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Abstract
Wepropose a single one-parameter family of orthogonal harmonic functions expressed
in terms of spheroidal coordinates as independent variables to construct a common
orthogonal basis for the L2-Hilbert spaces of quaternionic monogenic functions in the
space exterior of a spheroidal domain (either prolate or oblate). We give recurrence
relations for the elements that constitute such a basis, which are particularly easy to
handle from a computational point of view. Conversion formulas among the classes of
harmonic andmonogenic functions associated with a spheroid of arbitrary eccentricity
to those related to the Euclidean ball are derived.

Keywords Quaternionic analysis · Associated Legendre functions of the first and the
second kinds · Neumann’s formula · Spheroidal harmonics · Spheroidal monogenics

1 Introduction

The theory of monogenic (or Fueter regular) functions of a vector variable in a domain
in three-dimensional Euclidean space, taking values in the space of quaternions, has a
wide range of applications. A significant part of the theory of monogenic functions has
been built around the study of quaternionic counterparts of holomorphic functions of
one complex variable, offering a refinement of classical harmonic analysis in three and
four dimensions. Said sort depends on whether monogenic functions present certain
peculiarities, such as continuity, differentiability or integrability, orthogonality with
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respect to different inner products, and so on, throughout the domain of the variables.
The study of the fundamental properties of monogenic functions is linked to harmonic
functions through the Riesz and Moisil-Teodorescu systems of first-order constant
coefficient partial differential equations generalizing the Cauchy–Riemann equations
[5, 6, 10–13, 26–29].

The original impetus in initiating the investigation of orthogonal bases spanning
the Hilbert spaces of square-integrable harmonic and monogenic functions defined in
the interior of spheroidal (resp. prolate and oblate) domains of the form

{
x ∈ R

3 : x20
cosh2 α

+ x21 + x22
sinh2 α

= 1

}

and

{
x ∈ R

3 : x20
sinh2 α

+ x21 + x22
cosh2 α

= 1

}

for α > 0 was proposed in [7], and [16, 17, 23]. These (confocal) domains become
rounder as they degenerate with α → ∞ (since tanh α → 1). In [8], the spheroidal
harmonics were defined following [7], with a rescaling factor that permits including
the Euclidean ball to limit both the prolate and oblate cases. We refer to [9] and [20]
concerning further properties of spheroidal harmonic and monogenic polynomials.
These works do not include the harmonics and monogenics vanishing at infinity,
which are perhaps the more fascinating classes from the point of view of a physical
application. Although such types of functions have not yet been used to any great
extent in mathematical physics, from the perspective of the theory of the solution of
Laplace’s equation in three variables, it would be interesting to address the problem of
constructing orthogonal sets of harmonic and monogenic functions defined in a region
outside a spheroid, whose elements are parametrized by the shape of the corresponding
spheroids. In this sense, we propose a single one-parameter family of orthogonal
spheroidal harmonics to build a common orthogonal basis for the Hilbert spaces of
square-integrable monogenic functions in the space exterior of a spheroidal domain
of arbitrary eccentricity. To the best of our knowledge, these ideas seem to be new.

The outline of the paper is as follows. Section3 employs the two kinds of associated
Legendre functions to construct the basic external spheroidal harmonics that assume
prescribed values on the boundary of the corresponding spheroids, combined into a
single one-parameter family. These functions are shown to include the ordinary solid
spherical, prolate, and oblate spheroidal harmonics as limiting cases. The orthogonal-
ity of the basic harmonics is taken with respect to two natural inner products, leading
to the discussion of the proper external spheroidal harmonics. The main difficulties of
this investigation will center on analyzing these functions. Conversion formulas that
relate the coefficients of the expansions among the spheroidal and spherical harmonic
systems are obtained. The basic external spheroidal monogenic functions are calcu-
lated in Sect. 4, and explicit formulas for their nonscalar parts are obtained in terms of
the proper harmonics. We prove that these functions form a common orthogonal basis
for the one-parameter family of L2-Hilbert spaces of monogenic functions defined
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in a region outside a spheroid. Besides, we show the corresponding orthogonality of
the spheroidal monogenics over the surface of the spheroids with respect to a suitable
weight function.

2 Notation and Preliminaries

The majority of functions used in technical and applied mathematics originated from
investigating practical problems. A relevant example is the Ferrers’ associated Leg-
endre functions of the first and the second kinds, Pm

n (z) and Qm
n (z), of degree n and

order m, for z ∈ [−1, 1] and z ∈ (1,∞). When n and m are nonnegative integers,
these functions are defined by (cf. [14, Ch. III])

Pm
n (t) = (−1)m(1 − t2)m/2 dm Pn(t)

dtm
, t ∈ [−1, 1],

and

Qm
n (s) = (s2 − 1)m/2 dm Qn(s)

dsm
, |s| > 1,

where

Pn(t) = 1

2nn!
dn

dtn
(t2 − 1)n, t ∈ R,

is the Legendre polynomial (or Legendre function of the first kind), and

Qn(s) = 1

2

∫ 1

−1

Pn(t)

s − t
dt, |s| > 1, (1)

is the Legendre function of the second kind. The relation (1) is known as Neumann’s
integral formula [22, p. 24] (cf. [14, p. 63]).

We shall observe a slight difference between the variation of the index m in any of
the previous definitions. Although the Pm

n (t) are only defined for nonnegative integer
values of m, which are equal to or less than n, the functions Qm

n (s) are defined for all
nonnegative integer values of m.

In addition to the definitions introduced above, we further have from [14, p. 108]:

Lemma 1 Let n and m be nonnegative integers, and let |s| > 1. Then

Qm
n (s) = (−1)m(n + m)!(s2 − 1)m/2

2n+1(1/2)n+1 sn+m+1 2F1

(
n + m + 2

2
,

n + m + 1

2
; n + 3

2
; 1

s2

)
.

(2)

Here 2F1 is the usual notation for the classical Gaussian hypergeometric function
and the Pochhammer symbol is (a)n = a(a + 1) · · · (a + n − 1) with (a)0 = 1 by
convention.
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The associated Legendre functions of the first and the second kinds are defined for
negative integer order m by

⎧⎪⎪⎨
⎪⎪⎩

P−m
n (t) = (−1)m (n − m)!

(n + m)! Pm
n (t), t ∈ [−1, 1],

Q−m
n (s) = (n − m)!

(n + m)! Qm
n (s), |s| > 1,

(3)

where it is supposed that n ≥ m ≥ 0.
There is a classical formula that expresses the product of two associated Legendre

functions of the second kind in terms of an associated Legendre function of the same
type [3].

Proposition 1 Let Am
r = (1/2 + m)r . Define

αm,r
n1,n2 = (n1 + m + r)!(n2 + m + r)!(n1 + n2 + 2r + 1)!

r !(n1 + n2 + 2m + 2r + 1)!(n1 + n2 + r + 1)!
×

(
2n1 + 2n2 + 2m + 4r + 3

2n1 + 2n2 + 2m + 2r + 3

) (
Am

r A0
n1+n2+m+r+2

A0
n1+r+1A0

n2+r+1

)
.

For nonnegative integers n1, n2, and m, the following relation holds:

(s2 − 1)−m/2Qm
n1(s)Qm

n2(s) = (−2)m
∞∑

r=0

αm,r
n1,n2 Qm

n1+n2+m+2r+1(s). (4)

We need the following preliminary result.

Lemma 2 For all nonnegative integers n, m, Qm
n (s)Qm

n+2(s) > 0 in |s| > 1. Further,
let c > 1 be a fixed real constant. Then the following identity holds:∫ ∞

c
Qm

n (s)Qm
n+2(s) ds

= (−1)m 4n+m+3/2
∞∑

r=0

∞∑
k=0

α
m,r
n,n+2

4r (2n + m + 2r + 2k + 5)m−1

2(n + m + r + k + 3/2)
c−2(m+r+k+1)

× (2n + m + 2r + 2k + 4)!(2n + m + 2r + k + 3)!
k!(4n + 2m + 4r + 2k + 7)!

× 2F1

(
−(n + m + r + k + 3/2),−m;−(n + m + r + k + 1/2); c2

)
. (5)

Here α
m,r
n1,n2 has the same meaning as in Proposition 1.

Proof The statements follow by combining (4) with the identity [24, p. 123]

Qm
n (s) = (−1)m(s2 − 1)m/2

∞∑
k=0

2n(n + 2k + 1)!(n + k)!(n + 2k + 2)m−1

k!(2n + 2k + 1)! sn+m+2k+1 .

��
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We now consider the recurrence formulas for the associated Legendre functions of
the first and the second kinds, which will be used in the forthcoming sections [14, 30].

Proposition 2 1. Let n ≥ 0 and 0 ≤ m ≤ n, and let t ∈ [−1, 1]. Then

(1 − t2)(Pm
n+1)

′(t) = (n + 1 + m)Pm
n (t) − (n + 1)t Pm

n+1(t), (6)

(n + 1 − m)Pm
n+1(t) = (2n + 1)t Pm

n (t) − (n + m)Pm
n−1(t), (7)

(t2 − 1)(Pm
n+1)

′(t) = (1 − t2)1/2Pm+1
n+1 (t) + mt Pm

n+1(t), (8)

2mt Pm
n+1(t)

= −(1 − t2)1/2
(

Pm+1
n+1 (t) + (n + 1 + m)(n + 2 − m)Pm−1

n+1 (t)

)
, (9)

(1 − t2)1/2Pm+1
n (t) = (n − m)t Pm

n (t) − (n + m)Pm
n−1(t), (10)

2m Pm
n+1(t) = −(1 − t2)1/2

(
Pm+1

n (t) + (n + m)(n + m + 1)Pm−1
n (t)

)
, (11)

(1 − t2)1/2Pm
n+1(t) = 1

2n + 3

(
− Pm+1

n+2 (t) + Pm+1
n (t)

)
. (12)

2. Let n and m be nonnegative integers, and let |s| > 1. Then

(1 − s2)(Qm
n+1)

′(s) = (n + 1 + m)Qm
n (s) − (n + 1)s Qm

n+1(s), (13)

(n + 1 − m)Qm
n+1(s) = (2n + 1)s Qm

n (s) − (n + m)Qm
n−1(s), (14)

(s2 − 1)(Qm
n+1)

′(s) = (s2 − 1)1/2Qm+1
n+1 (s) + ms Qm

n+1(s), (15)

2ms Qm
n+1(s)

= (s2 − 1)1/2
(

− Qm+1
n+1 (s) + (n + 1 + m)(n + 2 − m)Qm−1

n+1 (s)

)
, (16)

(s2 − 1)1/2Qm+1
n (s) = (n − m)s Qm

n (s) − (n + m)Qm
n−1(s), (17)

2m Qm
n+1(s) = (s2 − 1)1/2

(
− Qm+1

n (s) + (n + m)(n + m + 1)Qm−1
n (s)

)
,

(18)

(s2 − 1)1/2Qm
n+1(s) = 1

2n + 3

(
Qm+1

n+2 (s) − Qm+1
n (s)

)
. (19)

3 Solutions of Laplace’s Equation in Spheroidal Coordinates

This section considers the problem of finding single one-parameter families of har-
monic functions applicable to the space exterior of a spheroid,with particular emphasis
on those orthogonal in the L2-Hilbert space structure. This cannot be donewithmodels
where the Euclidean ball is only treated as a degenerate case [7, 14]. It requires a sepa-
rate yet utterly analogous treatment for prolate and oblate spheroids. The construction
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of external harmonics becomes much more complicated than internal harmonics since
they contain logarithmic functions.

3.1 Basic External Spheroidal Harmonics

The starting point of the present investigation is a result previously published by the
author [21]. Consider the nested family domains, bounded by coaxial spheroids scaled
so that the major axis is of length 2:

�μ =
{
x ∈ R

3 : x20 + x21 + x22
1 − μ2 = 1

}
. (20)

(Confocal spheroids are often used, which differ by a change of scale depending on
μ.) The parameter μ denotes the eccentricity of �μ, which by convention is in the
interval (0, 1) (prolate spheroid) or in iR+ (oblate spheroid). The intermediate value
μ = 0 gives the Euclidean unit ball

�0 = {x ∈ R
3 : |x|2 < 1}.

Suppose for themoment thatμ ∈ (0, 1). In thisway,�∗
μ := R

3\�μ (where�μ denotes
the closure of �μ) is parametrized using prolate spheroidal coordinates (η, ϑ, ϕ),
corresponding to the family (20), which are related to Cartesian coordinates by

x0 = μ cosh η cosϑ, x1 = μ sinh η sin ϑ cosϕ, x2 = μ sinh η sin ϑ sin ϕ, (21)

with η ∈ [ημ,∞), ϑ ∈ [0, π ], and ϕ ∈ [0, 2π), where the boundary value ημ is given
by

μ cosh ημ = 1. (22)

By equations (21), direct computation shows that

|x|2 + μ2 = μ2(cosh2 η + cos2 ϑ),

and also

μ2 (cosh η ± cosϑ)2 = (x0 ± μ)2 + x21 + x22 .

Hence

cosh η = ω(μ)

2μ
, cosϑ = 2x0

ω(μ)
,

where

ω(μ) :=
(
(x0 + μ)2 + x21 + x22

)1/2 +
(
(x0 − μ)2 + x21 + x22

)1/2
(23)
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is positive. In the considerations to follow, we will often omit the argument of (23)
and write ω instead of ω(μ).

The oblate case is obtained by (21) via analytic continuation using η̃ = η − iπ/2,
thinking of μ ∈ iR+ as being boundary values of the first quadrant in the complex
plane. The following terms

ζ(μ, x) = |x|2 + μ2 + 2x0μ, ζ (μ, x) = |x|2 + μ2 − 2x0μ

inside the radicals in (23) are now complex conjugates, where

|ζ(μ, x)| =
∣∣∣∣μ2 −

(
x0 + i (x21 + x22 )

1/2
)2∣∣∣∣ (24)

equals to the product of the distances from any point on the prescribed spheroids �μ

to the two foci (±μ, 0, 0). The function defined by (24) will play an important role in
the forthcoming sections.

Hence, when μ ∈ iR+, �∗
μ is parametrized by

x0 = μ

i
sinh η̃ cosϑ, x1 = μ

i
cosh η̃ sin ϑ cosϕ, x2 = μ

i
cosh η̃ sin ϑ sin ϕ,

where the coordinates range over η̃ ∈ [̃ημ,∞) with (μ/i) sinh η̃μ = 1, ϑ ∈ [0, π ],
and ϕ ∈ [0, 2π).

The external harmonics to be employed in the sequel are defined as follows.

Definition 1 Let n ≥ 0 and 0 ≤ m ≤ n. For x ∈ R
3\{0}, the basic external spheroidal

harmonics of degree −(n + 1) and order m are

U±
n,m[μ](x) = Un,m[μ](η, ϑ)
±

m(ϕ), (25)

where 
+
m(ϕ) := cos(mϕ), 
−

m(ϕ) := sin(mϕ), and for μ �= 0,

Un,m[μ](η, ϑ) = βn,m

μn+1 Pm
n (cosϑ) Qm

n (cosh η) (26)

with

βn,m = 2n+1(1/2)n+1

(n + m)! . (27)

The functions U−
n,0[μ] vanish identically, as do all U±

n,m[μ] for m > n. Therefore
when we refer to the set {U+

n,m[μ], U−
n,m[μ]}, we always exclude the indices which

apply to these trivial cases, even when we do not explicitly state 0 ≤ m ≤ n for the
“+” case and 1 ≤ m ≤ n for the “−” case.

The basic harmonics (25), except for the constant factors βn,m , and the rescaling
of the x variable, are the functions defined in [14, Ch. X]. The motivation behind the
choice for redefining these functions is explained in Proposition 3 below.
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0
(−

4μ
+
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τ
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(−

4x
2 0

+
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+
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/
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2
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τ
))
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+
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/
2
(4

μ
2
ω

−
ω
3
)

U
− 1,
1
[μ

]=
3x

2
(−
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−
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Some examples of (25) in low degree are exhibited in Table 1.
The coefficients βn,m in the expression (26) is for the following.

Proposition 3 For all x ∈ R
3 \ {0}, the limit limμ→0 U±

n,m[μ](x) exists and is given
by the external solid spherical harmonics

U±
n,m[0](x) = 1

|x|n+1 Pm
n

(
x0
|x|

)

±

m(ϕ), (28)

where we employ spherical coordinates x0 = ρ cos θ , x1 = ρ sin θ cosϕ, and x2 =
ρ sin θ sin ϕ.

Proof To prove this, we note that since the variable ϕ in (25) does not depend on the
variable x0, we examine the factors Pm

n (2x0/ω)Qm
n (ω/(2μ)) in (26) with ω given by

(23). Bearing in mind that

(
(x0 ± μ)2 + x21 + x22

)1/2 = |x| ± x0
|x| μ + O(μ2),

it follows thatω = 2|x|+O(μ2) asμ → 0. Furthermore,we have oncemore from (23)
that 2x0/ω = x0/|x| + O(μ), so Pm

n (2x0/ω) → Pm
n (x0/|x|) as μ → 0. According

to formula (2), direct calculation gives βn,m Qm
n (s) � 1/sn+1 as s = ω/2μ tends to

infinity, corresponding to μ → 0 for fixed x. This establishes the statement. ��
By the proposition just proved, it is observed that the external solid spherical har-

monics (28) are embedded in the one-parameter family of basic external spheroidal
harmonics. In contrast, in treatments such as [7, 14], the external harmonics degenerate
as the eccentricity of the spheroid decreases.

It is clear that, unlikeU±
n,m[0](x), the functionsU±

n,m[μ](x) are generally not homo-
geneous when μ �= 0.

3.2 Further Properties of the Basic Harmonics

We study the orthogonality of the external harmonics (25) with respect to two natural
inner products.

Consider the Dirichlet inner product defined by

( f , g)μ =
∫∫

η=ημ

f
∂g

∂n
dσ, (�g = 0), (29)

where dσ denotes the area element on �μ := ∂�μ, and

n = 1

(1 − μ2 cos2 ϑ)1/2

(
(1 − μ2)1/2 cosϑ + (i cosϕ + j sin ϕ) sin ϑ

)
(30)

is the unit outward normal vector to �μ at the point P∗ := (ημ, ϑ, ϕ), with cosh ημ =
1/μ by (22).
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Since themeasure on the boundary isdσ = (1−μ2)1/2 sin ϑdϑdϕ, we can compute
the outward normal derivative ∂/∂n of g at any point using (30) to obtain

( f , g)μ =
∫ π

0

∫ 2π

0
f (P∗) ∂g

∂η
(P∗) (1 − μ2)1/2 sin ϑ dϕdϑ. (31)

We will now show the orthogonality of the external harmonics (25) in the sense of
the integral (29).

Proposition 4 Let μ be fixed. For each n ≥ 0, the collection

{U+
n,m[μ] : 0 ≤ m ≤ n} ∪ {U−

n,m[μ] : 1 ≤ m ≤ n} (32)

is orthogonal in the sense of the Dirichlet integral (29) and their norms squared are
equal to

‖U±
n,m[μ]‖22 = (βn,m)2

μ2n+1

(
2π(1 + δ0,m)(n + m)!

(2n + 1)(n − m)!
)

× Qm
n (1/μ)

(
(1 − μ2)1/2 Qm+1

n (1/μ) + m Qm
n (1/μ)

)
,

where the coefficients βn,m have the same meaning as in (27). We use the symbol:
δm1,m2 = 0 or 1, according as m1 �= m2, or m1 = m2.

Proof For the sake of simplicity in the proof, we assume that μ ∈ (0, 1) because the
case μ ∈ iR+ is similar. When m1 �= m2, we have by the orthogonality of the set
{
+

m1
,
−

m2
| m1 ≥ 0, m2 ≥ 1} on [0, 2π ],

(Un1,m1 [μ]
+
m1

(ϕ), Un2,m2 [μ]
+
m2

(ϕ))μ = 0,

(Un1,m1 [μ]
−
m1

(ϕ), Un2,m2 [μ]
−
m2

(ϕ))μ = 0,

(Un1,m1 [μ]
+
m1

(ϕ), Un2,m2 [μ]
−
m2

(ϕ))μ = 0,

(Un1,m1 [μ]
−
m1

(ϕ), Un2,m2 [μ]
+
m2

(ϕ))μ = 0.

According to (31), for m1 = m2 = m, a direct computation shows that

(Un1,m[μ]
+
m(ϕ), Un2,m[μ]
+

m(ϕ))μ

=
∫ π

0

∫ 2π

0
Un1,m[μ](P∗) ∂Un2,m[μ]

∂η
(P∗) (
+

m(ϕ))2(1 − μ2)1/2 sin ϑ dϕdϑ

= βn1,m βn2,m

μn1+n2+1 π(1 + δ0,m) Qm
n1(1/μ)

(
(1 − μ2)1/2 Qm+1

n2 (1/μ) + m Qm
n2(1/μ)

)

×
∫ π

0
Pm

n1(cosϑ)Pm
n2(cosϑ) sin ϑ dϑ

= (βn1,m)2

μ2n1+1

(
2π(n1 + m)!

(2n1 + 1)(n1 − m)!
)

(1 + δ0,m)δn1,n2
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× Qm
n1(1/μ)

(
(1 − μ2)1/2 Qm+1

n1 (1/μ) + m Qm
n1(1/μ)

)
.

The same value is obtained when we replace 
+
m(ϕ) by 
−

m(ϕ) throughout, m > 0.
Thus the statement is established. ��

Next, we assert that the basic harmonics are not necessarily orthogonal in the closed
subspaces Har2(�∗

μ) = L2(�
∗
μ) ∩ Har(�∗

μ) of L2(�
∗
μ) when μ �= 0 with respect to

the ordinary L2-inner product:

〈 f , g〉L2(�∗
μ) =

∫∫∫
�∗

μ

f (x)g(x)dx, (33)

where dx = dx0dx1dx2.

Proposition 5 The collection (32) does not form an orthogonal family of Har2(�∗
μ)

unless μ = 0.

Proof It is a simple matter to check that U±
n,m[μ] ∈ L2(�

∗
μ). We assume again that

μ ∈ (0, 1). Applying the coordinates (21), gives the infinitesimal volume element
dx = d Rdϕ, where

d R = μ3(cosh2 η − cos2 ϑ) sin ϑ sinh η dϑdη. (34)

It is clear that, when m1 �= m2, we have

〈Un1,m1 [μ]
±
m1

(ϕ), Un2,m2 [μ]
±
m2

(ϕ)〉L2(�∗
μ) = 0.

Let m1 = m2 = m. We compute

〈Un1,m[μ]
+
m(ϕ), U+

n2,m[μ]
+
m(ϕ)〉L2(�∗

μ)

= −βn1,m βn2,m

μn1+n2−1 (1 + δ0,m)π ×
(∫ π

0
Pm

n1(cosϑ)Pm
n2(cosϑ) sin ϑ dϑ

×
∫ ∞

ημ

Qm
n1(cosh η)Qm

n2(cosh η) sinh η cosh2 η dη

−
∫ π

0
Pm

n1(cosϑ)Pm
n2(cosϑ) sin ϑ cos2 ϑ dϑ

×
∫ ∞

ημ

Qm
n1(cosh η)Qm

n2(cosh η) sinh η dη

)
. (35)

According to (7), we obtain

∫ π

0
cos2 ϑ Pm

n1(cosϑ)Pm
n2(cosϑ) sin ϑ dϑ

= (n1 + 1 − m)(n2 + 1 − m)

(2n1 + 1)(2n2 + 1)

∫ π

0
Pm

n1+1(cosϑ)Pm
n2+1(cosϑ) sin ϑ dϑ
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+ (n1 + 1 − m)(n2 + m)

(2n1 + 1)(2n2 + 1)

∫ π

0
Pm

n1+1(cosϑ)Pm
n2−1(cosϑ) sin ϑ dϑ

+ (n1 + m)(n2 + 1 − m)

(2n1 + 1)(2n2 + 1)

∫ π

0
Pm

n1−1(cosϑ)Pm
n2+1(cosϑ) sin ϑ dϑ

+ (n1 + m)(n2 + m)

(2n1 + 1)(2n2 + 1)

∫ π

0
Pm

n1−1(cosϑ)Pm
n2−1(cosϑ) sin ϑ dϑ.

By substituting this value into (35), it is found that the corresponding inner product
is, in particular, distinct from zero when n2 − n1 = ±2. For the remainder of the
proof, we consider when n2 − n1 = 2. The other case n2 − n1 = −2, can be treated
analogously.

For n2 = n1 + 2, a straightforward computation shows that

〈Un1,m[μ]
+
m(ϕ), Un1+2,m[μ]
+

m(ϕ)〉L2(�∗
μ)

= −2π(1 + δ0,m)(n1 + m)!
(2n1 + 1)(n1 − m)! (βn1,m)2 μ−(2n1+1) In1,m(μ),

where

In,m(μ) :=
∫ ∞

1/μ
Qm

n (s)Qm
n+2(s) ds. (36)

The same value is obtained when 
+
m(ϕ) is replaced by 
−

m(ϕ), m > 0. By Lemma
2, it follows that μ−(2n1+1) In1,m(μ) > 0 for all n1, m = 0, 1, . . . and fixed μ > 0.

For the limiting case, when μ = 0, we use Proposition 3 to show that
limμ→0 In1,m(μ)/μ2n1+1 = 0, for all n1 = 0, 1, . . . (m ≥ 0). Thus, 〈U+

n1,m[μ],
U+

n1+2,m[μ]〉L2(�∗
μ) tends to zero as μ → 0. Similarly, we can prove that

〈U−
n1,m[μ], U−

n1+2,m[μ]〉L2(�∗
μ) → 0 when μ tends to zero. This establishes the state-

ment. ��

The lack of orthogonality of the basic harmonics over the exterior of the prescribed
spheroids in the usual L2 sense means that defining suitable families of orthogo-
nal external harmonics should be handled carefully. It is always possible to use an
appropriate geometric weighting factor or apply an orthogonalization process to the
prescribed harmonic functions, such as the Gram–Schmidt procedure that restores
orthogonality. However, this orthogonalization process may be time-consuming and
unstable. We preferably discuss a constructive approach discussed in [21] and show
how it will be helpful not only from a function point of view but also for fast and stable
computations.

3.3 Proper External Spheroidal Harmonics

We shall now be concerned with the following functions for the actual carrying out of
the construction and given definition (25).
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Definition 2 Let U±
n,m[μ] have the same meaning as in Definition 1. Let n ≥ 0 and

0 ≤ m ≤ n + 1. The proper external spheroidal harmonics of degree −(n + 3) and
order m are

V ±
n,m[μ](x) = ∂

∂x0
U±

n+1,m[μ](x). (37)

The proper harmonics V ±
n,m[μ]will play a crucial role in studying the basic external

spheroidal monogenics in Sect. 4.
Following the notation already employed, we use V ±

n,m[μ] = Vn,m[μ]
±
m when the

factors 
±
m are not of interest.

It will be convenient before proceeding to investigate the algebraical forms of the
ansatz functions Vn,m[μ]. We will assume in the sequel that μ ∈ (0, 1) because the
case μ ∈ iR+ is similar.

By differentiating (21),

∂

∂x0
= 1

μ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η

∂

∂η
− sin ϑ cosh η

∂

∂ϑ

)
,

and combining (6)–(13) and (7)–(14) with the definition (37), we are thus led to the
following remarkable representation:

Vn,m[μ] = βn+1,m (n + m + 1)

μn+3(cosh2 η − cos2 ϑ)

(
cosh η Pm

n (cosϑ)Qm
n+1(cosh η)

− cosϑ Pm
n+1(cosϑ)Qm

n (cosh η)
)
, (38)

where the coefficients βn,m have the same meaning as in (27).
As a consequence of (38) we notice that Vn,m[μ] = 0 for m > n + 1 since Pm

n = 0
for m > n.

According to (3) and (38), we deduce the following elementary identity.

Lemma 3 For each n ≥ 0 and 0 ≤ m ≤ n + 1,

Vn,−m[μ] = (−1)m (n − m + 1)!
(n + m + 1)! Vn,m[μ]. (39)

Define

An[μ] := Pn
n (cosϑ)Qn

n−1(cosh η)

μn+3(cosh2 η − cos2 ϑ)
(40)

for n > 0 and fixed μ > 0.
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We have, for instance,

Vn+1,n[μ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

45
4μ3 cosϑ

(
cosh η log

(
cosh η+1
cosh η−1

)
− 2

)

− 15 cosϑ

2μ3(cosh2 η−cos2 ϑ)
if n = 0,

(2n+3)(2n+5)
2μ2

(
Un+1,n[μ] − 2n+1

2n−1(n−1)! μ cosϑ An[μ]
)

if n > 0,

(41)

and

Vn,n[μ] =

⎧⎪⎪⎨
⎪⎪⎩

3
2μ3 log

(
cosh η+1
cosh η−1

)
− 3 cosh η

μ3(cosh2 η−cos2 ϑ)
if n = 0,

(2n+1)(2n+3)
μ2

(
Un,n[μ] − μ2

2n−1(n−1)! cosh η An[μ]
)

if n > 0.

(42)

It can further be seen that

Vn,n+1[μ] = −2n+2(1/2)n+2

(2n + 1)! μ cosϑ An+1[μ]. (43)

We shall return to these formulas in Sect. 3.5, where they will be used to prove the
orthogonality of the proper harmonics (37) in the L2-Hilbert space Har2(�∗

μ).
Some examples of (37) in low degree are exhibited in Tables 2 and 3.
We now proceed to establish an elementary recurrence formula for the functions

Vn,m[μ] to avoid the difficulties usually associatedwithmanipulations such as formula
(38).

Proposition 6 For each n ≥ 2, the following recurrence relation holds:

μ2(n + 1 − m)(n − m)

(2n + 1)(2n + 3)
Vn,m[μ] = (n − m)Un,m[μ] + Vn−2,m[μ]. (44)

This uses the convention Vn−2,m[μ] = 0 when m > n − 1.

Proof According to (7), (14), and (38), and bearing in mind that

βn+1,m = (2n + 1)(2n + 3)

(n + m + 1)(n + m)
βn−1,m,

we have

Vn,m[μ] = (2n + 1)(2n + 3)

μ2(n + 1 − m)
Un,m[μ]

+ βn−1,m (2n + 1)(2n + 3)(n − 1 + m)

μn+3(cosh2 η − cos2 ϑ)(n + 1 − m)(n − m)
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× (
cosh η Pm

n−2(cosϑ)Qm
n−1(cosh η) − cosϑ Pm

n−1(cosϑ)Qm
n−2(cosh η)

)
.

The result now follows. ��
The following “reverse Appell property”, which follows from (44), involves the

derivatives of the external solid spherical harmonics defined by (28) with respect to
x0:

∂

∂x0
U±

n+1,m[0](x) = −(n + 2 − m)U±
n+2,m[0](x). (45)

The functions V ±
n,m[μ] are not so simply related to U±

n,m[μ] for μ �= 0, as we show
below.

Theorem 7 Let n ≥ 0 and 0 ≤ m ≤ n + 1. The coefficients vn,m,k in the relation

V ±
n,m[μ] =

∑
0≤ 2k ≤ n−m−2

vn,m,k
U±

n−2k,m[μ]
μ2(k+1)

+ (1/2)n+2 2n−m

μn−m(n + 1 − m)!

⎧⎪⎨
⎪⎩

1
(1/2)m+2

V ±
m,m[μ] if n − m is even,

1
(1/2)m+3

μ V ±
m+1,m[μ] if n − m is odd

(46)

are given by

vn,m,k = 4k+1(n − m − 2k)!(1/2)n+2

(n + 1 − m)!(1/2)n−2k
. (47)

Proof Suppose inductively that the formula holds when n is replaced by n′ < n. Then

V ±
n,m[μ] = (2n + 1)(2n + 3)

μ2(n + 1 − m)
U±

n,m[μ]

+ (2n + 1)(2n + 3)

(n + 1 − m)(n − m)

∑
0≤ 2k ≤ n−m−4

vn−2,m,k
U±

n−2(k+1),m[μ]
μ2(k+2)

+ (1/2)n+2 2n−m

μn−m(n + 1 − m)!

⎧⎪⎨
⎪⎩

1
(1/2)m+2

V ±
m,m[μ] if n − m is even,

1
(1/2)m+3

μ V ±
m+1,m[μ] if n − m is odd.

Since, by (47),

vn,m,0 = (2n + 1)(2n + 3)

n + 1 − m
, vn,m,k+1 = (2n + 1)(2n + 3)

(n + 1 − m)(n − m)
vn−2,m,k,

we find that the stated formula holds, completing the proof. ��
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3.4 Conversions Among Spheroidal and Solid Spherical Harmonics

In this section, we determine the coefficients α and α̃ of the following direct and
inverse transformation formulas:

V ±
n,m[μ] =

∑
k

αn+1,m,k μ2k V ±
n+2k,m[0], V ±

n,m[0] =
∑

k

α̃n+1,m,k μ2k V ±
n+2k,m[μ].

Fix a value ofμ. By referring to these expansions, we shall employ the constraints that
the index m is not involved in the summations, and the values of the same evenness
restrict the index k as a given n. It follows from symmetry considerations that the above
relations will work for the “+” and “−” cases (cosines and sines) and, strikingly, for
all values of μ.

For harmonic functions outside a prolate or an oblate spheroid, the transition from
the expansion in external spheroidal harmonics to that in external solid spherical
harmonics (and vice-versa) is worked out in [1]. Some of these formulas are discussed
thoroughly in [2]. Two of these fundamental formulas, relevant to the sequel, are
reproduced in our notation below (i.e., the factor (27) has been incorporated into (48)
and (49)).

Proposition 8 For n ≥ 0, consider the rational constants

αn,m,k = (−1)k (n + 2k − m)!(n + k)!(2n + 1)!
(n − m)!k!(2n + 1 + 2k)!n! , (48)

α̃n,m,k = (n + 2k − m)!(2n + 2k)!(n + 2k)!
(n − m)!k!(n + k)!(2n + 4k)! (49)

for 0 ≤ m ≤ n, and let αn,m,k = α̃n,m,k = 0 otherwise. Then

U±
n,m[μ] =

∞∑
k=0

αn,m,k μ2kU±
n+2k,m[0],

U±
n,m[0] =

∞∑
k=0

α̃n,m,k μ2kU±
n+2k,m[μ].

Since ∂/∂x0 is a linear operator, we automatically have the corresponding transfor-
mation formulas for the proper harmonics:

Corollary 1 Let n ≥ 0 and 0 ≤ m ≤ n + 1. Then

V ±
n,m[μ] =

∞∑
k=0

αn+1,m,k μ2k V ±
n+2k,m[0],

V ±
n,m[0] =

∞∑
k=0

α̃n+1,m,k μ2k V ±
n+2k,m[μ]. (50)

Here αn,m,k and α̃n,m,k have the same meaning as in Proposition 8.
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3.5 Orthogonality Properties of the Proper Harmonics

We begin by formulating a technical proposition, which expresses an “individual”
orthogonal property of the functions Vn,m[μ] over the interval [0, π ]. We borrow from
the techniques used in the earlier work [19] and extend those results for arbitrary μ

(the method also relies on Neumann’s formula (1) and identities (54) and (56) below.
Hence, the proof is independent of the previous paper.)

Proposition 9 Let μ ∈ [0, 1) ∪ iR+ be fixed. The following orthogonality relations
hold for all m = 0, 1, . . . and each pair (n, k) such that n, k ∈ {m, m + 1},

∫ π

0
Vn,m[μ]Pm

k (cosϑ) sin ϑ dϑ = 0. (51)

Proof Fix a value of μ. For the proof, let the left-hand sides of (51) be denoted by
Cm

ε1,ε2
(μ)with n = m +ε1 and k = m +ε2. We only use pairs in the set {(0, 0), (0, 1),

(1, 0), (1, 1)}.
We will assume that μ ∈ (0, 1) because the case μ ∈ iR+ is similar (the interme-

diate case μ = 0 is trivial, and it uses (45).) We have from (38) that

Cm
(1,0)(μ) =

∫ π

0
Vm+1,m[μ]Pm

m (cosϑ) sin ϑ dϑ

= βm+2,m (m + 1)

μm+4

∫ π

0

(
(2m + 3)Pm

m+1(cosϑ)Qm
m+1(cosh η)

− 2m
Pm

m+1(cosϑ)Qm
m−1(cosh η)

cosh2 η − cos2 ϑ

)
Pm

m (cosϑ) sin ϑ dϑ.

Notice that the first term gives a zero-integral because of the orthogonality of the
associated Legendre functions of the first kind over the interval [0, π ]. The second
term also has a vanishing integral because the underlying function is odd with respect
to the variable t = cosϑ . Similarly, it can be proved that Cm

(0,1)(μ) = 0 for all
m = 0, 1, . . . .

We now consider the two remaining integrals, Cm
(0,0)(μ) and Cm

(1,1)(μ). For sim-
plicity, we only sketch the proof for Cm

(0,0)(μ). The other integral can be derived

straightforwardly. Let us begin by computing C0
(0,0)(μ). As a consequence of Neu-

mann’s formula (1), we find

Q0(cosh η) = 1

2

∫ π

0

cosh η sin ϑ

cosh2 η − cos2 ϑ
dϑ. (52)

Combining the explicit representation (42) for the V0,0[μ] and (52), it follows that

C0
(0,0)(μ) =

∫ π

0
V0,0[μ]P0(cosϑ) sin ϑ dϑ

= 3

μ3 log

(
cosh η + 1

cosh η − 1

)
− 6

μ3 Q0(cosh η) = 0.
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For an arbitrary m > 1, we have once again from (42) that

Cm
(0,0)(μ) =

∫ π

0
Vm,m[μ] Pm

m (cosϑ) sin ϑ dϑ

= (2m + 1)(2m + 3)

μm+3

∫ π

0

(
βm,m Pm

m (cosϑ)Qm
m(cosh η)

− cosh η Pm
m (cosϑ)Qm

m−1(cosh η)

2m−1(m − 1)!(cosh2 η − cos2 ϑ)

)
Pm

m (cosϑ) sin ϑ dϑ

= (2m + 3)

μm+3

(
2m+2(1/2)m+1 Qm

m(cosh η)

− (2m + 1)

2m−1(m − 1)! cosh η Qm
m−1(cosh η)

∫ π

0

(Pm
m (cosϑ))2

cosh2 η − cos2 ϑ
sin ϑ dϑ

)
.

(53)

Using the identity [14, p. 195]

Qm
n (s) = (−1)m(n + m)!

2n+1 n! (s2 − 1)−m/2
∫ 1

−1

(1 − t2)n

(s − t)n−m+1 dt, (54)

we can rewrite the integral in (53) as follows:

∫ π

0

(Pm
m (cosϑ))2

cosh2 η − cos2 ϑ
sin ϑ dϑ = (−1)m (2m)! (sinh η)m

2m−1 m! cosh η
Qm

m(cosh η). (55)

Substituting this computation into Cm
(0,0) and using the relation [31, Eq. (6.17)]

Qm
n (s) = (−1)n+1 2nn! (s2 − 1)m/2 dm−n−1

dsm−n−1 (s2 − 1)−n−1 (m > n) (56)

for n = m − 1, we find Cm
(0,0)(μ) = 0 for m > 0. It yields that Cm

(0,0)(μ) = 0 for all
m = 0, 1, . . . . This completes the proof of the statements. ��

The orthogonality of the proper harmonics (37) over the exterior of the prescribed
spheroids �μ is given in the following theorem:

Theorem 10 Let μ be fixed. For each n ≥ 0, the collection

{V +
n,m[μ] : 0 ≤ m ≤ n + 1} ∪ {V −

n,m[μ] : 1 ≤ m ≤ n + 1} (57)

forms an orthogonal family in Har2(�∗
μ) with the norms

‖V ±
n,m[μ]‖22 = 2π(1 + δ0,m)

μ2n+3 γn,m In,m(μ), (58)
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where In,m(μ) has the same meaning as in (36) and

γn,m = 22n+3(1/2)n+1(1/2)n+2 (n + 2 − m)

(n + m)!(n + 1 − m)! . (59)

Proof We will assume that μ ∈ (0, 1), because the case μ ∈ iR+ is similar. When
m1 �= m2, we have

〈Vn1,m1 [μ]
+
m1

(ϕ), Vn2,m2 [μ]
+
m2

(ϕ)〉L2(�∗
μ) = 0,

〈Vn1,m1 [μ]
−
m1

(ϕ), Vn2,m2 [μ]
−
m2

(ϕ)〉L2(�∗
μ) = 0,

〈Vn1,m1 [μ]
+
m1

(ϕ), Vn2,m2 [μ]
−
m2

(ϕ)〉L2(�∗
μ) = 0,

〈Vn1,m1 [μ]
−
m1

(ϕ), Vn2,m2 [μ]
+
m2

(ϕ)〉L2(�∗
μ) = 0.

Using (33), we obtain

〈Vn1,m[μ]
+
m(ϕ), Vn2,m[μ]
+

m(ϕ)〉L2(�∗
μ)

= (1 + δ0,m)π

∫ ∞

ημ

∫ π

0
Vn1,m[μ]Vn2,m[μ] d R,

where d R has the same meaning as in (34).
Thus we need to study integrals of the form

∫ π

0
Vn1,m[μ] Vn2,m[μ](cosh2 η − cos2 ϑ) sin ϑ dϑ.

Without loss of generality, we assume that n1 > n2 and proceed to set Vn1,m[μ] as
(38) and Vn2,m[μ] as (46). Since

∫ π

0
Pm

n1(cosϑ)Pm
n2−2k(cosϑ) sin ϑ dϑ = 0,

∫ π

0
Pm

n1+1(cosϑ) cosϑ Pm
n2−2k(cosϑ) sin ϑ dϑ = 0,

it follows that the remaining nonvanishing integrals are, respectively,

∫ π

0
Vm,m[μ] Pm

n1(cosϑ) sin ϑ dϑ,

according to n2 − m being even, or

∫ π

0
Vm+1,m[μ] Pm

n1(cosϑ) sin ϑ dϑ,

according to n2 − m being odd.
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Furthermore, using (41) and (42), we are led toward the integrals of the form, as
stated in Proposition 9. Hence, for n1 �= n2,

〈V +
n1,m[μ], V +

n2,m[μ]〉L2(�∗
μ) = 0,

and also

〈V −
n1,m[μ], V −

n2,m[μ]〉L2(�∗
μ) = 0.

Using the orthogonality of the system 
±
m(ϕ) on [0, 2π ] again, we conclude that

〈V +
n1,m[μ], V −

n2,m[μ]〉L2(�∗
μ) = 0 when n1 �= n2. This establishes the orthogonality

statement.
For n1 = n2 = n and 0 ≤ m ≤ n, by (44), we find

〈Vn,m[μ]
+
m(ϕ), Vn,m[μ]
+

m(ϕ)〉L2(�∗
μ)

= (2n + 1)(2n + 3)(n + m + 1)

μ2n+3(n + 1 − m)
βn,m βn+1,m (1 + δ0,m)π

×
∫ ∞

ημ

∫ π

0
Pm

n (cosϑ)Qm
n (cosh η)

[
cosh η Pm

n (cosϑ)Qm
n+1(cosh η)

− cosϑ Pm
n+1(cosϑ)Qm

n (cosh η)
]
sin ϑ sinh η dϑdη.

Now, combining (7) and (14), it follows that

t Rm
n (t)Rm

n+1(t)

= 1

2n + 3

(
(n + 2 − m)Rm

n+2(t) + (n + 1 + m)Rm
n (t)

)
Rm

n (t),

with t = cosϑ or cosh η and R = P or Q.
Therefore, when 0 ≤ m ≤ n, we obtain

〈Vn,m[μ]
+
m(ϕ), Vn,m[μ]
+

m(ϕ)〉L2(�∗
μ)

= (2n + 1)(n + m + 1)(n + 2 − m)

μ2n+3(n + 1 − m)
βn,m βn+1,m (1 + δ0,m)π

×
( ∫ ∞

ημ

Qm
n (cosh η)Qm

n+2(cosh η) sinh η dη

×
∫ π

0

(
Pm

n (cosϑ)
)2 sin ϑ dϑ

−
∫ ∞

ημ

(
Qm

n (cosh η)
)2 sinh η dη

×
∫ π

0
Pm

n (cosϑ)Pm
n+2(cosϑ) sin ϑ dϑ

)

= (n + 2 − m)(n + m + 1)!
μ2n+3(n + 1 − m)! βn,m βn+1,m 2π(1 + δ0,m) In,m(μ),
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where In,m(μ) is defined by (36). We obtain the same value when 
+
m(ϕ) is replaced

by 
−
m(ϕ) throughout, 0 < m ≤ n.

When m = n + 1, by use of (43), we have

〈Vn,n+1[μ]
+
n+1(ϕ), Vn,n+1[μ]
+

n+1(ϕ)〉L2(�∗
μ)

= π 4n+2 ((1/2)n+2)
2

μ2n+3 ((2n + 1)!)2

×
∫ ∞

ημ

(
Qn+1

n (cosh η)
)2

sinh η

( ∫ π

0

(
Pn+1

n+1 (cosϑ)
)2

cosh2 η − cos2 ϑ
cos2 ϑ sin ϑ dϑ

)
dη.

(60)

Using the identity (54), we find

∫ π

0

(
Pn+1

n+1 (cosϑ)
)2

cosh2 η − cos2 ϑ
cos2 ϑ sin ϑ dϑ

= (−1)n+1 2
3n+4 ((1/2)n+1)

2 (n + 1)!
(2n + 2)!

×
(

Qn+1
n+1(cosh η) + 1

2n + 3
sinh η Qn+2

n+2(cosh η)

)
(sinh η)n+1

cosh η
.

Consequently, combining the relation (17) and identity (56), then (60) leads to

‖V +
n,n+1[μ]‖22 = π 4n+3(n + 1) ((1/2)n+2)

2

μ2n+3(2n + 3)! In,n+1(μ).

By the form of the V ±
n,m[μ], it follows that ‖V +

n,n+1[μ]‖L2(�∗
μ) = ‖V −

n,n+1[μ]‖L2(�∗
μ).

The proof is now completed. ��
We now state and prove the orthogonality of the proper harmonics (37) over the

surface of the prescribed spheroids with respect to a suitable weight function.

Theorem 11 Let |ζ(μ, x)| have the same meaning as in (24). For fixed μ, the collection
(57) forms an orthogonal family over the surface of the spheroids �μ in the sense of
the scalar product

〈 f , g〉L2(∂�μ) =
∫∫

η=ημ

f (x)g(x) |ζ(μ, x)|1/2 dσ. (61)

Their norms squared are equal to

‖V ±
n,m[μ]‖22 = 4n+2π(1 + δ0,m)

√
1 − μ2 (2n + 3)(1/2)n+1(1/2)n+2

|μ|2(n+2)(n + m)!(n + 1 − m)! Qm
n (1/μ)
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×
(
1

μ
Qm

n+1(1/μ) − (n + m + 1)

2n + 3
Qm

n (1/μ)

)
.

Proof For the proof, we consider the prolate case again. When m1 �= m2, we have

〈Vn1,m1 [μ]
+
m1

(ϕ), Vn2,m2 [μ]
+
m2

(ϕ)〉L2(∂�μ) = 0,

〈Vn1,m1 [μ]
−
m1

(ϕ), Vn2,m2 [μ]
−
m2

(ϕ)〉L2(∂�μ) = 0,

〈Vn1,m1 [μ]
+
m1

(ϕ), Vn2,m2 [μ]
−
m2

(ϕ)〉L2(∂�μ) = 0,

〈Vn1,m1 [μ]
−
m1

(ϕ), Vn2,m2 [μ]
+
m2

(ϕ)〉L2(∂�μ) = 0.

Let P∗ = (ημ, ϑ, ϕ), i.e., with cosh ημ = 1/μ. For m1 = m2 = m, direct calculation
leads readily to

〈Vn1,m[μ]
+
m(ϕ), Vn2,m[μ]
+

m(ϕ)〉L2(∂�μ)

= μ3 sinh ημ (1 + δ0,m)π

∫ π

0
Vn1,m[μ](P∗)Vn2,m[μ](P∗) sin ϑ

∣∣sin(ϑ − iημ)
∣∣2 dϑ,

where we have used that

∣∣ζ(μ, P∗)
∣∣1/2 = μ

∣∣∣∣1 − (cosϑ cosh ημ + i sin ϑ sinh ημ)2
∣∣∣∣
1/2

= μ
∣∣sin(ϑ − iημ)

∣∣
= μ

(
cosh2 ημ − cos2 ϑ

)1/2
.

From this point on, the proof follows the argument used in Theorem 10 of assuming
that n1 > n2, in association with the facts

∫ π

0
Pm

n1(cosϑ)Pm
n2−2k(cosϑ) sin ϑ dϑ = 0,

∫ π

0
Pm

n1+1(cosϑ) cosϑ Pm
n2−2k(cosϑ) sin ϑ dϑ = 0.

By (38), we then find in combination with Theorem 7 and Proposition 9 that

〈Vn1,m[μ]
+
m(ϕ), Vn2,m[μ]
+

m(ϕ)〉L2(∂�μ)

= 2π(1 + δ0,m) (n + m + 1)!(n + 2 − m)

μ2n+3(n + 1 − m)! βn,mβn+1,m δn1,n2

× sinh ημ Qm
n (1/μ)Qm

n+2(1/μ), (62)

with exactly the same formula when 
+
m(ϕ) is replaced by 
−

m(ϕ), m > 0. The
calculation of the norms of V ±

n,m[μ] comes from taking n1 = n2 in (62) and using
relation (14). The statement follows. ��



Orthogonal Harmonic and Quaternionic Monogenic… Page 25 of 40 71

4 Spheroidal Monogenic Functions

In this section, we combine the results from the previous sections to construct a com-
mon orthogonal basis for the one-parameter family of monogenic L2-Hilbert spaces
applicable to the exterior of a spheroid of given eccentricity. We express the elements
of such a basis in terms of the proper external harmonic functions (37). In an earlier
paper [19], we treated the analogous problem for prolate spheroids. We borrow some
of these techniques and fit many results into the present case. In particular, we can
consider the prolate and oblate spheroidal monogenics simultaneously.

4.1 Notation

We are interested in a theory of functions from the space domain �∗
μ to R

3. For this
purpose, we consider the set

H = {x = x0 + ix1 + jx2 + kx3 : xi ∈ R, i = 0, 1, 2, 3}

of (real) quaternions, where i, j,k are the quaternionic imaginary units obeying the
multiplication rules i2 = j2 = k2 = ijk = −1. One usually writes x = Sc(x)−Vec(x)
(here Sc(x) = x0 and Vec(x) = ix1 + jx2 + kx3 denote the scalar and vector parts of
x) and |x| = (xx)1/2 = (xx)1/2 = (∑3

i=0 x2i
)1/2 for the conjugate and absolute value

operations on H as in [10, 11, 18, 29]. We identify the Euclidean space R3 = {x =
(x0, x1, x2)} with the real vector subspace of reduced quaternions

{x = x0 + ix1 + jx2} ⊆ H,

i.e., with vanishing k-term. Although this subspace is not closed under quaternionic
multiplication, it is possible to carry out a great deal of the analysis analogous to that
of complex numbers [12, 13].

Consider the usual first-order differential generalized Cauchy–Riemann (or Fueter)
operator

∂ = ∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2

and its conjugate

∂ = ∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
(63)

on functions f : � → R
3 on any domain � ⊆ R

3, with f = [f]0 + i[f]1 + j[f]2
where [f]i : � → R (i = 0, 1, 2). As in [5, 12, 13], f is called monogenic when
∂f = 0. While ∂ does not generally commute with quaternionic functions, since
we are considering R

3-valued functions in this paper, the definition of monogenic
function does not depend on whether one applies ∂ from the left or the right since
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−k(∂f)k = f∂ . For domains � ⊆ R
3, we write M(�) = Ker ∂ ⊆ C1(�,R3) and

M2(�) = M(�) ∩ L2(�,R3), where L2(�,R3) denotes the R-linear space of all
R
3-valued functions f , such that the real component functions [f]i are in the usual

L2(�). Monogenic functions are harmonic, but not vice-versa.

4.2 Basic External Spheroidal Monogenics

In analogy to the definition (37) for harmonic functions, we define the required
spheroidal monogenics to be employed for the space exterior of the prescribed
spheroids (20) as follows.

Definition 3 Let U±
n,m[μ] have the same meaning as in Definition 1. Let n ≥ −1 and

0 ≤ m ≤ n + 1. The basic external spheroidal monogenics of degree −(n + 3) and
order m are

X±
n,m[μ] = ∂U±

n+1,m[μ]. (64)

The statement that X±
n,m[μ] is monogenic is seen from the factorization of the

Laplacian in R
3 by �3 = ∂∂ . We continue with the convention that m ≥ 1 when the

“-” sign appears in a superscript.
In the following theorem, we express the basic monogenics in terms of their quater-

nionic components. (The functions V ±
n,−1[μ] defined by (39) are involved in the

representation (66) for zero-order monogenic functions.)

Theorem 12 Let V ±
n,m[μ] have the same meaning as in (38). For all n ≥ 0, the basic

external spheroidal monogenics (64) are equal to

X+
−1,0[μ] = − sinh η cosϑ + (i cosϕ + j sin ϕ) cosh η sin ϑ

μ2 sinh η (cosh2 η − cos2 ϑ)
, (65)

X±
n,m[μ] = V ±

n,m[μ] + i
2

(
(n + 2 − m)V ±

n,m−1[μ] − 1

n + 1 − m
V ±

n,m+1[μ]
)

∓ j
2

(
(n + 2 − m)V ∓

n,m−1[μ] + 1

n + 1 − m
V ∓

n,m+1[μ]
)

(66)

for 0 ≤ m ≤ n, and

X±
n,n+1[μ] = V ±

n,n+1[μ] + i
2

(
V ±

n,n[μ] − μ cosh η

2(2n + 5) cosϑ
V ±

n+1,n+2[μ]
)

∓ j
2

(
V ∓

n,n[μ] + μ cosh η

2(2n + 5) cosϑ
V ∓

n+1,n+2[μ]
)

. (67)

Further, they are functions in x0, x1, x2.

Proof As derivatives of functions, the basic monogenics are also functions in the
variables x0, x1, x2. To proceed with the proof, we write the operator (63) in prolate
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spheroidal coordinates (21):

∂ = 1

μ(cosh2 η − cos2 ϑ)

(
cosϑ sinh η

∂

∂η
− sin ϑ cosh η

∂

∂ϑ

)

− 1

μ(cosh2 η − cos2 ϑ)
(i cosϕ + j sin ϕ)

(
sin ϑ cosh η

∂

∂η
+ cosϑ sinh η

∂

∂ϑ

)

− 1

μ sin ϑ sinh η
(−i sin ϕ + j cosϕ)

∂

∂ϕ
.

The first line of the above expression applied to the functions U±
n+1,m[μ] produces the

scalar parts of X±
n,m[μ].

The expression (65) is trivial. Now, let 0 ≤ m ≤ n. For the nonscalar parts of
X±

n,m[μ], we combine the identities (8)–(15) and (9)–(16) to find

2μn+2

βn+1,m
±
m

(
cosϑ sinh η

∂

∂ϑ
+ sin ϑ cosh η

∂

∂η

)
U±

n+1,m[μ]

= (n + m + 1)(n + 2 − m)

(
− cosϑ sinh η Pm−1

n+1 (cosϑ)Qm
n+1(cosh η)

+ sin ϑ cosh η Pm
n+1(cosϑ)Qm−1

n+1 (cosh η)

)

+ cosϑ sinh η Pm+1
n+1 (cosϑ)Qm

n+1(cosh η)

+ sin ϑ cosh η Pm
n+1(cosϑ)Qm+1

n+1 (cosh η). (68)

Next, we use the relations (7)–(14) and (12)–(18), obtaining

cosϑ sinh η Pm+1
n+1 (cosϑ)Qm

n+1(cosh η)

+ sin ϑ cosh η Pm
n+1(cosϑ)Qm+1

n+1 (cosh η)

= μn+3(cosh2 η − cos2 ϑ)

(n + 1 − m)(n + m + 2)βn+1,m+1
Vn,m+1[μ].

Furthermore, using (10) and its counterpart (17), we arrive at

− μn+3(cosh2 η − cos2 ϑ)

βn+1,m−1
Vn,m−1[μ] = sin ϑ cosh η Pm

n+1(cosϑ)Qm−1
n+1 (cosh η)

− cosϑ sinh η Pm−1
n+1 (cosϑ)Qm

n+1(cosh η).

With these calculations at hand, we have

− 1

μ(cosh2 η − cos2 ϑ)

(
sin ϑ cosh η

∂

∂η
+ cosϑ sinh η

∂

∂ϑ

)
U±

n+1,m[μ]



71 Page 28 of 40 J. Morais

= (n + 2 − m)

2
Vn,m−1[μ]
±

m − 1

2(n + 1 − m)
Vn,m+1[μ]
±

m .

Similarly, according to (11)–(18) and (12)–(19), one can prove that

1

μ sin ϑ sinh η

∂

∂ϕ
U±

n+1,m[μ]

= ∓ m βn+1,m

μn+3(cosh2 η − cos2 ϑ)

∓

m

×
(
sinh η Pm

n+1(cosϑ)Qm
n+1(cosh η)

sin ϑ
+ sin ϑ Pm

n+1(cosϑ)Qm
n+1(cosh η)

sinh η

)

= ±1

2

(
1

n + 1 − m
Vn,m+1[μ] + (n + 2 + m)Vn,m−1[μ]

)

∓

m . (69)

Combining the above formulas, together with the relations


±
m cosϕ ± 
∓

m sin ϕ = 
±
m−1, (70)

−
±
m cosϕ ± 
∓

m sin ϕ = −
±
m+1, (71)


±
m sin ϕ∓
∓

m cosϕ = ∓
∓
m−1, (72)

−
±
m sin ϕ∓
∓

m cosϕ = ∓
∓
m+1, (73)

one straightforwardly obtains the desired expressions for (∂/∂x1)U
±
n+1,m[μ] and

(∂/∂x2)U
±
n+1,m[μ].

Now, we compute (67). By (68), we find

2μn+2

βn+1,n+1

±
n+1

(
cosϑ sinh η

∂

∂ϑ
+ sin ϑ cosh η

∂

∂η

)
U±

n+1,n+1[μ]

= 2(n + 1)

(
− cosϑ sinh η Pn

n+1(cosϑ)Qn+1
n+1(cosh η)

+ sin ϑ cosh η Pn+1
n+1 (cosϑ)Qn

n+1(cosh η)

)

+ sin ϑ cosh η Pn+1
n+1 (cosϑ)Qn+2

n+1(cosh η)

= μn+3(cosh2 η − cos2 ϑ)

(
μ(2n + 2)! cosh η

2n+3(1/2)n+3 cosϑ
Vn+1,n+2[μ]− 2(n + 1)

βn+1,n
Vn,n[μ]

)
.

On the other hand, we find from (69) that

1

μ sin ϑ sinh η

∂

∂ϕ
U±

n+1,n+1[μ]

= ± (n + 1) βn+1,n+1

βn+1,n
Vn,n[μ]
∓

n+1



Orthogonal Harmonic and Quaternionic Monogenic… Page 29 of 40 71

∓ βn+1,n+1

2(2n + 3)μn+3(cosh2 η − cos2 ϑ)
Pn+2

n+2 (cosϑ)Qn+2
n (cosh η)
∓

n+1.

Using the expressions (70)–(73) for m = n + 1, the required expression (67) follows.
This establishes the proof of the theorem. ��

To motivate the relevance of the expressions stated in Theorem 12, explicit recur-
rence rules between the basic external spheroidal monogenics are discussed below.

Proposition 13 For each n ≥ 0 and 0 ≤ m ≤ n, the following recursive formula
holds:

X±
n,m[μ] = (n + 2 − m)

2

(
X±

n,m−1[μ] i∓X∓
n,m−1[μ] j

)

− 1

2(n + 1 − m)

(
X±

n,m+1[μ] i ± X∓
n,m+1[μ] j

)
. (74)

For m = 0, we must take into account that

X±
n,−1[μ] = ∓ 1

(n + 1)(n + 2)
X±

n,1[μ].

Proof The proof is an immediate consequence of Theorem 12 by direct inspection of
the relations between the quaternionic components of the basic monogenics (66)–(67).

��
From this, we easily deduce the further result:

Corollary 2 For each n ≥ 0 and 0 ≤ m ≤ n + 1, the following recursive formula
holds:

(n + 2 − m)
(
X+

n,m−1[μ] − X−
n,m−1[μ]k

)
+ X+

n,m[μ]i + X−
n,m[μ]j = 0.

4.3 Conversions Among Spheroidal and Solid Spherical Monogenics

As a significant consequence of Theorem 12 and Proposition 3, together with (45), we
obtain an explicit representation of the external solid spherical monogenics employing
the external solid spherical harmonics.

Corollary 3 For allx ∈ R
3\{0}, the limits limμ→0 X

+
−1,0[μ](x)and limμ→0 X±

n,m[μ](x)
exist and are given, respectively, by

X+
−1,0[0](x) = − x

|x|3 ,

X±
n,m[0](x) = − (n + 2 − m)U±

n+2,m[0](x)

− i
2

(
(n + 2 − m)(n + 3 − m)U±

n+2,m−1[0](x) − U±
n+2,m+1[0](x)

)
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± j
2

(
(n + 2 − m)(n + 3 − m)U∓

n+2,m−1[0](x) + U∓
n+2,m+1[0](x)

)
,

where the U±
n,m[0] have the same meaning as in (28).

This result shows that X+
−1,0[μ] leads to the Cauchy–Fueter kernel, except for the

normalization factor −1/4π when μ → 0. This observation is fundamental not only
to ensure that the basic external spheroidal monogenics (64) are well-defined on the
exterior of the prescribed spheroids �μ but also it gives evidence of the completeness
of these functions in the space M2(�

∗
μ) (see Theorem 18 below).

GivenCorollary 1, it is natural to find the direct and inverse transformation formulas
that permit passing from external solid spherical to spheroidal monogenics.

Theorem 14 Let n ≥ 0 and 0 ≤ m ≤ n + 1. Then

X±
n,m[μ] =

∞∑
k=0

αn+1,m,k μ2k X±
n+2k,m[0], (75)

X±
n,m[0] =

∞∑
k=0

α̃n+1,m,k μ2k X±
n+2k,m[μ]. (76)

Here αn,m,k and α̃n,m,k have the same meaning as in Proposition 8.

Proof For simplicity in the proof, we only prove the direct transformation formula
(75). The identity (76) can be established similarly. We fix n, m, μ, and the choice of
sign ±. According to (66), we want to show that X±

n,m[μ] is equal to

A =
∞∑

k=0

μ2k
(

A0,k + i
2

A1,k∓ j
2

A2,k

)
,

where the quaternionic components are given by

A0,k = αn+1,m,k V ±
n+2k,m[0],

A1,k = (n + 2 − m + 2k)αn+1,m,k V ±
n+2k,m−1[0]

− 1

n + 1 − m + 2k
αn+1,m,k V ±

n+2k,m+1[0],
A2,k = (n + 2 − m + 2k)αn+1,m,k V ∓

n+2k,m−1[0]
+ 1

n + 1 − m + 2k
αn+1,m,k V ∓

n+2k,m+1[0].

According to (48), we obtain

A1,k = (n + 2 − m)αn+1,m−1,k V ±
n+2k,m−1[0]

− 1

n + 1 − m
αn+1,m+1,k V ±

n+2k,m+1[0]
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and

A2,k = (n + 2 − m)αn+1,m−1,k V ∓
n+2k,m−1[0]

+ 1

n + 1 − m
αn+1,m+1,k V ∓

n+2k,m+1[0],

By Corollary 1, it follows that

∞∑
k=0

A0,k = V ±
n,m[μ],

∞∑
k=0

A1,k = (n + 2 − m)V ±
n,m−1[μ] + 1

n + 1 − m
V ±

n,m+1[μ],
∞∑

k=0

A2,k = (n + 2 − m)V ∓
n,m−1[μ] − 1

n + 1 − m
V ∓

n,m+1[μ].

This justifies the assertion X±
n,m[μ] = A according to (66). Similarly, we can show

that (75) holds when m = n + 1 in view of (67). The statement is established. ��

4.4 Orthogonality Properties of the Basic Monogenics

In this section, we prove that the basic external spheroidal monogenics (64) are orthog-
onal over the exterior and surface of the prescribed spheroids �μ.

We have

Theorem 15 Let μ be fixed. For each n ≥ 0, the collection

{X+
−1,0[μ]} ∪ {X+

n,m[μ] : 0 ≤ m ≤ n + 1} ∪ {X−
n,m[μ] : 1 ≤ m ≤ n + 1} (77)

forms an orthogonal family in M2(�
∗
μ) in the sense of the scalar inner product

〈f, g〉L2(�∗
μ,R3) = Sc

∫∫∫
�∗

μ

f(x)g(x) dx. (78)

Their norms squared are equal to

‖X+
−1,0[μ]‖22 = 4π

μ
tanh−1(μ),

‖X±
n,m[μ]‖22 = π 4n+1(1/2)n+1(1/2)n+2

μ2n+3(
2

(n + 1)2(n!)2 δ0,m In,1(μ)

+ 1

(n + 1 + m)!(n + 1 − m)!
(
4(n + 2 − m)(n + 1 + m)
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(1 + δ0,m)In,m(μ)

+ ((n + 1)2 − (m − 1)2)((n + 1)2 − m2)In,m−1(μ) + In,m+1(μ)

)

for 0 ≤ m ≤ n, and

‖X±
n,n+1[μ]‖22 = 22n+5π(n + 1)

μ2n+3

(
In,n+1(μ) + (2n + 1)(1 + δ0,n)In,n(μ)

+ 1

8(n + 1)
In,n+2(μ)

)
,

where In,m(μ) has the same meaning as in (36).

Proof Combining (65) and (66), and applying the trigonometric identities

cosϕ 
±
m−1∓ sin ϕ 
∓

m−1 = 
±
m,

cosϕ 
±
m+1 ± sin ϕ 
∓

m+1 = 
±
m,

direct computation shows that

Sc(X+
−1,0[μ]X±

n,m[μ]) μ3(cosh2 η − cos2 ϑ) sin ϑ sinh η

= −μ

(
cosϑ sin ϑ sinh η Vn,m[μ] − (n + 2 − m)

2
cosh η sin2 ϑ Vn,m−1[μ]

+ (n + 2 − m)

2
cosh η sin2 ϑ Vn,m+1[μ]

)

±

m(ϕ).

According to the definition of the integral (78) and Proposition 9, the identities∫ 2π
0 
±

m(ϕ)dϕ = 0 for m > 0 imply that

〈X+
−1,0[μ],X±

n,m[μ]〉L2(�∗
μ,R3)

=
∫∫∫

�∗
μ

(
[X+

−1,0[μ]]0[X±
n,m[μ]]0 + [X+

−1,0[μ]]1[X±
n,m[μ]]1

+ [X+
−1,0[μ]]2[X±

n,m[μ]]2
)

dx

= −2πμ

(∫ ∞

ημ

sinh η

(∫ π

0
Vn,0[μ]P1(cosϑ) sin ϑ dϑ

)
dη

+ 1

n + 1

∫ ∞

ημ

cosh η

( ∫ π

0
Vn,1[μ]P1

1 (cosϑ) sin ϑ dϑ

)
dη

)

= 0

for all n ∈ N0.
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Likewise, by the same reasoning,

〈X+
−1,0[μ],X±

n,n+1[μ]〉L2(�∗
μ,R3)

= −μ

(∫ ∞

ημ

∫ π

0

(
cosϑ sin ϑ sinh η Vn,n+1[μ] − 1

2
sin2 ϑ cosh η Vn,n[μ]

+ μ sin2 ϑ cosh2 η

4(2n + 5) cosϑ
Vn+1,n+2[μ]

)
dηdϑ

) ∫ 2π

0

±

n+1(ϕ)dϕ

= 0

for all n ∈ N0.
Now, we compute 〈X±

n1,m1
[μ],X±

n2,m2
[μ]〉L2(�∗

μ,R3). According to (66) and Theo-
rem 10, we have

∫∫∫
�∗

μ

[X±
n1,m1

[μ]]0[X±
n2,m2

[μ]]0 dx = ‖V ±
n1,m1

[μ]‖22 δn1,n2δm1,m2 . (79)

Thus, to verify the orthogonality of the X±
n,m[μ], it suffices to show that the vector

parts of the functions X±
n,m[μ] are orthogonal.

Expanding the integrands and applying the trigonometric identities


±
m1−1


±
m2−1 + 
∓

m1−1

∓
m2−1 = 
+

m1−m2
, (80)


±
m1+1


±
m2+1 + 
∓

m1+1

∓
m2+1 = 
+

m1−m2
, (81)

−
±
m1−1


±
m2+1 + 
∓

m1−1

∓
m2+1 = ∓
+

m1+m2
, (82)

−
±
m1+1


±
m2−1 + 
∓

m1+1

∓
m2−1 = ∓
+

m1+m2
, (83)

we find

∫∫∫
�∗

μ

([X±
n1,m1

[μ]]1[X±
n2,m2

[μ]]1 + [X±
n1,m1

[μ]]2[X±
n2,m2

[μ]]2
)
dx

= 1

4

(
p1 p2

∫∫∫
�∗

μ

Vn1,m1−1[μ]Vn2,m2−1[μ]
+
m1−m2

dx

∓ p1
p2 − 1

∫∫∫
�∗

μ

Vn1,m1−1[μ]Vn2,m2+1[μ]
+
m1+m2

dx

∓ p2
p1 − 1

∫∫∫
�∗

μ

Vn1,m1+1[μ]Vn2,m2−1[μ]
+
m1+m2

dx

+ 1

(p1 − 1)(p2 − 1)

∫∫∫
�∗

μ

Vn1,m1+1[μ]Vn2,m2+1[μ]
+
m1−m2

dx
)

,

where pi = ni + 2 − mi (i = 1, 2).
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We continue the calculations only for the prolate case. The following identities∫ 2π
0 
+

m1±m2
(ϕ)dϕ = 2πδm1,m2 for m1, m2 > 0 imply that

∫∫∫
�∗

μ

([X±
n1,m1

[μ]]1[X±
n2,m2

[μ]]1 + [X±
n1,m1

[μ]]2[X±
n2,m2

[μ]]2
)
dx

= π p1(n2 + 2 − m1)

2
δm1,m2

∫ ∞

ημ

∫ π

0
Vn1,m1−1[μ]Vn2,m1−1[μ] d R

− π(n1 + 2)

2(n2 + 1)
δm1,0

∫ ∞

ημ

∫ π

0
Vn1,−1[μ]Vn2,1[μ] d R

− π(n2 + 2)

2(n1 + 1)
δm1,0

∫ ∞

ημ

∫ π

0
Vn1,1[μ]Vn2,−1[μ] d R

+ π

2(p1 − 1)(n2 + 1 − m1)
δm1,m2

∫ ∞

ημ

∫ π

0
Vn1,m1+1[μ]Vn2,m1+1[μ] d R,

where d R has the same meaning as in (34).
In consequence, using (39), we find

∫∫∫
�∗

μ

([X±
n1,m1

[μ]]1[X±
n2,m2

[μ]]1 + [X±
n1,m1

[μ]]2[X±
n2,m2

[μ]]2
)
dx

= π p1(n2 + 2 − m1)

2
δm1,m2

∫ ∞

ημ

∫ π

0
Vn1,m1−1[μ]Vn2,m1−1[μ] d R

+ π

(n1 + 1)(n2 + 1)
δm1,0

∫ ∞

ημ

∫ π

0
Vn1,1[μ]Vn2,1[μ] d R

+ π

2(p1 − 1)(n2 + 1 − m1)
δm1,m2

∫ ∞

ημ

∫ π

0
Vn1,m1+1[μ]Vn2,m1+1[μ] d R.

Now, using again the orthogonality of Theorem 10, we are left with

∫∫∫
�∗

μ

([X±
n1,m1

[μ]]1[X±
n2,m2

[μ]]1 + [X±
n1,m1

[μ]]2[X±
n2,m2

[μ]]2
)
dx

= π

2μ2n1+3

(
p21 γn1,m1−1 In1,m1−1(μ) + 2

(n1 + 1)2
γn1,1 In1,1(μ)δm1,0

+ 1

(p1 − 1)2
γn1,m1+1 In1,m1+1(μ)

)
δn1,n2δm1,m2 , (84)

with In,m(μ) defined by (36). Combining (79) and (84), we conclude that 〈X+
n1,m1

[μ],
X+

n2,m2
[μ]〉L2(�∗

μ,R3) = 0 when n1 �= n2 or m1 �= m2. Similarly, 〈X−
n1,m1

[μ],
X−

n2,m2
[μ]〉L2(�∗

μ,R3) = 0 when n1 �= n2 or m1 �= m2. Using the orthogonality of the

system {
±
m} on [0, 2π ] again,we conclude that 〈X±

n1,m1
[μ],X∓

n2,m2
[μ]〉L2(�∗

μ,R3) = 0
when the indices do not coincide.
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Now, applying the trigonometric identities

−
±
m1−1 
±

n2+2 + 
∓
m1−1 
∓

n2+2 = ∓
+
m1+n2+1,


±
m1+1 
±

n2+2 + 
∓
m1+1 
∓

n2+2 = 
+
m1−n2−1,

it follows from (43) and (67), in combination with Proposition 9, that

〈X±
n1,m1

[μ],X±
n2,n2+1[μ]〉L2(�∗

μ,R3) = 0.

Similarly,

〈X±
n1,m1

[μ],X∓
n2,n2+1[μ]〉L2(�∗

μ,R3) = 0.

Furthermore, using the trigonometric identities (80)–(83) for m1 = n1 + 1 and m2 =
n2 + 1, by (67) and (58), it follows that

〈X±
n1,n1+1[μ],X±

n2,n2+1[μ]〉L2(�∗
μ,R3)

= (
2 γn1,n1+1 In1,n1+1(μ) + γn1,n1(1 + δ0,n1)In1,n1(μ)

) π

μ2n1+3 δn1,n2

+ μ2π

8(2n1 + 5)(2n2 + 5)
δn1,n2

∫ ∞

ημ

∫ π

0

Vn1+1,n1+2[μ]Vn2+1,n2+2[μ] cosh2 η

cos2 ϑ
d R.

(85)

This establishes the orthogonality statement.
The calculation of the L2-norms of X±

n,m[μ] for 0 ≤ m ≤ n comes from taking
n1 = n2 and m1 = m2 in (84) and adding expression (58). By the symmetric form
of the X±

n,m[μ] in (66), it follows that ‖X+
n,m[μ]‖2 = ‖X−

n,m[μ]‖2 when m �= 0.
Furthermore, taking n1 = n2 in (85) and combining (43), (55), and (56), we find

‖X±
n,n+1[μ]‖22
= (

2 γn,n+1 In,n+1(μ) + γn,n(1 + δ0,n)In,n(μ)
) π

μ2n+3

+ π 4n+2((1/2)n+3)
2

(2n + 5)2(2n + 3)! μ2n+3

∫ ∞

ημ

cosh η Qn+2
n+1(cosh η)Qn+2

n+2(cosh η) sinh η dη.

Using the relation Qn+2
n (cosh η) = sinh η Qn+2

n+1(cosh η), which follows from (56),
the statement follows. The proof is now completed. ��

The corresponding orthogonality of the basic spheroidal monogenics over the sur-
face of the prescribed spheroids follows immediately from Theorems 11 and 15.

Theorem 16 Let |ζ(μ, x)| have the same meaning as in (24). For fixed μ, the collection
(77) forms an orthogonal family over the surface of the spheroids �μ in the sense of
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the scalar product

〈f, g〉L2(∂�μ,R3) = Sc
∫∫

η=ημ

f(x)g(x) |ζ(μ, x)|1/2 dσ. (86)

4.5 An Orthogonal Basis of External Spheroidal Monogenics

The results of the preceding sections enable us to prove the following theoremabout the
approximation of a smooth function f in M2(�

∗
μ) expanded as a linear combination

of basic external spheroidal monogenics. Although the proof of this fact follows the
same argument as in [19], since it is necessary to employ the definitions (25) and (64),
we include the proof for the completeness of the presentation.

Theorem 17 Suppose f ∈ M2(�
∗
μ) ∩ C1(�μ,R3) and let μ be fixed. The monogenic

Fourier series expansion of f with respect to the collection (77),

∞∑
n=−1

n+1∑
m=0

1

‖X±
n,m[μ]‖2

(
a+

n,m[μ]X+
n,m[μ] + a−

n,m[μ]X−
n,m[μ]) (87)

converges to f in the L2-sense, where the (real) Fourier coefficients a±
k,m[μ] are given

by

a±
k,m[μ] = 1

‖X±
k,m[μ]‖2

〈f,X±
k,m[μ]〉L2(�∗

μ,R3).

Proof Suppose that f ∈ M2(�
∗
μ). Hence, there exists a real-valued harmonic function

h in �∗
μ such that (1/2)∂h = f . Moreover, the restriction of h on �μ is a twice

continuously differentiable function. Now, let g(ϑ, ϕ) be a function defined on the
unit sphere, which is related to the value of T r�μh on the prescribed spheroid by
g(ϑ, ϕ) = T r�μh(ϑ, ϕ) = h(ημ, ϑ, ϕ), with cosh ημ = 1/μ by (22). (The trace
operator T r�μ describes just the restriction onto the boundary �μ.) Since g(ϑ, ϕ) is
a twice continuously differentiable function on the unit sphere, it can be expressed
employing a series of surface spherical harmonics,

g(ϑ, ϕ) =
∞∑

n=0

n∑
m=0

Pm
n (cosϑ)

(
α+

n,m
+
m(ϕ) + α−

n,m
−
m(ϕ)

) = T r�μh(ϑ, ϕ). (88)

It was shown in [15, 25] that the above expansion is absolutely and uniformly conver-
gent with respect to (ϑ, ϕ) ∈ �0.

For simplicity, we again assume that μ ∈ (0, 1). Extending (88) to �∗
μ leads to a

series expansion of h in terms of the basic external spheroidal harmonics (25):

h =
∞∑

n=0

n∑
m=0

βn,m

μn+1

Qm
n (cosh η)

Qm
n (1/μ)

Pm
n (cosϑ)

(
α+

n,m
+
m(ϕ) + α−

n,m
−
m(ϕ)

)
. (89)
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Using the results of [14, pp.417–421], we find
∣∣Qm

n (cosh η)/Qm
n (1/μ)

∣∣ < 1 for all
n, m = 0, 1, . . . and fixed μ > 0. Under the previous circumstances, it then follows
that the series (89) converges uniformly and absolutely to h in �∗

μ.
Moreover, since h is harmonic in �∗

μ and twice continuously differentiable on the
boundary �μ, it yields the absolute and uniform convergence of its first derivatives in
�∗

μ ∪�μ. In particular, the corresponding series expansion for the derivatives, namely

∞∑
n=0

n∑
m=0

(
α+

n,m[μ]
Qm

n (1/μ)
X+

n−1,m[μ] + α−
n,m[μ]

Qm
n (1/μ)

X−
n−1,m[μ]

)
(90)

converges uniformly and absolutely to f = (1/2)∂h in �∗
μ ∪ �μ. This further implies

the L2-convergence in every subset �∗
μ ∩ Br , where Br is a ball with some radius

r > 0, which contains �μ. More precisely, denote by SN the finite sum of the first
N -summands in the series (90). For any ε > 0, there exists a natural number N (ε)

such that

sup
x∈�∗

μ ∪�μ

|SN (ε)(x) − f(x)| < ε.

We have then

‖SN (ε) − f‖2L2(�∗
μ ∩ Br ,R3)

< ε2 vol(�∗
μ ∩ Br ).

For the exterior domain of Br , we use another estimation. Let 0 < r1 < r such that
�μ ⊂ Br1 . By the Cauchy integral formula for quaternionic monogenic functions [11,
pp. 87-88], for all y ∈ R

3\Br , one finds

|SN (ε)(y) − f(y)| ≤ 1

4π

∫∫
∂ Br1

∣∣∣∣X+
−1,0[0](y − z)

∣∣∣∣|SN (ε)(z) − f(z)|dσ(z)

<
ε

4π

∫∫
∂ Br1

1

|y|2 − |z|2 dσ(z)

< ε
r21

|y|2 − r21
.

Now, the L2-norm of the difference between SN and f can be approximated by

‖SN (ε) − f‖2L2(R3\Br ,R3)
< (r21 ε)2

∫ ∞

r

∫ π

0

∫ 2π

0

ρ2 sin θ

(ρ2 − r21 )2
dϕdθdρ

< 4π(r21 ε)2
∫ ∞

r

ρ2

(ρ2 − r21 )2
dρ

< 4π(r21 ε)2
(

r

2(r2 − r21 )
− 1

4r1
log

r − r1
r + r1

)
.
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To sum up, for an arbitrary small ε > 0, we can find a natural number N (ε) such that
‖SN (ε) − f‖2 < ε. Thus, the series expansion (90) converges to f in the whole domain
�∗

μ in the sense of the L2-norm, which is the desired result. The theorem follows. ��
From this theorem, we deduce the further result:

Corollary 4 Suppose f ∈ M2(�
∗
μ) and let μ be fixed. Then the restriction of f in �∗

μ

can be represented by its Fourier series expansion of the form (87). Further, this series
expansion converges to f in the L2-sense.

Corollary 5 Any function in the collection

{X+
−1,0[0]} ∪ {X+

n,m[0] : 0 ≤ m ≤ n + 1} ∪ {X−
n,m[0] : 1 ≤ m ≤ n + 1} (91)

can be represented by its Fourier series expansion of the form (87).

To conclude, the general result is that

Theorem 18 For fixed μ, the collection (77) forms an orthogonal basis of M2(�
∗
μ).

Proof This result is proved by first approximating f in M2(�
∗
μ) from the set (91)

(which, in fact, forms an orthogonal basis of M2(�
∗
0), see [19]), and then by the

collection (77) of basic external spheroidal monogenics. ��
This theorem is the generalization of that of [19], which corresponds to the case of

prolate spheroids.

5 Concluding Remarks

We introduced a single one-parameter family of basic external spheroidal harmonics
that assume prescribed values on the boundary of the family of coaxial spheroidal
domains �μ. The basic harmonics are functions in x0, x1, x2 which were normalized
so that the limiting case μ → 0 gives the classical external solid spherical harmonics.
The nonorthogonality of the basic harmonics in the L2-Hilbert space structure led to
the discussion of the proper external spheroidal harmonics. Underlying our manipu-
lations is a set of conversion formulas that relate the coefficients of the expansions
among the spheroidal and spherical harmonic systems. The basic external spheroidal
monogenic functions were calculated explicitly, and formulas for their nonscalar parts
were obtained in terms of the proper harmonics. Ordinary methods based on decom-
posing a function space into subspaces of homogeneous functions fail to prove the
completeness of a monogenic function system constructed through the basic exter-
nal spheroidal monogenics because of the appearance of logarithmic functions. The
technique we employed to build an orthogonal basis for the one-parameter family of
monogenic L2-Hilbert spaces in the space exterior of �μ was based on the harmonic
extension of a function defined on the boundary of the spheroid �μ to the exterior
domain �∗

μ.
We will extend our results in a future paper to external spheroidal monogenics

taking values in the space of full quaternions (with a right R-linear structure), using
the theoretical basis presented in [21].
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