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Abstract
Rochberg’s coboundary theorem provides conditions under which the equation (I −
T )y = x is solvable in y. Here T is a unilateral shift on Hilbert space, I is the identity
operator and x is a given vector. The conditions are expressed in terms of Wold-type
decomposition determined by T and growth of iterates of T at x .We revisit Rochberg’s
theorem and prove the following result. Let T be an isometry acting on a Hilbert space
H and let x ∈ H. Suppose that

∑∞
k=0 k‖T ∗k x‖ < ∞. Then x is in the range of

(I − T ) if (and only if)
∥
∥
∑n

k=0 T
kx
∥
∥ = o(

√
n). When T is merely a contraction, x

is a coboundary under an additional assumption. Some applications to L2-solutions
of the functional equation f (x) − f (2x) = F(x), considered by Fortet and Kac, are
given.
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1 Introduction

1.1 Coboundaries

Let T be a bounded linear operator acting on a complex Banach space X . An element
x of X is called a coboundary for T if there is y ∈ X such that x = y − T y.
Coboundaries are related to the behavior of the ergodic sums

Sn(T )x := x + T x + · · · + T n−1x, n ≥ 1.

A variant of the mean ergodic theorem for power bounded operators on reflexive
Banach spaces has been proved by von Neumann for Hilbert spaces and by Lorch in
the general case; see for instance [14]. Recall that T is said to be power bounded if
supn≥1 ‖T n‖ < ∞. We have

X =
{

x ∈ X : lim
n→∞

1

n
Sn(T )x exists

}

= {y ∈ X : T y = y} ⊕ (I − T )X .

In particular, as a consequence of this ergodic decomposition, we have

x ∈ (I − T )X ⇔ lim
n→∞

1

n
Sn(T )x = 0.

One can say more about the rate of convergence of (1/n)Sn(T )x to zero when x is a
coboundary. Indeed, when there exists a solution y of the equation y − T y = x , the
ergodic sums satisfy Sn(T )x = y − T n y. It follows that (Sn(T )x)n∈N is bounded.
Therefore ∥

∥
∥
∥
1

n
Sn(T )x

∥
∥
∥
∥ = O

(
1

n

)

. (1.1)

This rate of convergence to zero, namely O(1/n), characterizes coboundaries of power
bounded operators on reflexive spaces. Indeed, the converse result (whenever T is
power bounded and X is reflexive, an element x satisfying (1.1) is a coboundary for
T ) has been proved by Browder [1] and rediscovered by Butzer and Westphal [2].

We also note (see for instance [3, 4, 11] and the references therein) that if (I −T )X
is not closed, then for every sequence (an)n≥1 of positive real numbers converging to
zero, there exists x ∈ (I − T )X \(I − T )X such that

∥
∥
∥
∥
1

n
Sn(T )x

∥
∥
∥
∥ ≥ an, ∀n ≥ 1.

In particular, there is no general rate of convergence in the mean ergodic theorem
outside coboundaries.
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1.2 Rochberg’s Theorem

Browder’s theorem has been extended to the case that T is a dual operator on a
dual Banach space by Lin [16]; see also Lin and Sine [17]. We refer the reader to
the introduction of [6], and the references cited therein, for the history of Browder’s
theorem and for other extensions and generalizations. We mention here only two
references, namely [19] and [13], dealing with the Hilbert space situation. Any of
these Hilbert or Banach space abstract characterizations is not strong enough to obtain
as consequences classical results of Fortet andKac [9, 12] who dealt with the caseX =
L2(0, 1) and S f (x) = f (2x). This operator S is the Koopman operator associated
with the doubling map on the torus; see the last section of this manuscript for more
information about coboundaries of S. This situation has been remedied by Rochberg
[20], who showed that a condition of o(

√
n) growth of ergodic sums at x is sufficient

to ensure that x is a coboundary for a unilateral shift on Hilbert space. Notice that the
Koopman operator S acts as a unilateral shift on the subspace of L2(0, 1) of functions
whose zeroth Fourier coefficient vanishes.

We need the following classical definition in order to state Rochberg’s abstract
coboundary theorem.

Definition 1.1 Let T be an isometry acting on Hilbert spaceH. A closed subspace K
of H is called wandering for T whenever

T pK ⊥ T qK for p, q ∈ N, p = q.

The isometry T is called a (unilateral) shift if H possess a closed subspace K,
wandering for T and such that

∞⊕

n=0

T nK = H.

Theorem 1.2 ([20]) Let S be a shift and let f be an element ofH. Using the notation of
the preceding definition, we denote by f j the projection of f onto the closed subspace
S jK. Suppose that there exists β > 0 such that

‖ f j‖ = O(2−β j ).

Then there exists g inH such that (I − S)g = f if and only if

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

Sk f

∥
∥
∥
∥
∥

2

= 0.

Remark 1.3 The condition

‖ f j‖ = O(2−β j )
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is of course dependent of the decomposition of H associated with the unilateral shift
S. It implies ‖S∗ j f ‖ = O(2−β j ).

1.3 Statement of theMain Results

In the next theorem the unilateral shift S is replaced by an arbitrary isometry T
and the growth of the norm of the projection f j by the convergence of the series∑∞

j=0 j‖T ∗ j f ‖. The statement of the result does not depend on the Wold decom-
position, at least not in an explicit way. For the convenience of the reader, the Wold
decomposition theorem is recalled below. Theorem 1.4 implies Rochberg’s theorem
and it allows to recover Kac’s results about the coboundaries of the Koopman operator
of the doubling map.

Theorem 1.4 Let T be an isometry acting on aHilbert spaceH and let x ∈ H. Suppose
that ∞∑

k=0

k‖T ∗k x‖ < ∞. (1.2)

Then there exists y ∈ H such that x = (I − T )y if and only if

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T kx

∥
∥
∥
∥
∥

2

= 0.

Note however that the condition (1.2) implies that x is necessarily an element of
the shift part of the isometry T .

Considering coboundaries of adjoints of isometries, we notice that the identity
I−T = (T ∗−I )T shows that every coboundary of the isometry T is also a coboundary
for its adjoint T ∗. It follows from [7, Proposition 4.3] that when the isometry T is not
invertible (i.e., not a unitary operator), there are coboundaries for T ∗ which are not
coboundaries for T .

The following result, more general than Theorem 1.4, is about coboundaries of
contractions (operators of norm no greater than one).

Theorem 1.5 Let T be a linear operator acting on a Hilbert space H with ‖T ‖ ≤ 1.
Let x ∈ H and denote Sn(T )x := x + T x + · · · + T n−1x. Suppose that (1.2) holds,
as well as

‖Sn(T )x‖ = o(
√
n), n → ∞ (1.3)

and
n∑

k=1

(
‖Sk(T )x‖2 − ‖T Sk(T )x‖2

)
= o(n), n → ∞. (1.4)

Then there exists y ∈ H such that x = (I − T )y. In addition, y can be chosen such
that ‖T y‖ = ‖y‖.

We obtain the following consequence.
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Corollary 1.6 Let T be a linear operator acting on a Hilbert space H with ‖T ‖ ≤ 1.
Let x ∈ H and denote Sn(T )x := x + T x + · · · + T n−1x. Suppose that (1.2) and
(1.3) hold, as well as

∞∑

k=1

(‖Sk(T )x‖2 − ‖T Sk(T )x‖2)
k

< ∞. (1.5)

Then there exists y ∈ H such that x = (I − T )y and ‖T y‖ = ‖y‖.
Some remarks are in order. Theorem 1.5 and its consequence Corollary 1.6 show

that the coboundary equation can be solved within the maximal isometric subspace

M = {x ∈ H : ‖T nx‖ = ‖x‖ for every n ≥ 0}.

We refer to [18] and [15] for the canonical decomposition of a contraction into the
maximal isometric subspace and its orthogonal.

Conditions (1.4) and (1.5) are easily verified when T is an isometry. The conditions
(1.2) and (1.3) are always satisfied when ‖T ‖ < 1; however (1.5) is not, unless x = 0.
In fact, ‖T y‖ = ‖y‖ and ‖T ‖ < 1 imply that y = 0 and thus x = 0. Of course,
as (I − T ) is invertible when ‖T ‖ < 1 by Carl Neumann’s lemma, the coboundary
equation x = (I − T )y is always solvable in this case.

1.4 Outline of the Paper

A proof of Theorem 1.4 is given in the next section. The more general Theorem 1.5
and its consequence Corollary 1.6 are proved in Sect. 3. Some applications to the
functional equation g(x) − g(2x) = f (x) are presented in the next section. The
last section collects the acknowledgments, and (imposed) conflict of interest and data
availability statements.

2 Proof of Theorem 1.4

We first recall Wold’s decomposition Theorem (see [18, Chapter 1]).

Theorem 2.1 (Wold decomposition) Let T be an isometry on a Hilbert H. Then H
decomposes as an orthogonal sumH = H0 ⊕H1 such thatH0 andH1 are reducing
for T , the restriction of T toH0 is a unitary operator and the restriction of T toH1 is a
unilateral shift (one of the subspaces can eventually reduce to {0}). This decomposition
is unique; in particular, we have

H0 =
∞⋂

n=0

T nH and H1 =
∞⊕

n=0

T nK , where K = H � TH.
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Proof of Theorem 1.4 If x = (I − T )y, then
∑n

k=0 T
kx = x − T n+1x . Therefore∑n

k=0 T
kx is bounded since the isometry T is clearly power-bounded. In particular,

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T kx

∥
∥
∥
∥
∥

2

= 0.

Suppose now that

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T kx

∥
∥
∥
∥
∥

2

= 0.

We want to show the existence of a solution y of the equation (I − T )y = x .
LetH = H0 ⊕H1 be the Wold’s decomposition associated with T . We notice that

x ∈ H1. Indeed, if x = x0 + x1 according to Wold’s decomposition of H, then

lim
k→∞ ‖T ∗k x1‖ = 0 and ‖T ∗nx0‖ = ‖x0‖, ∀n ∈ N.

Therefore

lim
n→∞ ‖T ∗nx‖ = ‖x0‖.

On the other hand, it follows from (1.2) that

lim
n→∞ ‖T ∗nx‖ = 0.

We obtain that x ∈ H1. In particular, ifH1 is reduced to {0}, then x = 0 = (I − T )0.
Therefore, without loss of any generality, we can assume that T is a shift.

For each n ∈ N, we denote by Pn the projection onto the subspace T nK. For u ∈ H,
we set un := Pn(u), un := ∑n

j=0 u j and Rn := u − un .
Suppose that y is solution of the equation (I − T )y = x . We first obtain, by

projecting to T kK for each k ∈ N, the following system of equations :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x0 = y0
x1 = y1 − T y0
...

xk = yk − T yk−1
...
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We then obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y0 = x0
y1 = x1 + T y0 = x1 + T x0
...

yk = xk + T yk−1 = xk + T xk−1 + · · · + T k−1x1 + T kx0
...

Consider now, for each r ∈ N, the element

yr =
r∑

k=0

T kxr−k ∈ T rK.

We will prove that
∑∞

r=0 ‖yr‖2 is convergent, thus showing that y = ∑∞
r=0 yr is well

defined inH. In that case, for every r ∈ N, we have

Pr
(
(I − T )y

) = yr − T yr−1

=
r∑

j=0

T j xr− j −
r−1∑

j=0

T j+1xr−1− j

= xr .

This shows that (I − T )y = x .
To prove that

∑∞
r=0 ‖yr‖2 is finite, we need two more results.

Lemma 2.2 Let u ∈ H be such that
∑

j≥0 ‖T ∗ j u‖ < +∞. Then

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T ku

∥
∥
∥
∥
∥

2

= ‖u‖2 + 2Re
∞∑

k=1

〈u; T ku〉.

Proof We first notice that the sum
∑∞

k=1〈u; T ku〉 is absolutely convergent since
(‖T ∗ j u‖) j≥0 is summable. For each n ∈ N

∗, we have

1

n

∥
∥
∥
∥
∥

n∑

k=0

T ku

∥
∥
∥
∥
∥

2

= 1

n

⎛

⎝
n∑

i=0

‖T iu‖2 + 2Re

⎛

⎝
∑

0≤i< j≤n

〈T iu; T ju〉
⎞

⎠

⎞

⎠

= 1

n

⎛

⎝
n∑

i=0

‖u‖2 + 2Re

⎛

⎝
∑

0≤i< j≤n

〈u; T j−i u〉
⎞

⎠

⎞

⎠
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= n + 1

n
‖u‖2 + 2

n
Re

(
n∑

r=1

(n − r + 1)〈u; T ru〉
)

= n + 1

n
‖u‖2 + 2Re

(
n∑

r=1

〈u; T ru〉 − 1

n

n∑

r=1

(r − 1)〈u; T ru〉
)

.

On the other hand, we have

∣
∣
∣
∣
∣

1

n

n∑

r=1

(r − 1)〈u; T ru〉
∣
∣
∣
∣
∣
≤ 1

n
‖u‖

n∑

r=1

(r − 1)‖T ∗r u‖.

Using again the summability of the sequence (‖T ∗ j u‖) j≥0 and theKronecker’s lemma
(see for instance [21, Lemma IV.3.2]), we get

1

n

n∑

r=1

(r − 1)〈u; T ru〉 −→
n→∞ 0.

As the series
∑

k≥1〈u; T ku〉 is convergent, we obtain, as n tends to infinity,

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T ku

∥
∥
∥
∥
∥

2

= ‖u‖2 + 2Re
∞∑

k=1

〈u; T ku〉.

��
Lemma 2.3 Let u ∈ H. For every r ∈ N we have

∥
∥
∥
∥
∥
∥

r∑

j=0

T jur− j

∥
∥
∥
∥
∥
∥

2

= lim
n→∞

1

n

∥
∥
∥
∥
∥
∥

n∑

j=0

T jur

∥
∥
∥
∥
∥
∥

2

.

Proof Let n ≥ r . For k ∈ N we have

Pk

⎛

⎝
n∑

j=0

T jur

⎞

⎠ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑k
j=0 T

juk− j if 0 ≤ k < r ,
∑r

j=0 T
juk− j if r ≤ k ≤ n,

∑r
j=k−n T

juk− j if n < k ≤ n + r ,

0 if k > n + r .

Using the decomposition of H as H = ⊕∞
n=0 T

nK, we obtain

1

n

∥
∥
∥
∥
∥
∥

n∑

j=0

T jur

∥
∥
∥
∥
∥
∥

2

= 1

n

r−1∑

k=0

∥
∥
∥
∥
∥
∥

k∑

j=0

T juk− j

∥
∥
∥
∥
∥
∥

2

+ 1

n

n∑

k=r

∥
∥
∥
∥
∥
∥

r∑

j=0

T juk− j

∥
∥
∥
∥
∥
∥

2
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+1

n

n+r∑

k=n+1

∥
∥
∥
∥
∥
∥

r∑

j=k−n

T juk− j

∥
∥
∥
∥
∥
∥

2

.

We have

1

n

⎛

⎜
⎝

r−1∑

k=0

∥
∥
∥
∥
∥
∥

k∑

j=0

T juk− j

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ −→

n→∞ 0

and

1

n

n+r∑

k=n+1

∥
∥
∥
∥
∥
∥

r∑

j=k−n

T juk− j

∥
∥
∥
∥
∥
∥

2

= 1

n

⎛

⎜
⎝

r∑

k=1

∥
∥
∥
∥
∥
∥

r∑

j=k

T juk− j

∥
∥
∥
∥
∥
∥

2
⎞

⎟
⎠ −→

n→∞ 0,

as well as

1

n

n∑

k=r

∥
∥
∥
∥
∥
∥

r∑

j=0

T juk− j

∥
∥
∥
∥
∥
∥

2

= n − r + 1

n

∥
∥
∥
∥
∥
∥

r∑

j=0

T jur− j

∥
∥
∥
∥
∥
∥

2

−→
n→∞

∥
∥
∥
∥
∥
∥

r∑

j=0

T jur− j

∥
∥
∥
∥
∥
∥

2

.

We thus obtain

lim
n→∞

1

n

∥
∥
∥
∥
∥
∥

n∑

j=0

T jur

∥
∥
∥
∥
∥
∥

2

=
∥
∥
∥
∥
∥
∥

r∑

j=0

T jur− j

∥
∥
∥
∥
∥
∥

2

.

��

Wefinally show that
∑

r≥0 ‖yr‖2 < ∞. Using Lemma 2.3, we have for each r ∈ N,

‖yr‖2 =
∥
∥
∥
∥
∥

r∑

i=0

T i xr−i

∥
∥
∥
∥
∥

2

= lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

i=0

T i xr
∥
∥
∥
∥
∥

2

.

Using the parallelogram identity for the vectors xr + Rr = x , we get

2

n

∥
∥
∥
∥
∥

n∑

i=0

T i xr
∥
∥
∥
∥
∥

2

= 1

n

∥
∥
∥
∥
∥

n∑

i=0

T i x

∥
∥
∥
∥
∥

2

+ 1

n

∥
∥
∥
∥
∥

n∑

i=0

T i (xr − Rr )

∥
∥
∥
∥
∥

2

−2

n

∥
∥
∥
∥
∥

n∑

i=0

T i Rr

∥
∥
∥
∥
∥

2

.
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Make now n tends to infinity. Using Lemma 2.2 for Rr and xr −Rr , and the hypothesis
1
n

∥
∥∑n

k=0 T
kx
∥
∥2 −→

n→∞ 0, we obtain

2‖yr‖2 = lim
n→∞

2

n

∥
∥
∥
∥
∥

n∑

i=0

T i xr
∥
∥
∥
∥
∥

2

= lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

i=0

T i (xr − Rr )

∥
∥
∥
∥
∥

2

− 2 lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

i=0

T i Rr

∥
∥
∥
∥
∥

2

= ‖xr − Rr‖2 − 2‖Rr‖2

+ 2Re
∞∑

k=1

(
〈xr − Rr ; T k(xr − Rr )〉 − 2〈Rr ; T k Rr 〉

)

= ‖xr‖2 − ‖Rr‖2 + 2Re
∞∑

k=1

(
〈xr ; T kxr 〉 − 〈xr ; T k Rr 〉

− 〈Rr ; T kxr 〉 − 〈Rr ; T k Rr 〉
)

= ‖xr‖2 − ‖Rr‖2 + 2Re
∞∑

k=1

〈xr ; T kxr 〉 − 2Re
∞∑

k=1

〈Rr ; T kx〉.

Using now Lemma 2.2 applied to xr and Lemma 2.3, we get

‖xr‖2 + 2Re
∞∑

k=1

〈xr ; T kxr 〉 = lim
n→∞

1

n

∥
∥
∥
∥
∥

∞∑

i=0

T i xr
∥
∥
∥
∥
∥

2

= ‖yr‖2.

We can infer that

2‖yr‖2 = ‖yr‖2 − ‖Rr‖2 − 2Re
∞∑

k=1

〈Rr ; T kx〉,

so

‖yr‖2 = −‖Rr‖2 − 2Re
∞∑

k=1

〈Rr ; T kx〉.

For each fixed r we have Rr = T r+1T ∗(r+1)x . Thus ‖Rr‖ = ‖T ∗(r+1)x‖. As
+∞∑

j=1

j‖T ∗ j x‖ < +∞,
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we obtain that (‖Rr‖2)r is summable. It suffices to show that

∞∑

r=0

∣
∣
∣
∣
∣

∞∑

k=1

〈Rr ; T kx〉
∣
∣
∣
∣
∣
< ∞.

We have

∣
∣
∣
∣
∣

∞∑

k=1

〈Rr ; T kx〉
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

r∑

k=1

〈Rr ; T kx〉 +
∞∑

k=r+1

〈Rr ; T kx〉
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

r∑

k=1

〈Rr ; T kx〉 +
∞∑

k=r+1

〈Rk; T kx〉
∣
∣
∣
∣
∣

≤
r∑

k=1

‖Rr‖‖T kx‖ +
∞∑

k=r+1

‖Rk‖‖T kx‖

≤ ‖x‖
(

r‖Rr‖ +
∞∑

k=r+1

‖Rk‖
)

≤ ‖x‖
(

r‖T ∗(r+1)x‖ +
∞∑

k=r+1

‖T ∗(k+1)x‖
)

.

Using again the summability of (r‖T ∗r x‖)r , we get

∞∑

r=0

∞∑

k=r+1

‖T ∗k x‖ =
∞∑

k=0

k‖T ∗k x‖ < ∞.

Therefore
∑∞

r=0 ‖yr‖2 < ∞. ��

3 The Case of Contractions

We now prove Theorem 1.5 and its consequence Corollary 1.6.

Proof of Theorem 1.5 Let D denote the defect operator D = (I − T ∗T )1/2, which is
well defined since T is a contraction. As

‖T x‖2 + ‖Dx‖2 = 〈T ∗T x, x〉 + 〈(I − T ∗T )x, x〉 = ‖x‖2,

the operator R : �2(H) �→ �2(H) given by

R(x0, x1, x2, . . .) = (T x0, Dx0, x1, x2, . . .)
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and with matrix representation

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

T
D

I
I

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (3.1)

is an isometry. We can thus apply Theorem 1.4 to R.
The iterates of R are given by

Rk(x0, x1, x2, . . .) = (T kx0, DT k−1x0, DT k−2x0, . . . , DT x0, Dx0, x1, x2, . . .)

while their adjoints are given by

R∗k(x0, x1, x2, · · · )
= (T ∗k x0 + T ∗(k−1)Dx1 + · · · + T ∗Dxk−1, Dxk, xk+1, xk+2, · · · ).

Denote x̃ = (x, 0, 0, · · · ) ∈ �2(H) and ỹ = (y, y1, y2, · · · ) ∈ �2(H). The equation

x̃ = (I − R)ỹ

reduces to the system of equations x = (I − T )y, y1 = Dy, y2 = y1, y3 = y2, etc.
As ỹ ∈ �2(H), we obtain y1 = y2 = · · · = 0. Therefore the equation x̃ = (I − R)ỹ
in �2(H) is equivalent to

x = (I − T )y and Dy = 0.

Every positive (i.e. positive semi-definite) operator has the same kernel as its positive
square-root; thus (I − T ∗T )y = 0. Therefore ‖T y‖ = ‖y‖.

An easy computation shows that the summability condition
∑∞

k=0 k‖R∗k x̃‖ < ∞
is equivalent to

∑∞
k=0 k‖T ∗k x‖ < ∞.

Notice now that

Rk x̃ = Rk(x, 0, 0, . . .) = (T kx, DT k−1x, . . . , Dx, 0, 0, . . .).

Therefore

n∑

k=0

Rk x̃ =
(

n∑

k=0

T kx, D

(
n−1∑

k=0

T kx

)

, D

(
n−2∑

k=0

T kx

)

, . . . , Dx, 0, 0, . . .

)

.

Hence, using the notation Sn(T )x = x + T x + · · · + T n−1x , the o(
√
n) condition

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

k=0

Rk x̃

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= o(

√
n)
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is equivalent to

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

k=0

T kx

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
= o(

√
n) and

n∑

k=0

‖D(Sk(T )x)‖2 = o(n).

The proof is now complete using the identity ‖Du‖2 = ‖u‖2 − ‖Tu‖2. ��
Corollary 1.6 follows from Theorem 1.5 and Kronecker’s lemma, already used in

the proof of Theorem 1.4.

4 Coboundaries of the DoublingMap

Let val2(n) be the 2-valuation of n, that is

val2(n) = k if n = m2k with m /∈ 2Z.

For n ∈ Z, we denote by f̂ (n) = ∫ 1
0 f (t)e−int dt the n-th Fourier coefficient of

f ∈ L2(0, 1).

Corollary 4.1 Suppose f is a periodic function of period 1 such that f ∈ L2(0, 1),

∫ 1

0
f (t) dt = 0 (4.1)

and there exists ε > 0 such that

∞∑

n=−∞
val2(n)4+ε

∣
∣
∣ f̂ (n)

∣
∣
∣
2

< ∞. (4.2)

Then there is a function g in L2(0, 1) of period one such that

f (t) = g(t) − g(2t) a.e.

if and only if

lim
n→∞

1

n

∫ 1

0

∣
∣
∣
∣
∣

n∑

i=0

f (2i t)

∣
∣
∣
∣
∣

2

dt = 0

Proof We use Theorem 1.4 applied to the isometry T : L2(0, 1) −→ L2(0, 1) defined
by

T f (t) = f (2t), t ∈ (0, 1) mod 1.
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Wefirst remark that condition (4.1) is justified by the fact that T acts as a shift operator
on the subspace of L2(0, 1) of functions whose zeroth Fourier coefficient vanishes.
The condition

lim
n→∞

1

n

∫ 1

0

∣
∣
∣
∣
∣

n∑

i=0

f (2i t)

∣
∣
∣
∣
∣

2

dt = 0

is exactly the condition

lim
n→∞

1

n

∥
∥
∥
∥
∥

n∑

k=0

T k f

∥
∥
∥
∥
∥

2

= 0,

which appears in Theorem 1.4. We want to show that

∞∑

k=0

k‖T ∗k f ‖ < ∞.

Recall that T acts as a shift operator on the subspace of L2(0, 1) of functions whose
zeroth Fourier coefficient vanishes. Let (an) = ( f̂ (n)) be the sequence of Fourier
coefficients of f . We have a0 = 0. The iterates of the adjoint of T at f can be
computed as

T ∗k f (t) =
∞∑

j=−∞
a j2k e

2iπ j t , k ∈ N.

For ε > 0, using the change n = j2k in the order of summation, we get

∞∑

k=0

k‖T ∗k f ‖ =
∞∑

k=0

k

⎛

⎝
∞∑

j=−∞
|a j2k |2

⎞

⎠

1/2

=
∞∑

k=0

k−(1+ε)/2

⎛

⎝k3+ε
∞∑

j=−∞
|a j2k |2

⎞

⎠

1/2

≤
( ∞∑

k=0

k−(1+ε)

)1/2
⎛

⎝
∞∑

k=0

k3+ε
∞∑

j=−∞
|a j2k |2

⎞

⎠

1/2

=
( ∞∑

k=0

k−(1+ε)

)1/2
⎛

⎝
∞∑

n=−∞
|an|2

val2(n)∑

k=0

k3+ε

⎞

⎠

1/2

≤ 2

( ∞∑

k=0

k−(1+ε)

)1/2 ( ∞∑

n=−∞
val2(n)4+ε|an|2

)1/2

.
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Thus, under our hypothesis about the Fourier coefficients, we have

∞∑

k=0

k‖T ∗k f ‖ < ∞.

��
Corollary 4.2 [20] Let f be a periodic function of period 1 such that f ∈ L2(0, 1),

∫ 1

0
f (t) dt = 0

and there exists α > 0 such that

∞∑

k=−∞
| f̂ ((2k + 1))2i |2 = O(2−αi ). (4.3)

Then there is a function g in L2(0, 1) of period one such that

f (t) = g(t) − g(2t) a.e.

if and only if

lim
n→∞

1

n

∫ 1

0

∣
∣
∣
∣
∣

n∑

i=0

f (2i t)

∣
∣
∣
∣
∣

2

dt = 0

Proof The result follows from Corollary 4.1 with ε = 1, say. Indeed, using the condi-
tion (4.3), one can estimate

∞∑

n=−∞
val2(n)5

∣
∣
∣ f̂ (n)

∣
∣
∣
2 =

∞∑

i=1

∞∑

k=−∞
i5| f̂ ((2k + 1))2i |2

�
∞∑

i=1

i5

2αi
< ∞.

��
Remark 4.3 Condition (4.3) is condition (a) fromTheorem 4 in [20]. It has been proved
in [20] that each of other three conditions of Hölder type, called there (b), (c) and (d),
implies the condition (4.3). Mark Kac has already considered in [12] the case when
f is in the Hölder class C0,α for some α > 1/2. We refer to [5, 9, 10] for other
contributions concerning the functional equation f (t) = g(t) − g(2t).

Remark 4.4 All the remarks at the end of the paper [20] apply also in our situation.
In particular, the generalization to the functional equation f (t) = g(t) − g(nt) (for a
fixed integer n) is immediate.
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