This shows that J* C ./\/lg') whenever 1 € N, .
On the other hand, the tripotentc = e[jj =e; +...+¢; € Ej satisfies

m—j m>j

ord¢(Np) = ordo(Npm(c +-)) = {O m<
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It follows that

orde(N*) = 3" (m = Amg1) 0rde(N) = Y (o — A1) 01de (N
m=1

m=j+1
r r
= > Om—wpd)m == Y An. (3.6)
m=j+1 m=j+1

Thus if A is a partition such that J* C Mg') then N* € Mg’) and (3.6) implies

,
Y = orde(N) = nja
m=j+1
forall 0 < j < r — 1. Therefore A € NZ"). ]

The set A determined in Theorem 3.1 is not minimal. For example n = (10, 5, 1)
has the minimal partitions (5, 4, 1) and (5, 3, 2), whereas n = (15, 5, 1) has the mini-
mal partitions (10, 4, 1), (9, 5, 1), (8, 6, 1), (10, 3, 2), (9,4, 2), (8,5,2), (9, 3, 3) and
(8,4,3).

We next study the normal projection map (2.5) for determinantal ideals. Given
m= (mgyy,...,m;) € N'j__z we put

Nim = (@ eNY0 o+ >my VU< j <),

Since rank g (¢ + w) = £ 4 ranky (w) it follows that

7 j<e

E'_lﬂ(c-i-W): ~ . .
! c+ Wi j>1L

Theorem 3.2 Let c be a tripotent of rank £. For n € N/, put
n* = (ng41,...,n) € N
Then the normal projection map 7. satisfies
M T .
In particular, for j > ¢
M%l,-)fl T, M(VEVLH. (3.7)
Proof By Theorem 3.1 we may assume that f € /\/lg') belongs to J* for a partition

A = (A1, ..., ) satisfying
Aj+ ...t A 2= n; (3.8)
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forall 1 < j < r.Now fix £ and consider the partition A* := (A¢41, ..., A,) of length
r — £. By (2.7) we have

. f € ZJ{}‘V

aZ>A*

where o > A* is the (partial) containment order, i.e. &; > A; forall £ < i < r. For
{ < j < r wehave

ajt...to ZAj+.. .+ A 20

Therefore o satisfies the analogue of (3.8) relative to W. Applying Theorem 3.1 to
W and the sequence nyy1 > --- > n, of length r — £ = rank(W), it follows that

7. Jh C ./\/lw*). The special case (3.7) corresponds tony; = --- =nj; =n, njy =
coo=n, =0. O

We now consider the special case of “step 17 partitions. Let n € N and consider
the ideal R
M%’; ={pePg: orde(p) >nV¢ e Eg, (3.9)

where 0 < ¢ < r is fixed. This corresponds to n = (ntD 00 =t=Dy 1 this case
Theorem 3.1 yields

MP= >

YYARE Y1

For example

(n) _ aqn _ x
Mgy =Mi= >
A=A+ A 20

and

MP =3

Ar2n
For the K -invariant ideals (3.9) it is easy to find a minimal decomposition:

Theorem 3.3 For 0 < ¢ < r the ideal M%Z is the minimal and finite sum
(n) _ @
ME =Y
o
taken over the (finitely many) integer tuples cg+1 = ... 2 o = 0 satisfying

el ;= apqp1 + ...+ =n.
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Here we put
-
(a[+17 (077 P ar) S N+.

Proof We f first show that the sum is minimal. If o, 8 € Nrf satlsfy la] = n = |B|
and @ > /3 then @ > B and hence @ = B, showing that @ = ﬂ Of course there are
only finitely many partitions o = (agy1, - .., o) satisfying |o| = n. By Theorem 3.1
M%) corresponds to partitions A € N/, such that the single inequality

Mottt re =0 (3.10)

holds. Clearly, A = @ satisfies (3.10), since A; ozl for ¢ < i < r. Thus it remains to
show that (3.10) implies A > @ for some a € N ¢ with || = n.Ing+1 +...4+A =>n
then there exists ap4+; > ... > «, such that |oz| =nand A; > o; forl <i <r.To
see this, we may assume (by induction) that Ag+1 + ...+ A, =n + 1. Let

Al Z o Zhy >0=App1 = =24y,
where £ < m < r. Then o := (Ap41, ..., Am—1,2m — 1,0,...,0) is decreasing,
A m> £+ 1
satisfies |o| = nand A > @ sincefor 1 <i < £wehavewa; = b
Myr—1 m=€+1
and therefore @; < Agy1 < Aj. O
Inthe simplestcase n = 1thereisonlyasinglechoiceay+1 =1, apy42 ==, =0

yielding the “fundamental partition” @ = (1¢+D 00 =¢=D) = 1+ Thus the prime
ideal ./\/lg[) =M £, has the form

MP = g7 = g1

For n > 1 we cannot represent M%') by a single partition.
4

4 Reproducing Kernels and Hermitian Structure

The main result of [23], formulated as the isomorphism (2.9), determines the localiza-
tion bundle /* as an abstract (singular) holomorphic vector bundle, without reference
to a hermitian metric. If H = I is a Hilbert module completion of a K -invariant ideal
I, with reproducing kernel function /C(z, ¢), the corresponding eigenbundle H =~ [|p
carries the all-important hermitian structure as a subbundle of D x H. To make the
connection one needs an explicit embedding

L|D—>LICDXH
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As suggested by the “jet construction” developed in [9] for smooth submanifolds,
such a map should involve certain derivatives of K(z, ¢) in the normal direction. In
this section we carry out this program in the more complicated geometric situation
related to an arbitrary partition ideal I = J*.

Any polynomial p induces a constant coefficient differential operator p(d;) on E,
depending in a conjugate-linear way on p. Let (p|q) denote the Fischer-Fock inner
product of polynomials p, g € Pg (anti-linear in p) and let £ (z, £) = £/ (z) denote
the reproducing kernel of 731):1.

Every irreducible J*-triple E has two “characteristic multiplicities” a, b [2, 16, 17,
21] such that

d a
—=14—=(r—1)+05b.
r 2

Lemma 4.1 ForaJordan triple E, the determinant function N, at a maximal tripotent
e € S, satisfies

£z, 0) = CLOY NI ON©) €7 (2, 0) @.1)
for x> n® and ¢ € E,, where

d 1
Cr(x) = - —.
Jl:[l Aj—n+14+50 =)
Moreover,
v N —n®
N (0)EF = N(&)" &7 4.2)

Proof We use the Jordan theoretic Pochhammer symbols (s); and the “Faraut-Kordnyi
formula” [11, 12]. Suppose first that E = E, is unital, with unit element ¢ and
determinant A.. The parameter s = d/r in the continuous Wallach set corresponds
to the Hardy space H 2(8) over the Shilov boundary S of D. Since |A,| =1 on S we
obtain for p, g € 732

(AL3,)(Ap)lg) = (Ap|Alg) = (/1) (AL PIALG)s
(d/r)k+11(’)
— (plg).

=(d/r); 1,0 (Pl@)s = @iy

Since ¢ is arbitrary, it follows that

(d/r)k+n(r)

B @:)(87p) = =

for all partitions L and p € 73;}. An application of Schur orthogonality [12, Proposition
X1.4.1] shows that

dy,
d/r).

E e, e) =
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where d; := dim P. If A > n") we can write

EMNZ 0 = ar, AN 2)B0) E (2. ¢)

for some coefficient a, . It follows that

dy @)
=Ee,e) =a) Al(e)A(e) £ (e, e)
d/r) *
0y € (0 0) = ay A
d/r)_po
Since d;, = d, _,,» in the unital case it follows that
a, = % (d/r))ﬁn(r) = (d/r))ﬁn(r) = C;l()»).
d_,»  (d/r)x (d/r)s
This proves (4.1). Moreover,
— — gy
cm)A c 08} = Do) (AL A" )
rerrs e A—n®,  ——n 1 r—n®) p ()
= Ae() A, (3)(A] ‘SC Y = Al(2) o < " C”(A)AE(O 8 "

In the non-unital case, let P, be the Peirce 2-projection onto E,. Since N,(z) =
A¢(P,z) by definition, applying the unital case to E, and using P.{ = { we obtain

EMz, 8) = EMN(Poz, §) = CP (W) AL (P2 AQ) € (Poz, 0)
=C'V) NN @) £ (2. 0).
The second assertion follows with KZ 0)f = NZ (0)(f o P,). O

The identity (4.2), written as

Ny (0982, 0) = Ne@" &7 (2, 0),
implies

_a®

NM(0:)EM(z,¢) = N'(z2) 7 (2, ¢),

since £4(z, ¢) = £*(¢, 7). Thus for ¢ € E, we have

_n®

N} (@)} = N} 5? 4.3)

as holomorphic polynomials in z.



74 Page 20 of 33 H. Upmeier

Lemma4.2 Let A € N'_ be a partition and { € E have rank €. Then 52‘ # 0 if and
only if A has length < £.

Proof If X has length > ¢ then all p € 731)5 vanish on E, ¢. Therefore
E1p)=p@)=0

and hence 5? = 0 since p is arbitrary. Now suppose A has length < £. Consider the
spectral decomposition

¢
= Z Giei
i=1
for a frame (¢;). The conical polynomial N* defined as in (3.5) satisfies
N*E) = ¢ gt #0.

Since N*(¢) = (€?|N)‘) it follows that 5? #0. 0

Forn € N, define n™ = (n,...,n,0,...,0), withn repeated m times. Thus the
Young diagram [n™]=1[1,m] x [1,n]. Any partition A can be written as

o= @D, 52T T ), 4.4)
where 1 <{¢; <--- < ¥{; <randny >ny > --- > n; > 0. Thus ¢ is the number of

“steps” in the partition. In other words,
M= =hy =N10> gy =00 = hey =02 > Mty

Define for 1 < s < ¢

ls—1
Q:={CeD: t;_; <rank(¢) < &} =DnN U Ey.

i=ls—1

We also consider the “regular” points

v

D :={¢ € D: rank(¢) = ¢;}.

Since A has length ¢;, Lemma 4.2 implies 5;‘ # 0 if rank(¢) > ;. Hence K; does

not vanish at € D. For the “singular” points ¢ € D there exists a unique s < ¢ such
that ¢ € Q. For 1 < h < k <t define

)\l;l — (n;llh—gh—l) n(lhﬂ—fh)

(Ce—Lk—1)
) h+1 LR ] n )
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as a partition of length € — €,_1. Let u € NJr satisfy . > A{. Foreach s <k <t
consider the partition

k (Us+1—Cs)  (Lsyo—Cs+1) (k—Ck—1)
(/‘Lv)"5+]) = (H’ans_;’_#]» ’nS+5 * 7--~’nk )

of length ¢;. Here Aﬁ 41 is empty for s = k. Starting with the Peter-Weyl expansion

K@z o)=Y a, €z ¢)

nZ=nr

of the reproducing kernel XC(z, ¢) of H = T‘, with coefficients a;, > 0, we define K -
invariant sesqui-holomorphic functions ¥ (z, ¢) = IC‘E (z) on D x D by the Peter-Weyl
expansion

i —nl ng—n )
K= > a, AL el s HC R (L 2 = mED. 4.5)
Ni“au)ki

More explicitly, the constant is given by

(¢4 {4
o M) - G T G 2 = ) - G (D) = )

s —Its ZA Z ZA s Ity e.v
.. CZSIII n +2((M, n§+T1 )) _ ng_;’_;l)) C” Ns+1 (M _ ng_ﬁ_%)

Lemma4.3 The kernel ICEv does not vanish if rank(¢) > €s_1 and vanishes if
rank (¢) < €s_1. Thus K* vanishes precisely on Qy_1 = U0<k<s Q.

s _plts)

Proof Since the partition 1§ — (Z ) = "has length £ itfollows thaté’ #0

if rank(¢) > £4_1. This implies ICs # 0 since eM- - occurs as the lowest term in
IC. On the other hand, if rank(¢) < £,_; then Sé‘ e _ 0 for all o > A} since
w— ngm > - nEe:) = Xifl has length > £;_. O

Proposition 4.4 Let rank(¢) < £; and write { = limg_.0 ¢, where ¢ € Ec, for some
tripotent ¢; € Sy,. Then N, (¢e) # 0 and

lim —’Q =N/ ICt
e>0 N, ()"

Similarly, for 1 < s < t let rank(¢) < €5 and write { = limg_.¢ (., Where {; € ECA
for some tripotent ¢s € Sy,. Then N, (¢s) # 0 and

s+1
lim —IC{E = Nt K.
SHON (C )"s Ns+1 Cs

3
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Proof Since ¢, has rank ¢, it follows that 82‘8 = 0 unless = (u, 0" =), where

we N + satisfies u > A{. Therefore

_ 12
K= D dguoro) &L
NYsu=nt

(e, ), we may apply (4.1) to E, and n = n,. This yields

Since u > n
o
K, 5; " -
T D agor) = = e D aguory Cpl(w "
¢ (Ce) Ny ¢ (Ce) o .
LouZ=A Nispu=r]

It follows that

K . _ ()
lim —{ = N/ Z A(pu,00—t0) CZI (1) 55 "= Ne/ ’th'
£—>0N (é-g) N s>

+3InZA

Now let s < r. Let u € N bt satisfy u > )»H'l Since rank(¢;) = £ we have

u—nl ot (bsp1—s5)
Sgs St = O unless u = (v, nsﬁl ), where v € NJr satisfies v > A7. Applying
definition (4.5) to ! yields

gep) 1
; ()

+1 AT eS| ng—Nk+1
Kg“e = Z Aty g " 1_[ C lw, )‘S+2) Myt
Asl+1<ueN‘3+s+1 k=s+1
X
V= "([51) d Ng—Ng41 ((99)
+ +
= Z A, )\[+1) 5 ' 1_[ C ((v, )‘ ]) - nk+1)s
k=s+1

A‘igveNJr

bs1=ts) (15 1) 0
i i) = () and (v n ) - negyl o= v ”§+)1

using (v, ”s+1
Since v > (ng — ns+1)(£ ), we may apply (4.1) to E., and n = ng — ng41. Since
v— ngﬁ% — (g — nga )@ = v —n'" this yields
Ics+1 6U ”E&l)
de _ =Nkt k _ )
Wﬂs*nsﬂ Z a("’)‘idrl) N ({ )n:*n:+1 l_[ C ((U A ‘H) nk‘H)
cs \Ge k‘lgveNi‘ cs \S¢e k=s+1
ng—TNgy1 v—nl ng—ngi (l) Nk =M1 k (Ck)
=N > g & C! w=n2) ]_[ cyl (0, A ) =D

2 <veNy k=s+1
(Ls)
Ny =Ny v—n N —Nj+1 k (le)
=N/ " 2 Awal, ) 5 ’ 1_[C (U s+1) — k+])'

1 <veNy
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It follows that

s+1 t
(Ls)
. e ARl v—nyg N —Nk41 k ()
Jim, A Ne, > apuy & TTCET™ s —mltD
e (G 1§ <veN’s k=s
— Ng—Ng41 S
= N

Let 1 < s < . For any tripotent chain
Cs < Csp] <+ <

of rank £y < €441 < --- < £, consider the polynomial

yeensCt Cs+1 Cr—1

t
Hyyunns ng .__ Ng—Nk+1 __ Ng—Ng41 Arls4+1—Ns42 Ny—1—N¢ arny
N = [ NG = N TN, N N2
k=s

Theorem 4.5 Let 1 < s < t. Then for any ¢ € Q5 we have

Ngyeosll s .
P~I{ = <NCA:,,,,,c[t : IC{ LGy <Gyl < v < Gy, C € ECs)

where the linear span is taken over all tripotent chains of rank £y < by < -+ < 4;
ny

such that ¢ € E.,. In view of (4.2) we can write N¢.*» 70" - ICZ also in the differential

.....

form Ngso (5;)/62 for some modified kernel functions iég.
Proof We first show that N¢; " - K} € H forall§ € E,.Incases =tletc; € S,

and ¢ € E,,. Writing ¢ = lim,_,¢ ¢, for some curve ¢, € Ec, we have

K
e Nn, ICr{

Ne, o) e=0  ©

by Proposition 4.4. Since K;, € H o @ continuity argument yields N’ ICé e H =
Now lets < tand ¢ € E.,. Writing { = lim,_,¢ ¢, for some curve {, € ECS we have
s+1

ICé“s

mns*ns#—l =0

g —Ng41 S
N, K

by Proposition 4.4. Hence

Ns415-s01 g~s+1
N ’CCa

Cs+15-+45Ct

Ngglseees ng Als —Ns41 s Ng,...,Nt s
————Ny—Ng4] Ne; Ct NCS IC{ - NCx ----- Ct ’C§'

Ne, (&) e>0
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By (downward) induction we may assume NC:’II ,,,,, n’ICS+1 e H 6 since {8 € ECS -

‘«H—l """
step.

Now let { € 24 so that £,_; < € = rank(¢{) < £. Consider all tripotent chains
Cs < Cs41 < -+ <cpofrank €y < €541 < --- < £; such that{ € E., and denote by

¥ C Pg the linear span of the associated polynomials N, ,’j_j',’c':’ Smce the kernel ICA

does not vanish by Lemma 4.4 multiplication by IC; is an injective map ¥ — H H,. TO
show surjectivity, assume first that { = c is a tripotent such that ¢ < c¢;. Then

Mgyl A7Msseens Ty
w.N =N
CiVegynn, Ct Cs—C,y.uyCt—C

where ¢y — ¢ << — c is a tripotent chain of rank £, — ¢ < ... < ¢, — £ in
W = Eand N denotes the conical polynomials relative to W. Since the polynomials
Nt span P}, it follows that

dim® > dim P}, = dim J* = dim .

Here we use (2.9) for the second equation. Thus it follows that ’I,:i =2 ICS. In the
general caselet ¢ € E., haverank £ < £;. Then there exists 4 € K such that{ = h*c,
where ¢ € E., is a tripotent of rank £ with ¢ < ¢,. Moreover, we may assume that
hE.; = E.; forall s < j < . By semi-invariance we have N, o = aj N, for
some constant ;. This implies

t

_ ni—nii
Nlssolt o 1 Haj] j+ NTsoeelt

CyyenerCt CyyeeerCt
]=S
On the other hand, the K -invariance of K* implies Ky = K., = K¢ o h. It follows
that
t
Neme Ky = (<NZT:,1::;Z?' oh” ) H ST (Nl K o .
Using H ¢ = H,.. = H_ o h the assertion follows in the general case. m|

If 6y <€<foandh=(hy,..., 4) =@\, ™ 00~ we put

)\,r) = (nges—Z)’ n(lerl—es)’ n{(@;)’ O(r_gt))

= Aeg1s---s sl

and A* = (Afﬁl, A*). For any tripotent ¢ of rank ¢, with Peirce O-space W = E°,

there exists a cross-section [23] 73 : P%V* — 7)2"* satisfying

,,,,, _ Ngyeensy
TA*NC —C,uey c,—c - Ncs,...,c,
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for all tripotent chains ¢; < --- < ¢; of rank £; < --- < ¢; such that ¢ < ¢;. Thus
Theorem 4.5 and its proof yield the “embedding theorem”

Theorem 4.6 For each tripotent ¢ € Q25 there is an isomorphism

* O
Py —> H,CH

mapping ¢ € Pﬁj o (t5:¢) - K7 € H.

)
Beyond the tripotents, for any ¢ € €2, we define the embedding ,[2‘ T{) H ¢ via
the commuting diagram

where / € K satisfies ¢ = hc.

5 Geometric Realization

The famous results of Kodaira [18] show that a compact Kéhler manifold M, whose
Kihler form w satisfies an integrality condition (a so-called Hodge manifold) can
be embedded as an algebraic subvariety of a projective space P(V'). The underlying
finite-dimensional vector space V (more precisely its linear dual space) has a geometric
realization in terms of holomorphic sections of a suitable line bundle £ over M. For
homogeneous compact Kihler manifolds, the Borel-Weil-Bott theorem [1] gives a
similar construction for the irreducible representations of compact semisimple Lie
groups. In this section we show that such a “geometric” description also holds for the
fibres of the localization bundle J*, for any “partition” ideal J*. While this realization,
based on the complex geometry of Peirce 2-spaces, still needs Jordan theory, the
underlying idea, using flags of certain subspaces (“slices”) of E, may be susceptible
to generalization.

The collection M, of all Peirce 2-spaces U = E., for all tripotents ¢ € S, of fixed
rank £, is a compact Kéhler manifold called the £-th Peirce manifold. In the matrix
case E = C"% and 0 < ¢ < r we may identify My ~ Grass;(C") x Grass;(C®) as a
product of Grassmann manifolds.

The structure group K acts transitively on each M, by holomorphic transformations
(h,U) — hU, and the restricted action of K is already transitive. It follows that

My =K/KE = K/K%



74 Page 26 of 33 H. Upmeier

where KEe = {y € K: y E. = E_} is the closed complex subgroup fixing a given
Peirce 2-space E..

Lemma5.1 Ify € KEc¢ then the minor N, satisfies
Neoy* = xe(y) Ne
where
xe(y) == Ac(yo)

is a holomorphic character of K .

Proof Since y € KEe preserves E. the Peirce g-projection P, satisfiesy P. = P.y P..
Therefore P.y* = P.y*P.. Since P,y P. € K, the semi-invariance of A, implies

NC(V*Z) = AC(PC]/*Z) = AC(PCV*PCZ) = AC(PC]/*C) Ac(Pez) = Ac()/c) Nc(2).

Here we use

AC(PCV*C) = AC(PCV*PCC) = Ac((PcVPc)*C) = Ac(Pey Pec) = Ac(yo).

As a consequence we obtain a holomorphic homogeneous line bundle
Lo:={[h.&]=[hy. xe(n)§1: he K, y e K, & € C) (5.1)

over My, with projection [h, ] +— hE,.. By definition, the holomorphic sections
o : My — Ly have the form

ong, = [h, o (h)]
where the “homogeneous lift” 5 : K — Cisa holomorphic map satisfying
o (hy) = xe(y) o (h)
forallh € K, y € KEe.
Let) e N, beapartition written in the form (4.4). The Peirce flag manifold My, ...,
consists of all chains of Peirce /2\—spaces U, Cc Uy, C --- C U, such that rank(Uy) =
Ly for all s < t. The group K acts on My, . ¢ by holomorphic transformations

(h, (Ui, ..., Uy)) — (hUy, ..., hU;) and the restriction to K is already transitive.
Thus

,,,,,
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where K EervEer .= {y € K: vE. = E. V1 <s <t}isthe closed complex sub-
group fixing the Peirce 2-flag E., C --- C E,, for a chain of tripotents ¢; < -+ < ¢;
of rank £ < --- < ;. We may choose c; := e[,]. As a consequence of Lemma 5.1
the conical function

t
Ao Ng—Ns4+1 __ A7h|—N2 ATH2—N3 ATH;
N* = [ NE T = N2 N2 N
s=1

satisfies
N*oy* = x*(y) N* (5.2)
forall y € fE"l""'E“t, where

t
X ) =] Ay (yeeys !

s=1

is a holomorphic character of K FeiFer | As a consequence we obtain a holomorphic
homogeneous line bundle

L= ([h, &) =[hy. x*()E]: he K, y e KEaFa £ e C) (5.3)

over My,
morphic sections o : My,

¢,, with projection [h, &] — (hE., ..., hE.). By definition, the holo-
¢, — L* have the form

.....

where the homogeneous lift & : K —> Cisa holomorphic map satisfying

& (hy) = x* () &(h)
forall h € K and y € KEeEa Fort = 1 we obtain the powers L} of the line
bundle (5.1).
We first describe the maximal fibre ,[é = 772 at¢ =0.

Theorem 5.2 Any p € % defines a holomorphic sectionco? : My, .. ¢ — L*, whose
homogeneous lift 5P : K — C is given by the Fischer-Fock inner product

&P (h) = (N* o h*|p) = (N*|p o h). (54)

This yields a K -equivariant isomorphism

g,,ﬁ)‘), pr ol

.....
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Proof To check the homogeneity condition, let y € KEerFe Then (5.2) implies

&P (hy) = (N* o (hy)*|p) = (N* o y* o h*|p)
= (x*(y) N* o h*|p) = x*(v) (N* o h*|p) = x*(y) &P (h).

Since 732; is the linear span of polynomials N* o 2* the map © is injective. For any
h,h' € K we have

7MWy = (N*|(p o h) o Iy = (N*|(p o (hh')) =GP (ki) = (h=' - oP)(h),
proving invariance
O_poh — h—l .O_p

under h € K. Realizing My, . ¢, = I/(\/I/(\ECI""’E‘* as a Lie thegzetic flag manifold
[3] the Borel-Weil-Bott theorem shows that I'(My, .. ,, £*) is K -irreducible. Thus
the map © is surjective and hence an isomorphism. O

As an example, consider the partitions
n®:=m,....n0,...,0

with n > 0 repeated £ times. Here = 1 and one obtains an isomorphism (cf. [3])

20

Py ~T (Mg, L),

where L7 is the n-th tensor power of the line bundle L, defined by (5.1).If £ = r and E

is unital with unit element e, then M, = {E} is a singleton and Pg(r) is 1-dimensional,
spanned by N. If £ is arbitrary and n = 1 we have the “fundamental” partitions and

)
P}E ~ T (Mg, Ly).

In the simplest case £ = 1 we obtain a kind of projective space M consisting of all
Peirce 2-spaces of rank 1, or equivalently, all lines spanned by tripotents of rank 1.
The associated “tautological” line bundle

T=JU

UeM,

has no holomorphic sections. On the other hand each f € E* yields a holomorphic
section o/ : M — T* of the dual line bundle

= U

UeM,
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via
M, 3U|—>a[§ = flv €T
The calculation
Ui{ljhil =(foh M =(flv)oh™ ' = 0()}‘ oh ™' = o)y
shows that /1 - o/ = /""" The homogeneous lift 5/ : K — Cis given by
5/ (h) = f(hey).

Ify e KEet then ye1 = x1(y)e; for the holomorphic character x; : KEa — ¢
given by x1(y) = (yeiler) = N, (yer). This is covered by the general formula (5.4):

Lemma5.3 Foreach f € E* = ’P};’O """ % e have
5/ (h) = (Ne, o h*| f).
Proof Putting fz := (z|v) the relation
(Ney 0 h*)(2) = N, (h*2) = (h*zler) = (z]her)
implies
(Ney o h*| f) = (ClheD|(¢|v)) = (her|v) = f(her).

m}

In order to describe the localization J ? at non-zero points ¢{ of rank ¢, where
£y_1 < € < £y, we pass to certain submanifolds of the Peirce flag manifold. Consider
the “incidence space”

M{ o ={Us.....U) € My, .0, : ¢ €Uy}

My o= AW W) € My, 0 WHOC™ = 0}

,,,,,

For a tripotent ¢ = c this means that the flag is contained in W = E€. These compact
submanifolds are closely related: If (Us, ..., U;) € M Zi 2 then the Peirce 0-spaces
Wy := Ug formaflag (Wy, --- , W) € ng_&”_lt_g. Conversely, if (W, ---, W;) €

et byt and we put Wy = Wczk for a tripotent chain ¢; < --- < ¢; of rank
by —0 < --- <ty —LinW,thenc+c¢; < -+ < ¢+ ¢ is a tripotent chain of

rank £; < -+ < ¢ in E and Uy := E2, defines a flag (Uy.....U)) € M{ .
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Moreover, if c,’( ~ ¢y are Peirce equivalent in W, then ¢ + c,’( ~ ¢ + ¢y are Peirce
equivalent in E.
The closed complex subgroup

K=k eK:kt=c)

acts transitively on the incidence space M Zi ..¢, and, similarly, the closed complex
subgroup

“=(keK:k*eK}={keK: =20}

acts transmvely on the polar space MZ oy~ since h(zOC*)h™ = (hp)oh~ *o)*
for all i € K. Therefore

C*
Miyfé

e — K{*/(Kf*)WCX,...,WCt
where

(K WeroWer = {y € K& 1 yWe, = W, Vs < j < 1)
and W, C ... C W, C W is the Peirce 2-flag for a given chain of tripotents
¢ <...<cinWoftypels —€ < ... < £, — ¢ Wemay choose c; :=ep11 tey;.
The restriction homomorphism
K% = Kw, k — Klw

defines a biholomorphic map

o Wey s We,

1\/12*_Z 77777 ot = RE% J(RE%) Wey o We _> KW/K MEVSV_“@,_K (5.5)

SWep oo We = .
Ky "={yeKw:yW, =W, Vs<j<t}

and M Z/ =t denotes the Peirce flag manifold relative to W. Now consider the

.....

truncated partition A* of length r — £. Then the conical function relative to W is

[

and there is a holomorphic character

t
Xy 1) = [ Ne; (yeyymi =
Jj=s
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s W

SWe.
on Ky, such that

Niy ov* = xly (¥) Ny
forall y € I/(\VV:,]” """ W
MZ/_Z ’’’’’ ¢, ¢ defined as in (5.3). A holomorphic section o : MX/_E -t = L is

.....

. Let E)‘W* denote the associated holomorphic line bundle on
characterized by its homogeneous lift & : Ky — C satisfying

Fey) = xiy (v) &)

..... W,

for all k € I/(\W and y € K x,/"‘v “. Via the isomorphism (5.5) we obtain a

holomorphic pull-back line bundle Eé* = Q*E)‘W* such that holomorphic sections

~~~~~~

satisfying
t
Glky) = xiy v lw) &) = [ [ Ney (re )™ "+ 5 ()
j=s

forall k € K and y € (K¢*)Wes+War | All of this holds in particular when ¢ = ¢
is a tripotent of rank .

Theorem 5.4 Write ). € N’ in the form (4.4). Let c be a tripotent of rank £ with Peirce
0-space W, such that £;_1 < € < {;. Consider the truncated partition

— Lsy1—Ls b—C—
W= Gt e dp) = (060 G0 ),

Then there is an isomorphism

A‘*
,,,,, S L)

which is defined as follows: Any ¢ € Pé; defines a holomorphic section o® :
nge, — Ei‘*, whose homogeneous lift 59 K* — Cis given by the Fischer-Fock
inner product

5% () = (N 16 o xclw)
forallk € Ke*.

Proof Applying Theorem 5.2 to W we have

At Ow W AF
PW ~ F(MK 4 K,—Z"CW)
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via the map ¢ — o“f, with homogeneous lift

& () = (N |§ 0 1)

forall x € I?W. Passing to F(MZ*,...,Z,’ Ef,*) via the isomorphism (5.5), the assertion
follows. O

We finally describe a similar isomorphism for non-tripotent points ¢ € E,. Write
¢ = heforsome h € K. Then h™*K*h* = K** and

h—*(l’(\c‘*)WCJ,...,WQh* — (I’(\{*)h**WCS,A..,h’*W(-t

for the Peirce 2-flag h™*W, C ... C h™*W,, C h™*W C E. Thus we obtain a
commuting diagram

ReJ(ReWer W Mg

h* R lh‘*

~ ~ —x —x
K;*/(Kg*)h Weg . h™*We, . Mli*— bt

Now the isomorphism

(€] -~ -~ —x% —% *

is defined via the commuting diagram

O S .
L TR J(Re orr Ve, £3)
oh |~ %Th*.h_*
@C ~ —~ s . i
lé — T (RE* J(RE*yh ™ Weg.oh ™ We, ﬁ,; y

This demonstrates that the bundle J ’; depends in an anti-holomorphic way on ¢.
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