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Abstract
We study the Hamiltonian for a system of N identical bosons interacting with an impu-
rity, i.e., a different particle, via zero-range forces in dimension three. It is well known
that, following the standard approach, one obtains the Ter-Martirosyan Skornyakov
Hamiltonian which is unbounded from below. In order to avoid such instability prob-
lem, we introduce a three-body force acting at short distances. The effect of this force
is to reduce to zero the strength of the zero-range interaction between two particles,
i.e., the impurity and a boson, when another boson approaches the common position
of the first two particles. We show that the Hamiltonian defined with such regularized
interaction is self-adjoint and bounded from below if the strength of the three-body
force is sufficiently large. The method of the proof is based on a careful analysis of
the corresponding quadratic form.

Keywords Quantum mechanics · Zero-range interactions ·Many-body
Hamiltonians · Schrödinger operators
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1 Introduction

Hamiltonians with zero-range interactions are often used in Quantum Mechanics as
toy models to describe the low energy behavior of aparticle system. The advantage
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is that zero-range interactions are structurally simple, allow in many cases to make
explicit computations and, at least formally, are characterized by a single physical
parameter known as two-body scattering length. The mathematical construction of
such Hamiltonians as self-adjoint (s.a.) and, possibly, lower bounded operators in a
proper Hilbert space requires some care. In the one-body case a complete theory is
available [3],while in then-body case the situation depends on the space dimensions. In
dimension one perturbation theory applies and the model is well understood (see, e.g.,
[4, 16] for recent contributions). In dimension two, using the same kind of boundary
condition used in the one-body case, the s.a. and bounded from below Hamiltonian
can be constructed [10, 11] and analysed in detail (see, e.g., [15]). On the other hand,
in dimension three for n = 3 it is known ([18], see also [19]) that the same procedure
leads to a symmetric but non s.a. operator. In order to restore self-adjointness one has
to specify the behaviour of the wave function close to the triple coincidence point, i.e.,
where the positions of the three particles coincide. This means that a further three-
body boundary condition is required, corresponding to a sort of three-body force acting
between the particles. The three-body boundary condition introduced in [18] (see also
the recent papers [13, 17] and the references therein) leads to aHamiltonian unbounded
from below which is unsatisfactory from the physical point of view. Such instability
property is known as Thomas effect and it is due to the fact that the interaction becomes
too singular when all the three particles are close to each other (we just recall that the
situation is rather different for systems made of two species of fermions, see, e.g., [8,
9], [20–22]).
Following a suggestion contained in [18] (see also [2]), it has been recently proposed
([12], [5, 17, section 9], [13, section 6]) a regularized version of theHamiltonian for the
three-boson system with a different type of three-body boundary condition. Roughly
speaking, such boundary condition corresponds to the introduction of an effective
scattering length which decreases to zero when the position of two particles coincides
and the third particle is close to the common position of the first two. In this sense, one
introduces a three-body interaction that reduces to zero the strength of the interaction
between two particles when the third particle approaches the common position of the
first two.
In this paper we exploit the same idea to construct the Hamiltonian in dimension
three for a gas of bosons interacting with an impurity. More precisely, we consider
a quantum system of N identical spinless bosons of mass m and we assume that
the bosons interact only with an impurity, i.e. a different particle of mass m0, via a
zero-range, two-body interaction. Let us denote by

HN+1 := L2(R3)⊗ L2sym(R3N ) ⊂ L2(R3(N+1)), N ≥ 2 (1.1)

the Hilbert space of the system. At a formal level, the Hamiltonian reads

Ĥ = − 1

2m0
�x0 −

1

2m

N∑

i=1
�xi + ν

N∑

i=1
δ(xi − x0), (1.2)
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where ν is a coupling constant and the free Hamiltonian is given by

H0 := − 1

2m0
�x0 −

1

2m

N∑

i=1
�xi , D(H0) =HN+1 ∩ H2(R3(N+1)). (1.3)

We want to define a rigorous counterpart of the formal operator (1.2) as a s.a. and
bounded from below operator H inHN+1. By definition, such an operator must be a
proper singular perturbation of H0 supported on the coincidence hyperplanes

π :=
N⋃

i=1
πi , πi :=

{
(x0, x1, . . . , xN ) ∈ R

3(N+1) ∣∣ xi = x0
}

. (1.4)

In particular, this means that H must satisfy the property

Hψ = H0ψ ∀ψ ∈ D(H0) s.t. ψ |π = 0. (1.5)

Motivated by this observation, we define the operator

Ḣ0 := H0|D(Ḣ0)
, D(Ḣ0) :=HN+1 ∩ H2

0 (R3(N+1) \ π) (1.6)

which is symmetric and closed according to the graph norm ofH0. Our goal is to find
the Hamiltonian H as a s.a. and bounded from below extension of Ḣ0.

A typical class of extensions is obtained by requiring that an element ψ of the
domain of H satisfies the following boundary condition on each hyperplane πi

ψ(x0, x1, . . . , xN ) =
ξ
(
mxi+m0x0

m+m0
, x1, . . . x̌i . . . , xN

)

|xi − x0|
+α0ξ(x0, x1, . . . x̌i . . . , xN )

+o(1) , for |xi − x0| −→ 0, (1.7)

for some ξ ∈ HN , where α0 is a real parameter and the notation x̌i denotes the
omission of the variable xi . The boundary condition (1.7) is a natural generalization
of the boundary condition satisfied in the one-body case ([3]). The two-body scattering
length between the impurity and a boson a is related to the parameterα0 via the relation

a = − 1

α0
. (1.8)

Clearly, the strength of the point interaction between the impurity and a boson goes
to zero as |α0| → +∞.

The s.a. extensions obtained by requiring the boundary condition (1.7) are the same
kind of lower-unbounded Hamiltonian studied in [18]. As already mentioned, in order
to obtain an energetically stable system, we introduce a suitable regularization in (1.7)
meant to handle the singularity associated with the triple-coincidence point. More
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precisely, we replace the parameter α0 by a new position dependent coupling constant
on each coincidence plane πi

α 
−→ α(x0, x1, . . . x̌i . . . , xN ),

where the function α : R3 ⊗ R
3(N−1)−→R is given by

α : (z, y1, . . . , yN−1) 
−→ α0 + γ

N−1∑

j=1

θ(| y j − z|)
| y j − z| , (1.9)

with γ > 0 and θ : R+−→R an essentially bounded function satisfying

1− r
b ≤ θ(r) ≤ 1+ r

b , for some b > 0. (1.10)

We observe that assumption (1.10) implies that θ is positive in a neighborhood of the
origin and it is continuous at zero, with θ(0) = 1. Simple choices for the function θ are
represented for instance by: the identically constant function θ ≡ 1; the characteristic
function θ(r) = 1b(r) of the ball of radius b centered at the origin; the decaying
exponential function θ(r) = e− r

b .
With the above replacement, we define the modified boundary condition

ψ(x0, x1, . . . , xN ) =
ξ
(
mxi+m0x0

m+m0
, x1, . . . x̌i . . . , xN

)

|xi − x0| +
+ (�i

regξ)(x0, x1, . . . x̌i . . . , xN )+ o(1) , for |xi − x0| −→ 0,

(1.11)

where �i
reg acts as follows

�i
reg : ξ 
−→ (αξ)(x0, x1, . . . x̌i . . . , xN ). (1.12)

In analogy with (1.7), the boundary condition (1.11) characterizes the point interac-
tion between the impurity and the i-th boson. The function α(x0, x1, . . . x̌i . . . , xN )

diverges if x j −→ x0, for any j 
= i and this means that the strength of the point
interaction between the impurity and the i-th boson decreases to zero when a third
particle, in our case another boson, approaches the common position of the first two
particles. In other words, as already pointed out, we are introducing a three-body
interaction meant to regularize the ultraviolet singular behavior occurring when the
positions of more than two particles coincide. We also stress that if supp θ is chosen
to be a compact, the usual two-body point interaction between the impurity and the
i-th boson is restored when the other particles are far enough.

The aim of this paper is to show that the modified boundary condition (1.11) allows
to give a rigorous construction of a s.a. and bounded from below Hamiltonian H.
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The approach is based on the theory of quadratic forms. More precisely, the starting
point of our analysis is a quadratic form inHN+1 (see (2.6)) associated to the expecta-
tion value of the energy of our system. Such a quadratic form is obtained by exploiting
the formal Hamiltonian (1.2) and by imposing the boundary condition (1.11) (the
derivation of the quadratic form can be done following the same line of [8]).

Our main result is the proof that for any γ larger than a threshold value γc, the
quadratic form is closed and bounded from below and therefore uniquely defines a s.a.
and bounded from below operatorH. Furthermore, domain and action of the operator
H are explicitly characterized. Such operator, by definition, is our Hamiltonian for the
boson gas interacting with an impurity via regularized zero-range interactions.

Let us stress twomain points of our analysis.We show that the three-body boundary
condition expressed in (1.11) is sufficient to obtain a lower bounded Hamiltonian and
no further n-body, n > 3, boundary condition is required. Moreover, the threshold
value γc is explicitly given (see (2.9)) and it is uniformly bounded both in the number
of bosons N and the mass ratio m0

m .
Finally, let us briefly comment on a different method for the construction of lower-
boundedn-bodyHamiltonians basedon the theory ofDirichlet forms ([1]). Themethod
is relatively simple and allows one to define a class of Hamiltonians that are s.a. exten-
sions of the free Hamiltonian restricted to smooth functions vanishing on coincidence
hyperplanes. In this sense one surely defines n-body Hamiltonians with (regularized)
contact interactions. It can also be shown that the infimum of the spectrum is a pre-
assigned non-positive value. An intrinsic limitation of the method is the fact that the
two-body scattering length (i.e., when all the other particles are far enough) must be
non-negative. This fact is intuitively clear by analogy with the simple case of a par-
ticle subject to a point interaction placed at the origin. But the main point is that the
construction of the Hamiltonian is rather implicit and it is not clear which boundary
condition the elements of the operator domain satisfy on the coincidence hyperplanes.
In other words, the domain of the Hamiltonian is not explicitly characterized and
therefore it is not evident what kind of s.a. extension is being constructed.

As a further remark, we observe that the Hamiltonian defined via Dirichlet forms is
identified by the choice of a single, non-negative free parameter, whereas our Hamil-
tonian is determined by the choice of the free parameters α ∈ R, γ > γc and of the
specific form of the cut-off function θ . In this sense, we are dealing with a much wider
family of s.a. extensions with respect to [1].

We plan to discuss in detail the comparison between our approach and the one
based on Dirichlet forms in a further work.

For the convenience of the reader, we collect here some of the notation used in the
paper.
– Given the Euclidean space (Rn, ·), x is a vector in R

n and x = |x|.
– S(Rn) denotes the space of Schwartz functions.
– ψ̂ is the Fourier transform of ψ .
– For any p ≥ 1 and � open set in R

n , Lp(�,μ) is the Banach space of p-integrable
functions with respect to the Borel measureμ.We use Lp(�) in caseμ is the Lebesgue
measure and we denote ‖·‖p := ‖·‖Lp(Rn).
– If H is a complex Hilbert space, we denote by 〈·, ·〉H, ‖·‖H :=

√〈·, ·〉H the inner
product and the induced norm.
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– if H = L2(Rn), we simply denote by 〈·, ·〉, ‖ · ‖ the inner product and the norm.
– Hs(Rn) is the standard Sobolev space of order s > 0 in R

n .

– f |π ∈ Hs(Rdn) is the trace of f ∈ Hs+ d
2 (Rd(n+1)) on the hyperplane π of codi-

mension d.
– B (X ,Y ) is the Banach space of the linear bounded operators from X to Y , where
X and Y are Hilbert spaces, and B (X) := B (X , X).

2 Main Results and Strategy of the Proof

In this section we introduce some definitions and we formulate our main results.
Let us define the bounded operator Gλ : HN −→ L2(R3(N+1)) whose Fourier

representation is given by

(Ĝλξ)( p, k1, . . . , kN ) := 1

μ

1√
2π

∑N
j=1 ξ̂ ( p+ k j , k1, . . . ǩ j . . . , kN )

1
2m0

p2 + 1
2m

∑N
n=1 k2n + λ

, (2.1)

where λ > 0 and

μ := mm0

m + m0
(2.2)

denotes the reduced mass of the two-particle subsystem composed of a boson and the
impurity. We shall refer to Gλξ as the potential produced by the charge ξ distributed
on π . A more detailed discussion on the properties of the potential is postponed to
the appendix (Sect. A.2). Here we only mention that Gλ is injective and ran(Gλ) ⊂
HN+1 � H1(R3(N+1)) (see Remarks A.2, A.3).

Then we define the following hermitian quadratic form in L2(R3N )

�λ := �λ
diag+�λ

off +�α,γ , D(�λ) = H
1
2 (R3N ) (2.3)

where

�λ
diag[ξ ] := 4πN√

2μ

∫

R3N
d pdk1 · · · dkN−1

√
p2

2(m+m0)
+∑N−1

n=1
k2n
2m + λ |ξ̂ ( p, k1, . . . , kN−1)|2,

(2.4a)

�λ
off [ξ ] :=− N (N−1)

2πμ2

∫

R3(N+1)
d pdk1 · · · dkN ξ̂ ( p+ k1, k2, . . . , kN ) ξ̂ ( p+ k2, k1, k3, . . . , kN )

1
2m0

p2 + 1
2m

∑N
n=1 k2n + λ

,

(2.4b)

�α[ξ ] := 2πα0N
μ
‖ξ‖2+ 2πN (N−1)γ

μ

∫

R3N
d ydx1 · · · dxN−1 θ(| y−x1|)

| y−x1| |ξ( y, x1, . . . , xN−1)|2.
(2.4c)
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We point out that the singularity is contained within the term �off whereas the regu-
larization is brought by �α . Moreover, consider the following decomposition

�α= �reg +�0 (2.4d)

with

�reg[ξ ] := 2πN (N−1) γ
μ

∫

R3N
d ydx1 · · · dxN−1

|ξ( y, x1, . . . , xN−1)|2
| y − x1| , (2.4e)

�0[ξ ] := 2πN
μ

∫

R3N
d ydx1 · · · dxN−1 β(| y − x1|)|ξ( y, x1, . . . , xN−1)|2 (2.4f)

and

β : r 
−→ α0 + (N−1)γ θ(r)− 1

r
, r > 0. (2.5)

Notice that assumption (1.10) is equivalent to the choice β ∈ L∞(R+) and therefore
the quadratic form �0 is bounded in L2(R3N ). This means that �0 cannot play any
role in compensating the ultraviolet singularity.

We are now in position to define the main object of our analysis, i.e., the quadratic
form inHN+1 given by

D(Q) :=
{
ψ ∈HN+1

∣∣ ψ = wλ+ Gλξ, wλ ∈ H1(R3(N+1)), ξ ∈HN ∩ H
1
2 (R3N )

}
,

Q[ψ] := Fλ[wλ] − λ ‖ψ‖2 +�λ[ξ ] (2.6)

where

Fλ : H1(R3(N+1))−→R+,

ϕ 
−→ ‖H1/2
0 ϕ‖2 + λ ‖ϕ‖2 .

(2.7)

We observe thatD(Q) is an extension of the form domain ofH0, since H1(R3(N+1))∩
HN+1 is a proper subset of D(Q) and

Q[ψ] = ‖H1/2
0 ψ‖2, for ψ ∈ H1(R3(N+1)) ∩HN+1. (2.8)

This is due to the injectivity of Gλ that implies ψ ∈ D(Q)∩ H1(R3(N+1)) if and only
if ξ ≡ 0.

Moreover, for any fixed ς := m0
m > 0 and N ≥ 2, we introduce the critical

parameter

γc = γc(N , ς) := 2(ς + 1)

π
arcsin

(
1

ς +1
)
− 2

√
ς(ς+ 2)

π(N−1)(ς + 1)
. (2.9)
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It is easy to see that γc is positive and

inf
ς >0

γc(N , ς) = 2

π

N − 2

N − 1
, sup

ς >0
γc(N , ς) = 1.

In particular, our main results shall hold for any γ > γc. In the special case ς = 1,

N = 2 we have γc(2, 1) = 2
3 −

√
3

π
� 0.115, while in the case of three interacting

bosons (discussed in [5]) a larger critical value γ 3bos
c = 4

3 −
√
3

π
� 0.782 is found.

The difference is due to the fact that, in our case, the two bosons are non-interacting
and therefore the singular negative contribution to be compensated, given by (2.4b),
is smaller by a factor 2. Moreover, we observe that the Born-Oppenheimer regime is
achieved when ς is chosen small enough, since the positions of the N bosons would
be approximately fixed with respect to the impurity which would play the role of a
light particle. In particular one would have limς→ 0 γc(N , ς) = 1

Our first result concerns the quadratic form �λ and it is formulated in the next
proposition.

Proposition 2.1

i) For any γ > 0 and λ > 0 one has

�λ[ξ ] ≤ C1 �λ
diag[ξ ], ξ ∈ H

1
2 (R3N ) (2.10)

where C1 is a positive constant.
ii) Let us assume γ > γc. Then, there exists λ0 > 0 s.t. for any λ > λ0 one has

C2 �λ
diag[ξ ] ≤ �λ[ξ ], ξ ∈ H

1
2 (R3N ) (2.11)

where C2 is a positive constant. In particular, the quadratic form �λ, D(�λ) in
L2(R3N ) is closed and bounded from below by a positive constant.

Proposition 2.1 implies that �λ uniquely defines a s.a. and invertible operator �λ

in L2(R3N ) for any λ > λ0, as long as γ > γc.
Using the above proposition, we can prove our main result.

Theorem 2.2 Let us assume γ > γc. Then, the quadratic form Q, D(Q) in HN+1 is
closed and bounded from below. In particular, Q > −λ0. Moreover, the self-adjoint
and bounded from below operatorH, D(H) uniquely defined by Q, D(Q) is charac-
terized as follows

D(H) =
{
ψ ∈ D(Q)

∣∣ wλ∈ H2(R3(N+1)), ξ ∈ D(�λ), �λξ = 2πN
μ

wλ
∣∣
πN

, λ >λ0

}
,

Hψ = H0w
λ − λGλξ.

(2.12)

The resolvent RH(−λ) := (H+ λ)−1 is given by

RH(−λ)ψ = RH0(−λ)ψ + Gλξ, ∀ λ > λ0, (2.13)
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where ψ ∈HN+1, RH0(−λ) := (H0 + λ)−1 and ξ ∈ D(�λ) solves the equation

�λξ = 2πN
μ

(
RH0(−λ)ψ

)∣∣∣
πN

. (2.14)

Some comments are in order.
For any ψ ∈ D(H) vanishing in a neighborhood of the hyperplanes π we have

ξ ≡ 0 and then the action of H reduces to the action of the free Hamiltonian.
Moreover, one can verify that any ψ = wλ + Gλξ ∈ D(H) satisfies the boundary

condition (1.11) at least in the weak sense. Indeed, let us denote r = xN − x0,
R = mxN+m0x0

m+m0
and fix any g ∈ S(R3N ). Then we have

lim
r→ 0

∫

R3N
dRdx1 · · · dxN−1 g(R, x1, . . . , xN−1)

×
[
ψ(R − mr

m+m0
, R + m0r

m+m0
, x1, . . . , xN−1)+−ξ(R, x1, . . . , xN−1)

|r|
]

= 〈g, wλ|πN 〉L2(R3N ) + lim
r→ 0

∫

R3N
dRdx1 · · · dxN−1 g(R, x1, . . . , xN−1)

×
[
Gλξ(R− mr

m+m0
, R+ m0r

m+m0
, x1, . . . , xN−1)+−ξ(R, x1, . . . , xN−1)

|r|
]

= μ
2πN 〈g, �λξ 〉L2(R3N ) − 〈g, (�

N ,λ
diag + �

N ,λ
off ) ξ 〉L2(R3N ) = 〈g, �N

regξ 〉L2(R3N )

where we have used the equation wλ|πN = μ
2πN �λξ required in D(H), the expansion

of the potential (A.21) and the explicit expression of the bilinear form 〈g, �λξ 〉L2(R3N )

in terms of �
N ,λ
diag and �

N ,λ
off (see equations (A.18),(A.20)).

The above considerations show that the Hamiltonian constructed in the theorem is
a rigorous version of the formal Hamiltonian discussed in the introduction.

Concerning the lower bound−λ0 of the quadratic form Q (and then of the infimum
of the spectrum ofH), in the proof of proposition 2.1 we explicitly find (see Sect. 6)

− λ0 =
⎧
⎨

⎩
− (N−1)2 γ 2

2μ(1−�γ )2 b2
, if α0 ≥ 0,

− [(N−1)γ+|α0|b]2
2μ(1−�γ )2 b2

, if α0 < 0
(2.15)

where

�γ = �γ (N , ς) := max
{
0, 1− π(N−1)

2
ς+1√

ς(ς+2) (γ − γc)
}
∈ [0, 1). (2.16)

We notice that �γ −→ 1 for γ −→ γ+c for any choice of N ≥ 2 and ς > 0 and
therefore we have −λ0 −→ −∞ for γ −→ γ+c .

Let us describe the strategy of the proof. We stress that the main technical point is
the estimate from below of�λ (see proposition 2.1) which is obtained through various
steps.



55 Page 10 of 34 D. Ferretti, A. Teta

In Sect. 3 we rewrite the quadratic form �λ in L2(R3N ) in terms of the quadratic
form �ζ in L2(R3) (see (3.5), (3.6) and (3.7)), that is of the type studied in [5, section
3] for the three-particle case. Then we expand the quadratic form �ζ in partial waves
and recall some known results on the terms of the expansion F ζ

� , � ∈ N0.

In Sect. 4 we prove some key estimates useful to control F ζ
� . We stress that we

perform a careful analysis for each value of � ∈ N0 that leads to a detailed control of the
lower bound. In particular, the result of lemma 4.1 allows us to prove proposition 2.1
by introducing the threshold value γc that is uniformly bounded in ς > 0 and N ≥ 2.

It is worth to mention that an analogous control is required in the three-boson case
([5, lemma 3.5]) in which case it is sufficient to study only the case � = 0 and to control
higher momenta in terms of the � = 2 contribution. Such a strategy is not sufficient
in the present case since it would force us to assume a further ad hoc constraint on ς

(depending on N ). Owing to the new techniques developed in Sect. 4 we are able to
avoid this problem and to remove such a technical constraint.

In Sect. 5 we use the above results to obtain the estimate from below of �ζ

(see (5.1)).
In Sect. 6 we conclude the proof of proposition 2.1 and, following a standard

procedure, we also prove theorem 2.2.
In the appendix we collect some useful technical results.

3 Reduction to a Three-Body Problem and Partial Wave
Decomposition

We start the study of �λ, defined by (2.3), introducing suitable changes of variables
that reduce the analysis to a quadratic form of the type studied in [5, section 3] for the

three-particle case. In the end we shall prove that D(�λ) = H
1
2 (R3N ).

Let η be the modified reduced mass of the system

η := m(m0 + m)

m0 + 2m
=
(
1

m
+ 1

m0 + m

)−1
(3.1)

and set k̃ = (k1, . . . , kN−1). Then, we denote for short

φ̂(σ , k̃) :=

=
(

k̃2
2m+ λ

)3
4
(
m0
η

)3
4
ξ̂

(√
μ
m

√
k̃2
2m+ λ σ +

√
m0η
mμ

k1,
√

μη
m0m

k1

−
√

μ
m

√
k̃2
2m+λ σ , k2, . . . , kN−1

)
.

(3.2)

In the next lemma we rewrite �λ in terms of φ̂.



Zero-Range Hamiltonian for a Bose Gas with an Impurity Page 11 of 34 55

Lemma 3.1 For any ξ ∈ H
1
2 (R3N ) and φ̂ given by (3.2) one has

�λ[ξ ] = �0[ξ ] + 2πN√
mμ

∫

R3(N−1)
d k̃

√
k̃2
2m + λ

[ ∫

R3
dσ

√
μ
η
σ 2 + 2m |φ̂(σ , k̃)|2

+ (N−1)γ
2π2

∫

R6
dσdτ

φ̂(σ , k̃) φ̂(τ , k̃)
|σ − τ |2 − N−1

2π2

∫

R6
dσdτ

φ̂(σ , k̃) φ̂(τ , k̃)

σ 2 + τ 2 + 2 σ ·τ
ς+1 + 2m

]
.

(3.3)

Theproof is easily obtained by the changeof coordinates dictated bydefinition (3.2),
once the regularizing termhas beenwritten in its Fourier representation via the identity

∫

R3
d r
| f (r)|2

r
= 1

2π2

∫

R6
d pdq

f̂ ( p) f̂ (q)

| p− q|2 , ∀ f ∈ H
1
2 (R3). (3.4)

Formula (3.3) suggests to define the hermitian quadratic form �ζ , for ζ ≥ 0, with

D(�ζ ) = H
1
2 (R3), �ζ := �

ζ
diag+�

ζ
off +�reg, (3.5)

where, for a given ϕ ∈ H
1
2 (R3),

�
ζ
diag[ϕ] :=

∫

R3
dσ

√
μ
η
σ 2 + ζ |ϕ̂(σ )|2, (3.6a)

�reg[ϕ] := (N−1)γ
2π2

∫

R6
dσdτ

ϕ̂(σ ) ϕ̂(τ )

|σ − τ |2 , (3.6b)

�
ζ
off [ϕ] := −

N−1
2π2

∫

R6
dσdτ

ϕ̂(σ ) ϕ̂(τ )

σ 2 + τ 2 + 2 σ ·τ
ς+1 + ζ

. (3.6c)

Observe that

�λ[ξ ] = �0[ξ ] + 2πN√
mμ

∫

R3(N−1)
dk1 · · · dkN−1

√∑N−1
n=1

k2n
2m + λ

�2m[φ](k1, . . . , kN−1) (3.7)

where φ is given by (3.2). Equation (3.7) shows that the analysis of �λ in L2(R3N )

can be reduced to the analysis of �ζ in L2(R3).
The following estimate from above of �ζ is proved in [5, proposition 3.1].

Proposition 3.2 Given ϕ ∈ H
1
2 (R3), γ > 0 and ζ ≥ 0, there exists C > 0 such that

|�ζ [ϕ]| ≤ C �
ζ
diag[ϕ]. (3.8)

Taking into account (3.7) and the above proposition, it is easy to obtain the upper
bound for �λ and therefore the proof of point i) of proposition 2.1.
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From now on we shall concentrate on the lower bound for �ζ and then for �λ.
In order to establish a lower bound for �ζ , it is convenient to study the quadratic

form decomposed in partial waves. Given ϕ̂ ∈ L2(R3,
√
p2 + 1 d p), one has

ϕ̂( p) =
∑

�∈N0

�∑

m=−�

ϕ̂�,m(p) Ym
� (ω̂). (3.9)

Here, Ym
� : S

2 −→ C denotes the Spherical Harmonic of order �,m, while
(p, ω̂) ∈ R+ × S

2 represents p ∈ R
3 in spherical coordinates and ϕ̂�,m ∈

L2(R+, p2
√
p2 + 1 dp) are the Fourier coefficients of ϕ̂. We shall also denote by

P�(y) = 1
2��!

d�

dy� (y
2 − 1)� the Legendre polynomial of degree � ∈ N0. Accordingly,

we decompose the quadratic form �ζ for any ζ ≥ 0

�ζ [ϕ] =
∑

�∈N0

�∑

m=−�

F ζ
� [ϕ̂�,m], (3.10)

F ζ
� : L2(R+, p2dp)−→R, D(F ζ

� ) = L2(R+, p2
√
p2 + 1 dp). (3.11)

As usual, we consider the three-components

F ζ
� := F ζ

diag+ F ζ

off; � + Freg; � , (3.12)

each of which is described in the following lemma, proved in [8, lemma 3.1].

Lemma 3.3 For any ψ ∈ L2(R+, p2
√
p2 + 1 dp), taking into account decom-

position (3.10) and definition (3.12), we have the following expressions for any
ζ ≥ 0, � ∈ N0

F ζ
diag[ψ] =

∫ +∞

0
dk k2

√
μ
η
k2 + ζ |ψ(k)|2, (3.13a)

Freg; �[ψ] = (N−1)γ
π

∫ +∞

0
dp p2

∫ +∞

0
dq q2 ψ(p)ψ(q)

∫ 1

−1
dy

P�(y)

p2 + q2 − 2pq y
,

(3.13b)

F ζ

off; �[ψ] = − N−1
π

∫ +∞

0
dp p2

∫ +∞

0
dq q2 ψ(p)ψ(q)

∫ 1

−1
dy

P�(y)

p2 + q2 + 2
ς+1 pq y + ζ

.

(3.13c)

In the following, we recall some known results concerning F ζ
� . The first one char-

acterizes the sign of F ζ

off; � (see [8, lemma 3.3])

{
F0
off; � ≥ F ζ

off; � ≥ 0, if � is odd,

F0
off; � ≤ F ζ

off; � ≤ 0, if � is even.
(3.14)
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Moreover, the same procedure can be adapted to obtain Freg; � ≥ 0 for all � ∈ N0.
Notice that, thanks to the previous estimates, for the sake of a lower bound, we

can neglect F ζ

off; � with � odd and focus on F0
off; � that represents a lower estimates

for F ζ

off; � in case � is even. A further useful result concerns the diagonalization of

F0
� (see [8, lemma 3.4] and [5, lemma 3.4]). Given ψ ∈ L2(R+, k2

√
k2 + 1 dk), let

ψ � ∈ L2(R) be defined by

ψ �(p) := 1√
2π

∫

R

dt e−i pt e2tψ(et ). (3.15)

Then, considering the quantities computed in lemma 3.3, one has

F0
diag[ψ] =

√
μ

η

∫

R

dp |ψ �(p)|2, (3.16a)

F0
off; �[ψ] =

N−1
2

∫

R

dp |ψ �(p)|2Soff; �(p), (3.16b)

Freg; �[ψ] = N−1
2

∫

R

dp |ψ �(p)|2Sreg; �(p), (3.16c)

where

Soff; �(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∫ 1
−1dy P�(y)

cosh
(
p arcsin y

ς+1
)

√
1− y2

(ς+1)2 cosh( π
2 p)

, if � is even,

∫ 1
−1dy P�(y)

sinh
(
p arcsin y

ς+1
)

√
1− y2

(ς+1)2 sinh( π
2 p)

, if � is odd.

(3.17a)

Sreg; �(p) =

⎧
⎪⎨

⎪⎩

γ
∫ 1
−1dy P�(y)

cosh(p arcsin y)√
1−y2 cosh( π

2 p)
, if � is even,

γ
∫ 1
−1dy P�(y)

sinh(p arcsin y)√
1−y2 sinh( π

2 p)
, if � is odd.

(3.17b)

Moreover,

{
Soff; �(p) ≤ Soff; �+2(p) ≤ 0, if � is even;
Soff; �(p) ≥ Soff; �+2(p) ≥ 0, if � is odd,

(3.18a)

and

Sreg; �(p) ≥ Sreg; �+2(p) ≥ 0, ∀ � ∈ N0. (3.18b)
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4 A Key Estimate

In the following, we obtain an estimate useful to control F ζ
� . To this end, let us intro-

duce some further notation. For any a ∈ C and n ∈ N0, let (a)n be the Pochhammer
symbol, also known as rising factorial, given by

(a)n :=
{
a(a + 1) · · · (a + n − 1), if n ∈ N,

1, if n = 0.
(4.1a)

It is easy to see that for any n ∈ N0

(a)n =
{

(−1)nn! ( |a||a|−n
)
, if a ∈ −N0,

�(a+n)
�(a)

, otherwise.
(4.1b)

In particular, notice that if a ∈ −N0, then (a)n = 0 for all n > |a|. Next, we recall
the definition of the Gauss hypergeometric function

2F1(a, b; c; z) :=
∑

k∈N0

(a)k(b)k
(c)k

zk

k! . (4.2)

Representation (4.2) is well defined for a, b ∈ C, c ∈ C � −N0 and its radius
of convergence is 1. However, if a or b is a non-positive integer, then the Gauss
hypergeometric function reduces to a polynomial in z. In this case, c can also assume
non-positive integer values, provided that |c| is greater than or equal to the degree of
the polynomial. We also remind the Gauss’ summation theorem

2F1(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
, if Re(c − a − b) > 0. (4.3)

In the following lemma we give the explicit computation of the integrals appearing in
Soff; � and Sreg; � for � even (see (3.17a), (3.17b)).

Now, let�ζ
�, s�

be a sequence of auxiliary quadratic forms defined on L2(R+, p2dp)
for any given � ∈ N0 and for some parameter s� ∈ (0, 1) as follows

�
ζ
�, s�
:= s�F

ζ
diag+ F0

off; � + Freg; �, D(�
ζ
�, s�

) = L2(R+, p2
√
p2 + 1 dp).(4.4)

These quadratic forms will be useful to obtain a lower bound for F ζ
� .

The next lemma is the key technical ingredient for the proof of proposition 2.1.

Lemma 4.1 Letψ ∈ L2(R+, p2
√
p2 + 1 dp) and γc given by (2.9). Then, for γ > γc ,

there exists {s∗� }�∈N0⊂ (0, 1) such that each quadratic form �
ζ

�, s∗�
defined by (4.4), is

non-negative for any ζ ≥ 0 and � ∈ N0.
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Proof Taking into account the diagonalization given in (3.16), one has

�
ζ
�, s�
[ψ] ≥

(
s�F

0
diag+ F0

off; � + Freg; �
)
[ψ]

=
∫

R

dp |ψ �(p)|2
[
s�
√

μ
η
+ N−1

2

(
Soff; � + Sreg; �

)
(p)

]

=:
∫

R

dp |ψ �(p)|2 f N�, s� (p).

The lemma is proved if we show that for each order �, there exists s� ∈ (0, 1) such
that the function f N�, s� is non-negative uniformly in N ≥ 2. Notice that this is actually
the case for � odd, in light of (3.18), so from now on we focus on the case � even.

Moreover we have

lim
p→+∞ f N�, s� (p) = s�

√
μ
η

> 0.

We notice that Soff; � and Sreg; �, and then f N�, s� , are written in terms of the Gauss
hypergeometric function 2F1 (see (3.17a), (3.17b) and proposition A.1) and therefore
the main point is a careful control of such a function.

The proof will be constructed in two steps: first we show that f N�, s� evaluated at
zero is positive uniformly in N ≥ 2 for a proper choice of {s�}�∈N0 ⊂ (0, 1), then
we prove that f N�, s� is bounded from below by a monotonic function hN

�, s�
that shares

the same values with f N�, s� at zero and infinity. Once these statements are proven, we

will have f N�, s� ≥ hN
�, s�

> 0 as long as s� is such that f N�, s� (0) > 0 for all � ∈ N0 and
uniformly in N ≥ 2.

Step 1. We observe that f N�, s� (0) is positive if and only if

s� > − N−1
2

√
η
μ

(
Soff; � + Sreg; �

)
(0)

= N−1
2

√
η
μ

⎡

⎣
∫ 1

−1
dy

P�(y)√
1− y2

(ς+1)2
− γ

∫ 1

−1
dy

P�(y)√
1− y2

⎤

⎦.
(4.5)

The requirement s� ∈ (0, 1) implies a constraint for the parameter γ , since we need
the right hand side of (4.5) to be strictly less than 1. Therefore

γ > γ �
ς :=

[∫ 1

−1
dy

P�(y)√
1− y2

]−1⎡

⎣
∫ 1

−1
dy

P�(y)√
1− y2

(ς+1)2
− 2

N−1
√

μ

η

⎤

⎦. (4.6)

Let us show that

γc = max
k∈N0
{γ 2k

ς } = γ 0
ς . (4.7)
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Taking into account equations (A.10) and (A.11), condition (4.6) reads

γ > γ �
ς = γ �

ς,1 − γ �
ς,2,

with

γ �
ς,1 :=

22�+1�! ( �
2

)!2
π (2�+ 1)! (ς + 1)�

2F1
(

�+1
2 , �+1

2 ; �+ 3
2 ; 1

(ς+1)2
)
, (4.8)

γ �
ς,2 :=

22�+1
(

�
2

)!4√ς(ς + 2)

π �!2(N−1)(ς + 1)
. (4.9)

We observe that γ �
ς,2 is increasing in �, since

22(�+2)
(

�+2
2

)!4
(�+ 2)!2 = 22�+4

(
�
2 + 1

)!4
(�+ 2)!2 = 22� 24

(
�
2 + 1

)4( �
2

)!4
(�+ 2)2(�+ 1)2�!2 =

22�(�+ 2)2
(

�
2

)!4
(�+ 1)2�!2

>
22�

(
�
2

)!4
�!2 .

Therefore

γ �
ς < γ �

ς,1 − γ 0
ς,2 = γ �

ς,1 −
2

π(N−1)
√

ς(ς + 2)

ς + 1
. (4.10)

Let us consider γ �
ς,1. Using the Euler’s integral representation of the Gauss hyperge-

ometric function

2F1(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0
dt

tb−1(1− t)c−b−1

(1− zt)a
, Re(c) > Re(b) > 0,

(4.11)

one has for any x ∈ [0, 1]

2F1
(

�+1
2 , �+1

2 ; �+ 3
2 ; x2

)

= �
(
�+ 3

2

)

�
(

�+1
2

)(
�
2

)!
∫ 1

0
dt

t
�−1
2 (1− t)

�
2

(1− x2t)
�+1
2

= 2�
(
�+ 3

2

)

�
(

�+1
2

)(
�
2

)!
∫ 1

0
du

u�(1− u2)
�
2

(1− x2u2)
�+1
2

= 2�(2�+ 1) �
(
�+ 1

2

)
√

π �!
∫ 1

0
du

u�(1− u2)
�
2

(1− x2u2)
�+1
2

= (2�+ 1)!
2� �!2

∫ 1

0
du

u�(1− u2)
�
2

(1− x2u2)
�+1
2

.

Exploiting the trivial inequality 1−u2 ≤ 1− x2u2, we obtain an estimate from above

2F1
(

�+1
2 , �+1

2 ; �+ 3
2 ; x2

)
≤ (2�+ 1)!

2� �!2
∫ 1

0
du

u�

√
1− x2u2

, (4.12)
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where equality holds if � = 0 ∨ x = 1. From (4.12) one gets

γ �
ς,1 ≤

2�+1( �
2

)!2
π �! (ς + 1)�

∫ 1

0
du

u�

√
1− u2

(ς+1)2
=: γ̄ �

ς , (4.13)

where equality holds if � = 0 ∨ ς = 0. Hence, in particular we know that

γ 0
ς,1 = γ̄ 0

ς = 2(ς+1)
π

arcsin
(

1
ς+1

)
. (4.14)

In the following computations we set x = 1
ς+1 for the sake of notation. Let us prove

that
{
γ̄ �
ς

}
�∈2N0

is a decreasing sequence for all fixed ς > 0. We have

γ̄ �
ς − γ̄ �+2

ς = 2�+1x�
(

�
2

)!2
π �!

∫ 1

0
du

u�

√
1− x2u2

[
1− 4x2

(
�
2 + 1

)2
u2

(�+ 2)(�+ 1)

]

= 2�+1x�
(

�
2

)!2
π �!

∫ 1

0
du

u�

√
1− x2u2

[
1− (�+ 2) x2u2

�+ 1

]
.

Our goal is to show that the last integral is positive for any given x ∈ (0, 1) and �

even, so that γ̄ �+2
ς < γ̄ �

ς . To this end, we first point out that the integral is manifestly
positive at x = 0, whereas the evaluation of the integral at x = 1 yields

∫ 1

0
du

2u�

√
1− u2

[
1− �+ 2

�+ 1
u2
]
= π �!

2�
(

�
2

)!2 −
�+ 2

�+ 1

π (�+ 2)!
2�+2( �

2 + 1
)!2 = 0.

We observe that, in order to obtain inf
{
γ̄ �
ς − γ̄ �+2

ς | ς > 0
}≥ 0 for any � even, it is

sufficient to prove that the integral is a monotonic decreasing function in x . In other
words, we want to show

d

dx

∫ 1

0
du

u�

√
1− x2u2

[
1− �+ 2

�+ 1
x2u2

]
< 0, ∀ x ∈ (0, 1), � even. (4.15)

By the Leibniz integral rule, the derivative with respect to x can be computed inside
the integral. Therefore, for any x ∈ (0, 1), u ∈ [0, 1] and � even, one has

∂

∂x

u�

√
1− x2u2

[
1− �+ 2

�+ 1
x2u2

]
= x u�+2

(1− x2u2)
3
2

[
1− �+ 2

�+ 1
x2u2

]

− �+ 2

�+ 1

2x u�+2
√
1− x2u2

= x u�+2

(1− x2u2)
3
2

[
1− �+ 2

�+ 1

(
x2u2 + 2− 2x2u2

)]
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= x u�+2

(1− x2u2)
3
2

[
�+ 2

�+ 1
x2u2 − �+ 3

�+ 1

]
< 0.

Since the integral of a negative function obviously yields a negative quantity, (4.15)
is proven. This means that

{
γ̄ �
ς

}
�∈2N0

is decreasing for any fixed ς > 0. Thus, taking
into account (4.13) and (4.14), we finally get

γ �
ς,1 ≤ γ̄ �

ς ≤ γ̄ 0
ς = γ 0

ς, 1, ∀ � even.

Hence, thanks to (4.10), equation (4.7) is proved.

Step 2. Let us define the following function

hN
�, s� (p) := s�

√
ς(ς + 2)

ς + 1
+ (N− 1)(γ − γ �

ς,1)
tanh

(
π
2 p
)

p

�
2∏

k=1

p2 + (2k − 1)2

p2 + 4k2
,

(4.16)

where γ �
ς,1 has been defined in (4.8). We shall prove that hN

�, s�
satisfies

hN
�, s� ≤ f N�, s� , (4.17a)

hN
�, s� (0) = f N�, s� (0), (4.17b)

lim
p→+∞ hN

�, s� (p) = lim
p→+∞ f N�, s� (p), (4.17c)

hN
�, s� (p) is monotonic in p ∈ R+. (4.17d)

Starting with (4.17a), we take into account proposition A.1 and equation (A.8) to
obtain an explicit expression for f N�, s�

f N�, s� (p) = s�

√
ς(ς + 2)

ς + 1
+ N −1

2

(
Soff; � + Sreg; �

)
(p)

= s�

√
ς(ς + 2)

ς + 1
+ (N −1)h̄�(p)

cosh
(

π
2 p
)

�
2∏

k=1

[
p2 + (2k −1)2

]
,

(4.18)

where we have introduced, for the sake of notation, the function

h̄�(p) := γ
sinh

(
π
2 p
)

p

�
2∏

k=1

1

p2 + 4k2
−

2� �! 2F1
(

�+1+i p
2 ,

�+1−i p
2 ; �+ 3

2 ; 1
(ς+1)2

)

(2�+1)! (ς +1)� .

(4.19)



Zero-Range Hamiltonian for a Bose Gas with an Impurity Page 19 of 34 55

To achieve the result, consider the Euler’s transformation formula

2F1(a, b; c; z) = (1− z)c−a−b2F1(c − a, c − b; c; z) (4.20)

and the inequality

|�(a + ib)|2≤ |�(a)|2 , ∀ a, b ∈ R. (4.21)

Indeed, one can write

2F1
(

�+1+i p
2 ,

�+1−i p
2 ; �+ 3

2 ; x2
)
=
√
1− x2 2F1

(
�+2−i p

2 ,
�+2+i p

2 ; �+ 3
2 ; x2

)

=
√
1− x2

∑

k∈N0

x2k

k!

(
�+2−i p

2

)

k

(
�+2+i p

2

)

k(
�+ 3

2

)
k

≤
√
1− x2

(
�
2

)!2
∣∣∣�
(

�+2+i p
2

)∣∣∣
2

∑

k∈N0

x2k

k!

(
�
2 +1

)2
k(

�+ 3
2

)
k

=
√
1− x2

(
�
2

)!2
∣∣∣�
(

�+2+i p
2

)∣∣∣
2 2F1

(
�
2 + 1, �

2 + 1; �+ 3
2 ; x2

)
,

where we have used inequality (4.21), according to which

∣∣∣�
(

�+2+i p
2 + k

)∣∣∣
2

∣∣∣�
(

�+2+i p
2

)∣∣∣
2 ≤ �2

(
�
2 +1

)
∣∣∣�
(

�+2+i p
2

)∣∣∣
2

�2
(

�
2 +1+ k

)

�2
(

�
2 +1

) =
(

�
2

)!2
∣∣∣�
(

�+2+i p
2

)∣∣∣
2

(
�
2 + 1

)2
k .

Using again (4.20) to the right hand side, one obtains

2F1
(

�+1+i p
2 ,

�+1−i p
2 ; �+ 3

2 ; x2
)
≤

(
�
2

)!2
∣∣∣�
(

�+2+i p
2

)∣∣∣
2 2F1

(
�+1
2 , �+1

2 ; �+ 3
2 ; x2

)
.

(4.22)
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Making use of identity (A.7) in the previous inequality, one has

h̄�(p) ≥ sinh
(

π
2 p
)

p

�
2∏

k=1

1

p2 + 4k2

×
[
γ − 22�+1 �! ( �

2

)!2
π (2�+1)! (ς +1)� 2F1

(
�+1
2 , �+1

2 ; �+ 3
2 ; 1

(ς+1)2
)]

= sinh
(

π
2 p
)

p
(γ − γ �

ς,1)

�
2∏

k=1

1

p2 + 4k2
.

Exploiting this lower bound in (4.18), one finds out that hN
�, s�

satisfies condi-
tion (4.17a). Furthermore, we stress that we have obtained this estimate by using
only inequality (4.21), according to which the equality sign holds in case p = 0. In
other words, we have also proved (4.17b).

Next, we show (4.17c). Since p2+(2k−1)2
p2+4k2 < 1 for all k,

∣∣∣∣h
N
�, s� (p)− s�

√
ς(ς + 2)

ς + 1

∣∣∣∣ ≤ (N − 1)|γ − γ �
ς,1|

tanh
(

π
2 p
)

p

where the right hand side vanishes as p goes to infinity. Therefore,

lim
p→+∞ hN

�, s� (p) = s�

√
ς(ς + 2)

ς + 1
= lim

p→+∞ f N�, s� (p).

It remains to prove the monotonicity of hN
�, s�

in R+. In particular, it suffices to show
that the function

p 
−→ tanh
(

π
2 p
)

p

�/2∏

k=1

p2 + (2k −1)2
p2 + 4k2

(4.23)

is decreasing inR+. Let us remind the product representation of the hyperbolic tangent

tanh(z) = z
∏

k∈N

1+ z2

π2k2

1+ 4z2
π2(2k−1)2

. (4.24)

Denoting z = π
2 p, one has

tanh
(

π
2 p
)

p

�
2∏

k=1

p2+ (2k−1)2
p2+ 4k2

= π

2

�
2∏

k=1

1+ p2

4k2

1+ p2

(2k−1)2

p2+ (2k−1)2
p2+ 4k2

+∞∏

k= �
2+1

1+ p2

4k2

1+ p2

(2k−1)2
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= π

2

�
2∏

k=1

(2k−1)2
4k2

+∞∏

k= �
2+1

1+ p2

4k2

1+ p2

(2k−1)2
= π

2

(�− 1)!!2
�!!2

+∞∏

k= �
2+1

1+ p2

4k2

1+ p2

(2k−1)2
.

In order to prove that the function (4.23) is decreasing, we consider

ln

⎛

⎜⎝
tanh

(
π
2 p
)

p

�
2∏

k=1

p2+ (2k−1)2
p2+ 4k2

⎞

⎟⎠

= ln
(π

2

)
+ 2 ln

[
(�− 1)!!

�!!
]
+
+∞∑

k= �
2+1

ln

(
1+ p2

4k2

)
− ln

[
1+ p2

(2k − 1)2

]
.

(4.25)

We notice that for p > 0

∂

∂ p

{
ln

(
1+ p2

4k2

)
− ln

[
1+ p2

(2k − 1)2

]}
= 2p

p2 + 4k2
− 2p

p2 + (2k − 1)2

= 2p (1− 4k)

(p2 + 4k2)[p2 + (2k − 1)2]
< 0, ∀ k ≥ 1.

Hence, (4.25) is decreasing in p > 0 since it is a sum of decreasing functions. There-
fore, also (4.23) is decreasing and (4.17d) is proven.

In conclusion, we know that whenever γ > γc, there exists s∗� ∈ (0, 1) for any
� ∈ N0, such that f N

�, s∗�
(0) > 0 uniformly in N ≥ 2. Since we also know that f N�, s�

is eventually positive, conditions (4.17) imply that f N
�, s∗�
≥ hN

�, s∗�
> 0 and the proof is

completed. ��
Remark 4.1 In lemma 4.1, we have shown that, if γ ≥ γ �

ς,1, any s∗� ∈ (0, 1) is such

that f N
�, s∗�
≥ 0, whereas in case γ ∈

(
γc, γ �

ς,1

)
, the function f N

�, s∗�
is still non negative

for all s∗� s.t.

π �!2
22�+1

(
�
2

)!4
(N−1)(ς +1)√

ς(ς + 2)
(γ �

ς,1 − γ ) < s∗� < 1.

Notice that the lower bound is non-increasing in �, hence the sequence {s∗� } that makes

�
ζ

�, s∗�
non-negative for all ζ ≥ 0 and � ∈ N0 can be chosen within an interval that

does not depend on �, namely

max

{
0,

π

2

(N − 1)(ς + 1)√
ς(ς + 2)

(γ 0
ς,1 − γ )

}
< s∗� < 1, ∀ � ∈ N0.
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5 Lower Bound for 2�

Collecting the results obtained in the previous two sections, we can now establish
detailed estimates for �ζ . Indeed, in the next proposition we prove a lower bound,
which is the crucial ingredient for the proof of our main results.

Proposition 5.1 Given ϕ ∈ H
1
2 (R3) and ζ ≥ 0, we have

�ζ [ϕ] ≥ (1−�γ )�
ζ
diag[ϕ], for γ > γc, (5.1)

where �γ is defined in (2.16).

Proof Let ϕ∈H 1
2 (R3) and consider decomposition (3.10) and estimates (3.14). Then,

�ζ [ϕ] =
∑

�∈N0

�∑

m=−�

F ζ
� [ϕ̂�,m] =

∑

�∈N0

�∑

m=−�

(
F ζ
diag+ F ζ

off; � + Freg; �
)
[ϕ̂�,m]

≥
∑

�∈N
� odd

�∑

m=−�

F ζ
diag[ϕ̂�,m] +

∑

�∈N0
� even

�∑

m=−�

(
F ζ
diag+ F0

off; � + Freg; �
)
[ϕ̂�,m].

Taking account of definition (4.4), for any choice of {s�}�∈N0 ⊂ (0, 1), the previous
inequality reads

�ζ [ϕ] ≥
∑

�∈N
� odd

�∑

m=−�

F ζ
diag[ϕ̂�,m] +

∑

�∈N0
� even

�∑

m=−�

(1− s�)F
ζ
diag[ϕ̂�,m] +�

ζ
�, s�
[ϕ̂�,m].

According to lemma 4.1, there exists a sequence {s∗� }�∈N0⊂(0, 1) such that�ζ

�, s∗�
≥ 0,

hence

�ζ [ϕ] ≥
∑

�∈N
� odd

�∑

m=−�

F ζ
diag[ϕ̂�,m] +

∑

�∈N0
� even

�∑

m=−�

(1− s∗� )F ζ
diag[ϕ̂�,m]

≥
∑

�∈N0

�∑

m=−�

(1− s∗� )F ζ
diag[ϕ̂�,m] ≥ inf

k∈N0
(1− s∗k )

∑

�∈N0

�∑

m=−�

F ζ
diag[ϕ̂�,m]

= inf
k∈N0

(1− s∗k )�
ζ
diag[ϕ]

where, according to remark 4.1, each s∗k can be arbitrarily chosen within an interval
in (0, 1) that does not shrink as k varies. Exploiting this fact, we can optimize the
inequality by choosing

s∗k = π(N−1)
2

ς+1√
ς(ς+2) max

{
0, γ 0

ς,1 − γ
}
= �γ , ∀ k ∈ N0
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so that �ζ [ϕ] ≥ (1−�γ )�
ζ
diag[ϕ]. ��

6 Proof of theMain Result

In this section we complete the proof of the results stated in Sect. 2.

Proof of point ii) of proposition 2.1 Let us recall that, for any charge ξ ∈ H
1
2 (R3N ),

we have defined a rescaled charge φ ∈ H
1
2 (R3N ) given by (3.2). According to equa-

tions (3.7) and (5.1), we can deduce a lower bound for the quadratic form �λ

�λ[ξ ]

= �0[ξ ] + 2πN√
mμ

∫

R3(N−1)
dk2 · · · dkN

√
∑N

j=2
k2j
2m + λ �2m[φ](k2, . . . , kN )

≥ �0[ξ ] + (1−�γ ) 2πN√
mμ

∫

R3(N−1)
dk2 · · · dkN

√
∑N

j=2
k2j
2m + λ �2m

diag[φ](k2, . . . , kN )

= �0[ξ ] + (1−�γ )�λ
diag[ξ ], ∀ λ > 0, γ > γc.

Recalling definition (2.4e) and assumption (1.10) (which implies β essentially
bounded), we have

�0[ξ ]
≥ 2πN

μ
inf
R+
{β} 〈ξ, ξ〉L2(R3N ) ≥ 2πN

μ

(
α0 − (N−1) γ

b

)
‖ξ‖2

≥
(
min{0, α0} − (N−1) γ

b

)
2πN

μ
‖ξ̂‖2

≥ min{0, α0}− (N−1)γ
b√

2λμ

4πN√
2μ

∫

R3N
dk1 · · · dkN

√
k21

2(m+m0)
+∑N

j=2
k2j
2m +λ |ξ̂ (k1, . . . , kN )|2

= min{0, α0b} − (N−1)γ
b
√
2λμ

�λ
diag[ξ ].

Collecting the results obtained so far, we get

�λ[ξ ] ≥
[
1−�γ − max{(N−1) γ, (N−1) γ−αb}

b
√
2λμ

]
�λ

diag[ξ ]. (6.1)

The last expression is positive if λ is large enough, i.e. if λ > λ0, with

λ0 :=

⎧
⎪⎨

⎪⎩

(N−1)2 γ 2

2μ(1−�γ )2 b2
, if α ≥ 0,

[(N−1)γ+|α|b]2
2μ(1−�γ )2 b2

, if α < 0.
(6.2)

��
The estimate (6.1) guarantee that�λ is closed and bounded frombelowby a positive

constant whenever λ > λ0. Then, if γ > γc, the quadratic form �λ uniquely defines a
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s.a. and positive operator�λ in L2(R3N ) for all λ > λ0. Such operator is characterized
as follows

D(�λ) =
{
ξ ∈ H

1
2 (R3N )

∣∣ ∃ g ∈ L2(R3N ) s.t. �λ[ϕ, ξ ] = 〈ϕ, g〉, ∀ϕ ∈ H
1
2 (R3N )

}
,

�λξ = g, ∀ ξ ∈ D(�λ)

where�λ[·, ·] is the sesquilinear form associated to�λ[·] via the polarization identity.
Moreover, �λ is invertible for all λ > λ0.

We are now in position to conclude the proof of theorem 2.2.

Proof of theorem 2.2 Taking into account proposition 2.1, Q is bounded from below,
since for any ψ ∈ D(Q), one has

Q[ψ] = Fλ[wλ] − λ ‖ψ‖2 +�λ[ξ ] ≥ −λ ‖ψ‖2, ∀ λ > λ0.

Now, let us fix λ > λ0. By construction Q is hermitian, hence, the associated sesquilin-
ear form Q[·, ·] is symmetric. In particular, this means that the sesquilinear form s[·, ·]
given by

s[ψ, ϕ] := Q[ψ, ϕ] + (1+ λ)〈ψ, ϕ〉, ∀ψ, ϕ ∈ D(Q)

defines a scalar product inHN+1. Therefore, we equipD(Q) ⊂HN+1 with the norm

‖ψ‖2Q := Q[ψ] + (1+ λ) ‖ψ‖2 = Fλ[wλ] +�λ[ξ ] + ‖ψ‖2. (6.3)

We prove that Q is closed by showing the completeness ofD(Q)with respect to ‖·‖Q .
To this end, let {ψn} ⊂ D(Q) and ψ ∈HN+1 be respectively a sequence and a vector
s.t. ‖ψn − ψm‖Q−→ 0 as n,m go to infinity and ‖ψn − ψ‖−→ 0. By (6.3), we have

Fλ[wλ
n − wλ

m] +�λ[ξn − ξm]−→ 0 (6.4)

and, since both Fλ and �λ are closed and positive, (6.4) means

Fλ[wλ
n − wλ

m]−→ 0, �λ[ξn − ξm]−→ 0, as n,m → +∞.

Hence, {wλ
n } and {ξn} are Cauchy sequences in H1(R3(N+1))∩HN+1 and H

1
2 (R3N )∩

HN , respectively. Thus, there existwλ ∈ H1(R3(N+1))∩HN+1 and ξ ∈ H
1
2 (R3N )∩

HN such that

∥∥wλ
n − wλ

∥∥
H1(R3(N+1))−→ 0, ‖ξn − ξ‖H1/2(R3N )−→ 0, as n → +∞.

Furthermore, since Gλ defined in (2.1) is bounded for all λ > 0, one has that ψn =
wλ
n + Gλξn converges in HN+1 to the vector wλ + Gλξ . By uniqueness of the limit,

ψ = wλ+Gλξ and thus, ψ ∈ D(Q). We have shown that (D(Q), ‖·‖Q) is a Banach
space, hence Q is closed.
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The quadratic form Q uniquely defines a s.a. and bounded from belowHamiltonian
H,D(H) in the Hilbert spaceHN+1 = L2(R3)⊗L2sym(R3N ). In order to characterize

domain and action of H, let us assume that ψ = wλ + Gλξ ∈ D(H), with λ > λ0.
Then, there exists f ∈ HN+1 such that the sesquilinear form Q[·, ·] associated to
Q[·] via the polarization identity satisfies

Q[v,ψ] = 〈v, f 〉, ∀ v = wλ
v + Gλξv ∈ D(Q) (6.5)

where f =: Hψ . By definition one has

Q[v,ψ] = 〈(H0 + λ)
1
2 wλ

v , (H0 + λ)
1
2 wλ〉 − λ〈v, ψ〉 +�λ[ξv, ξ ]. (6.6)

Let us consider v ∈ H1(R3(N+1))∩HN+1, so that ξv ≡ 0 by injectivity of Gλ. Then

〈(H0 + λ)
1
2 v, (H0 + λ)

1
2 wλ〉 − λ〈v, ψ〉 = 〈v, f 〉, ∀ v ∈ H1(R3(N+1)) ∩HN+1.

Hence, wλ ∈ H2(R3(N+1)) ∩HN+1 and

(H0 + λ)wλ − λψ = f (6.7)

which is equivalent to

Hψ = H0w
λ − λGλξ. (6.8)

Now, let v ∈ D(Q). Taking account of (6.7), we have

〈v, f + λψ〉 = 〈wλ
v , (H0 + λ)wλ〉 + 〈Gλξv, (H0 + λ)wλ〉.

On the other hand, recalling (6.5) and (6.6),

〈v, f + λψ〉 = Q[v,ψ] + λ〈v, ψ〉 = 〈wλ
v , (H0 + λ)wλ〉 +�λ[ξv, ξ ],

hence,

�λ[ξv, ξ ] = 〈Gλξv, (H0 + λ)wλ〉 = 2πN
μ
〈ξv, wλ|πN 〉H N , ∀ ξv ∈ H

1
2 (R3N ) ∩HN

where we have used (A.13) in the last step. Therefore, we conclude that ξ ∈ D(�λ)

and the boundary condition �λξ = 2πN
μ

wλ
∣∣
πN

holds.
Concerning the resolvent, given ψ ∈HN+1, one hasRH(−λ)ψ ∈ D(H) since, by

definition, RH(−λ)ψ = wλ + Gλξ with wλ = RH0(−λ)ψ and ξ satisfies (2.14).
Therefore, by an explicit application of the Hamiltonian one has

(H+ λ)RH(−λ)ψ = (H0 + λ)RH0(−λ)ψ = ψ.
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On the other hand, let ψ = wλ + Gλξ ∈ D(H). One has

RH(−λ)(H+ λ)ψ = RH(−λ)(H0 + λ)wλ = RH0(−λ)(H0 + λ)wλ + Gλχ

with χ ∈HN satisfying

�λχ = 2πN
μ

(
RH0(−λ)(H0 + λ)wλ

)∣∣∣
πN

.

Since ξ satisfies the same equation and, for any λ > λ0 the operator �λ is invertible,
we have found χ = ξ . Hence RH(−λ)(H+ λ)ψ = ψ . ��

We conclude this section observing that the proof of theorem 2.2, and then the
construction of the Hamiltonian, has been obtained following an approach which,
in our opinion, is concrete and intuitive. Nevertheless, we mention that an equivalent
more abstract approach could be adopted to construct the Hamiltonian, given the result
of proposition 2.1. Indeed, according to [23] (see also [7, theorem 2.19]) one can prove
that any s.a. extension of Ḣ0 is characterized by

D(H�) ={ψ ∈HN+1
∣∣ ψ − G−zξ =: φz ∈ D(H0), ξ ∈ D, �(z)ξ

= 2πN
μ

φz
∣∣
πN

, z ∈ρ(H0)
}
,

H�ψ = H0φz + zG−zξ

provided Im z = 0 ∨ φz ⊥ G−zξ , for any linear map � : ρ(H0)−→L (HN ) such
that �(z) : D ⊂HN −→HN is a densely defined operator for any z and satisfies

�(z)∗ = �(z̄), ∀ z ∈ ρ(H0), (6.9a)

�(z)− �(w) = (z − w)G−z̄∗G−w, ∀ w, z ∈ ρ(H0), (6.9b)

∃ z ∈ ρ(H0) : 0 ∈ ρ(�(z)). (6.9c)

Moreover, demanding the lower semi-boundedness of H� means requiring an addi-
tional condition on the map �. More precisely, a sufficient condition is �(x) > 0
for all x < x0 < 0 that implies H� ≥ x0. Clearly, in this framework the goal is to
determine the proper choice of the map � that encodes the regularization described in
the introduction. In our case we have

�(z) := �λ− (λ+ z)Gλ∗G−z, λ >λ0, z ∈ ρ(H0). (6.10)

More details involving this abstract setting are discussed in [6].

Author Contributions The contribution of the two authors to the elaboration and writing of the manuscript
is equal

Funding Open access funding provided by Università degli Studi di Roma La Sapienza within the CRUI-
CARE Agreement.



Zero-Range Hamiltonian for a Bose Gas with an Impurity Page 27 of 34 55

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

Declarations

Conflict of interest The authors declare no competing interests.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A

A.1 Some Useful Identities

Proposition A.1 For any x ∈ [0, 1], p ∈ R and � even we have

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

= 2�+1�! x�

(2�+1)!

�
2∏

k=1

[
p2 +(2k − 1)2

]
2F1

(
�+1+i p

2 ,
�+1−i p

2 ; �+ 3
2 ; x2

)
.

Proof First let z ∈ (−1, 1) and take into account [14, p. 1007, 9.121.32], so that

cosh(p arcsin z)√
1− z2

= 2F1
(
1+i p
2 ,

1−i p
2 ; 12 ; z2

)
=
∑

k∈N0

(
1+i p
2

)

k

(
1−i p
2

)

k( 1
2

)
k

z2k

k!
=
∑

k∈N0

z2k

(2k)!
k∏

n=1

[
p2+ (2n − 1)2

]
,

(A.1)

where the last identity is given by the following simple computations

(
1+i p
2

)

k

(
1−i p
2

)

k
=
∣∣∣ 1+i p2

∣∣∣
2∣∣∣ 1+i p+22

∣∣∣
2· · ·

∣∣∣ 1+i p+2k−22

∣∣∣
2= 1

22k

k∏

n=1

[
p2+ (2n − 1)2

]
,

(A.2)
( 1
2

)
k =

1√
π

�
(
k + 1

2

) = 1

22k
(2k)!
k! . (A.3)

http://creativecommons.org/licenses/by/4.0/
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Notice that (A.3) is a particular case of the Legendre’s duplication formula

�(z)�
(
z + 1

2

) = 21−2z
√

π�(2z), z ∈ C �− 1
2N0. (A.4)

Using the Rodrigues’ formula for P� and integrating by parts � times, one gets

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

= 1

2��!
∫ 1

−1
dy (1− y2)�

∂�

∂ y�

cosh[p arcsin(xy)]√
1− x2y2

.

By (A.1), the function y 
−→ cosh[p arcsin(xy)]√
1−x2 y2 is analytic in (−1, 1) for all x ∈ [0, 1]

and p ∈ R, thus one can compute the �-th derivative:

∂�

∂ y�

cosh[p arcsin(xy)]√
1− x2y2

=
+∞∑

k= �
2

x2k

(2k)! ak(p
2)

(2k)! y2k−�

(2k − �)! =
∑

k∈N0

x�+2k

(2k)! ak+ �
2
(p2) y2k ,

where we have set ak(p2) := ∏k
n=1[p2+ (2n − 1)2] for the sake of notation. Using

Tonelli’s theorem to interchange the integral with the summation, one obtains

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

= x�

2��!
∑

k∈N0

x2k

(2k)! ak+ �
2
(p2)

∫ 1

−1
dy (1− y2)�y2k .

The last integral can be explicitly computed, namely

∫ 1

−1
dy (1− y2)�y2k = �(�+ 1)�

(
k + 1

2

)

�
(
�+ k + 3

2

) = 22�+2 �! (�+ k + 1)! (2k)!
(2�+ 2k + 2)! k! ,

(A.5)

where in the last equality we have used (A.4). Therefore,

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

= 2�+2x�
∑

k∈N0

(�+ k + 1)!
(2�+ 2k + 2)! ak+ �

2
(p2)

x2k

k! .

Using (A.3) and (A.2), the last expression can be rewritten in terms of the Pochhammer
symbols

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

= x�

2�

∑

k∈N0

x2k

k!
ak+ �

2
(p2)

22k
( 1
2

)
�+k+1

= x�
∑

k∈N0

x2k

k!

(
1+i p
2

)

k+ �
2

(
1−i p
2

)

k+ �
2( 1

2

)
�+k+1

.
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By definition (4.1a), one has

(·)n+m = (·)m( · + m)n, ∀ n,m ∈ N0, (A.6)

hence

∫ 1

−1
dy P�(y)

cosh[p arcsin(xy)]√
1− x2y2

=
x�
(
1+i p
2

)
�
2

(
1−i p
2

)
�
2( 1

2

)
�+1

∑

k∈N0

x2k

k!

(
�+1+i p

2

)

k

(
�+1−i p

2

)

k(
�+ 3

2

)
k

.

Using again (A.2), (A.3) and definition (4.2) one concludes the proof. ��
Remark A.1 We point out that the integral evaluated in proposition A.1 considerably
simplifies in case x = 1 or p = 0. Indeed, making use of (4.3) and (A.3), one gets in
case x = 1

∫ 1

−1
dy P�(y)

cosh(p arcsin y)√
1− y2

= 2�+1√π �!�(�+ 3
2

)

(2�+1)!
∣∣∣�
(

�+2+i p
2

)∣∣∣
2

�
2∏

n=1

[
p2 +(2n − 1)2

]

= 2�
√

π �!�(�+ 1
2

)

(2�)!
∣∣∣�
(

�+2+i p
2

)∣∣∣
2

�
2∏

n=1

[
p2 +(2n − 1)2

]

= π

2�

∣∣∣�
(

�+2+i p
2

)∣∣∣
2

�
2∏

n=1

[
p2+ (2n −1)2

]
.

Now, exploiting the identity

|�(n + 1+ ib)|2= πb

sinh(πb)

n∏

k=1
(k2+ b2), ∀ b ∈ R, n ∈ N0, (A.7)

one obtains

∫ 1

−1
dy P�(y)

cosh(p arcsin y)√
1− y2

= 2 sinh
(

π
2 p
)

p

�
2∏

k=1

p2+ (2k −1)2
p2 + 4k2

. (A.8)

Let us consider the case p = 0. Taking into account that

�
2∏

k=1
(2k − 1)2 = (�− 1)!!2 = �!2

2�
(

�
2

)!2 ,
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where (·)!! denotes the double factorial, i.e.

n!! :=
�n2�−1∏

k=0
(n − 2k) =

⎧
⎪⎨

⎪⎩

2
n
2
( n
2

)!, if n is even,
(n+1)!

2
n+1
2
(
n+1
2

)
!
, if n is odd, (A.9)

one obtains

∫ 1

−1
dy

P�(y)√
1− x2y2

= 2x� �!3
(2�+ 1)! ( �

2

)!2 2F1
(

�+1
2 , �+1

2 ; �+ 3
2 ; x2

)
.

(A.10)

In the special case x = 1 and p = 0, one has

∫ 1

−1
dy

P�(y)√
1− y2

= 2
√

π�!3 �
(
�+ 3

2

)

(2�+ 1)! ( �
2

)!4 =
√

π�!3 �
(
�+ 1

2

)

(2�)! ( �
2

)!4 = π�!2
22�

(
�
2

)!4 (A.11)

where we have used (4.3) and (A.3).

A.2 Properties of the Potential

Denote by ξi ∈ L2(R3, dx0)⊗L2sym(R3(N−1), dx1 · · · d x̌i · · · dxN ) the “charge” asso-
ciated to πi . Since the particles interacting with the impurity are all indistinguishable
with each other, all the charges must be equal, namely ξi (x0, x1, . . . x̌i . . . , xN ) =
ξ(x0, x1, . . . x̌i . . . , xN ), for all i and the total potential Gλ, defined in (2.1), can be
decomposed as follows

Gλξ =
N∑

i=1
Gλ

i ξ

withGλ
i :HN −→ L2(R6, dx0dxi )⊗L2sym(R3(N−1), dx1 · · · d x̌i · · · dxN ) the poten-

tial generated by the i-th charge. More precisely we have

(Ĝλξ)( p, k1, . . . , kN ) = 1

μ

1√
2π

N∑

i=1

ξ̂ ( p+ ki , k1, . . . ǩi . . . , kN )

1
2m0

p2 + 1
2m

∑N
j=1 k2j + λ

=
N∑

i=1
(̂Gλ

i ξ)( p, k1, . . . , kN ). (A.12)

Remark A.2 We stress that Gλ satisfies ran(Gλ) ⊂HN+1 and ker(Gλ) = {0}. Indeed,
one can verify that its adjoint is given by

Gλ∗ψ = 2πN
μ

(RH0(−λ)ψ)|πN , ψ ∈HN+1 (A.13)
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and its image is clearly dense inHN .

Remark A.3 From (2.1), one can verify that ran(Gλ) ∩ H1(R3(N+1))={0}. This fact
is remarkable in defining the quadratic form Q in (2.6).

Next, we extract the asymptotic behaviour of the potential in a neighborhood of the
coincidence hyperplanes, in the position representation. We compute such asymptotic
behavior for a regular charge ξ ∈ S(R3N ). From (A.12), we get

(
Gλ

j ξ
)
(x0, x1, . . . , xN )

= 2π

μ

∫

R3(N+1)
dqdk1 · · · dkN e

iq · x0+i
N∑

n=1
kn · xn

(2π)
3
2 (N+2)

ξ̂ (q + k j , k1, . . . ǩ j . . . , kN )

1
2m0

q2 + 1
2m

∑N
n=1 k2n + λ

= 2π

μ

∫

R3N
d pdk1 · · · d ǩ j · · · dkN e

i p·
( mx j+m0x0

m+m0

)
+i ∑

n 
= j
kn · xn

(2π)
3
2 (N+2) ξ̂ ( p, k1, . . . ǩ j . . . , kN )

× (m0m)
3
2

(m0 + m)3

∫

R3
dκ

e
i
√
m0m

m0+m κ · (x0−x j )

κ2+p2

2(m0+m)
+ 1

2m

∑
n 
= j k

2
n + λ

,

where a change of variables of Jacobian
(√

m0m
m0+m

)3
has occurred in the last step, where

⎧
⎨

⎩
p = q + k j ,

κ =
√

m
m0

q −
√

m0
m k j

⇐⇒
⎧
⎨

⎩
q = m0

m0+m
(
p+

√
m
m0

κ
)
,

k j = m
m0+m

(
p−

√
m0
m κ

)
.

(A.14)

The last integral in dκ is well known, since, given a > 0, one has

∫

R3
dk

ei k · x

k2 + a2
= 2π2

|x| e
−a |x| , ∀ x 
= 0. (A.15)

Hence,

(
Gλ

j ξ
)
(x0, x1, . . . , xN )

=
∫

R3(N−1)
dk1 · · · ˇdk j · · · dkN e

i
∑
n 
= j

kn · xn

(2π)
3
2 (N−1)

∫

R3
d p

e
i p ·

(mx j+m0x0
m+m0

)

(2π)
3
2

× ξ̂ ( p, k1, . . . ǩ j . . . , kN )

|x0 − x j | e
−√2μ |x0−x j |

√
p2

2(m0+m)
+ 1

2m

∑
n 
= j k

2
n+λ

.

(A.16)

From the last equation, notice that the term Gλ
j ξ is regular in R

3(N+1)
� π j . Fur-

thermore, since we are working with ξ̂ ∈ S(R3N ), with a Taylor expansion of the
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exponential, we can easily expand in terms of powers of |x j − x0|:

(
Gλ

j ξ
)
(x0, x1, . . . , xN )=

ξ
(
mx j+m0x0

m+m0
, x1, . . . x̌ j . . . , xN

)

|x0 − x j | +

−√2μ
∫

R3(N−1)
dk1 · · · ˇdk j · · · dkN e

i
∑
n 
= j

kn · xn

(2π)
3
2 (N−1)

∫

R3
d p

e
i p·

(mx j+m0x0
m+m0

)

(2π)
3
2

×
√

p2

2(m0+m)
+ 1

2m

∑
n 
= j k

2
n + λ ξ̂( p, k1, . . . ǩ j . . . , kN )

+O(|x0 − x j |
)
.

Therefore, one obtains an explicit behavior of the potential near π j

(
Gλ

j ξ
)
(x0, x1, . . . , xN )=

ξ
(
mx j+m0x0

m+m0
, x1, . . . x̌ j . . . , xN

)

|x0 − x j | − �
j,λ
diagξ + o(1) ,

(A.17)

where

(�
j,λ
diagξ)(x0, x1, . . . x̌ j . . . , xN )=√2μ

∫

R3N
d pdk1 · · · d ǩ j · · · dkN e

i p·x0+ i
∑
n 
= j

kn · xn

(2π)
3
2 N

×
√

p2

2(m0+m)
+ 1

2m

∑
n 
= j k

2
n + λ ξ̂( p, k1, . . . ǩ j . . . , kN ). (A.18)

A similar asymptotic expansion holds for Gλ in a neighborhood of π j

(Gλξ)(x0, x1, . . . , xN ) =
ξ
(
mx j+m0x0

m+m0
, x1, . . . x̌ j . . . , xN

)

|x0 − x j |
−(�

j,λ
diag+ �

j,λ
off )ξ + o(1) , (A.19)

with �
j,λ
off representing the contribution of all other potentials {Gλ

i }i 
= j evaluated on
π j , i.e.

(�
j,λ
off ξ)(x0, x1, . . . x̌ j . . . , xN )

= − 1
4π2μ

∫

R3
d p

∫

R3N
dk1 · · · dkN e

i( p+k j )·x0+i ∑
� 
= j

k�·x�

(2π)
3
2 N

×
N∑

n=1
n 
= j

ξ̂ ( p+ kn, k1, . . . ǩn . . . , kN )

1
2m0

p2 + 1
2m

∑N
�=1k2� + λ

. (A.20)
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Let us fix for notational simplicity j = N and define r = xN − x0, R = mxN+m0x0
m+m0

.

Then for any g ∈ S(R3N ) from (A.19) we have

lim
r→ 0

∫

R3N
dRdx1 · · · dxN−1 g(R, x1, . . . , xN−1)

[
Gλξ(R − mr

m+m0
, R + m0 r

m+m0
, x1, . . . , xN−1)+− ξ(R, x1, . . . , xN−1)

|r|
]

= −
∫

R3N
dRdx1 · · · dxN−1 g(R, x1, . . . , xN−1) (�

N ,λ
diag + �

N ,λ
off )ξ(R, x1, . . . , xN−1) .

(A.21)
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