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Abstract
Weshow that there is a faster convergence in the free central limit theorem formeasures
of bounded support when we have vanishing free cumulants. We give estimates for the
extremes of the support and the density of the converging measure. As a consequence,
we obtain a more precise Berry–Esseen type estimate than previous results.
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1 Introduction

Free probability theory studies the distribution of self-adjoint operators that obey a new
notion of independence called freeness. It is established now that it is a parallel theory
with classical probability. One of its main results is the free central limit theorem.
Given two probability measures μ and ν, the free convolution μ � ν is defined as the
distribution of X + Y where X and Y are free self-adjoint operators of distributions
μ and ν, respectively. The free central limit theorem states that if μ is a probability
measure of zero mean and unit variance, then D1/

√
nμ

�n converges in distribution to

the semicircle distribution γ , where γ is given by the density fγ (t) = √
4 − t2/2π

for t ∈ [−2, 2] and Dcμ stands for the dilation of a measure μ by a factor c > 0; this
is Dcμ(B) = μ(c−1B) for all Borel sets B ⊂ R.

Bercovici and Voiculescu [2] discovered that in the free central limit theorem
the convergence is much stronger than in the classical case. They found that for
a probability measure μ of bounded support the measure D1/

√
nμ

�n becomes
Lebesgue absolutely continuous, and its density dμn/dx converges uniformly to
dγ /dx on R as n → ∞. Moreover, if an = inf(supp(D1/

√
nμ

�n)) and bn =
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sup(supp(D1/
√
nμ

�n)), then an → −2 and bn → 2. They named superconvergence
to this type of strong convergence.

Many articles continued the study of the superconvergence phenomena. We next
recall some of the main works. Wang [8] proved the superconvergence for unbounded
measures. In this case, it is no longer true that the support becomes bounded in finite
time. Now, for bounded measures, Arizmendi and Vargas [1] obtained the estimates
|an − (−2)| = O(n−1/2) and |bn − 2| = O(n−1/2) for the extremes {an, bn} of the
support of D1/

√
nμ

�n . In a more general setting, Huang [5] studied the support of the

measures in the free additive convolution semigroup {μ�t | t > 0}.
Chistyakov and Götze [3] gave an estimate of the density fn of D1/

√
nμ

�n for
measures of finite fourth moment. They showed that fn(x + m3(μ)/

√
n) = vn(x) +

ρn1(x) + ρn2(x), where vn(x) = pn(x) fγ (enx), pn(x) → 1 and en → 1 as n → ∞,
and the functions |ρn1(x)| and |ρn2(x)| converge to 0 as n → ∞. As a consequence,
they obtained that

∫
R

| fn(x) − fγ (x)|dx = 2|m3(μ)|/(π√
n) + c(μ)θ((εn/n)3/4 + 1/n), (1)

where θ is a constant, c(μ) is a constant depending onμ, and εn is a sequence of positive
numbers converging to 0. They also proved in [4] the free analogue of theBerry–Esseen
theorem; if μ is a measure with m1(μ) = 0, m2(μ) = 1, and

∫ |x |3dμ < ∞, then
supx∈R |D 1√

n
μ�n(−∞, x] − γ (−∞, x]| = O(n−1/2).

Now, let μ be a probability measure of bounded support. The free cumulants kn(μ)

of μ, for n = 1, 2, 3, ..., are quantities (see below) that encode the free convolution
and have analogue properties to the classical cumulants. In this note, we find that if
μ has zero mean and unit variance, then the more vanishing free cumulants kn(μ) for
n ≥ 3 there are, the faster the extremes of the support and the density of D1/

√
nμ

�n

converges. Next, we state our results and comment on their relationship with the above
results.

Theorem 1 Let μ be a probability measure such that m1(μ) = 0, m2(μ) = 1, and
supp(μ) ⊂ [−K , K ]. Set h = min{ j ≥ 3 : k j (μ) �= 0}. Defineμn = D1/

√
nμ

�n. Let
n be a large enough integer and denote by fn the density ofμn. Set an = inf(supp(μn))

and bn = sup(supp(μn)). Then:

(1) if h is odd, then an = −2 + kh(μ)

n(h−2)/2 + O(n−(h−1)/2) and bn = 2 + kh(μ)

n(h−2)/2 +
O(n−(h−1)/2);

(2) if h is even, then an = −2 − kh(μ)

n(h−2)/2 + O(n−(h−1)/2) and bn = 2 + kh(μ)

n(h−2)/2 +
O(n−(h−1)/2).

This theorem extends the result of Arizmendi and Vargas commented above. It
implies that |an − (−2)| = O(n−(h−2)/2) and |bn − 2| = O(n−(h−2)/2) for h =
min{ j ≥ 3 : k j (μ) �= 0}. It also indicates that for n large enough, if h is odd and
kh(μ) > 0, then −2 < an < 2 < bn , and if kh(μ) < 0, then an < −2 < bn < 2.
But, if n is even and kh(μ) > 0, then an < −2 < 2 < bn , and if kh(μ) < 0, then
−2 < an < bn < 2.
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Our second result gives an estimate of the density of D1/
√
nμ

�n .

Theorem 2 Under the assumptions of Theorem 1, we have

| fn(t) − fγ (t)| ≤
{

2δn√
4−t2

if t ∈ [−2 + 2δn, 2 − 2δn],
2
√

δn if t ∈ [−2 + δn, 2 − δn]c ∩ (an, bn),

where δn = Cn−(h−2)/2 and C is some constant that depends only on μ.

As a consequence of this theorem and since
∫ 2
2

1√
4−x2

< ∞, we obtain a more
concise estimate that the one in (1).

Corollary 1 We have that

∫
R

| fn(x) − fγ (x)|dx = O(n−(h−2)/2).

In particular, this implies the following Berry–Esseen type estimate of the free
central limit theorem for measures of bounded support:

sup
x∈R

|μn(−∞, x] − γ (−∞, x]| = O(n−(h−2)/2).

We remark that in the classical case there is not improvement on the speed of con-
vergence in the central limit theorem under the presence of vanishing cumulants, see
[6].

The proofs of our results rely on in some observations derived from the proof of
the superconvergence in the free central limit theorem [2] and in a basic expansion of
the R−transform.

Apart from this introduction, the sections of this paper are organized as follows. In
Sect. 2, we present the preliminary material and set the framework to prove our results.
In Sect. 3, we prove Theorems 1 and 2. In the last section, we present some examples
that illustrate our estimates.

2 Preliminaries

2.1 The R-transform and the Semicircle Distribution

In this subsection, we introduce the Cauchy transform and derive from it the R-
transform,which is the free analogue of the cumulant generating function.We also give
some properties of the semicircle distribution related to these transforms. Throughout
the paper, z denotes a complex number, andwewrite z = x+iy, where x and y are real
numbers. By C

+ and C
− we denote the open upper and lower complex half-planes,

respectively.
The Cauchy transform of a probability measure of bounded support μ is defined as

Gμ(z) =
∫
R

1

t − z
dμ(t) for z ∈ C\supp(μ).
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The function Gμ is holomorphic in C\supp(μ). It maps C+ to C+ and C− to C−. In
the following proposition, we collect some facts of the Cauchy transform commented
before Definition 1 in [2].

Proposition 1 Let μ be a Lebesgue absolutely continuous probability distribution
such that supp(μ) ⊂ [a, b]. Set f (x) = dμ(x) and assume that f is analytical
on (a, b). Then, if we define G+

μ in C
+ ∪ (a, b) by setting G+

μ
∼= Gμ over C+ and

G+
μ(x) = limy↓0 Gn(x) for x ∈ (a, b), then G+

μ is continuous in C
+ ∪ (a, b) and

1/π Im(G+
μ(x)) = f (x). On the other hand, if we define G−

μ inC− ∪ (a, b) by setting
G−

μ
∼= Gμ overC− and G−

μ(x) = limy↑0 Gn(x) for x ∈ (a, b), then G−
μ is continuous

in C− ∪ (a, b) and −1/π Im(G−
μ(x)) = f (x).

The next proposition, see [7], studies the inverse of the Cauchy transform.

Proposition 2 Let μ be a probability measure such that supp(μ) ⊂ [−K , K ]. Then:
(1) Gμ is 1 − 1 on {z : |z| > 4K };
(2) {z : 0 < |z| < 1/(6K )} ⊂ {Gμ(z) : |z| > 4K };
(3) there is a function Rμ, analytical in {z : 0 < |z| < 1/(6K )}, such that Gμ(Rμ(z)+

1/z) = z for z ∈ {z : 0 < |z| < 1/(6K )};
(4) Rμ(z) admits the power series expansion Rμ(z) = ∑∞

n=1 knz
n−1 for |z| <

1/(6K ), where {kn} are some real numbers.
The function Rμ is called theR-transformofμ. Now, the function Kμ(z) = Rμ(z)+

1/z is the functional inverse of Gμ as indicated in the proposition. The values {kn},
n ∈ N, are called the free cumulants of μ. They behave like the classical cumulants.
In particular, they satisfy ki (Daμ) = ai ki (μ).

Next, we discuss some well known properties of the semicircle distribution γ . Its
R-transform is Rγ (z) = z, and Kγ (z) = z + 1/z. The Cauchy transform Gγ (w) for
w ∈ C\[−2, 2] can be obtained by solving the equation z + 1/z = w, which gives
Gγ (w) = (w − √

w2 − 4)/2, where the branch of the square root is chosen so that√
w2 − 4 is holomorphic inC\[−2, 2]. The next estimation is useful for our purposes.

Proposition 3 Let δ ∈ (0, 1/9). Suppose 0 < |y| < δ and |x−2| < 3δ or |x+2| < 3δ.
Then |Im(Gγ (z))| < 3

√
δ.

Proof We have that |Im(Gγ (z))| ≤ y/2 + √|z2 − 4|/2. Note that |z2 − 4| < |x2 −
4| + y2 + 2|xy| and |x | < 7/3. It follows that |x2 − 4| + y2 + 2|xy| < (3δ)(4 +
3δ) + δ2 + 14δ/3. Therefore, |Im(Gγ (z))| < 1/2(δ + √

19δ), and the desired result
follows. ��

ConsiderG+
γ as given in Proposition 1. It is not so difficult to see that for x ∈ (−2, 2)

we have |G+
γ (x)| = 1 and Kγ (G+

γ (x)) = x . At last, we present a technical result on
how behaves Gγ ◦ Kγ on C

+.

Proposition 4 Let z ∈ C
+. Set w = Kγ (z). Then:

(1) if |z| > 1, then Gγ (w) = z;
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(2) if |z| < 1, then Gγ (w) = 1/z;
(3) if |z| = 1, then w ∈ (−2, 2) and G+

γ (w) = z.

Proof Recall that Gγ (w) is a solution of the equation x + 1/x = w. By definition
z + 1/z = w, thus the solutions of that equation are {z, 1/z}. Note that 1/z ∈ C

− and
Im(Kγ (z)) = y−|y|/|z|2. From these observations we conclude 1) and 2) as follows.
If |z| > 1, then w ∈ C

+, so Gγ (w) ∈ C
+. Thus, Gγ (w) = z. Similarly, if |z| < 1,

then w ∈ C
−, so Gγ (w) ∈ C

−. Hence, Gγ (w) = 1/z. Now, for the case |z| = 1,
we clearly have w ∈ (−2, 2) as Re(Kγ (z)) = x + |x |/|z|2. Set wy = Kγ (z + iy).
Then, from the continuity of G+

γ and 1), it follows that G+
γ (w) = limy↓0 Gγ (wy) =

limy↓0(z + iy) = z. ��

2.2 Free Convolution for Measures of Bounded Support

In this subsection,wefirst characterize the free convolution in termsof theR-transform.
Then, we obtain some estimates of the transforms defined above for the converging
measure in the free central limit theorem.

Let μ1 and μ2 be probability measures of bounded support. Since the sum of two
bounded operators is a bounded operator, then μ1 � μ2 has bounded support. Now,
suppose that supp(μ1) ⊂ [−r1, r1] and supp(μ2) ⊂ [−r2, r2]. Let r = max{r1, r2}.
Then, the R−transform of μ1 � μ2 satisfies

Rμ1�μ2(z) = Rμ1(z) + Rμ2(z) for z ∈ {z : 0 < |z| < 1/(6r)}, (2)

where the free cumulants of μ1 � μ2 are given by

kn(μ � ν) = kn(μ) + kn(ν) for n ∈ N. (3)

Now, let μ be a probability measure such that m1(μ) = 0, m2(μ) = 1, and
supp(μ) ⊂ [−r , r ]. In this case k1(μ) = 0 and k2(μ) = 1. Set h = min{ j ≥ 3 :
k j (μ) �= 0}. Define μn = D1/

√
nμ

�n . In the remainder of this subsection, we obtain
some estimates of Rμn and Kμn . Note that supp(D1/

√
nμ) ⊂ [−r/

√
n, r/

√
n]. Hence,

by Proposition 2 we have

RD1/
√
nμ

(z) = z

n
+ 1

z
+

∞∑
j=h

k j
n j/2 z

j−1 for |z| <

√
n

6r
.

Equation (2) implies that Rμn (z) = nRD1/
√
nμ

(z) for |z| <
√
n

6r . Since Kμn (z) =
Rμn (z) + 1/z, then

Kμn (z) = z + 1

z
+

∞∑
j=h

k j
n( j−2)/2

z j−1 for 0 < |z| <

√
n

6r
. (4)

Put ξ(z) = ∑∞
j=h k j n

−( j−2)/2z j−1 for |z| <
√
n

6r . Then for |z| < m and large enough
n and we have
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|ξ(z)| = O(n−(h−2)/2). (5)

This can be seen from the properties of convergent power series and since ξ(z)
is analytical for |z| < m because ξ(z) = z(h−1)n−(h−2)/2 ∑∞

j=h k j (n
−1/2z) j−h and

Rμ(z) = z + zh−1 ∑∞
j=h k j z

j−h is analytical for |z| < 1/(6r).
Finally, we present a proposition with some properties of μn that are obtained in

the proof of Theorem 3 in [2].

Proposition 5 If an = inf(supp(μn)) and bn = sup(supp(μn)), then:

(1) The derivative dKμn (z)/dz has unique real zeros x1 < x2 in neighborhoods of
−1 and 1. Moreover, an = Kμn (x1) and bn = Kμn (x2);

(2) If G+
n is as in Proposition 1, then for x ∈ (an, bn) we have G+

n (x) ∈ C
+,

|G+
n (x)| ≈ 1 and Kμn (G

+
n (x)) = x.

3 Proofs

3.1 Proof of Theorem 1

In order to estimatean andbn , byProposition5weneed tofind the unique zeros x1 < x2
of dKμn (x)/dx that are near −1 and 1, and then we must estimate an = Kμn (x1) and
bn = Kμn (x2).

By the theory of Laurent series, we have

dKμn (z)

dz
= 1 − 1

z2
+

∞∑
j=h

( j − 1)k j
n( j−2)/2

z j−2 for r < |z| <
√
n/(6K ),

for any r > 0. Since 1 − 1/z2 has zeros at 1 and −1, then from Rouche’s theorem,
we derive that there exist ε = O(n−(h−2)/2) and ε′ = O(n−(h−2)/2) such that −1+ ε

and 1 + ε′ are the roots of Kμn . Recall that

1

1 − x
= 1 + x + x2

1 − x
for |x | < 1.

It follows that for n large enough

Kμn (1 + ε′) = 1 + ε′ + 1

1 + ε′ +
∞∑
j=h

k j
n( j−2)/2

(1 + ε′) j−1

= 1 + ε′ + 1 − ε′ + O((ε′)2) + kh(μ)

n(h−2)/2
+ O(n(h−1)/2).

Since ε′ = O(n−(h−2)/2), then bn = 2 + kh(μ)n−(h−2)/2 + O(n−(h−1)/2).
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On the other hand, we have that for n large enough

Kμn (−1 + ε) = −1 + ε + 1

−1 + ε
+

∞∑
j=h

k j
n( j−2)/2

(−1 + ε) j−1.

If n is odd, then

Kμn (−1 + ε) = −1 + ε − 1 − ε + O((ε)2) + kh(μ)

n(h−2)/2
+ O(n−(h−1)/2).

It follows that an = −2 + kh(μ)

n(h−2)/2 + O(n−(h−1)/2).
If n is even, then

Kμn (−1 + ε) = −1 + ε − 1 − ε + O((ε)2) − kh(μ)

n(h−2)/2
+ O(n−(h−1)/2).

In this case we have an = −2 − kh(μ)

n(h−2)/2 + O(n−(h−1)/2).

3.2 Proof of Theorem 2

By (5) and Theorem 1, there exists C > 0 such that for δn = Cn(h−2)/2 we have
|an + 2| < δn , |bn − 2| < δn , and |ξ(z)| < δn for |z| < 3.

Fix x ∈ (an, bn). By Proposition 5, G+
n (x) ∈ C

+ and Kμn (G
+
n (x)) = x . Set

w = Kγ (G+
n (x)). Since Kγ (G+

n (x)) = Kμn (G
+
n (x)) − ξ(G+

n (x)), then |x − w| =
|ξ(G+

n (x))|. Hence, |x − w| < δn as |G+
n (x)| ≈ 1.

First, suppose |G+
n (x)| > 1. We have Gγ (w) = G+

n (x) according to Proposition
4. We claim that

|Gγ (w) − G+
γ (x)| ≤ |w − x | sup

lo(w,x)
|G ′

γ (z)|, (6)

where lo(a, b) denotes the straight line joining a with b without {a, b}. This follows
by noticing that Gγ (w) − Gγ (x + i t) = ∫

lo(w,(x+i t)) G
′
γ (z)dz, and making t ↓ 0.

Now, we have G ′
γ (z) = 1/2 − z/(2

√
z2 − 4) for z ∈ C\[−2, 2]. It follows that

|G ′
γ (z)| < 1/2 + 3/(2

√|z2 − 4|) < 3/
√
4 − x2 for x ∈ (−2, 2) and y ∈ (0, 1). It is

not so hard to see that for θ ∈ [−2 + 2δ, 2 − 2δ]

sup
t∈([θ−δ,θ+δ])

1/
√
4 − t2 < 2/

√
4 − θ2.

From (6) it follows that |Gγ (w)−G+
γ (x)| < 6δn/

√
4 − x2 for x ∈ [−2+2δn, 2−2δn].

Therefore, Proposition 1 implies that

| fn(x) − fγ (x)| = (1/π)|Im(Gγ (w) − G+
γ (x))| <

2δn√
4 − x2

,
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for x ∈ [−2 + 2δn, 2 − 2δn].
Now, consider x ∈ [−2 + 2δn, 2 − 2δn]c ∩ [an, bn]. We have that |x − 2| < 2δn

or |x + 2| < 2δn . Recall that | fn(x)| = (1/π)Im(Gγ (w)). Since |w − x | < δn and
w ∈ C

+, then 0 < Im(w) < δn and |Re(w) − 2| < 3δn or |Re(w) + 2| < 3δn .
Hence, by Proposition 3, Im(Gγ (w)) < 3δn , so | fn(x)| < 2

√
δn .

Next, suppose |G+
n (x)| < 1. Proposition 4 implies that Gγ (w) = 1/G+

n (x). By
the same argument as before, we have

|Gγ (w) − G−
γ (x)| ≤ |w − x | sup

l(w,x)
|G ′

γ (z)|,

and

|Gγ (w) − G−
γ (x)| <

6δn√
4 − x2

, (7)

for x ∈ [−2 + 2δn, 2 − 2δn]. Now, Proposition 5 says that Kμn (G
+
n (x)) = x , so

x = Gn(x) + 1

Gn(x)
+

∞∑
j=h

k j
n( j−2)/2

(Gn(x))
j−1.

Therefore, Im(G+
n (x)) = −Im(1/G+

n (x)) + Im(ξ(G+
n (x))). We conclude that

|Im(G+
n (x)) + Im(1/G+

n (x))| ≤ |ξ(G+
n (x))|. (8)

By Proposition 1, | fn(x) − fγ (x)| = (1/π)(|Im(G+
n (x)) + Im(G−

γ (x))|). Note that

|G+
n (x) + G−

γ (x)| < |G+
n (x) + 1/G+

n (x)| + | − (1/G+
n (x)) + G−

γ (x)|.

Hence, we derive from (7) and (8) that | fn(x) − fγ (x)| < (1/π)(δn + 6δn√
4−x2

) for

x ∈ [−2 + 2δn, 2 − 2δn]. We conclude that | fn(x) − fγ (x)| < 2δn√
4−x2

for x ∈
[−2 + 2δn, 2 − 2δn].

Now, consider x ∈ [−2 + 2δn, 2 − 2δn]c ∩ [an, bn]. Using the same ideas as
above and Proposition 3, we obtain that Im(Gγ (w)) < 3

√
δn . Since | fn(x)| =

(1/π)|Im(G+
n (x))| and Gγ (w) = 1/G+

n (x), then, by (8) we have | fn(x)| <

(1/π)(δn + 3
√

δn), which is less than 2
√

δn for δn relatively small.
Finally, suppose |G+

n (x)| = 1. Then, by Proposition 4, w ∈ (−2, 2) and G+
γ (w) =

G+
n (x). From Proposition 1 we get that (1/π)|Im(G+

γ (w) − G+
γ (x))| = | fγ (w) −

fγ (x)|. Note that

| fγ (w) − fγ (x)| ≤ (1/π)|w − x | sup
lo(w,x)

|t/
√
4 − t2|,

so by arguments as above, | fγ (w) − fγ (x)| ≤ 2δn/
√
4 − x2 for x ∈ [−2 + 2δn, 2 −

2δn]. Therefore, | fn(x) − fγ (x)| ≤ 2δn/
√
4 − x2 for x ∈ [−2 + 2δn, 2 − 2δn].
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Now, suppose that x ∈ [−2 + 2δn, 2 − 2δn]c ∩ [an, bn]. Hence, |x − 2| < 2δn or
|x + 2| < 2δn . Recall that fn(x) = fγ (w) = (1/π)

√
4 − w2. Since |w − x | < δn ,

then w − 2 < 3δn or w + 2 < 3δn . Thus, | fn(x)| < 2
√

δn .

4 Examples

The following example is from Proposition 2.5 in [4]. Recall that for measures of
zero mean and unit variance we have k3(μ) = m3(μ) and k4(μ) = m4(μ) − 2. Let
μ = qδx + pδy , where 0 < p < 1, p + q = 1, x = −√

p/q , and y = √
q/p. Define

μn = D1/
√
nμ

�n . We can easily verify that m3(μ) = (q − p)/
√
pq . Set α = m3(μ).

Then

dμn

dx
=

√
(x − x1)(x − x2)

1 − x(x/n − α/
√
n)

for x1 < x < x2,

where x1 = α/
√
n − 2

√
1 − 1/n and x2 = α/

√
n + 2

√
1 − 1/n. Since

√
1 + c/n =

1+c/(2n)+O(n−2), then x1 = −2+k3(μ)/
√
n+O(n−1) and x2 = 2+k3(μ)/

√
n+

O(n−1). Now, when p = q, we have m3(μ) = 0 and m4(μ) = 1, so k4(μ) = −1
By the previous formula, we have x1 = −2

√
1 − 1/n = −2 + 1/n + O(n−2) and

x2 = 2
√
1 − 1/n = 2 − 1/n + O(n−2). Hence, x1 = −2 − k4(μ)/n + O(1/n2) and

x2 = 2 + k4(μ)/n + O(1/n2). Therefore, these estimates agree with Theorem 1.
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