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Abstract
Let � ⊆ C

m be a bounded connected open set andH ⊆ O(�) be an analytic Hilbert
module, i.e., the Hilbert space H possesses a reproducing kernel K , the polynomial
ring C[z] ⊆ H is dense and the point-wise multiplication induced by p ∈ C[z] is
bounded on H. We fix an ideal I ⊆ C[z] generated by p1, . . . , pt and let [I] denote
the completion of I in H. The sheaf SH associated to analytic Hilbert module H
is the sheaf O(�) of holomorphic functions on � and hence is free. However, the
subsheaf S[I] associated to [I] is coherent and not necessarily locally free. Building
on the earlier work of Biswas, Misra and Putinar (Journal fr die reine und angewandte
Mathematik (Crelles Journal) 662:165–204, 2012), we prescribe a hermitian structure
for a coherent sheaf and use it to find tractable invariants. Moreover, we prove that
if the zero set V[I] is a submanifold of codimension t , then there is a unique local
decomposition for the kernel K[I] along the zero set that serves as a holomorphic
frame for a vector bundle on V[I]. The complex geometric invariants of this vector
bundle are also unitary invariants for the submodule [I] ⊆ H.
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1 Introduction

Thenotionof aHilbertmodule over a function algebrawas introducedbyR.G.Douglas
in the late eighties. Over the past couple of decades, problems ofmulti-variate operator
theory have been discussed using the language of Hilbert modules. In this paper, we
continue this tradition. Let us begin by setting up some conventions that will be in
force throughout.

(1) C[z] := C[z1, . . . , zm] is the polynomial ring in m variables.
(2) � ⊆ C

m is a bounded domain.
(3) O(�) is the ring of holomorphic functions on �.
(4) H is a complex separable Hilbert space andL(H) is the algebra of bounded linear

operators on H.

First, we recall some useful notions and terminology that we would be using through
out this paper. For 1 ≤ i ≤ m, let Ti : H → H be a commuting set of bounded linear
operators on a Hilbert space H and let T denote the commuting tuple (T1, . . . , Tm).
For a polynomial p ∈ C[z], themap p → mp := p(T ) defines a homomorphism from
C[z] to L(H). Thus the map (p, h) → p(T )h, h ∈ H, defines module multiplication
on the Hilbert space H over the polynomial ring C[z].

The Hilbert spaceH equipped with this multiplication is said to be a Hilbertmodule
over the polynomial ring C[z].

A closed subspace H0 ⊆ H is said to be a submodule of H if it is invariant under
the module multiplication, i.e., mp f ∈ H0 for all f ∈ H0. The quotient module Q
is the quotient spaceH/H0, which is the ortho-complement ofH0 inH. The module
multiplication on this space is defined by compression of the multiplication on H to
Q, i.e., mp f = PH⊥

0

(
mp f

)
, f ∈ Q.

(The original definition of the Hilbert module required the module map to be con-
tinuous in both the variables, however, here we dispense with this requirement.)

Two Hilbert modules H and H̃ are said to be “unitarily” equivalent if there exists
a unitary module map θ : H → H̃ intertwining the module maps, m and m̃, that is,
m̃ pθ = θmp.

Definition 1.1 A Hilbert module H ⊆ O(�) over the polynomial ring C[z] is said to
be an analyticHilbertmodule if it possesses a reproducing kernel K and the polynomial
ring C[z] is included inH and it is dense. In particular, K (w,w) �= 0, w ∈ �.

Fix an ideal I ⊆ C[z] generated by p1, . . . , pt and let [I] denote the completion
of I inH. Thus

0 [.I] H Q 0,
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is a short exact sequence of Hilbert modules, where Q is the quotient module [I]⊥.
The rigidity phenomenon for Hilbert modules is the question of determining when
two submodules of the form [I], [I ′] of an analytic Hilbert module are equivalent.
There is also the question of finding invariants for the sub and quotient modules [I],
[I]⊥. In this paper, wemostly discuss the pair (H, [I]), whereH is an analytic Hilbert
modules.

For any submodule M of an analytic Hilbert module, we define the subsheaf SM
of the sheaf O(�) of holomorphic functions on � as follows:

SM(U ) :=
{

n∑

i=1

( fi |U )hi : fi ∈ M, hi ∈ O(U ), n ∈ N

}

,

for any open U ⊂ �. We note SH(U ) = O(U ) and thus it is free and naturally gives
rise to a holomorphic line bundle on �. However, in general, the sheaf corresponding
to the sub-module [I] is not free, not even locally free, but only coherent.

As we have seen, the analytic Hilbert modules give rise to a holomorphic hermitian
line bundle. Consequently, the methods of Cowen and Douglas developed for the class
B1(�) in [9] applies. The class B1(�) consists of those commuting tuples of operators
T := (T1, . . . , Tm) on a Hilbert space H possessing an open set of eigenvalues, say
� ⊂ C

m , a holomorphic map γ : � → H with the property that (Ti − w)γ (w) = 0,
1 ≤ i ≤ m, for each w ∈ � and finally γ (w) modulo the constants is the only such
vector. Clearly, the map w → γ (w) defines a trivial holomorphic line bundle L on �

with a hermitian structure inherited from the Hilbert spaceH, namely, ‖γ (w)‖. Recall
that the curvature of L is defined to be the (1, 1) form:

KL(z) :=
n∑

i, j=1

∂2

∂zi∂ z̄ j
log ‖γ (z)‖2dzi ∧ dz̄ j .

The Cowen–Douglas theorem says that the curvature is a complete invaraint for the
commuting tuple of operators T . Thus two analytic Hilbert modules are equivalent
if and only if their curvatures are equal. However, there is a large class of Hilbert
modules, such as [I], where the dimension of the joint kernel ∩m

i=1 ker(Mi − wi )
∗

is not constant. For instance, let H2
(0,0)(D

2) be the submodule of functions vanishing

at (0, 0) of the Hardy module H2(D2). In this case, dim∩2
i=1 ker(Mi − wi )

∗ = 1 if
(w1, w2) �= (0, 0), while it is 2 if (w1, w2) = (0, 0), cf. [12].

We study a class of Hilbert modules very similar to the ones introduced in [5], see
also [3], and designatedB1(�) in that paper. Here, while we retain the same symbol,
the definition instead of requiring dim

(H/(∑m
i=1(zi−wi )H

))
< ∞,merely requires

that dim
⋂m

i=1 ker(Mi − wi )
∗ < ∞, w ∈ �. For what we do here, this is adequate,

and more importantly, this condition is not very hard to verify as in Proposition 2.3.

Definition 1.2 The classB1(�) consists of Hilbert modulesH ⊆ O(�) possessing a
reproducing kernel K and such that dim∩m

i=1 ker(Mi − wi )
∗ < ∞, w ∈ �.

All the analytic Hilbert modulesH ⊆ O(�) are inB1(�), see Sect. 2. However, the
reproducing kernel K of a Hilbert module inB1(�)may vanish, that is, K (w,w) = 0
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for w in some closed subset of �, unlike the case of the analytic Hilbert modules.
Indeed the modules in this class are the ones where the dimension of the joint kernel
∩m
i=1 ker(Mi−wi )

∗ of themodulemultiplication is not necessarily constant. Therefore
the techniques from complex geometry developed in [9, 10] do not apply directly.
The typical example that we will be considering is a pair (H, [I]), where H is an
analytic Hilbert module and [I] is the completion of a polynomial ideal I in the
norm topology of H. If I =< p > is a principal ideal, then the kernel K[I] factors:
K[I](z, w) = p(z)χ(z, w)p(w). Thus w �→ χ(·, w) is holomorphic frame defining
a holomorphic hermitian line bundle which serves as an invariant for [I]. However,
to study modules of the form [I] without assuming that I is necessarily principal, we
make crucial use of the decomposition theorem from [5], which is reproduced below.

Theorem 1.3 (Theorem 1.5, [5]) Let w0 be a fixed but arbitrary point in �. Suppose
M is inB1(�) and let K be the reproducing kernel ofM. Assume that g0i , 1 ≤ i ≤ d,
is a minimal set of generators for the stalk SM

w0
. Then

(i) there exists an open neighbourhood �0 of w0 such that

K (·, w) = g01(w)K (1)(w) + · · · + g0d(w)K (d)(w), w ∈ �0

for some choice of anti-holomorphic maps K (1), . . . , K (d) : �0 → M,
(ii) the vectors K (i)(w), 1 ≤ i ≤ d, are linearly independent in M for w in some

small neighbourhood of w0,
(iii) the vectors K (i)(w0), 1 ≤ i ≤ d, are uniquely determined by the generators

g01, . . . , g
0
d ,

(iv) the linear span of the set of vectors {K (i)(w0) : 1 ≤ i ≤ d} inM is independent
of the choice of generators g01, . . . , g

0
d , and

(v) M∗
pK

(i)(w0) = p(w0)K (i)(w0), for i = 1, . . . , d, where Mp denotes the module
multiplication by the polynomial p.

The decomposition of the kernel function given in Theorem 1.3 naturally gives rise
to the hermitian structure on the “linear space” associated to the coherent sheaf S[I]
described in Sect. 3. Moreover, it also enables us to define a holomorphic hermitian
line bundle in a canonical manner leading to tractable invariants for the submodule
M.

On the other hand, part (iii) of the Theorem 1.3 gurantees only that K (i)’s are
uniquely determined at the point w0. It is natural to ask what condition on an ideal
I might ensure that these vectors are determined uniquely over the zero set V[I].
In Sect. 4, we prove that if V[I] is a complex manifold codimension t and the ideal
is generated by t polynomials, then the K (i)’s are uniquely determined. This is part
of Theorem 4.3 which improves Theorem 1.3 in this case. In Corollary 4.4, we have
shown that the dimension formula holds for a larger class ideals than covered in Duan–
Guo [14, Proposition 2.2 and Theorem 2.3]. In Sect. 5, Theorem 5.1, we show that
the class of the vector bundle on the zero set V[I] obtained from Theorem 4.3 is an
invariant for the Hilbert module [I]. We further show in Corollary 6.3, that in case of
a homogeneous ideal, the curvatures are related via conjugation by a constant matrix
with respect to two different minimal sets of generators.
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2 Preliminaries

The relationship between analytic Hilbert modules and commuting tuples of operators
in the Cowen-Douglas class is revealed by using the notion of a non-negative definite
kernel K with the reproducing property discussed below. In particular, w → K (·, w),
w ∈ �, serves as an anti-holomorphic frame for the eigenbundle for the operator (or,
the commuting tuple of operators) in the Cowen-Douglas class.

Definition 2.1 The function K : �×� → C is said to be non-negative definite kernel
if:

〈((
K (zi , z j )

))
x, x

〉
≥ 0, {z1, . . . , zn} ⊆ �, x ∈ C

n, n ∈ N.

In this paper, we assume the kernel function K to be holomorphic in first variable and
anti-holomorphic in second. Let kw be the holomorphic function defined by kw(z) :=
K (z, w).

Let H0 be the linear span of the vectors {kw : w ∈ �}. For any finite subset
{z1, . . . , zn} of � and complex numbers x1, . . . , xn , set

∥∥∥
n∑

i=1

x j kz j

∥∥∥
2 :=

〈((
K (zi , z j )

))
x, x

〉
,

where x is the vectorwhose i -th coordinate is xi . Since K is assumed to be non-negative
definite, this defines a semi-norm on the linear space H0.

Now, the sesquilinear form K (z, w) = 〈K (·, w), K (·, z)〉 is non-negative definite
by assumption. However, for f ∈ H0, the Cauchy-Schwarz inequality gives

| f (w)|2 = |〈 f , K (·, w)〉|2 ≤ ‖ f ‖2K (w,w), w ∈ �.

It follows that if ‖ f ‖ = 0, then f is the zero vector inH0. Thus the semi-norm defined
by K , as above, is indeed a norm on H0. The completion of H0 equipped with this
norm is a Hilbert space, which consists of holomorphic functions on � (cf. [2, 17]).
The function kw := K (·, w), then has the reproducing property, namely,

〈 f , kw〉 = f (w), f ∈ H, w ∈ �.

Conversely, assume that the point evaluation ew : H → C, w ∈ �, on a Hilbert
spaceH ⊆ O(�) is bounded, that is, | f (w)| ≤ C‖ f ‖, f ∈ H. Then f (w) = 〈 f , kw〉
for some vector kw ∈ H. It follows that e∗

w = kw. Let K (z, w) = ezkw = eze∗
w. The

function K is holomorphic in the first variable and anti-holomoprhic in the second.
Also, K (z, w) = K (w, z). Finally, for any finite subset {z1, . . . , zn} of �, we have

0 ≤
∥∥
∥

n∑

i=1

x j kz j

∥∥
∥
2 =

n∑

i, j=1

x̄i x j K (zi , z j ) = 〈((
K (zi , z j )

))
x, x

〉
, x ∈ C

n . (2.1)
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The non-negative definite function K is said to be the reproducing kernel of theHilbert
space H.

There are several notions, namely, locally free modules [6], modules with sharp
kernels [1], quasi-free modules [11], which are closely related to the notion of analytic
Hilbert modules. In all of these variants, the definition ensures the existence of a
holomorphic hermitian vector bundle corresponding to these Hilbert modules. The
fundamental theorem of Cowen and Douglas (cf. [9]) then applies and says that the
equivalence class of the Hilbert modules and those of the vector bundles determine
each other. Finding tractable invariants for these remains a challenge.

It is easy to verify thatM∗
pkw = p(w)kw, or equivalently, kw is in ker(Mp− p(w))∗.

IfH is an analyticHilbertmodule, then it follows that the dim∩m
i=1 ker(Mi−wi )

∗ = 1,
w ∈ �, where Mi is the operator of multiplication by the coordinate function zi on
H. This is easily verified as follows. For any f ∈ ∩m

i=1 ker(Mi − wi )
∗, p ∈ C[z], we

have

〈 f , p〉 = 〈M∗
p f , 1〉 = 〈p(w) f , 1〉 = 〈akw, p〉,

where a = 〈 f , 1〉. Therefore, if H is an analytic Hilbert module, then the dimension
of the joint kernel ∩m

i=1 ker(Mi −wi )
∗ is 1 and is spanned by the vector kw. Hence the

map γ : �∗ → H, γ (w) = kw̄ is holomorphic for w ∈ �∗ := {w ∈ C
m : w̄ ∈ �}.

Thus it defines a holomorphic hermitian line bundle L on �∗. If α is a non-vanishing
holomorphic function defined on �∗, then α(w)γ (w) serves as a holomorphic frame
for the line bundle L as well. The hermitian structures induced by these two holo-
morphic frames are ‖γ (w)‖2 and |α(w)|2‖γ (w)‖2, respectively. These differ by the
absolute square of a non-vanishing holomorphic function. However, the curvatureKL
defined relative to either one of these two frames is the same and therefore serves as
an invariant for the holomorphic hermitian line bundle L.

It is easy to see that [I] is in B1(�) using the notion of module tensor product.
Let H1 and H2 be two Hilbert modules over the polynomial ring C[z]. The Hilbert
space tensor product H1 ⊗ H2 of these two Hilbert modules has two natural module
multiplications, namely, mp ⊗ Id( f1 ⊗ f2) = mp( f1) ⊗ f2 and Id ⊗mp( f1 ⊗ f2) =
f1 ⊗mp( f2). The module tensor productH1 ⊗C[z] H2 is obtained by identifying the
space on which these two multiplications coincide. Set N to be the closed subspace
spanned by the set of vectors

{mp f1 ⊗ f2 − f1 ⊗ mp f2 : f1 ∈ H1, f2 ∈ H2, p ∈ C[z]} ⊆ H1 ⊗ H2.

The subspaceN is a submodule for both the left and the right multiplications:mp ⊗ Id
and Id⊗mp. On the quotientN⊥ = (H1⊗H2)�N , these twomodulemultiplications
coincide (cf. [13]). The quotient Hilbert space N⊥ equipped with this multiplication
is the module tensor product.

We consider the special caseH⊗C[z]Cw, whereCw isC equipped with the module
multiplication mp(λ) = p(w)λ, w ∈ �, p ∈ C[z]. In H, let J (w) denote the joint
kernel∩m

i=1 ker(Mi −wi )
∗ = ∩p∈C[z] ker(Mp− p(w))∗.We have the following useful

lemma.
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Lemma 2.2 LetH ⊆ O(�) be a Hilbert module. For anyw ∈ �, we have the equality

H ⊗C[z] Cw =
(
J (w)

)
⊗ C.

Proof The proof consists of the following string of equalities:

H ⊗C[z] Cw = (H ⊗ C
)
/
{
p f ⊗ λ − f ⊗ p(w)λ : f ∈ H, p ∈ C[z], λ ∈ C

}

= {
(p − p(w)) f ⊗ λ : f ∈ H, p ∈ C[z], λ ∈ C

}⊥

= {
g ⊗ μ ∈ H ⊗ C : 〈g, (p − p(w)) f 〉μλ̄ = 0, f ∈ H, p ∈ C[z], λ ∈ C

}

= {
g ⊗ μ : 〈M∗

p−p(w)g, f 〉 = 0, f ∈ H, p ∈ C[z], λ ∈ C
}

=
(
J (w)

)
⊗ C.

These equalities are easily verified. ��
Proposition 2.3 The submodule [I] of an analytic Hilbert module H ⊆ O(�) is in
B1(�).

Proof We note that

dim
m⋂

i=1

ker(Mi − wi )
∗ = dimJ (w) = dim

([I] ⊗C[z] Cw

)
.

Since the polynomial ring is Noetherian, it follows that [I] is finitely generated. Now,
from [13, Lemma 5.11], it follows that the dim

([I] ⊗C[z] Cw

)
is finite, completing

the proof. ��
Any module map L : H → H̃ must map the joint kernel J (w) ⊆ H into the joint

kernel J̃ (w) ⊆ H̃. If the map L is assumed to be invertible then its restriction to the
kernel J (w) ⊆ H is evidently an isomorphism. Thus we have proved the following
proposition.

Proposition 2.4 SupposeH and H̃ are twoHilbert module inO(�), which are isomor-
phic via an invertible module map. ThenH⊗C[z] Cw and H̃⊗C[z] Cw are isomorphic
for each w ∈ �.

Therefore, dimJ (w) is clearly an invariant for the class of Hilbert modules inO(�).
For an analytic Hilbert module, this is a constant function.

Nowweobserve (as in [12]), for theHardymodule H2(D2), dimJ (w) is identically
1 for all w ∈ D

2 while for the submodule H2
(0,0)(D

2), it equals 1 for w �= (0, 0) but is

equal to 2 at (0, 0). Thus H2(D2) and H2
(0,0)(D

2) are not equivalent via any invertible
module map.

The module tensor product H ⊗C[z] Cw is said to be the localization of H at w

and the set Sp(H) := {H ⊗C[z] Cw : w ∈ �
}
is said to be the spectral sheaf.

When H ⊆ O(�) is an analytic Hilbert module, the spectral sheaf determines an
anti-holomorphic line bundle via the frame 1 ⊗C[z] 1w. The hermitian structure is
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induced fromH⊗C[z] Cw. In general, however, the spectral sheaf is a direct sum of k
copies of Cw, where k is between 1 and t , which is the rank ofH, see below. In what
follows, it will be convenient to use the notion of locally free module of rank n over
�∗ := {w ∈ C

m : w̄ ∈ �}, where � is some open bounded subset of Cm .

Definition 2.5 (Definition 1.4, [9]) Let H be a Hilbert module over C[z]. Let � be a
bounded open connected subset of Cm . We sayH is locally free of rank n at w0 in �∗
if there exists a neighbourhood �∗

0 of w0 and holomorphic functions γ1, γ2, . . . , γn :
�∗

0 → H such that the linear span of the set of n vectors {γ1(w), . . . , γn(w)} is the
module tensor product H ⊗C[z] Cw̄. Following the terminology of [6], we say that a
module H is locally free on �∗ of rank n if it is locally free of rank n at every w in
�∗.

Setting V[I] := {
z ∈ � : f (z) = 0, f ∈ [I]}, in the examples (H, [I]), we have

the following Lemma from [5, Lemma 1.3].

Lemma 2.6 The submodule [I] of an analytic Hilbert module H ⊆ O(�) is locally
free on �∗ of rank 1 if the ideal I is principal while if p1, . . . pt , t > 1, is a minimal
set of generators for I, then [I] is locally free on (� \ V[I])∗ of rank 1.

Assume that there is finite set of generators for [I], moreover, let {p1, . . . , pt } be
a minimal set of generators. A description of the spectral sheaf for a pair (H, [I]) is
given below. For w ∈ �\V[I], we have [I] ⊗C[z] Cw = pi ⊗C[z] 1w, 1 ≤ i ≤ t .
However, note that

pi ⊗C[z] 1w = PJ (w)⊗C(pi ⊗ 1)

= (
PC[K[I](·,w)] ⊗ 1

)
(pi ⊗ 1)

= pi (w)
K[I](w,w)

K[I](·, w) ⊗ 1.

HereC[K[I](·, w)] denotes the one dimensional space spanned by the vector K (·, w).
Thus the set of vectors pi ⊗C[z] 1w are linearly dependent and therefore dim[I]⊗C[z]
Cw = 1 for w ∈ �\V[I]. Based on this observation and explicit computations in
simple examples, it was conjectured in [12] that

dim[I] ⊗C[z] Cw =
{
1 for w ∈ � \ V[I]
codim of V[I] for w ∈ V[I]

This formula is shown to be false in general by means of several examples in the paper
[14] by Duan and Guo. They show that the formula given above is valid if the ideal I
has any one of the following properties:

(1) I is singly generated,
(2) I is a prime ideal in C[z1, z2]
(3) I is a prime ideal in C[z1, . . . , zm], m > 2 and w is a smooth point of V[I].
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3 Hermitian Structure

Let H ⊆ O(�) be an analytic Hilbert module over the polynomial ring C[z],
i.e., it is a reproducing kernel Hilbert space such that the polynomial ring is densely
contained in it. Let M := [I] be the completion of an ideal I ⊂ H. Thus M is
again a reproducing kernel Hilbert space. However, the reproducing kernel K (·, w)

of the submodule M might be the zero vector for some w ∈ �. Consequently, the
dimension of the eigenspace ∩m

i=1 ker(M
∗
i − w̄i ) is no longer necessarily independent

of w ∈ �. For an analytic Hilbert module H, the eigenspaces over w ∈ � defines a
holomorphic hermitian vector bundle. As we have noted, any submodule M of the
form [I] of an analytic Hilbert module H is in the class B1(�). While M need not
define a holomorphic vector bundle, it was shown in [5] that it defines a coherent sheaf
SM(�). We assume thatM is a submodule of an analytic Hilbert module and with a
slight abuse of notation, we let S denote the coherent sheaf SM(�) defined by M.

In what follows, we make the standing assumption that M is a submodule of an
analytic Hilbert module H of the form [I].

The main goal here is to define a hermitian structure for the coherent sheaf S by
taking advantage of its presentation via the short exact sequence: Since the sheaf S is
a subsheaf of the sheaf of holomorphic functionsO(�), for a fixed w0 ∈ �, there is a
open neighbourhood U0 of w0 and a natural number n such that On

U0
→ SU0 → 0 is

exact. The Decomposition Theorem 1.3 produces linearly independent set of vectors
{K (1)(w), . . . , K (n)(w)},w ∈ U0, depending holomorphically onw. The size n of this
set of vectors depends on w0. Thus we have a Hermitian structure on the free module
On

U0
. We describe below how to transplant this Hermitian structure to the stalk of S

at w0.
For each w ∈ �, let mw be the maximal ideal of Ow and let Qw := Ow/mw be

the quotient module. For any analytic sheaf S, let Sw be the module Sw ⊗Ow
Qw =

Sw/mwSw. If S is coherent, then Sw is a finite dimensional linear space.
If On

U → SU → 0 is an exact sequence, then the induced map On
w → Sw → 0,

w ∈ U , is also exact. If 〈·, ·〉w is an inner product on On
z (∼= C

n), then we equip Sw

with the inner product induced by the onto map Ow → Sw → 0.

Definition 3.1 A hermitian structure on a coherent sheaf S is an assignment of inner
products on each Sw, w ∈ �.

If S is a coherent sheaf over �, then there exists an open neighbourhood U of a

fixed but arbitrary w0 ∈ � and a map ϕ such that On
U

ϕ→ SU → 0 is exact.
A hermitian structure on a coherent sheaf S is said to be smooth if for a fixed but

arbitrary w0 ∈ �, there is a neighbourhood U of w0 and a smooth inner product on
On(U ), that is, a smooth assignment of inner products on the locally free sheaf On

w,
w ∈ U , such that the inner product on Sw is the quotient inner product induced by

the onto map Ow
ϕw−→ Sw → 0.

Finally, a coherent sheaf equipped with a smooth hermitian structure, as above, is
said to be a holomorphic hermitian sheaf.

For any fixed but arbitrary w0 ∈ �, let �0 ⊆ � be an open neighbourhood of w0.
Pick h1, . . . , hd in O(�0) and set [h1g01 + · · · + hdg0d ] to be the equivalence class of
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h1g01 + · · · + hdg0d in Sw0/mw0Sw0 . The assignment

[
h1g

0
1 + · · · hdg0d

] �→ (
h1(w0), . . . , hd(w0)

)

is well defined:
Suppose that

∑m
i=1 hi g

0
i = ∑m

i=1 h
′
i g

0
i . Then

∑m
i=1(hi − h′

i )g
0
i belongs to

mw0S(K )w0 since hi (0) = h′
i (0), i = 1, . . . ,m. Therefore,

[∑m
i=1 hi g

0
i

] =[∑m
i=1 h

′
i g

0
i

]
.

This assignment provides a linear isomorphism between Sw0 and C
d .

For any fixed but arbitrary w0 ∈ �, there is an open neighbourhood �0 ⊆ � of
w0 such that K (·, w) = g01(w)K (1)

w0 (·, w) + · · · + g0d(w)K (d)
w0 (·, w), w ∈ �, where

{g01, . . . , g0d} are a minimal set of generators for the stalk Sw0 at w0 ∈ �0. Also, for

any w ∈ �0, the vectors {K (1)
w0 (·, w), . . . , K (d)

w0 (·, w)} ⊂ M are linearly independent.
Now, we can assign an inner product on Sw0 as follows: Let

H(w0) = ((
Hi j (w0)

)) := ((〈
K (i)

w0
(·, w0), K

( j)
w0

(·, w0)
〉))

be the Grammian of the linearly independent vectors {K (1)
w0 (·, w0), . . . , K

(d)
w0 (·, w0)}.

Thematrix H(w0) is therefore positive definite and is invertible.We define a hermitian
structure on Sw0 using H(w0). Assertion (iv) of Theorem 1.3 shows that the hermitian
structure at w0 is independent of the choice of the generators.

We claim that the prescription of a hermitian structure on Sw, w in some open
neighbourhood �0 of w0 ∈ � using H(w), is a smooth hermitian structure on S.
We have a resolution Od → S → 0. Let us define an inner product on Od

w using

the hermitian structure H(w)−1, where H(w) = ((〈
K (i)

w0 (·, w), K ( j)
w0 (·, w)

〉))
and the

set {K (1)
w0 (·, w), . . . , k(d)

w0 (·, w)}, w ∈ �0, of linearly independent vectors are as in
Theorem 1.3 except that we have added the subscriptw0 to emphasize the dependence
of these vectors on the fixed but arbitrary point w0.

We prove that the inner product induced by H on Sw0 , w0 ∈ �0, coincides with
the one we have already defined.

For any w ∈ �0, let {s(w)
1 , . . . , s(w)

e } be a minimal set of generators of Sw. We

can then find linearly independent vectors K (1)
w (·, u), . . . , K (e)

w (·, u) that are anti-
holomorphic in the variable u defined on some open neighbourhood of w such that
K (·, u) = ∑e

j=1 s
(w)
j (u)K ( j)

w (·, u). Since {g(0)
1 , . . . , g(0)

d } is also a set of generators
for Sw(K ), not necessarily minimal, we must have a full rank matrixG ∈ Me×d(Ow)

such that

(s(w)
1 (u), . . . , s(w)

e (u))G(u) = (g(0)
1 (u), . . . , g(0)

d (u)),

u in some small open neighbourhood of w.

Theorem 3.2 The coherent sheaf S is a holomorphic hermitian sheaf, that is,

(
G(w)H(w)G(w)†

) = ((〈
K (i)

w (·, w), K ( j)
w (·, w)

〉))e
i, j=1, w ∈ �0,
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where G(w)† is the transpose of the matrix G(w) and e depends on w.

Proof For α ∈ Od
w, set β := Gα, and note that

(
g(0)
1 ... g(0)

d

)
(

α1

...
αd

)

= (
s(w)
1 (w) ... s(w)

e (w)
)
G(w)

(
α1

...
αd

)

= (
s(w)
1 (w) ... s(w)

e (w)
)
(

β1

...
βd

)

.

Suppose that Sw is identified withCe via the map:
[∑e

i=1 βi s
(w)
i

] �→ (
β1(w), . . . , βe

(w)
)
. Then the hermitian structure onSw, by definition, is induced by the non-negative

definite matrix
((〈
K (i)

w (·, w), K ( j)
w (·, w)

〉))e
i, j=1. The map Cd ∼= Od

w

ϕw−→ Sw
∼= C

e

is then given by the formula:

(α1(w), . . . , αd (w))
(∑d

i=1 αi g
(0)
i

)
|w

(∑d
i=1 βi s

(w)
i

)
|w (β1(w), . . . , βe(w)).

and (β1(w), . . . , βe(w)) = (α1(w), . . . , αd(w))G(w)†. Setting the hermitian struc-
ture on C

d , induced by the set of linearly independent vectors {K (1)
w0 (·, w), . . . , k(d)

w0

(·, w)} to be H(w) := ((〈
K (i)

w0 (·, w), K ( j)
w0 (·, w)

〉))
, we see that the hermitian structure

on Ce obtained via the map ϕw is of the form
(
G(w)H(w)G†(w)

)−1. Since

s(w)
1 (w)K (1)

w (·, w) + · · · + s(w)
e (w)K (e)

w (·, w) = K (·, w)

= g01(w)K (1)
w0

(·, w) + · · · + g0d(w)K (d)
w0

(·, w),

it follows that

(
K (1)

w0
(·, w), . . . , K (d)

w0
(·, w)

)
g(0) = (

K (1)
w0

(·, w), . . . , K (d)
w0

(·, w)
)
G(w)†s(w).

By the uniqueness statement at w of the vectors {K (1)
w (·, u), . . . , K (e)

w (·, u)} of Theo-
rem 1.3, we conclude that

(
K (1)

w (·, w), . . . , K (e)
w (·, w)

) = (
K (1)

w0
(·, w), . . . , K (d)

w0
(·, w)

)
G(w)†.

Taking inner product of the vectors on both sides of this equation verifies the assertion
of the Theorem. ��

For any fixed but arbitrary w0 ∈ Z , let d be the minimal set of generators Sw0 .
Also, we have anti-holomorphic functions K (i)

w0 (·, w), 1 ≤ i ≤ d, defined on some
open neighbourhood Uw0 of w0. The real analytic function H(w) = ((

Hi j (w)
)) :=

((〈
K (i)

w0 (·, w), K ( j)
w0 (·, w)

〉))
defines a hermitian structure on the locally free sheaf

O(Uw0)
d . SetPw0 to be the holomorphic hermitian vector bundle of rank d (d depends
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on w0) determined by the pair (O(Uw0)
d , H(w)). Theorem 1.10 of [5] says that if

two analytic sheaves S and S̃ are isomorphic (that is, there is a unitary module map
between the modules M an M̃ they are associated with), then the holomorphic her-
mitian vector bundles Pw0 and P̃w0 are equivalent (by shrinkingUw0 and Ũw0 ) via an
isometric bundle map for each fixed but arbitrary w0 ∈ Z on a common open neigh-
bourhoodU ′

w0
of w0. If w is outside the zero set, then there is an open neighbourhood

U ofw in which the dimension of the stalk Sw is 1 and the eigenvectors K (·, w) define
a holomorphic hermitian bundle E(U ) on the open set U , this is the Cowen-Douglas
bundle of M on U . Moreover, if the two analytic sheaves S and S̃ are isomorphic,
then these holomorphic hermitian bundles are (locally) equivalent.

Definition 3.3 If the vector bundles Pw, E(U ) (determined by K ) are equivalent to
the corresponding vector bundles P̃w, Ẽ(U ) (determined by K̃ ) for all w ∈ Z and
some openU ⊆ �\Z , then we say that the hermitian sheaves S and S̃ are equivalent.

In particular, for each w ∈ Z , the curvature of the determinant bundle det(Pw)

induced by the hermitian structureH(w) defined onUw is an invariant for the analytic
Hilbert module M, or equivalently, that of the holomorphic hermitian sheaf S(K ).
Furthermore, if we assume that the zero variety Z is a complex manifold, then we
can strengthen what we have just said, see Corollary 6.3. In this case, the dimension
of Sw is a constant, say t > 1, see Theorem 4.3. Also, for any w ∈ Z , fixing a min-
imal set of generators {p1, . . . , pt }, there exists a uniquely determined holomorphic
frame {K 1, . . . , K t } on some open neighbourhood �w of w, again, see Theorem 4.3.
Therefore, the locally-free sheaf O(�w)t with the holomorphic frame {K 1, . . . , K t }
defines a smooth hermitian structureH for allw in�w ∩Z simultaneously. As before,
the curvature of the determinant bundle induced by det(P) on the open set �w is an
invariant for the analytic Hilbert module M. Summarizing this discussion, we list
useful invariants for the holomorphic hermitian sheaf S associated to a reproducing
kernel Hilbert space.

Theorem 3.4 The curvature of the determinant bundles det(Pw), w ∈ Z , are invari-
ants for the holomorphic hermitian sheaf S.

Inwhat follows,we rework the (λ, μ) examples of [5, 4.1, p. 194] using the determinant
bundle and arrive at the same conclusion.

Example 3.5 For any pair λ,μ > 0, let H(λ,μ) be the Hilbert module of wrigted
Bergman spaces on the bidisc D2 determined by the kernel function 1

(1−w̄z)λ
1

(1−w̄z)μ .

Let M ⊆ H(λ,μ) be the submodule of functions vanishing at {(0, 0)}. The hermitian
metric for the sheaf SM in a neighbourhood of the point {(0, 0)}was calculated in [5].
Taking the trace of the curvature of this metric from the bottom of page 29 in [5], we
see that the coefficients of dz1∧dz̄1 and dz2∧dz̄2 of the curvatureK(λ,μ)(z)|z=(0,0) for

the determinant bundle P(0,0) are given by the formula: λ+1
2 + λμ2

(λ+μ)2
,

μ+1
2 + λ2μ

(λ+μ)2
,

respectively. Equating these coeffcients ofK(λ,μ)(z)|z=(0,0) andK(λ′,μ′)(z)|z=(0,0), we
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obtain the pair of equations:

λ+1
2 + λμ2

(λ+μ)2
= λ′+1

2 + λ′μ′2
(λ′+μ′)2

μ+1
2 + λ2μ

(λ+μ)2
= μ′+1

2 + λ′2μ′
(λ′+μ′)2

(3.1)

Set k = λ
μ
and k′ = λ′

μ′ . Dividing the first equation by the second in (3.1), we have
that

k
{ 1
2 + 1

(1+k)2
}

1
2 + k2

(1+k)2

=
k′{ 1

2 + 1
(1+k′)2

}

1
2 + k′2

(1+k′)2
= α (say),

which simplifies to the equation k(1 + k)2 + 2k = α(1 + k)2 + 2αk2. This shows k
is a root of the equation

x3 − (3α − 2)x2 − (2α − 3)x − α = 0. (3.2)

We claim that this equation has only one positive root for every positive α and hence
k = k′. From (3.1), it follows that λ = λ′ and μ = μ′. Any cubic equation can have
either one real root and two complex roots or three real roots. In the first case, we
are done as product of the roots is α. In case it has 3 real roots, since the product
of the roots is positive, either there is one positive root and two negative roots or
all the three roots are positive. In the first case, discarding the two negative roots,
we are done again. We claim that the second case does not occur. If ki , i = 1, 2, 3
are positive roots of the Eq. (3.2), then

∑
ki = 3α − 2,

∑
i< j ki k j = 3 − 2α and

k1k2k3 = α and it follows that α lies in [2/3, 3/2]. However, the identity∑i≤ j ki k j =
1/2

{∑
i< j (ki + k j )2

}
gives that α must lie in (1, 3/2]. Now observing that 1/k is

also a root of x3 − (3β − 2)x2 − (2β − 3)x − β = 0 with β = 1/α, and using the
same identity, we arrive at a contradiction that α can not be greater than 1.

4 Finding a Holomorphic Frame in an Open Subset of the Zero Set

Let � be a bounded domain in C
m and M be a Hilbert module over the polynomial

ring C[z1, . . . , zm], in the class B1(�). We construct a sheaf SM for the Hilbert
module M as follows:

SM(U ) =
{

n∑

i=1

( fi |U )gi : fi ∈ M, gi ∈ O(U ), n ∈ N

}

, U open in �

or equivalently,

SM
w = {

( f1)wOw + · · · + ( fn)wOw : f1, . . . , fn ∈ M, n ∈ N
}
, w ∈ �.
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Clearly, SM is a subsheaf of the sheaf of holomorphic functionsO�. From [5, Propo-
sition 2.1], it follows that SM is coherent. In particular, for each fixed w ∈ �, SM

w is
generated by finitely many elements from Ow.

Now, suppose that H is an analytic Hilbert module and M is the closure of a
polynomial ideal I inH generated by {p1, . . . , pt }. For eachw ∈ �, from [7, Lemma
2.3.2], it follows that {(p1)w, . . . , (pt )w} generates the stalk SM

w . In the following
lemma we provide a sufficient condition for the minimality of such a generating set.
We let Z(p1, . . . , pt ) denote the common zero set of the polynomials p1, . . . , pt .

Lemma 4.1 If V (M) := Z(p1, . . . , pt ) ∩ � is a submanifold of codimension t, then

(a) {p1, . . . , pt } is a minimal set of generators for I and
(b) for each w ∈ V (M), (p1)w, . . . , (pt )w is a minimal generator of SM

w .

Proof Assume that pt = q1 p1 + · · · + qt−1 pt−1, for q1, . . . , qt−1 ∈ C[z1, . . . , zm].
Then we have V (M) = Z(p1, . . . , pt−1)∩�. Since p1|�, . . . , pt−1|� are t−1 holo-
morphic functions from� toC, applying [8, Section 3.5]we obtain that codim(V (M))

is at most t − 1 which contradicts the hypothesis of the lemma. This proves part a).
To prove part b), assume that there exists a point w0 ∈ V (M) such that

(pt )w0 = (a1)w0(p1)w0 + · · · + (at−1)w0(pt−1)w0 ,

where a1, . . . , at−1 are holomorphic functions defined on some neighbourhood Nw0

of w0 in �. Going to a smaller neighbourhood if necessary, we have pt = a1 p1 +
· · · + at−1 pt−1 on Nw0 . As a result, V (M) ∩ Nw0 = Z(p1, . . . , pt−1) ∩ Nw0 .
Now, since p1|Nw0

, . . . , pt−1|Nw0
are t − 1 holomorphic functions on Nw0 and

Z(p1|Nw0
, . . . , pt−1|Nw0

) = V (M) ∩ Nw0 is a submanifold, from [8, Section 3.5]
it follows that codim(V (M) ∩ Nw0) is at most t − 1. Again, this is a contradiction to
the hypothesis saying codim(V (M) ∩ Nw0) = codim(V (M)) = t . ��
Remark 4.2 Suppose Z(p1, . . . , pt ) is a complete intersection, that is, the tuple
(p1, . . . , pt ) : � → C

t is a submersion at every point w ∈ V (M). Then V (M)

is a submanifold of codimension t . In this case, we can give a more direct proof of
Lemma 4.1 as follows.

If there exists a point w0 ∈ V (M) such that pt = a1 p1 + · · · + at−1 pt−1 on Nw0 ,
then, for j = 1, . . . ,m,

∂ pt
∂w j

(w0) = ∂(a1 p1)

∂w j
(w0) + · · · + ∂(at−1 pt−1)

∂w j
(w0)

= a1(w0)
∂ p1
∂w j

(w0) + · · · + at−1(w0)
∂ pt−1

∂w j
(w0).

As a result, the matrix

⎛

⎜
⎜
⎝

∂ p1
∂w1

(w0) . . .
∂ p1
∂wt

(w0)

...
...

∂ pt
∂w1

(w0) . . .
∂ pt
∂wt

(w0)

⎞

⎟
⎟
⎠ =

⎛

⎜⎜
⎜⎜
⎝

∂ p1
∂w1

(w0) . . .
∂ p1
∂wt

(w0)

...
...

∂ pt−1
∂w1

(w0) . . .
∂ pt−1
∂wt

(w0)∑t−1
i=1 ai (w0)

∂ pi
∂w1

(w0) . . .
∑t−1

i=1 ai (w0)
∂ pi
∂wt

(w0)

⎞

⎟⎟
⎟⎟
⎠
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has rank at most t − 1. This contradicts the fact that Z(p1, . . . , pt ) is a complete
intersection at w0.

The following Theorem is a generalization of [5, Theorem 1.5] reproduced earlier
in this paper as Theorem 1.3.

Theorem 4.3 LetH ⊆ O(�) be an analytic Hilbert module for some bounded domain
� inCm. Also, letM be a submodule ofH of the form [I], that is,M is the completion
of some polynomial ideal I ⊆ H with generators p1, . . . , pt . Furthermore, assume
that V (M) is a submanifold of codimension t. Then there exist anti-holomorphic maps
F1, . . . , Ft : V (M) → M such that we have the following.

1. For each w ∈ V (M), there exists a neighbourhood �w of w in �, anti-
holomorphic maps F1

�w
, . . . , Ft

�w
: �w → M with the properties listed below.

(a) F j
�w

(v) = Fj (v), for all v ∈ V (M) ∩ �w, j ∈ {1, . . . , t}.
(b) ku = ∑t

j=1 p j (u)F j
�w

(u), for all u ∈ �w, where kw := K (·, w),w ∈ �, with
K being the reproducing kernel of the submodule M.

(c) {F1
�w

(u), . . . , Ft
�w

(u)} is a linearly independent set for each u ∈ �w.

2. The set {F1, . . . , Ft } is uniquely determined by {p1, . . . , pt }, that is, if G1, . . . ,Gt

is another collection of anti-holomorphic maps from V (M) toM satisfying 1. a)
and 1.b), then G j = Fj , 1 ≤ j ≤ t .

3. M∗
pFj (v) = p(v)Fj (v), for all j = 1, . . . , t , v ∈ V (M), where Mp is the

multiplication by the polynomial p.
4. For each v ∈ V (M), the linear span of the set of vectors {F1(v), . . . , Ft (v)} inM

is the joint kernel ofM at v and hence is independent of the choice of generators
p1, . . . , pt .

Proof Pick an arbitrary point w ∈ V (M). From Lemma 4.1, (p1)w, . . . , (pt )w is a
minimal set of generator of SM

w . Consequently, there exists a neighbourhood�w ofw

in � such that for all u ∈ �w, K (·, u) = ∑t
j=1 p j (u)F j

�w
(u), where F1

�w
, . . . , Ft

�w

are anti-holomorphic maps from �w to M satisfying conditions (ii) to (v) of Theo-
rem 1.3.

Take w1, w2 ∈ V (M) such that �w1 ∩ �w2 ∩ V (M) is non-empty. Now, for each
u ∈ �w1 ∩ �w2 we have

K (·, u) =
t∑

j=1

p j (u)F j
�w1

(u) and K (·, u) =
t∑

j=1

p j (u)F̃ j
�w2

(u).

This implies

t∑

j=1

p j (u)
(
F j

�w1
(u) − F̃ j

�w2
(u)
) = 0.

For each u ∈ �w1 ∩ �w2 , 1 ≤ j ≤ t , set α j (u) = (
F j

�w1
(u) − F̃ j

�w2
(u)
)
and note

that
∑t

j=1 p j (u)α j (u) = 0. Now, fix an arbitrary v ∈ �w1 ∩ �w2 ∩ V (M) and
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assume that α1(v) �= 0. This gives
∑t

j=1(p j )v(α j )v = 0 in OCm ,v and (α1)v is an

unit in OCm ,v . Consequently, (p1)v = −∑t
j=2

(
(α1)

−1
v (α j )v

)
(p j )v which says that

{(p1)v, . . . , (pt )v} is not a minimal set of generators of SM
v contradicting Lemma 4.1.

Thus,

α j (v) = 0 ⇔ F j
�w1

(v) = F̃ j
�w2

(v),∀v ∈ �w1 ∩ �w2 ∩ V (M), 1 ≤ j ≤ t . (4.1)

Since {�w ∩ V (M)}w∈V (M) is an open cover of V (M), for each j = 1, . . . , t , we
define Fj : V (M) → M as follows:

Fj |�w

⋂
V (M)(v) := F j

�w
(v),∀v ∈ �w ∩ V (M).

From 4.1 it follows that for each j = 1, . . . , t , Fj is a well-defined, anti-holomorphic
map satisfying 1.a),1.b) and 1.c).

To prove 2., assume that for each w ∈ V (M), there exist a neighbourhood Nw of
w in �, anti-holomorphic maps G1

Nw
, . . . ,Gt

Nw
: Nw → M such that a) G j

Nw
(v) =

G j (v), ∀v ∈ Nw ∩ V (M) and b) K (·, u) = ∑t
j=1 p j (u)G j

Nw
(u), ∀u ∈ Nw. This

gives

t∑

j=1

p j (u)
(
F j

�w
(u) − G j

Nw
(u)
) = 0,∀u ∈ �w ∩ Nw.

Following similar arguments as given above, for each v ∈ �w ∩ Nw ∩ V (M), we
have G j (v) = G j

Nw
(v) = F j

�w
(v) = Fj (v). In particular, Fj (w) = G j (w), for all

w ∈ V (M).

The proof of Part 3 is straightforward from condition (v) of Theorem 1.3 and from
the observation that for each w ∈ V (M), Fj (w) = F j

�w
(w). From the same observa-

tionwe obtain that Span{F1(w), . . . , Ft (w)} is a subspace of∩p∈C[z]Ker(M∗
p− p(w)),

for each w ∈ V (M). Now, from 1.a) and 1.c) it follows that the dimension of
this subspace is at least t . On the other hand, from [13, Lemma 5.11] it follows
that dim(M ⊗C[z] Cw) = dim

(∩p∈C[z] ker(Mp − p(w))∗ ⊗ C
) ≤ t . So, for each

w ∈ V (M), Span{F1(w), . . . , Ft (w)} = ∩p∈C[z] ker(M∗
p − p(w)) proving Part 4. ��

Corollary 4.4 LetH ⊆ O(�) be an analytic Hilbert module for some bounded domain
� in C

m. Also, let M be a submodule of H of the form [I] and p1, . . . , pt be the
generators of I. Assume that V (M) is a submanifold of codimension t. Then

dim

( m⋂

i=1

ker(Mz j − w j )
∗
)

=
{
1 for w /∈ V (I) ∩ �

codimension of V (I) for w ∈ V (I) ∩ �.
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Proof For each w ∈ V (M) = V (I) ∩ �, from the proof of Part 4., Theorem 4.3, we
infer that

dim

( m⋂

i=1

ker(Mz j − w j )
∗
)

= dim

( ⋂

p∈C[z]
ker(M∗

p − p(w))

)
= t .

Moreover, clearlyM ∈ B1(�). Therefore, from [3, Lemma 1.11], it follows thatM
is locally free on (� \ V (M))∗ with the result that dim

(∩m
i=1 ker(Mz j − w j )

∗) = 1,
for w /∈ V (M). ��

Observe that we do not need I to be a prime ideal to prove Corollary 4.4. This
enables us to consider examples that satisfy the conjecture of Douglas, Misra and
Varughese [12] but does not follow from [14, Theorem 2.3]. We will discuss an
explicit example below to demonstrate this. In what follows, we let < {p1, . . . , pt } >

denote the ideal generated by the polynomials p1, . . . , pt . Consider the ideal I =<

{z1z2, z1 − z2} > in C[z1, . . . , zm] and define M = [I] in H = H2(Dm), where
m ≥ 2. If z ∈ V (I), then z1z2 = 0 and z1 − z2 = 0. Thus, V (I) ⊆ {z1 = z2 = 0}.
Furthermore, observe that

I ⊆ 〈{z1, z1 − z2}〉 = 〈{z1, z2}〉.

Note that for two ideals I1, I2 in C[z1, . . . , zm], if I1 ⊆ I2, then V (I2) ⊆ V (I1.).
As a result, we obtain V (I) = {(z1, . . . , zm) : z1 = z2 = 0} which implies that
V (M) = {(z1, . . . , zm) ∈ D

m : z1 = z2 = 0}. So, by Corollary 4.4 we have

dim(M ⊗C[z] Cw) =
{
1 for w /∈ V (I) ∩ D

m,

2 for w ∈ V (I) ∩ D
m .

Now, we claim that I is not prime. To see this, it is enough to show that neither z1 nor
z2 belongs to I. Assume z1 ∈ I. Then, there exist p1, p2 ∈ C[z1, . . . , zm] such that

z1 = p1z1z2 + p2(z1 − z2)

which implies

z1(1 − p2 − p1z2) = −p2z2.

Thismeans z1 divides p2z2. But z1 is a prime element ofC[z1, . . . , zm] and z1 does not
divide z2. So, z1 divides p2 and we will write p2 = qz1, for some q ∈ C[z1, . . . , zm].
Thus, we have

z1 = p1z1z2 + qz1(z1 − z2).

Finally, dividing both sides by z1 we have

1 = p1z2 + q(z1 − z2).
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This is a contradiction because the right hand side vanishes at the origin whereas the
left hand side does not. This proves z1 /∈ I. Following similar arguments one can
show that z2 /∈ I.

5 The Vector Bundle Associated to the Joint Kernel and Its Curvature

From Theorem 4.3 we obtain a rank t , trivial, anti-holomorphic bundle EM on
V (M) = V (I) ∩ � corresponding to the set {p1, . . . , pt } given by

EM =
⊔

w∈V (M)

< {F1(w), . . . , Ft (w)} > .

Since, for each w ∈ V (M), (EM)w is a subspace of M, we can give a hermitian
structure on EM which is canonically induced by the inner product of M. This
observation leads to the following theorem.

Theorem 5.1 Let � be a bounded domain in C
m and I be a polynomial ideal

with generators p1, . . . , pt . Also, let H,H′ be analytic Hilbert modules in O(�)

and M,M′ be the closure of I in H,H′, respectively, with the property that
codimV (M) = codimV (M′) = t . If the modules M,M′ are "unitarily" equiva-
lent, then we have the following:

(a) EM is equivalent to EM′ , where EM, EM′ are two bundles on V (M) =
V (M′) = V (I) ∩ � obtained from Theorem 4.3 and the discussion above.

(b) If FM := {F1, . . . , Ft }, FM′ := {F ′
1, . . . , F

′
t } are the global frames of

EM, EM′ respectively that are obtained from applying Theorem 4.3 onM,M′
with respect to the set {p1, . . . , pt }, then

KEM(FM) = KEM′ (FM′).

Here KEM(FM),KEM′ (FM′) are the curvature matrices of EM, EM′ with
respect to the frames FM, FM′ , respectively.

Proof From Theorem 4.3, it follows that for each w ∈ V (I) ∩ �, (EM)w =
∩m
i=1 ker(Mzi −wi )

∗ and (EM′)w = ∩m
i=1 ker(M

′
zi −wi )

∗, where Mzi , M
′
zi are point-

wise multiplication by zi on M,M′ respectively. If L : M → M′ is an unitary
module map, then, for any g ∈ ∩m

i=1 ker(Mzi − wi )
∗, (M

′
zi )

∗(Lg) = L(M∗
zi g) =

L(w̄i g) = w̄i (Lg). Thus,

L
(

∩m
i=1 ker(Mzi − wi )

∗) ⊆ ∩m
i=1 ker(M

′
zi − wi )

∗.

Similarly, it can be shown that

L−1
(

∩m
i=1 ker(M

′
zi − wi )

∗) ⊆ ∩m
i=1 ker(Mzi − wi )

∗,
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which is equivalent to

∩m
i=1 ker(M

′
zi − wi )

∗ ⊆ L
(

∩m
i=1 ker(Mzi − wi )

∗).

Consequently, L
( ∩m

i=1 ker(Mzi − wi )
∗) = ∩m

i=1 ker(M
′
zi − wi )

∗ and hence L is an
isometric isomorphismbetween (EM)w and (EM′)w for allw ∈ V (I)∩�.Moreover,
there exists an anti-holomorphic map A : V (I) ∩ � �→ GL(t,C) such that for each
w, the following matrix equality is true:

[
LF1(w) · · · LFt (w)

] = [
F

′
1(w) · · · F ′

t (w)
]
A(w). (5.1)

Thus, L induces a bundle isomorphism between EM and EM′ which proves part (a).

Next, observe that part (b) follows trivially frompart (a) when t = 1. This is because
from part (a) we obtain the equality of the first Chern forms on EM, EM′ given by
c1(EM, NM) = c1(EM′, NM′)which implies i

2π KEM(FM) = i
2π KEM′ (FM′) ⇔

KEM(FM) = KEM′ (FM′). Here NM, NM′ are the hermitian metrics on EM, EM′
induced by the inner products of M,M′, respectively.

For the case where t ≥ 2, note that M,M′ ∈ B1(�). As a result, following [3,
Lemma 1.11] we obtain that the reproducing kernels ofM,M′ are sharp on�\V (I).
Since L is unitary, there exists a non-vanishing, holomorphic function φ on � \ V (I)

such that

LK (·, w) = φ(w)K ′(·, w), (5.2)

for all w ∈ � \ V (I) [10, Theorem 3.7], where K , K ′ are the reproducing kernels of
M,M′, respectively. But codimV (M) ≥ 2. So, by the Hartog’s Extension Theorem
[16, Page 198] φ can be uniquely extended to � as a holomorphic function. Since an
analytic function is unambiguously determined from its definition on any open set, it
follows that Eq. (5.2) is true for all w ∈ �.

Now, fix an arbitrary pointw0 ∈ V (I)∩�. Then, from condition b) of Theorem 4.3
we have

K (·, u) =
t∑

j=1

p j (u)F j
�w0

(u) and K ′(·, u) =
t∑

j=1

p j (u)F ′ j
�w0

(u), (5.3)

for all u ∈ �w0 . Applying L to the first equality of the Eq. (5.3) we obtain that

φ(u)K ′(·, u) =
t∑

j=1

p j (u)LF j
�w0

(u)



2 Page 20 of 24 S. Biswas et al.

or, equivalently,

K ′(·, u) =
t∑

j=1

p j (u)
LF j

�w0
(u)

φ(u)
.

Since, v �→ LFj (v)

φ(v)
, v �→ F

′
j (v) are anti-holomorphic maps from V (M′) to M′ for

each j = 1, . . . , t , satisfying 1.a) and 1.b) of Theorem 4.3, by the condition 2 of the
same theorem, we have LFj (v) = φ(v)F

′
j (v), for all v ∈ V (I)∩�. As a result, from

Eq. (5.1) we have A(v) = φ(v)It×t , for all v ∈ V (I) ∩ �. Finally,

(KEM(FM)
)
(v) = ∂

((
NM(FM)

)−1
∂̄
(
NM(FM)

))
(v)

= ∂
((

NM′(LFM)
)−1

∂̄
(
NM′(LFM)

))
(v)

= (KEM′ (LFM)
)
(v)

= (KEM′ (FM′ A)
)
(v)

= A(v)−1 · (KEM′ (FM′)
)
(v) · A(v)

= (KEM′ (FM′)
)
(v),

which proves part (b) of the Theorem. ��
The following example demonstrates the use of the curvature invariant given in The-
orem 5.1(b). We first consider the case of a principal ideal and follow it up with the
case of ideals that are not principal.

Example 5.2 Let M = { f ∈ Hλ,μ(D2) : f|z1=0 = ∂1 f|z1=0 = · · · = ∂
p−1
1 f|z1=0 =

0}. By [15, Lemma 4.14],M is the closure [I] of the ideal I =< z p1 > inHλ,μ(D2).
On the zero set {(0, w2) : w2 ∈ D}, the frame is given by

F1(z, (0, w2)) = (λ)pz
p
1

p!(1 − z2w̄2)μ
,

and hence

‖F1(z, (0, w2))‖2 = (λ)p

p!
∑

n≥0

(μ)n

n! |w2|2n,

where (λ)p = λ(λ + 1) . . . (λ + p − 1) is the Pochhammer symbol. The curvature at
0 relative to this frame is

∂∂̄ log ‖F1(z, (0, w2))‖2{w2=0} = μ(λ)p

p! . (5.4)

We note that Ik =< zk+p
1 > is contained in I for each k ∈ N. If the completion

[I] of the ideal I inHλ,μ(D2) is equivalent to the completion of [I]′ of the ideal [I]
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taken in Hλ′,μ′
(D2), then the completion [Ik] of Ik in Hλ,μ(D2) is equivalent to the

completion [Ik]′ of Ik in Hλ′,μ′
(D2). This follows from the fact that the kernel K[I]

and K[I]′ factor: K[I](z, w) = z p1χ(z, w)w̄
p
1 and K[I]′(z, w) = z p1χ ′(z, w)w̄

p
1 . Thus

if [I] and [I]′ are equivalent, then there exists a non-zero holomorphic map ϕ on D
2

that induces the unitary module map between I] and [I]′. Following the same idea as
in the the proof of [4, Lemma 4.1], [Ik] and [Ik]′ are equivalent via the module map
induced by ϕ. By considering the case k = 1, from Theorem 5.1 and the curvature
computation in Eq. (5.4), it follows that μ(λ)p = μ′(λ′)p and μ(λ)p+1 = μ′(λ′)p+1.

Thus, we have λ = λ′ and μ = μ′.
Consider the submodule [I] that is the completion of the ideal I =< zi11 , . . . , zimm >

inHλ(Dn) for somem < n and λ = (λ1, . . . , λn). The reproducing kernel ofHλ(Dn)

is 1/
∏n

i=1(1 − zi w̄i )
λi . On the zero set {(0, , . . . , 0, wm+1, . . . , wn) ∈ C

n : wi ∈
D,m + 1 ≤ i ≤ n}, the frame is given by

Fk(z, (0, , . . . , 0, wm+1, . . . , wn)) = (λk)ik z
ik
1

ik !∏n
i=m+1(1 − zi w̄i )λi

,

and hence

‖Fk(z, (0, , . . . , 0, wm+1, . . . , wn))‖2 = (λk)ik

ik !∏n
i=m+1(1 − |wi |2)λi ,

for 1 ≤ k ≤ m. Since 〈Fi , Fj 〉 = 0 for i �= j , the metric is a m × m diagonal matrix
with diagonals ‖Fk‖2 as above. Thus, we just need to look at

∂2

∂wi∂w̄i
log ‖F1(z, (0, , . . . , 0, wm+1, . . . , wn))‖2

for 1 ≤ k ≤ m andm+1 ≤ i ≤ n as themixed derivatives are zero at the origin. So the
curvature computation at the origin and calculation similar to the case of the principal
ideal, we have the completion [I] of the ideal I in Hλ(Dn) and the completion [I]′
in Hλ′

(Dn) are equivalent if and only if λ = λ′.

6 On the Relationship of Curvature with the Generators

Two different sets of generators for an ideal I give rise to two distinct holomorphic
frames for the holomorphic hermitian vector bundle associated to the completion [I]
in the Hilbert module H. The curvature computed relative to these frames are equiv-
alenrt via an invertible map which is explicitly computed below in the case when �

is a bounded domain containing the zero vector in Cm and {p1, . . . , pt }, {q1, . . . , qt }
are two sets of generators of the polynomial ideal I consisting of homogeneous poly-
nomials of the same degree. LetH be an analytic Hilbert module in O(�) andM be
the closure of I in H with the property that codimV (M) = t . Then, by [3, Lemma
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4.7] we obtain that

{
p1(D̄)K (·, w)|w=0, . . . , pt (D̄)K (·, w)|w=0

}
and

{
q1(D̄)K (·, w)|w=0, . . . , qt (D̄)K (·, w)|w=0

}

are two bases of ker DM∗ . As a result, from [4, Lemma 2.1] and [4, Proposition 2.10]
it follows that there exists a constant invertible matrix A = (ai j )ti, j=1 such that,

q j =
t∑

i=1

ai j pi , 1 ≤ j ≤ t . (6.1)

Applying Theorem 4.3 separately with the choice of {p1, . . . , pt } and {q1, . . . , qt }, we
obtain the sets {F p

1 , . . . , F p
t }, {Fq

1 , . . . , Fq
t }, respectively which consist of the anti-

holomorphic maps from V (M) to M satisfying conditions 1) to 4) of the theorem.
Now, we claim the following.

Lemma 6.1 For each w ∈ V (M),
[
F p
1 (w) . . . F p

t (w)
] = [

Fq
1 (w) . . . Fq

t (w)
]
A∗.

Proof Fix an arbitrary point w0 ∈ V (M). Then from condition 1 of Theorem 4.3
there exist a neighbourhood�w0 ofw0 in�, anti-holomorphic maps Fk

�w0 ,p, F
k
�w0 ,q :

V (M) → M, k = 1, . . . , t such that

(a) Fk
�w0 ,p(v) = F p

k (v), Fk
�w0 ,q(v) = Fq

k (v), for all v ∈ V (M) ∩ �w0 , k = 1, . . . , t
and

(b) K (·, u) = ∑t
i=1 pi (u)Fi

�w0 ,p(u), K (·, u) = ∑t
j=1 q j (u)F j

�w0 ,q(u), for all u ∈
�w0 .

Now, applying Eq. (6.1) to the second equality of b) we obtain that

K (·, u) =
t∑

i=1

pi (u)
( t∑

j=1

āi j F
j

�w0 ,q(u)
)
,

for all u ∈ �w0 . Finally, observe that, for each i ∈ {1, . . . , t}, v �→ ∑t
j=1 āi j F

q
j (v)

is an anti-holomorphic map from V (M) → M satisfying conditions 1.a) and 1.b) of
Theorem 4.3 with respect to the set {p1, . . . , pt }. So, from condition 2 of Theorem
4.3, it follows that, for each i = 1, . . . , t , v ∈ V (M),

F p
i (v) =

t∑

j=1

āi j F
q
j (v),

proving the lemma. ��
Note that each of the sets {F p

1 , . . . , F p
t } and {Fq

1 , . . . , Fq
t } canonically induces an

anti-holomorphic frame of EM on V (M). If we denote the frames as F p
M and Fq

M
respectively, then we have

KEM(F p
M) = KEM(Fq

MA∗) = (A∗)−1 · KEM(Fq
M) · A∗,
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where KEM(F p
M),KEM(Fq

M) are the curvature matrices of the bundle EM with
respect to the frames F p

M, Fq
M, respectively. Thus, we have proved the following.

Proposition 6.2 Let � be a bounded domain in Cm and {p1, . . . , pt }, {q1, . . . , qt } be
two generators of the polynomial ideal I consisting of homogeneous polynomials of
same degree. Also, letH ⊆ O(�) be an analytic Hilbert module andM be the closure
of I inHwith the property that codimV (M) = t . Furthermore, assume that F p

M, Fq
M

are the global frames of EM obtained by applying Theorem 4.3 on M with respect
to the generators mentioned above. Then there exists a constant invertible matrix A
such that

KEM(F p
M) = (A∗)−1 · KEM(Fq

M) · A∗.

Corollary 6.3 Let �, I be as above, H,H′ ⊆ O(�) be two analytic Hilbert mod-
ules and M,M′ be the closure of I in H,H′ respectively with codimV (M) =
codimV (M′) = t . Suppose that F p

M := {F p
1 , . . . , F p

t }, Fq
M′ := {F ′q

1 , . . . , F
′q
t } are

theglobal framesof EM, EM′ corresponding to thegenerators {p1, . . . , pt }, {q1, . . . ,
qt }, respectively. If themodulesM andM′ are "unitarily" equivalent, then there exists
a constant invertible matrix A such that

KEM(F p
M) = (A∗)−1 · KEM′ (F

q
M′) · A∗,

whereKEM(F p
M),KEM′ (F

q
M′) are the curvature matrices of EM, EM′ with respect

to the frames F p
M, Fq

M′ , respectively.

Proof If we apply Theorem 4.3 on M with respect to the generator {q1, . . . , qt }, we
will obtain a collection of anti-holomorphic maps {Fq

1 , . . . , Fq
t } from V (M) to M.

This set canonically induces a global frame of EM. Let us denote the frame by Fq
M.

Then, by Proposition 6.2 it follows that there exists a constant invertible matrix A such
that

KEM(F p
M) = (A∗)−1 · KEM(Fq

M) · A∗.

Finally, from Theorem 5.1 we obtain that

KEM(Fq
M) = KEM′ (F

q
M′)

which proves the corollary. ��
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