
Complex Analysis and Operator Theory (2022) 16: 83
https://doi.org/10.1007/s11785-022-01257-0

Complex Analysis
and Operator Theory

The Joint Spectrum for a Commuting Pair of Isometries
in Certain Cases

Tirthankar Bhattacharyya1 · Shubham Rastogi1 · U. Vijaya Kumar1

Received: 12 November 2021 / Accepted: 17 June 2022 / Published online: 18 July 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
We show that the joint spectrum of two commuting isometries can varywidely depend-
ing on various factors. It can range from being small (of measure zero or an analytic
disc for example) to the full bidisc. En route, we discover a new model pair in the
negative defect case and relate it to the modified bi-shift.

Mathematics Subject Classification Primary 47A13 · 47A45 · 47A65

1 Introduction

An isometry V is called pure if V ∗n converges to 0 strongly as n → ∞. This is
equivalent to saying that V is the unilateral shift of multiplicity equal to the dimension
of the range of the defect operator I − VV ∗.

The famous Wold decomposition [17, 23] tells us that given an isometry V on
a Hilbert space H, the space H breaks uniquely into a direct sum H = H0 ⊕ H⊥

0
of reducing subspaces such that V |H0 is a unitary and V |H⊥

0
is a pure isometry. This

immediately implies that for a non-unitary isometry V (i.e., when the defect operator is
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positive and not zero), the spectrumσ(V ) is the closed unit discD = {z ∈ C : |z| ≤ 1}.
The situation for a pair of commuting isometries is vastly different.

The topic of commuting isometries has been vigorously pursued in the last two
decades, see [1, 2, 4–6, 11, 15, 16, 18, 20, 21] and the references therein. In [6] and
[5], the novel idea of using graphs has led to a clear understanding of structures.

The defect operator C(V1, V2) is introduced in [12] and [13], as

C(V1, V2) = I − V1V
∗
1 − V2V

∗
2 + V1V2V

∗
2 V

∗
1 .

In [13] and [16], the authors provide the characterization of (V1, V2), when the defect
is positive, negative or zero. It is well known (see [11, 13]) that a pair has positive
defect if and only if it is doubly commuting, and it has negative defect if and only if
it is dual doubly commuting. In all the three cases, the defect is either a projection or
negative of a projection. In general the defect is the difference of two projections; see
[16].

In this paper we study the pairs of commuting isometries, whose defect is the differ-
ence of two mutually orthogonal projections. We characterize such pairs in Theorem
2.1 and we classify them in Table 1. We also provide the characterization for a few
cases in Table 1; see Lemma 6.3 and Lemma 6.9.We rephrase the structure of (V1, V2)
in each case, which appears in Table 1, in a unified approach using the Berger-Coburn-
Lebow (BCL) Theorem. The joint spectrum is studied in detail for all the cases except
the last one appearing in Table 1.

There is the related concept of the fringe operators:

F1 : ker V ∗
1 → ker V ∗

1 and F2 : ker V ∗
2 → ker V ∗

2

defined by,

F1(x) = Pker V ∗
1
V2(x) and F2(x) = Pker V ∗

2
V1(x). (1.1)

In various characterizations of Table 1, we shall point out the criteria in terms of the
fringe operators for possible use in examples.

1.1 The Joint Spectrum

If (T1, T2) is a pair of commuting bounded operators onH, then for defining (see [14,
22]) theTaylor joint spectrum σ(T1, T2), one considers theKoszul complex K (T1, T2):

0
δ0→ H δ1→ H ⊕ H δ2→ H δ3→ 0 (1.2)

where δ1(h) = (T1h, T2h) for h ∈ H and δ2(h1, h2) = T1h2 − T2h1 for h1, h2 ∈ H.

From the way the complex is constructed, ran δn−1 ⊆ ker δn . When ran δn−1 = ker δn
for all n = 1, 2, 3we say that theKoszul complex K (T1, T2) is exact or the pair (T1, T2)
is non-singular. A pair (λ1, λ2) ∈ C

2 is said to be in the joint spectrum σ(T1, T2) if
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the pair (T1 −λ1 I , T2 −λ2 I ) is singular. In the case of a singular pair, we say that the
non-singularity breaks at the stage n if ran δn−1 
= ker δn .

Observe that the non-singularity breaks at stage 1 if and only if (λ1, λ2) is a joint
eigenvalue for (T1, T2) and the non-singularity breaks at stage 3 if and only if the joint
range of (T1−λ1 I , T2−λ2 I ) is not the whole spaceH. If (λ1, λ2) is a joint eigenvalue
of (T ∗

1 , T ∗
2 ), then by the fact that ran T1 + ran T2 = H implies ker T ∗

1 ∩ ker T ∗
2 = {0},

the non-singularity of the Koszul complex K (T1 − λ1 I , T2 − λ2 I ) breaks at stage 3.
There are a few elementary results which we record as a lemma so that we can refer
to it later.

Lemma 1.1 Let H and K be two non-zero Hilbert spaces. Let (T1, T2) be a pair of
commuting bounded operators on H.

(1) σ(T1, T2) ⊆ σ(T1) × σ(T2).
(2) If there is a non-trivial joint reducing subspace H0 for (T1, T2), i.e., if H =

H0 ⊕ H⊥
0 and

Ti =
(H0 H⊥

0

Ti0 0
0 Ti1

)H0

H⊥
0

then

σ(T1, T2) = σ(T10, T20) ∪ σ(T11, T21).

(3) (z1, z2) ∈ σ(T1, T2) if and only if (z1, z2) ∈ σ(T ∗
1 , T ∗

2 ).
(4) σ(IK ⊗ T1, IK ⊗ T2) = σ(T1, T2) = σ(T1 ⊗ IK, T2 ⊗ IK).

(5) Let (S1, S2) be a pair of commuting bounded operators on a Hilbert space K. If
(T1, T2) is jointly unitarily equivalent to (S1, S2), then σ(T1, T2) = σ(S1, S2).

(6) For any T in B(H) and S in B(K), the joint spectrum σ(T ⊗ IK, IH ⊗ S) is the
Cartesian product σ(T ) × σ(S).

Thus, for commuting isometries V1 and V2, we have σ(V1, V2) ⊆ D2. The joint
spectrum of a pair of commuting unitary operators is contained in the torus T

2, where
T = {z ∈ C : |z| = 1} is the unit circle in the complex plane.

This note uses the fundamental pairs of isometries consisting of multiplication
operators to describe the structure of (V1, V2). These are fundamental in the sense
that in each case the sign of the defect operator is dictated by the fundamental pair
alone.

When the defect operator C(V1, V2) of two commuting isometries is positive or
negative, but not zero, then the whole space H breaks into a direct sum of reducing
subspaces H = H0 ⊕ H⊥

0 in the style of Wold where the restriction of (V1, V2) on
theH0 part is the fundamental pair and the restriction of (V1, V2) on theH⊥

0 part has
defect zero. What the fundamental pair is depends on whether C(V1, V2) is positive
or negative. These are the contents of Theorem 4.11 and Theorem 5.10.

The fundamental pairs are such that in both cases (ofC(V1, V2)positive or negative),
the joint spectrumof (V1, V2) is thewhole closed bidiscD2. These are done inTheorem
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4.11 and Theorem 5.11. If the defect operator C(V1, V2) is zero, the joint spectrum of
(V1, V2) is contained in the topological boundary of the bidisc.

The structure theorem in the case ran V1 = ran V2, shows that (V1, V2) is the direct
sum of a prototypical pair (see Sect. 6.1.1) and a pair of commuting unitaries. The
joint spectrum is computed. The joint spectrum of the prototypical pair of this case, is
neither the closed bidisc nor contained inside the topological boundary of the bidisc.

In the case ran V2 � ran V1, the joint spectrum σ(V1, V2) ⊆ {(z1, z1z2) : z1, z2 ∈
D}. The above inclusion is sharp; see Example 6.12, and it can be a strict inclusion;
see Example 6.13. Note that {(z1, z1z2) : z1, z2 ∈ D} has measure non-zero and it is
not equal to the closed bidisc.

In each case above except the case ran V2 � ran V1, we point out the stage of the
Koszul complex where non-singularity is broken.

1.2 The Berger-Coburn-LebowTheorem

For a Hilbert space E , the Hardy space of E-valued functions on the unit disc in the
complex plane is

H2
D
(E) =

{
f : D → E | f is analytic and f (z) =

∞∑
n=0

anz
n with

∞∑
n=0

‖an‖2E < ∞
}

.

Here the an are from E . This is a Hilbert space with the inner product
〈 ∞∑
n=0

anz
n,

∞∑
n=0

bnz
n

〉
=

∞∑
n=0

〈an, bn〉E

and is identifiable with H2
D

⊗E where H2
D
stands for the Hardy space of scalar-valued

functions on D. We shall use this identification throughout the paper, often without
any further mention, and Mz denotes the multiplication operator by the coordinate
function z on H2

D
. For λ ∈ D, let kλ be the function in H2

D
given by

kλ(z) =
∞∑
n=0

znλ
n = 1

1 − zλ
.

It is well-known that the span of {kλ : λ ∈ D} is dense in H2
D
.

The space of B(E)-valued bounded analytic functions on D will be denoted by
H∞
D

(B(E)). Naturally, if ϕ ∈ H∞
D

(B(E)), then it induces a multiplication operator
Mϕ on H2

D
(E). One of the main tools for us is the Berger-Coburn-Lebow (BCL)

theorem [3].

Theorem 1.2 Let (V1, V2) be a commuting pair of isometries acting on H. Then, up
to unitary equivalence, the Hilbert space H breaks into a direct sum of reducing
subspaces H = Hp ⊕ Hu such that



The Joint Spectrum for a Commuting Pair … Page 5 of 39 83

(1) There is a unique (up to unitary equivalence) triple (E, P,U )where E is a Hilbert
space, P is a projection on E and U is a unitary on E such that Hp = H2

D
(E),

the functions ϕ1 and ϕ2 defined on D by

ϕ1(z) = U∗(P⊥ + zP) and ϕ2(z) = (P + zP⊥)U , (1.3)

are commuting multipliers in H∞
D

(B(E)) and (V1|Hp , V2|Hp ) is equal to
(Mϕ1, Mϕ2).

(2) V1|Hu and V2|Hu are commuting unitary operators.

The result of the theorem above will be called the BCL representation of (V1, V2).
Using Theorem 1.2 we can compute the defect operator (see [13]), because Mϕ1 =
IH2

D

⊗U∗P⊥ + Mz ⊗U∗P and Mϕ2 = IH2
D

⊗ PU + Mz ⊗ P⊥U . Hence

C(Mϕ1 , Mϕ2) = (I − MzM
∗
z ) ⊗ (U∗PU − P) = E0 ⊗ (U∗PU − P)

where E0 is the one dimensional projection onto the space of constant functions in H2
D
.

Together with the fact that the defect operator of a pair of commuting unitary operators
is zero, this means, in the decomposition H = Hp ⊕ Hu withHp = H2

D
(E),

C(V1, V2) = (E0 ⊗ (U∗PU − P)) ⊕ 0. (1.4)

Definition 1.3 (1) ABCL triple (E, P,U ) is aHilbert space E, alongwith a projection
P and a unitary U . It is said to be the BCL triple for the pair of commuting
isometries (V1, V2) if E, P and U are as in Theorem 1.2, part (1).

(2) Given a BCL triple (E, P,U ), the functions ϕ1, ϕ2 : D → B(E) will always be
as defined in (1.3).

(3) A pair of commuting isometries (V1, V2) is called pure if Hu = {0} in its BCL
representation.

In fact,Hu is the unitary part of the product V = V1V2 in its Wold decomposition
and E = ker V ∗. Thus Hu = {0} if and only if V is pure.

The Berger-Coburn-Lebow theorem has an interesting consequence in the case
when the part Hp is non-zero. We have ϕ1(z)ϕ2(z) = z for every z ∈ D and hence
Mϕ1Mϕ2 = Mz ⊗ IE . Hence, by the spectral mapping theorem for joint spectra (see
for example [8]),

{z1z2 : (z1, z2) ∈ σ(Mϕ1, Mϕ2)} = σ(Mz ⊗ IE ) = D.

Thus, ifHp 
= {0}, then σ(Mϕ1, Mϕ2) cannot be contained in the torus T
2. Hence by

Lemma 1.1 part (2), σ(V1, V2) cannot be contained in the torus T
2.

Let (E, P,U ) be a BCL triple. It is easy to see that if the Koszul complex K (ϕ1(z)−
λ1 I , ϕ2(z)−λ2 I ) breaks at stage 3 for some z ∈ D, then theKoszul complex K (Mϕ1−
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λ1 I , Mϕ2 −λ2 I ) breaks at stage 3. More generally, we show that, in all the cases under
consideration in this note except the case ran V2 � ran V1, we have

∪z∈Dσ(ϕ1(z), ϕ2(z)) = σ(Mϕ1, Mϕ2). (1.5)

See Theorem 3.8, Theorem 4.15, Theorem 5.13 and Theorem 6.8.
In the following, when we consider the pair (V1, V2) of commuting isometries, V

denotes the product V1V2, and {en : n ∈ Z} denotes the standard orthonormal basis
of l2(Z).

We end this section with the comment that one of the strong points of the BCL
theorem is that it models the Vi in terms of functions of one variable whereas Vi
could, a priori, be dependent on two variables (multipliers on the Hardy space of the
bidisc, for example). This strength will be greatly exploited in this note.

2 The Defect Operator

Recall that ([12] and [13]) the defect operator of a pair of commuting isometries
(V1, V2) is defined as

C(V1, V2) = I − V1V
∗
1 − V2V

∗
2 + V1V2V

∗
2 V

∗
1 . (2.1)

It is easy to see that (see [16]) the defect

C(V1, V2) = Pker V ∗
1

− PV2(ker V ∗
1 ) = Pker V ∗

2
− PV1(ker V ∗

2 ), (2.2)

and

ker V ∗
1 ⊕ V1(ker V

∗
2 ) = ker V ∗

2 ⊕ V2(ker V
∗
1 ) = ker V ∗

1 V
∗
2 . (2.3)

Note that the defect operator lives on ker V ∗ in the sense that the defect operator is
zero on the orthogonal component of ker V ∗. Equation (2.2) shows that the defect is
always a difference of two projections. Let

P1 = Pker V ∗
1

and P2 = PV2(ker V ∗
1 ). (2.4)

Define

H1 := ran P1 ∩ ker P2 = ker V ∗
1 ∩ ker V ∗

2 ,

H2 := ran P2 ∩ ker P1 = V1(ker V
∗
2 ) ∩ V2(ker V

∗
1 ),

H3 := ran P1 ∩ ran P2 = ker V ∗
1 ∩ V2(ker V

∗
1 ),

H4 := ker P1 ∩ ker P2 = V1(ker V
∗
2 ) ∩ ker V ∗

2 .

Notice that Hi ⊥ H j if i 
= j, and the Hi are reducing for P1 and P2 and

H1 ⊕ H2 ⊕ H3 ⊕ H4 ⊆ ker V ∗. (2.5)
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Theorem 2.1 The following are equivalent:

(a) The defect C(V1, V2) is the difference of two mutually orthogonal projections.
(b) ker V ∗ = H1 ⊕ H2 ⊕ H3 ⊕ H4.

(c) ker V ∗
1 = H1 ⊕ H3.

(d) V1(ker V ∗
2 ) = H2 ⊕ H4.

(e) If (E, P,U ) is the BCL triple for (V1, V2),

U∗(ran P) = (U∗(ran P) ∩ ran P) ⊕ (U∗(ran P) ∩ ran P⊥). (2.6)

Proof Suppose

C(V1, V2) = Q1 − Q2 with ran Q1 ⊥ ran Q2 (2.7)

for some projections Q1, Q2 in ker V ∗. Notice that the pair (Q1, Q2) satisfying (2.7)
is unique if it exists. Then for such a pair (V1, V2) we have

C(V1, V2) =
⎛
⎝Iran Q1 0 0

0 −Iran Q2 0
0 0 0

⎞
⎠ = P1 − P2. (2.8)

For any two projections P and Q inH and x ∈ H, Px−Qx = x implies that Px = x
and Qx = 0. Using this fact and (2.8) we see that:

H1 = ran Q1 and H2 = ran Q2.

Note that P1 = P2 =
(
IK 0
0 0L

)
on K ⊕ L for some K,L that satisfy ker V ∗ =

H1 ⊕ H2 ⊕ K ⊕ L. Hence, by (2.8) ran P1 = H1 ⊕ K and ran P2 = H2 ⊕ K. Thus
K = ran P1 ∩ ran P2 = H3. Similarly L = ker P1 ∩ ker P2 = H4. Therefore

ker V ∗ = H1 ⊕ H2 ⊕ H3 ⊕ H4,

and in this decomposition

P1 =

⎛
⎜⎜⎝
I 0 0 0
0 0 0 0
0 0 I 0
0 0 0 0

⎞
⎟⎟⎠ , P2 =

⎛
⎜⎜⎝
0 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎞
⎟⎟⎠ . (2.9)

This proves (a) �⇒ (b), and (b) �⇒ (a) is trivial.
Note the fact that, if E1, E2, E3 and E4 are any subspaces of E satisfying E1 ⊕ E2 =

E = E3⊕E4, then E1 = (E1∩E3)⊕(E1∩E4) if and only if E2 = (E2∩E3)⊕(E2∩E4).
Using the above fact the equivalence (c) ⇐⇒ (d) follows from (2.3).

The implication (b) �⇒ (c) is clear. The implication (c) �⇒ (b) follows from
the equivalence of (c) and (d) and (2.3).
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Table 1 Classification

ker V ∗ = ⊕4
i=1Hi and

the status ofHi
The status of (V1, V2) BCL characterization

Hi = 0 for i = 1, 2, 3, 4
C(V1, V2) = 0 and

both V1 and V2 are unitaries
E = 0

Hi = 0 for i = 1, 2, 4,
H3 
= 0

C(V1, V2) = 0 and
V2 is a unitary, V1 is not a unitary

P=I

Hi = 0 for i = 1, 2, 3,
H4 
= 0

C(V1, V2) = 0 and
V1 is a unitary, V2 is not a unitary

P=0

Hi = 0 for i = 1, 2,
Hi 
= 0 for i = 3, 4

C(V1, V2) = 0 and
both V1 and V2 are not unitaries

P is non-trivial and
U reduces ran P

H1 = 0,
Hi 
= 0 for i = 2, 3, 4

C(V1, V2) ≤ 0 and C(V1, V2) 
= 0 U (ran P⊥) � ran P⊥

H2 = 0,
Hi 
= 0 for i = 1, 3, 4

C(V1, V2) ≥ 0 and C(V1, V2) 
= 0 U (ran P) � ran P

Hi = 0 for i = 3, 4,
Hi 
= 0 for i = 1, 2

ran V1 = ran V2 and
Vi is not a unitary

P is non-trivial and
U (ran P) = ran P⊥

H4 = 0,
Hi 
= 0 for i = 1, 2, 3

ran V1 � ran V2 and
V2 is not unitary

P 
= I and
U (ran P⊥) � ran P

H3 = 0,
Hi 
= 0 for i = 1, 2, 4

ran V2 � ran V1 and
V1 is not unitary

P 
= 0 and
U (ran P) � ran P⊥

Hi 
= 0 for i = 1, 2, 3, 4 Unknown —

Note that ker M∗
ϕ1

= ran(I − Mϕ1M
∗
ϕ1

) = 1 ⊗ ran(U∗PU ) = 1 ⊗ U∗(ran P),

ker M∗
ϕ2

= 1⊗ran P⊥ andMϕ2(ker M
∗
ϕ1

) = 1⊗ran P.Now the proof of (a) ⇐⇒ (e)
follows from the equivalence (a) ⇐⇒ (c). ��
Using the (e) part of the above theorem we easily get an example of a pair (V1, V2)
whose defect is not a difference of two mutually orthogonal projections.

Example 2.2 Let E = C
2,U = 1√

2

(
1 1

−1 1

)
and P =

(
1 0
0 0

)
. The BCL triple

(E, P,U ) does not satisfy (2.6), hence the defect of the pair (V1, V2) correspond-
ing to this BCL triple, is not the difference of two mutually orthogonal projections.

The Table 1 gives a neat classification. We leave the proofs to the reader for the first
two columns. The contents of the third column will unfold as we progress. One can
notice that certain cases are not mentioned in the table. That is because those cases
cannot occur.

3 The Zero Defect Case

3.1 Structure

This subsection is mainly a rephrasing of known results. If one of the Vi ’s is a unitary,
then it is trivial to check that the defect C(V1, V2) is zero. The following example is
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the prototypical example of a pure pair of commuting isometries with defect zero; this
example serves as a building block in the general structure, see Theorem 3.4.

Example 3.1 Let L be a non-zero Hilbert space andW be a unitary on L. Consider the
commuting pair of isometries (Mz ⊗ IL, IH2

D

⊗W ) on H2
D

⊗L. As I ⊗W is a unitary,

the defect C(Mz ⊗ IL, IH2
D

⊗ W ) = 0. Also, σ(Mz ⊗ IL, IH2
D

⊗ W ) = D × σ(W ),

by Lemma 1.1 part (6). Also see [7].
Now consider the unitary � : H2

D
⊗ L → H2

D
⊗ L given by

�

( ∞∑
m=0

amz
m

)
=

∞∑
m=0

Wm(am)zm . (3.1)

Then, �(Mz ⊗ W ∗)�∗ = Mz ⊗ I and �(I ⊗ W )�∗ = I ⊗ W . This says that
(Mz ⊗W ∗, I ⊗W ) and (Mz ⊗ I , I ⊗W ) are jointly unitarily equivalent. In particular,
we have C(Mz ⊗ W ∗, I ⊗ W ) = 0 and

σ(Mz ⊗ W ∗, I ⊗ W ) = D × σ(W ) (3.2)

for any unitary W .

We proceed towards the structure of an arbitrary pair (V1, V2) with C(V1, V2) = 0.
A pair of commuting isometries (V1, V2) is called doubly commuting if V1 commutes
with V ∗

2 . The following lemma is proved in [13] and [16], it is relating positivity of the
defect operator C(V1, V2) with double commutativity of the pair (V1, V2). We give a
short proof here.

Lemma 3.2 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(V1, V2) ≥ 0.
(b) (V1, V2) is doubly commuting.
(c) If (E, P,U ) is the BCL triple for (V1, V2), then U (ran P) ⊆ ran P.

Proof Since commuting unitaries are always doubly commuting, it is enough to
prove the equivalences when (V1, V2) = (Mϕ1, Mϕ2). By virtue of (1.4), we have
C(V1, V2) ≥ 0 if and only if U∗PU ≥ P which happens if and only if ran P is
invariant under U . Now,

Mϕ1M
∗
ϕ2

= M∗
ϕ2
Mϕ1 if and only if (I − MzM

∗
z ) ⊗ (U∗PU∗P⊥) = 0

if and only if P⊥U P = 0

if and only if ran P is invariant under U .

This completes the proof. ��
We recall some characterization results from [13] and add a few new ones.
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Lemma 3.3 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.

Then the following are equivalent:

(a) C(V1, V2) = 0.
(b) ker V ∗

2 is a reducing subspace for V1 and V1|ker V ∗
2
is a unitary.

(c) ker V ∗
1 is a reducing subspace for V2 and V2|ker V ∗

1
is a unitary.

(d) The fringe operators F1 and F2 are unitaries.
(e) ker V ∗

1 and ker V ∗
2 are orthogonal and their direct sum is ker V ∗.

(f) (ran V1 � ran V ) ⊕ (ran V2 � ran V ) ⊕ ran V = H.

(g) If (E, P,U ) is the BCL triple for (V1, V2), then ran P reduces U .

Proof The equivalences of (a), (b), (c), (d) and (e) follows easily from (2.2) and
(2.3).

(e) ⇒ ( f ): Suppose (e) is true. We shall show that ker V ∗
1 = (ran V2 � ran V ).

Suppose x ∈ ker V ∗
1 , which implies x ∈ ran V2 and x ∈ (ran V )⊥. So x ∈ (ran V2 �

ran V ). If x ∈ (ran V2 � ran V ), then x ∈ ran V2 and x ∈ ker V ∗. So x ∈ ker V ∗
1 .

Similarly, ker V ∗
2 = ran V1 � ran V . Hence ( f ) is true.

( f ) ⇒ (e): Suppose ( f ) is true. Since ran V ⊆ ran V1, we have ran V1 =
(ran V1 � ran V ) ⊕ ran V . Therefore ker V ∗

1 = (ran V1)⊥ = (ran V2 � ran V ). Simi-
larly, ker V ∗

2 = (ran V1 � ran V ). Hence ker V ∗
1 ⊕ ker V ∗

2 = ker V ∗.
(a) ⇔ (g): We use the formula C(V1, V2) = (E0 ⊗ (U∗PU − P))⊕ 0 from (1.4).

This gives

C(V1, V2) = 0 if and only if U∗PU − P = 0

if and only if ran P reduces U .

Thus, completes the proof. ��
We nowwrite the structure theorem given in Popovici [18, Sec. 4], which highlights

the importance of Example 3.1. We give a proof for the completeness.

Theorem 3.4 Let (V1, V2) be a pair of commuting isometries on H with defect zero.
Let (E, P,U ) be the BCL triple for (V1, V2). Let E1 = ran P and E2 = ran P⊥. Then
E1, E2 are reducing subspaces for U, i.e.,

E = E1 ⊕ E2, U =
(
U1 0
0 U2

)
and P =

(
IE1 0
0 0

)
in B(E1 ⊕ E2)

for some unitaries U1 and U2 on E1 and E2 respectively.
Also, H = (H2

D
⊗ E1) ⊕ (H2

D
⊗ E2) ⊕ K where K = ⋂

n≥0
ran(V1V2)n and in this

decomposition,

V1 =
⎛
⎝Mz ⊗ IE1 0 0

0 IH2
D

⊗U∗
2 0

0 0 W1

⎞
⎠ , V2 =

⎛
⎝IH2

D

⊗U1 0 0

0 Mz ⊗ IE2 0
0 0 W2

⎞
⎠ ,

up to unitarily equivalence, for some unitary Ui on Ei , i = 1, 2 and commuting
unitaries W1,W2 on K.
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Proof Let (E, P,U ) be theBCL triple for (V1, V2).ByLemma3.3,we haveE1 reduces
U and in the decomposition E = E1 ⊕ E2, we have

U =
(
U1 0
0 U2

)
and P =

(
IE1 0
0 0

)
.

In this case, ϕ1(z) =
(
zU∗

1 0
0 U∗

2

)
and ϕ2(z) =

(
U1 0
0 zU2

)
, for z ∈ D. Therefore,

Mϕ1 =
(
Mz ⊗U∗

1 0
0 IH2

D

⊗U∗
2

)
, Mϕ2 =

(
IH2

D

⊗U1 0

0 Mz ⊗U2

)
.

Note that (Mz⊗U∗
1 , IH2

D

⊗U1) and (Mz⊗IE1 , IH2
D

⊗U1) are jointly unitarily equivalent

and (IH2
D

⊗U∗
2 , Mz ⊗U2) and (IH2

D

⊗U∗
2 , Mz ⊗ IE2) are jointly unitarily equivalent;

see Example 3.1. This completes the proof, by Theorem 1.2. ��
Remark 3.5 In the structure theorem (Theorem 3.4) one can write the U1,U2 and
E1, E2 explicitly in terms of V1 and V2 as follows: E1 = ker V ∗

1 , E2 = ker V ∗
2 and

U1 = V2|ker V ∗
1
,U2 = V ∗

1 |ker V ∗
2
. This is because of Lemma 3.3.

A comment is in order. Over several decades Marek Słociński, first by himself and
thenwith his collaborators, has developed a complete structure theorem on commuting
pairs of isometries; see [5] and the references therein. One of his early results is the
following.

Theorem 3.6 (M. Słociński [21]) Let (V1, V2) be a pair of doubly commuting isome-
tries on a Hilbert space H. Then there exists a unique decomposition

H = Hss ⊕ Hsu ⊕ Hus ⊕ Huu,

where the subspaceHi j reduces both V1 and V2 for all i, j ∈ {s, u}. Moreover, V1 on
Hi j is a shift if i = s and unitary if i = u and V2 is a shift if j = s and unitary if
j = u.

By Theorem 3.4, and the fact that if one of the Vi ’s is a unitary then the defect is
zero, we have C(V1, V2) = 0 if and only if (V1, V2) is doubly commuting andHss in
Theorem 3.6 is {0}.

3.2 Joint Spectrum

If (V1, V2) is pure and defect C(V1, V2) = 0, then by Theorem 3.4 and Remark 3.5,

σ(V1, V2) =

⎧⎪⎨
⎪⎩

D × σ(U1) if V2 is unitary,

σ(U∗
2 ) × D if V1 is unitary,

D × σ(U1) ∪ σ(U∗
2 ) × D if neither V1 nor V2 is a unitary,

(3.3)

where U1 = V2|ker V ∗
1
,U2 = V ∗

1 |ker V ∗
2
.
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Lemma 3.7 Let (V1, V2) be a pair of commuting isometries with defect zero and
ker V ∗ 
= {0}. Let (E, P,U ) be the BCL triple for (V1, V2). Let U1 = U |ran P and
U2 = U |ran P⊥ . Then

σ(ϕ1(z), ϕ2(z)) =

⎧⎪⎨
⎪⎩

{(zλ, λ) : λ ∈ σ(U1)} if V2 is a unitary,

{(μ, zμ) : μ ∈ σ(U2)} if V1 is a unitary,

{(zλ, λ), (μ, zμ) : λ ∈ σ(U1), μ ∈ σ(U2)} otherwise.

(3.4)

Here, for every point in the joint spectrum, the non-singularity breaks at stage 3.

Proof The proof in the case when neither V1 nor V2 is a unitary is done below in detail.
The other cases follow similarly.

Letting E1 = ran P and E2 = ran P⊥, it is an easy check that both E1 and E2 are
non-trivial. By Lemma 3.3, E1 reduces U . Hence in the decomposition E = E1 ⊕ E2,
we have

ϕ1(z) =
(
zU∗

1 0
0 U∗

2

)
and ϕ2(z) =

(
U1 0
0 zU2

)
,

for z ∈ D. Then,

σ(ϕ1(z)) = σ(zU∗
1 ) ∪ σ(U∗

2 ) and σ(ϕ2(z)) = σ(U1) ∪ σ(zU2)

for all z ∈ D. For z ∈ D, we have

ϕ1(z)ϕ2(z) = z IE1⊕E2 = ϕ2(z)ϕ1(z).

Therefore, for all z 
= 0, by Lemma 1.1 part (1) and polynomial spectral mapping
theorem, we get

σ(ϕ1(z), ϕ2(z)) ⊆ {(zλ, λ), (μ, zμ) : λ ∈ σ(U1), μ ∈ σ(U2)}.

For z = 0, it is easy to see that

σ(ϕ1(0), ϕ2(0)) ⊆ {(0, λ), (μ, 0) : λ ∈ σ(U1), μ ∈ σ(U2)}.

To prove the other containments, let λ ∈ σ(U1). ThenU1 −λI is not onto, because

U1 is normal. Let h =
(
h1
h2

)
, k =

(
k1
k2

)
∈ E1 ⊕ E2. Then,

(ϕ1(z) − zλI )k + (ϕ2(z) − λI )h =
(
z(U∗

1 − λI )k1 + (U1 − λI )h1
(U∗

2 − zλI )k2 + (zU2 − λI )h2

)
.
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Since U1 is a normal operator, ran(U1 − λI ) = ran(U∗
1 − λI ) and hence the first

component of the above spans only ran(U1 − λI ). Hence we have

ran(ϕ1(z) − zλI ) + ran(ϕ2(z) − λI ) 
= E1 ⊕ E2.

Therefore (zλ, λ) ∈ σ(ϕ1(z), ϕ2(z)).
Similarly, if μ ∈ σ(U2), we have

ran(ϕ1(z) − μI ) + ran(ϕ2(z) − zμI ) 
= E1 ⊕ E2.

Therefore (μ, zμ) ∈ σ(ϕ1(z), ϕ2(z)). So,

σ(ϕ1(z), ϕ2(z)) = {(zλ, λ), (μ, zμ) : λ ∈ σ(U1), μ ∈ σ(U2)} for z ∈ D.

��
Theorem 3.8 With the hypothesis of Lemma 3.7, we also have

σ(Mϕ1 , Mϕ2 ) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) =

⎧⎪⎨
⎪⎩

D × σ(U1) if V2 is a unitary,

σ(U∗
2 ) × D if V1 is a unitary,

D × σ(U1) ∪ σ(U∗
2 ) × D otherwise.

and, for every point (z1, z2) ∈

⎧⎪⎨
⎪⎩

D × σ(U1) if V2 is a unitary,

σ(U∗
2 ) × D if V1 is a unitary,

D × σ(U1) ∪ σ(U∗
2 ) × D otherwise,

the

non-singularity of K (Mϕ1 − z1 I , Mϕ2 − z2 I ) breaks at stage 3.

Proof As in Lemma 3.7, we prove only the case when neither V1 nor V2 is a unitary,
other cases follow similarly.

We saw in the proof of Lemma 3.7 that for any point z ∈ D, a pair of points
(z1, z2) ∈ σ(ϕ1(z), ϕ2(z)) if and only if

ran(ϕ1(z) − z1 I ) + ran(ϕ2(z) − z2 I ) 
= E1 ⊕ E2.

Hence, if (z1, z2) ∈ σ(ϕ1(z), ϕ2(z)),

ran(Mϕ1 − z1 I ) + ran(Mϕ2 − z2 I ) 
= H2(E1 ⊕ E2). (3.5)

Therefore, (z1, z2) ∈ σ(Mϕ1, Mϕ2), which implies that

∪z∈Dσ(ϕ1(z), ϕ2(z)) ⊆ σ(Mϕ1, Mϕ2).

Note that

∪z∈Dσ(ϕ1(z), ϕ2(z)) = ∪z∈D{(zλ, λ), (μ, zμ) : λ ∈ σ(U1), μ ∈ σ(U2)}
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= D × σ(U1) ∪ σ(U∗
2 ) × D. (3.6)

Since

Mϕ1 =
(
Mz ⊗U∗

1 0
0 IH2

D

⊗U∗
2

)
and Mϕ2 =

(
IH2

D

⊗U1 0

0 Mz ⊗U2

)
,

we have

σ(Mϕ1 , Mϕ2) = σ(Mz ⊗U∗
1 , IH2

D

⊗U1) ∪ σ(IH2
D

⊗U∗
2 , Mz ⊗U2).

By (3.2), we have

σ(Mϕ1, Mϕ2) = D × σ(U1) ∪ σ(U∗
2 ) × D. (3.7)

Therefore from (3.6) and (3.7) we have

σ(Mϕ1 , Mϕ2) = D × σ(U1) ∪ σ(U∗
2 ) × D = ∪z∈Dσ(ϕ1(z), ϕ2(z)).

The final thing to note is that for every point (z1, z2) in the setD×σ(U1)∪σ(U∗
2 )×D,

the non-singularity breaks at stage 3 and this is a direct consequence of (3.5). ��
To conclude the section, we note that by Theorem 1.2, σ(V1, V2) = σ(Mϕ1, Mϕ2)∪

σ(V1|Hu , V2|Hu ). Hence Theorem 3.8 tells that

∪z∈Dσ(ϕ1(z), ϕ2(z)) ⊆ σ(V1, V2). (3.8)

The equality in (3.8) holds if and only if σ(V1|Hu , V2|Hu ) ⊆ σ(Mϕ1, Mϕ2).

4 The Negative Defect Case

4.1 The Prototypical Example

When the defect operator is negative, a fundamental example plays an important role
in much the same way the unilateral shift plays its role in the Wold decomposition of
a single isometry. We shall first describe this example and then show how it is a part
of every pair of commuting isometries with negative defect.

The Hardy space of E-valued functions on the bidisc D
2 is

H2
D2(E) =

⎧⎨
⎩ f : D

2 → E | f is analytic and f (z1, z2) =
∞∑

m,n=0

am,nz
m
1 z

n
2

with
∞∑

m,n=0

‖am,n‖2E < ∞
⎫⎬
⎭ .
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This is a Hilbert space with the inner product

〈 ∞∑
m,n=0

am,nz
m
1 z

n
2,

∞∑
m,n=0

bm,nz
m
1 z

n
2

〉
=

∞∑
m,n=0

〈am,n, bm,n〉E

and is identifiable with H2
D2 ⊗E where H2

D2 stands for the Hardy space of scalar-valued

functions on D
2.

Let U : H2
D2 → H2

D2 be the unitary defined by

U (zm1
1 zm2

2 ) =

⎧⎪⎨
⎪⎩
zm1+2
1 zm2

2 if m1 ≥ m2,

zm1+1
1 zm2−1

2 if m1 + 1 = m2,

zm1
1 zm2−2

2 if m1 + 2 ≤ m2.

(4.1)

on the orthonormal basis {zm1
1 zm2

2 }m1,m2≥0.

The pair of multipliers by the coordinate functions (Mz1 , Mz2) forms a pair of
doubly commuting isometries on H2

D2 . There is a natural isomorphism between the

Hilbert spaces H2
D2 and H2

D
⊗ H2

D
wherein zm1

1 zm2
2 is identified with zm1

1 ⊗ zm2
2 . In

this identification, the pair of coordinate multipliers (Mz1, Mz2) is identified with
(Mz ⊗ I , I ⊗ Mz).

Definition 4.1 The pair of bounded operators τ1 := U∗Mz1 and τ2 := Mz2U on the
Hardy space of the bidisc H2

D2 will be called the fundamental isometric pair with
negative defect.

The following lemma justifies the name except the word f undamental which will
be clear from Theorem 4.11.

Lemma 4.2 The pair (τ1, τ2) is a pair of commuting isometries with defect negative
and non-zero.

Proof It is simple to check that the unitary U defined in (4.1) commutes with Mz1z2 ,
the operator of multiplication by the function z1z2. That proves commutativity of τ1
and τ2. They are isometries because each is a product of an isometry and a unitary.
Now, let

W1 = ker(τ ∗
1 ) = span{z22, z32, z42, . . . } and W2 = ker(τ ∗

2 ) = span{1, z1, z21, . . . }.

Then, τ2(W1) = span{z2, z22, z32, . . . }. Thus, we have

C(τ1, τ2) = PW1 − Pτ2(W1) = −Pspan{z2} ≤ 0.

That completes the proof. ��
We shall prove the following lemma to compute the joint spectrum of (τ1, τ2).
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Lemma 4.3 For any λ ∈ D, we have

(ran(τ2 − λI ))⊥ =
{
(I − λτ2)

−1x : x ∈ ker M∗
z2

}
. (4.2)

Proof Using the Neumann series (I − λ̄A)−1 = ∑
n≥0 λ̄n An for λ ∈ D and any

contraction A, it is straightforward that the equality

(ran(A − λI ))⊥ = {(I − λ̄A)−1x : x ∈ ker A∗}

is satisfied when A is an isometry. The proof is complete by noting that ker τ ∗
2 =

kerU∗M∗
z2 = ker M∗

z2 . ��
Recall the Koszul complex for a pair of commuting bounded operators (T1, T2)

from (1.2):

0
δ0→ H δ1→ H ⊕ H δ2→ H δ3→ 0. (4.3)

It is well-known that the most difficult stage to treat for the purpose of showing lack
of exactness is the stage 2.

Proposition 4.4 The fundamental isometric pairwith negative defect has the full closed
bidisc D2 as its joint spectrum. Moreover, for every point in the open bidisc D

2, the
non-singularity breaks at stage 2.

Proof Let λ1, λ2 ∈ D. We shall find a non-zero function h2 ∈ (ran(τ2 − λ2 I ))⊥ such
that

(τ1 − λ1 I )h2 ∈ ran(τ2 − λ2 I ). (4.4)

This would imply that there exists h1 ∈ H = H2
D2 such that

(τ1 − λ1 I )h2 = (τ2 − λ2 I )h1

producing a pair (h1, h2) in ker δ2 which would not be in ran δ1.
To that end, we shall use the description of (ran(τ2 − λI ))⊥ obtained in Lemma

4.3. Since any element from ker τ ∗
2 = ker M∗

z2 is of the form
∑∞

m=0 amz
m
1 for a square

summable sequence {am}m≥0, it follows from Lemma 4.3 that

(ran(τ2 − λ2 I ))
⊥ =

{
(I − λ2τ2)

−1
∞∑

m=0

amz
m
1 :

∞∑
m=0

|am |2 < ∞
}

=
{ ∞∑
n=0

(λ2Mz2U )n

( ∞∑
m=0

amz
m
1

)
:

∞∑
m=0

|am |2 < ∞
}

=
⎧⎨
⎩

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2 :

∞∑
m=0

|am |2 < ∞
⎫⎬
⎭ . (4.5)
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Our candidate for h2 to satisfy (4.4) is

h2 = 1

(1 − λ2z21z2)(1 − λ1z1)
=

∞∑
m,n=0

λ2
n
λm1 z

m+2n
1 zn2 .

By (4.5), this function is in (ran(τ2 −λ2 I ))⊥. We shall verify below that (τ1 −λ1 I )h2
is in the closure of ran(τ2 − λ2 I ). Since |λ2| < 1 and τ2 is an isometry, (τ2 − λ2 I ) is
bounded below and hence its range is closed. That will complete the proof.

First note that

U
∞∑

m,n=0

λ2
n
amz

m+2n
1 zn2 =

∞∑
m,n=0

λ2
n
amz

m+2n+2
1 zn2 = M2

z1

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

(4.6)

and

(M∗
z1 − λ1 I )h2 = M∗

z1 (h2) − λ1h2

=
∞∑

m,n=0
(m,n) 
=(0,0)

λ2
n
λm1 z

m+2n−1
1 zn2 −

∞∑
m,n=0

λ2
n
λm+1
1 zm+2n

1 zn2

=
∞∑

m=1,n=0

λ2
n
λm1 z

m+2n−1
1 zn2 +

∞∑
n=1

λ2
n
z2n−1
1 zn2 −

∞∑
m,n=0

λ2
n
λm+1
1 zm+2n

1 zn2

=
∞∑

m,n=0

λ2
n
λm+1
1 zm+2n

1 zn2 +
∞∑
n=1

λ2
n
z2n−1
1 zn2 −

∞∑
m,n=0

λ2
n
λm+1
1 zm+2n

1 zn2

=
∞∑
n=1

λ2
n
z2n−1
1 zn2 . (4.7)

We now compute the inner product between a typical element of (ran(τ2 − λ2 I ))⊥
and (τ1 − λ1 I )h2 by using the two equations above.

〈
(τ1 − λ1 I )h2,

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉

=
〈
(U∗Mz1 − λ1 I )h2,

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉

=
〈
Mz1h2,U

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉
− λ1

〈
h2,

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉

=
〈
Mz1h2, M

2
z1

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉
− λ1

〈
h2,

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉
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=
〈
(M∗

z1 − λ1 I )h2,
∞∑

m,n=0

λ2
n
amz

m+2n
1 zn2

〉

=
〈 ∞∑
n=1

λ2
n
z2n−1
1 zn2,

∞∑
m,n=0

λ2
n
amz

m+2n
1 zn2

〉
= 0.

This shows that (τ1 − λ1 I )h2 ∈ ran(τ2 − λ2 I ) = ran(τ2 − λ2 I ) and hence completes
the proof.

��
Note 4.5 In Remark 5.4, we shall see that there is a joint invariant subspace M for
(τ1, τ2) such that the defect operator of (τ1|M, τ2|M) is positive (and not zero).

4.2 General Theory for the Negative Defect Case

Here we shall show that the fundamental example above is a typical example. This
helps us to compute the joint spectrum of any commuting pair of isometries with
negative defect.

In [11], Gaspar andGaspar introduced the dual doubly commuting pairs. If (V̄1, V̄2)
is the minimal unitary extension to H̄ of (V1, V2) acting on H, then the pair of com-
muting isometries (V̄1

∗|H̄�H, V̄2
∗|H̄�H) is called the dual of (V1, V2). If the dual is

doubly commuting, then (V1, V2) is called a dual doubly commuting pair.
A pair (V1, V2) of commuting isometries is called a bi-shift (see [19]) if there is

a wandering subspace R (i.e., V p1
1 V p2

2 (R) ⊥ V q1
1 V q2

2 (R) if (p1, p2), (q1, q2) ∈ Z
2+

and (p1, p2) 
= (q1, q2)) such that

H =
⊕

(n1,n2)∈Z2+

V n1
1 V n2

2 (R).

(V1, V2) is called a modified bi-shift if it is pure and its dual is a bi-shift.
Popovici used the concepts above greatly in his papers [19] and [20].Weare thankful

to him for sending us his papers. First we shall give a characterizing lemma for this
case; see also [13].

Lemma 4.6 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(V1, V2) ≤ 0 and C(V1, V2) 
= 0.
(b) V2(ker V ∗

1 ) � ker V ∗
1 .

(c) V1(ker V ∗
2 ) � ker V ∗

2 .

(d) The adjoint of the fringe operators are isometries and not unitaries.
(e) (V1, V2) is dual doubly commuting and C(V1, V2) 
= 0.
(f) ker V ∗

1 is orthogonal to ker V ∗
2 and ker V ∗

1 ⊕ ker V ∗
2 
= ker V ∗.

(g) C(V1, V2) is the negative of a non-zero projection.
(h) If (E, P,U ) is the BCL triple for (V1, V2), then U (ran P⊥) � ran P⊥.
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Proof The equivalence (e) ⇔ (h) is proved in [11]. All other proof are along the same
lines as the proofs of various parts of Lemma 3.3. ��

The geometrical structure and a model for dual doubly commuting isometries is
known due to [11, 18]. Here we observe that themultiplication operatorsMϕi , i = 1, 2
associated to (V1, V2) as in Theorem 1.2, have some special forms in this case. This
also helps us getting a model in the Hardy space of the bidisc. Some steps of the proof
are used to obtain Theorem 4.15. The wandering space arguments used in the proof
of the following theorem, appears in [18, Thm 4.3].

Let ψ1, ψ2 : D → B(l2(Z)) be the multipliers associated with the BCL triple
(l2(Z), p−, ω) where p− is the projection onto span{en : n < 0} and ω is the bilateral
shift on l2(Z).

Theorem 4.7 Let (V1, V2) be a pair of commuting isometries such that C(V1, V2) is
a non-zero negative operator. Let (E, P,U ) be the BCL triple for (V1, V2). Then, up
to unitary equivalence

E = (l2(Z) ⊗ L) ⊕ E2
for some non-trivial closed subspace L and a closed subspace E2 of E . Moreover,

Mϕi =
(H2

D
(l2(Z)) ⊗ L H2

D
(E2)

Mψi ⊗ IL 0
0 Mϕi |H2

D
(E2)

)
H2
D
(l2(Z)) ⊗ L

H2
D
(E2) (4.8)

with C(Mϕ1 |H2
D
(E2), Mϕ2 |H2

D
(E2)) = 0. In particular,

σ(Mψ1 , Mψ2) = σ(Mψ1 ⊗ IL, Mψ2 ⊗ IL) ⊆ σ(Mϕ1, Mϕ2) ⊆ σ(V1, V2). (4.9)

Proof Since C(V1, V2) ≤ 0 and C(V1, V2) 
= 0, by Lemma 4.6, U (ran P⊥) �

ran P⊥. Consider L := (ran P⊥ � U (ran P⊥)) 
= {0}. Let m, n ∈ Z and m > n.
Then for x, y ∈ L we have

〈Umx,Un y〉 = 〈Um−nx, y〉 = 0,

because Um−nx ∈ U (ran P⊥). Therefore Um(L) ⊥ Un(L) if m, n ∈ Z and m 
= n.

Set E1 := ⊕n∈ZUn(L).ClearlyU reduces E1.NowU (ran P⊥) � ran P⊥ implies:

⊕n≥0 U
n(L) ⊆ ran P⊥. (4.10)

For all x ∈ L, y ∈ ran P⊥ and n < 0, 〈Unx, y〉 = 〈x,U−n y〉 = 0 implies that

⊕n<0 U
n(L) ⊆ ran P. (4.11)

It is clear from inclusions (4.10) and (4.11) that P also reduces E1. NowU |E1 = WL,

the bilateral shift on E1 with thewandering subspaceL and P|E1 = PE−
1
, the projection

on E−
1 := ⊕n<0Un(L) in E1.



83 Page 20 of 39 T. Bhattacharyya et al.

Let E = ker V ∗ = E1 ⊕ E2. In this decomposition we have,

U =
(
WL 0
0 U |E2

)
and P =

(
PE−

1
0

0 P|E2

)
.

Let 
 : E1 → l2(Z) ⊗ L be the unitary given by


(Unx) = en ⊗ x for x ∈ L, n ∈ Z.

Then, with this identification (U , P) is jointly unitarily equivalent to

((
ω ⊗ IL 0

0 U |E2
)

,

(
p− ⊗ IL 0

0 P|E2
))

where ω is the bilateral shift on l2(Z) and p− is the projection in l2(Z) onto span{en :
n < 0}. Therefore,

ϕ1(z) =
(

ω∗ ⊗ IL 0
0 U∗|E2

)[(
p⊥− ⊗ IL 0

0 P⊥|E2

)
+ z

(
p− ⊗ IL 0

0 P|E2
)]

=
(

ω∗(p⊥− + zp−) ⊗ IL 0
0 U∗(P⊥ + zP)|E2

)
=
(

ψ1(z) ⊗ IL 0
0 ϕ1(z)|E2

)
,

(4.12)

and

ϕ2(z) =
[(

p− ⊗ IL 0
0 P|E2

)
+ z

(
p⊥− ⊗ IL 0

0 P⊥|E2

)](
ω ⊗ IL 0

0 U |E2
)

=
(

(p− + zp⊥−)ω ⊗ IL 0
0 (P + zP⊥)U |E2

)
=
(

ψ2(z) ⊗ IL 0
0 ϕ2(z)|E2

)
,

(4.13)

where p⊥− denotes the projection Il2(Z) − p− in l2(Z). This in particular says that E1
reduces ϕi (z) for z ∈ D, i = 1, 2. Therefore H2

D
(E1) reduces Mϕi , for i = 1, 2, and

Mϕi =
(
Mψi⊗IL 0

0 Mϕi |E2

)
=
(
Mψi ⊗ IL 0

0 Mϕi |H2
D
(E2)

)
, i = 1, 2, (4.14)

where

ψ1(z) = ω∗(p⊥− + zp−), ψ2(z) = (p− + zp⊥−)ω

and ϕi |E2(z) := ϕi (z)|E2 ∈ B(E2), for z ∈ D and i = 1, 2.
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It remains to prove that C(Mϕ1 |H2
D
(E2), Mϕ2 |H2

D
(E2)) = 0. To that end, note that by

Lemma 3.3, it is enough to show that U (ran P|E2) = ran P|E2 . Notice from (4.10)
and (4.11) that ran P|E2 = ran P � (⊕n<0Un(L)). Hence

U (ran P|E2) = U (ran P � (⊕n<0U
n(L)))

= U (ran P) � (⊕n<0U
n+1(L))

= (U (ran P⊥))⊥ � (L ⊕n<0 U
n(L))

= (ran P ⊕ L) � (L ⊕n<0 U
n(L)) (∵ ran P⊥ = L ⊕U (ran P⊥))

= ran P � (⊕n<0U
n(L)) = ran P|E2 .

It remains only to prove (4.9), and it follows directly from (4.8) by Lemma 1.1. ��
Lemma 4.8 The pair (Mψ1 , Mψ2) is jointly unitarily equivalent to (τ1, τ2). In partic-
ular,

σ(Mψ1 , Mψ2) = D2

and for every point in D
2, the non-singularity breaks at stage 2.

Proof Define the unitary � : H2
D2 → H2

D
(l2(Z)) by

�

⎛
⎝ ∞∑

m,n=0

am,nz
m
1 z

n
2

⎞
⎠ =

∞∑
k=0

( ∞∑
m=0

am+k,kem +
∞∑

m=1

ak,m+ke−m

)
zk . (4.15)

Then, �τi�
∗ = Mψi for i = 1, 2. That is, (Mψ1 , Mψ2) is jointly unitarily equivalent

to (τ1, τ2). In particular,

σ(Mψ1 , Mψ2) = σ(τ1, τ2) = D2 (4.16)

and for every point in D
2, the non-singularity breaks at stage 2 by Proposition 4.4. ��

We shall use the following lemma proved in [11] and [9].

Lemma 4.9 Let (E, P,U ) be a BCL triple. Then the pair (Mϕ1, Mϕ2) has a non-trivial
joint reducing subspace if and only if (P,U ) has a non-trivial joint reducing subspace.

Lemma 4.10 The pair (τ1, τ2) does not have any non-trivial joint reducing subspace.

Proof By Lemma 4.9, (τ1, τ2) has a non-trivial joint reducing subspace if and only
if (p−, ω) has a non-trivial joint reducing subspace in l2(Z). Let E0 
= {0} be a joint
reducing subspace for (p−, ω). Let f = ∑

n∈Z anen ∈ E0, an0 
= 0 for some n0 ∈ Z.

Now

ω∗n0( f ) =
∑
n∈Z

anen−n0 , p−ω∗n0( f ) =
∑
n<n0

anen−n0 ∈ E0.
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Hence
∑

n≥n0 anen−n0 ∈ E0 and

p−ω∗
(∑
n≥n0

anen−n0

)
= an0e−1 ∈ E0.

Since E0 is reducing for ω and e−1 ∈ E0 we have E0 = l2(Z). ��
The following theorem on the structure and the joint spectrum of commuting pair

of isometries with negative defect follows directly from Theorem 1.2, Theorem 4.7,
Lemma 1.1 and Lemma 4.8 and shows that when the defect of (V1, V2) is negative,
then apart from a reduced part which has defect zero, (V1, V2) is the fundamental
isometric pair with negative defect, albeit with a higher multiplicity.

Theorem 4.11 Let (V1, V2) be a pair of commuting isometries such thatC(V1, V2) ≤ 0
and C(V1, V2) 
= 0. Then, there is a non-trivial subspace L � ker V ∗ such that, up to
unitary equivalence,H = H0⊕H⊥

0 ,whereH0 = H2
D2 ⊗L and in this decomposition

Vi =
(

τi ⊗ IL 0
0 Vi |H⊥

0

)
, i = 1, 2 and C(V1|H⊥

0
, V2|H⊥

0
) = 0,

where the dimension of L is same as the dimension of the range of C(V1, V2) and
(τ1, τ2) is the fundamental isometric pair with negative defect. Moreover,

σ(V1, V2) = D2

and for every point in D
2, the non-singularity breaks at stage 2.

The pair (τ1, τ2) serves as a model in many ways.

Theorem 4.12 A pair of commuting isometries (V1, V2) is a modified bi-shift if and
only if (V1, V2) is jointly unitarily equivalent to (τ1 ⊗ IL, τ2 ⊗ IL) for some Hilbert
space L.
Proof Let (V1, V2) = (τ1 ⊗ IL, τ2 ⊗ IL). Then

ker V ∗
1 = span{z22, z32, . . . } ⊗ L, ker V ∗

2 = span{1, z1, z21, . . . } ⊗ L.

Clearly V ∗
1 |ker V ∗

2
, V ∗

2 |ker V ∗
1
and V1V2 are shifts. Therefore, by [20, Prop. 3.8] (V1, V2)

is a modified bi-shift.
Suppose (V1, V2) is a modified bi-shift. If (E, P,U ) is the BCL triple for (V1, V2),

then by [11, Thm. 2.4], U (ran P⊥) � ran P⊥. Hence by Lemma 4.6, C(V1, V2) ≤ 0
and C(V1, V2) 
= 0. Therefore, by Theorem 4.11, up to unitary equivalence, V1 and
V2 are

V1 =
⎛
⎝τ1 ⊗ IL 0 0

0 Mz ⊗ IE1 0
0 0 IH2

D

⊗U2

⎞
⎠ , V2 =

⎛
⎝τ2 ⊗ IL 0 0

0 IH2
D

⊗U1 0

0 0 Mz ⊗ IE2

⎞
⎠ .
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By [20, Prop. 3.8] we have E1 = E2 = {0}. Hence (V1, V2) is jointly unitarily equiv-
alent to (τ1 ⊗ IL, τ2 ⊗ IL). ��
Remark 4.13 (l2(Z) ⊗ L, p− ⊗ IL, ω ⊗ IL) is the BCL triple for a modified bi-shift
(V1, V2), where dimL = dim(ranC(V1, V2)). (See also [11, Thm. 2.4]).

Some other descriptions of modified bi-shift are given in [11], by Gaspar and Gaspar.
From the results in [11], it is clear that a dual doubly commuting pair is a direct sum
of a zero defect part and a modified bi-shift. (caution: the W in [11] is U∗ for us).

In the rest of this section we shall see the relation between the joint spectrum of
a pair of commuting isometries (V1, V2) with defect negative and non-zero, and the
joint spectrum of (ϕ1(z), ϕ2(z)), z ∈ D, where ϕi ’s are the multipliers given in the
BCL representation of (V1, V2). Indeed, we prove that

σ(V1, V2) = σ(Mϕ1 , Mϕ2) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) = D2. (4.17)

Lemma 4.14 Let the operator valued functionsψ1 andψ2 be as in Theorem 4.7. Then,
For z ∈ D, (λ1, λ2) ∈ D

2 is a joint eigenvalue for (ψ1(z), ψ2(z)) if λ1λ2 = z. Also

σ(ψ1(z), ψ2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z}, (4.18)

and

∪z∈Dσ(ψ1(z), ψ2(z)) = D2 = σ(Mψ1 , Mψ2). (4.19)

Proof Let z ∈ D \ {0} and λ1, λ2 ∈ D be such that λ1λ2 = z. Consider

xλ1,λ2 =
∞∑
n=0

λn1en + 1

λ1

∞∑
n=1

λn−1
2 e−n .

Note that

ψi (z)xλ1,λ2 = λi xλ1,λ2 , i = 1, 2.

That is, (λ1, λ2) is a joint eigenvalue for (ψ1(z), ψ2(z))with eigenvector xλ1,λ2 ,where
z 
= 0 and λ1, λ2 ∈ D are such that λ1λ2 = z. Therefore,

σ(ψ1(z), ψ2(z)) ⊇ {(λ1, λ2) ∈ D2 : λ1λ2 = z} for z 
= 0.

As ψ1(z) and ψ2(z) are commuting contractions, σ(ψ1(z), ψ2(z)) ⊆ D2. Since
ψ1(z)ψ2(z) = z I , by spectral mapping theorem, we have the other inclusion. Hence

σ(ψ1(z), ψ2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z} for z 
= 0. (4.20)
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For the case z = 0, consider for λ1, λ2 ∈ D \ {0},

xλ1,0 =
∞∑
n=0

λn1en + 1

λ1
e−1, x0,λ2 =

∞∑
n=1

λn−1
2 e−n and x0,0 = e−1.

Then (λ1, 0), (0, λ2) and (0, 0) are joint eigenvalues for (ψ1(0), ψ2(0)) with the joint
eigenvectors xλ1,0, x0,λ2 and x0,0 respectively. Therefore, by the similar reasoning as
in the case of z 
= 0, we get

σ(ψ1(0), ψ2(0)) = D × {0} ∪ {0} × D = {(λ1, λ2) ∈ D2 : λ1λ2 = 0}. (4.21)

Hence, by (4.20), (4.21) and Lemma 4.8, we get (4.19).
Indeed, one can show that the joint eigen spaces are one dimensional, for all the

joint eigenvalues of (ψ1(z), ψ2(z)), z ∈ D. ��
Theorem 4.15 Let (V1, V2) be a pair of commuting isometries such thatC(V1, V2) ≤ 0
and C(V1, V2) 
= 0. Let (E, P,U ) be the BCL triple for (V1, V2). Then for z ∈ D,
(λ1, λ2) ∈ D

2 is a joint eigenvalue for (ϕ1(z), ϕ2(z)) if λ1λ2 = z,

σ (ϕ1(z), ϕ2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z},

and

σ(V1, V2) = σ(Mϕ1 , Mϕ2) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) = D2.

Moreover, the non-singularity breaks at stage 2.

Proof As ϕ1(z) and ϕ2(z) are commuting contractions, σ(ϕ1(z), ϕ2(z)) ⊆ D2. Since
ϕ1(z)ϕ2(z) = z I , by spectral mapping theorem,

σ(ϕ1(z), ϕ2(z)) ⊆ {(λ1, λ2) ∈ D2 : λ1λ2 = z}.

From (4.12) and (4.13) note that:

ϕi (z) =
( l2(Z) ⊗ L E2

ψi (z) ⊗ IL 0
0 ϕi (z)|E2

)
l2(Z) ⊗ L
E2 , i = 1, 2.

Now the proof follows from Lemma 4.14, Lemma 1.1 and Lemma 4.8. ��

5 The Positive Defect Case

By Lemma 3.2 (see also [13, 16]), C(V1, V2) ≥ 0 if and only if (V1, V2) is doubly
commuting. The structure of doubly commuting pair of isometries are well understood
in the literature; see [11, 18, 21]. We rephrase and shine some of the existing results
using the defect operator. We also study the joint spectrum in detail.
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5.1 The Prototypical Example

Definition 5.1 The fundamental isometric pair of positive defect is the bi-shift
(Mz1, Mz2), the pair of multiplication by the coordinate functions on H2

D2 .

It is folklore that the Mzi are isometries and the defect is positive because of the
following lemma. It will be clear from Theorem 5.10 why we call it f undamental.

Lemma 5.2 The defect operator C(Mz1, Mz2) is the projection onto the one dimen-
sional space of constant functions.

Proof The proof is a straightforward computation. ��
If (V1, V2) is a bi-shift onHwith the wandering subspaceR, then� : H → H2

D2 ⊗
R given by �(V n1

1 V n2
2 x) = zn11 zn22 ⊗ x, x ∈ R is a unitary and �Vi�∗ = Mzi ⊗ IR

for i = 1, 2. Also, by the above lemma dim(ranC(V1, V2)) = dimR. The following
lemma is well known.

Lemma 5.3 The joint spectrum σ(Mz1 , Mz2) is the whole bidisc D2. Indeed, every
point in the open bidisc is a joint eigenvalue for (M∗

z1, M
∗
z2). In particular, for every

(w1, w2) ∈ D
2, the non-singularity of K (Mz1 − w1 I , Mz2 − w2 I ) is broken at the

third stage.

Remark 5.4 Recall the pair (τ1, τ2) defined in Sect. 4.1. One can observe that
{τm1 τ n2 (1) : m, n ≥ 0} is an orthonormal subset of H2

D2 . Let M = span{τm1 τ n2 (1) :
m, n ≥ 0} ⊂ H2

D2 . Clearly it is a joint invariant subspace (but not reducing) for

(τ1, τ2). Identify M and H2
D2 via τm1 τ n2 (1) �→ zm1 z

n
2 . Clearly, the pair of isometries

(τ1|M, τ2|M) gets identified with (Mz1 , Mz2) on H2
D2 . Since C(Mz1 , Mz2) ≥ 0 and

C(Mz1 , Mz2) 
= 0, the same is true for the pair (τ1|M, τ2|M). Thus, a pair of com-
muting isometries with negative defect, when restricted to a joint invariant subspace,
can have positive defect.

5.2 The General Case of the Positive Defect Operator

We start with a characterization available in [13] and [16].

Lemma 5.5 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(V1, V2) ≥ 0 and C(V1, V2) 
= 0.
(b) V2(ker V ∗

1 ) � ker V ∗
1 .

(c) V1(ker V ∗
2 ) � ker V ∗

2 .

(d) The fringe operators are isometries and not unitaries.
(e) (V1, V2) is doubly commuting and C(V1, V2) 
= 0.
(f) C(V1, V2) is a non-zero projection.
(g) If (E, P,U ) is the BCL triple for (V1, V2), then U (ran P) � ran P.
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Let η1, η2 : D → B(l2(Z)) be the multipliers associated with the BCL triple
(l2(Z), p0+, ω)where p0+ is the projection onto span{en : n ≥ 0} andω is the bilateral
shift on l2(Z). Now, we obtain a structure theorem which has its own independent
interest and is applied later to obtain Theorem 5.13.

Theorem 5.6 Let (V1, V2) be a pair of commuting isometries such that C(V1, V2) is
a non-zero positive operator. Let (E, P,U ) be the BCL triple for (V1, V2). Then, up
to unitary equivalence

E = (l2(Z) ⊗ L) ⊕ E2

for some non-trivial closed subspace L and a closed subspace E2 of E . Moreover

Mϕi =
(H2

D
(l2(Z)) ⊗ L H2

D
(E2)

Mηi ⊗ IL 0
0 Mϕi |H2

D
(E2)

)
H2
D
(l2(Z)) ⊗ L

H2
D
(E2) (5.1)

with C(Mϕ1 |H2
D
(E2), Mϕ2 |H2

D
(E2)) = 0. In particular,

σ(Mη1 , Mη2) = σ(Mη1 ⊗ IL, Mη2 ⊗ IL) ⊆ σ(Mϕ1, Mϕ2) ⊆ σ(V1, V2). (5.2)

Proof We shall not give details of this proof because it follows the same line as the
proof of Theorem 4.7. ��
Lemma 5.7 The pair (Mη1 , Mη2) is jointly unitarily equivalent to (Mz1 , Mz2). In par-

ticular, σ(Mη1 , Mη2) = D2.

Proof Define the unitary � : H2
D2 → H2

D
(l2(Z)) by

�

⎛
⎝ ∞∑

m,n=0

am,nz
m
1 z

n
2

⎞
⎠ =

∞∑
k=0

( ∞∑
m=0

am+k,ke−(m+1) +
∞∑

m=1

ak,m+kem−1

)
zk . (5.3)

Then, �Mzi �
∗ = Mηi for i = 1, 2. That is, (Mη1 , Mη2) is jointly unitarily equivalent

to (Mz1, Mz2).

In particular, σ(Mη1 , Mη2) = σ(Mz1, Mz2) = D2, by Lemma 5.3. ��
Remark 5.8 (l2(Z) ⊗ L, p0+ ⊗ IL, ω ⊗ IL) is the BCL triple for the bi-shift with
wandering subspace L. (Compare this with the Remark 4.13).

Lemma 5.9 The pair (Mz1 , Mz2) does not have any non-trivial joint reducing sub-
space.

The proof of the above lemma is similar to the proof of Lemma4.10.Now the following
structure theorem forC(V1, V2) ≥ 0 follows fromTheorem 1.2, Theorem 5.6, Lemma
5.7 and Lemma 5.2. It shows the role played by the bi-shift of a possibly higher
multiplicity and is a rephrasing of some results in [11, 21] using the defect operator.
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Theorem 5.10 Let (V1, V2) be a pair of commuting isometries onHwith C(V1, V2) ≥
0 and C(V1, V2) 
= 0. Then, there is a non-trivial Hilbert spaceL � ker V ∗ such that,
up to unitary equivalence,H = H0⊕H⊥

0 ,whereH0 = H2
D2⊗L. In this decomposition

Vi =
(
Mzi ⊗ IL 0

0 Vi0

)

and the defect operator C(V10, V20) is zero. Moreover, the dimension of L is the same
as the dimension of the range of C(V1, V2).

Theorem 5.11 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H
with C(V1, V2) ≥ 0 and C(V1, V2) 
= 0. Then, σ(V1, V2) = D2 and every point
(w1, w2) ∈ D

2 is a joint eigenvalue of (V ∗
1 , V ∗

2 ). In particular, for every (w1, w2) ∈
D
2, the non-singularity of K (V1 − w1 I , V2 − w2 I ) is broken at the third stage.

Proof The proof follows from Theorem 5.11 and Lemma 5.3. ��
The following lemma is useful to see the relation between the joint spectrum of

a pair of commuting isometries (V1, V2) with defect positive and non-zero, and the
joint spectra σ(ϕ1(z), ϕ2(z)), z ∈ D, where ϕi ’s are the multipliers given in the BCL
theorem.

Lemma 5.12 Let the operator valued functions η1 and η2 be as in Theorem 5.6. Then,
for z ∈ D, (λ1, λ2) ∈ D

2 is a joint eigenvalue for (η1(z)∗, η2(z)∗) if λ1λ2 = z. Also,

σ(η1(z), η2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z}, (5.4)

and

∪z∈Dσ(η1(z), η2(z)) = D2 = σ(Mη1, Mη2). (5.5)

Proof Let z ∈ D \ {0} and λ1, λ2 ∈ D be such that λ1λ2 = z. Consider

xλ1,λ2 =
∞∑
n=0

λ2
n
en + 1

λ2

∞∑
n=1

λ1
n−1

e−n .

Note that

ηi (z)
∗xλ1,λ2 = λi xλ1,λ2 , i = 1, 2.

That is, (λ1, λ2) is a joint eigenvalue for (η1(z)∗, η2(z)∗) with eigenvector xλ1,λ2 ,

where z 
= 0 and λ1, λ2 ∈ D are such that λ1λ2 = z. Therefore,

σ(η1(z), η2(z)) ⊇ {(λ1, λ2) ∈ D2 : λ1λ2 = z} for z 
= 0.
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As η1(z) and η2(z) are commuting contractions, we have σ(η1(z), η2(z)) ⊆ D2. Since
η1(z)η2(z) = z I , by spectral mapping theorem, we have the other inclusion. Hence

σ(η1(z), η2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z} for z 
= 0. (5.6)

For the case z = 0, consider for λ1, λ2 ∈ D \ {0},

xλ1,0 =
∞∑
n=1

λ1
n−1

e−n, x0,λ2 =
∞∑
n=0

λ2
n
en + 1

λ2
e−1 and x0,0 = e−1.

Then (λ1, 0), (0, λ2) and (0, 0) are joint eigenvalues for (η1(0)∗, η2(0)∗)with the joint
eigenvectors xλ1,0, x0,λ2 and x0,0 respectively. Therefore, by the similar reasoning as
in the case of z 
= 0, we get

σ(η1(0), η2(0)) = D × {0} ∪ {0} × D = {(λ1, λ2) ∈ D2 : λ1λ2 = 0}. (5.7)

Hence, by (5.6), (5.7) and Lemma 5.7, we get (5.5).
Indeed, one can show that the joint eigenspaces are one dimensional, for all the

joint eigenvalues of (η1(z)∗, η2(z)∗), z ∈ D. ��
Theorem 5.13 Let (V1, V2) be a pair of commuting isometries such thatC(V1, V2) ≥ 0
and C(V1, V2) 
= 0. Let (E, P,U ) be the BCL triple for (V1, V2). Then, for z ∈ D,

(λ1, λ2) ∈ D
2 is a joint eigenvalue for (ϕ1(z)∗, ϕ2(z)∗) if λ1λ2 = z, also

σ(ϕ1(z), ϕ2(z)) = {(λ1, λ2) ∈ D2 : λ1λ2 = z}. (5.8)

Moreover, every point in the open bidisc is a joint eigenvalue for (M∗
ϕ1

, M∗
ϕ2

), and

σ(V1, V2) = σ(Mϕ1 , Mϕ2) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) = D2. (5.9)

Proof Since ϕ1(z) and ϕ2(z) are commuting contractions, σ(ϕ1(z), ϕ2(z)) ⊆ D2. As
ϕ1(z)ϕ2(z) = z I , by spectral mapping theorem,

σ(ϕ1(z), ϕ2(z)) ⊆ {(λ1, λ2) ∈ D2 : λ1λ2 = z}.

In the same manner as in the proof of Theorem 4.7, we get

ϕi (z) =
( l2(Z) ⊗ L E2

ηi (z) ⊗ IL 0
0 ϕi (z)|E2

)
l2(Z) ⊗ L
E2 , i = 1, 2,

where L = ran P �U (ran P) and E2 = ker V ∗ � (l2(Z)⊗L). Now the proof follows
from Lemma 5.12, Lemma 5.7 and Lemma 5.3. ��
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6 Towards the General Defect Operator

This section deals with the cases of ran V1 = ran V2 and ran V2 � ran V1. We provide
the characterization and study the joint spectrum for both the cases. At the end of this
section we give an example for the unknown case of Hi 
= 0 for all i = 1, 2, 3, 4.

6.1 Range of V1 Equal to the Range of V2

In this case the defect operator is the difference of twomutually orthogonal projections
whose ranges together span the kernel of V ∗. The structure in this case, known from
[4], is briefly recalled below because it is needed for deciphering the joint spectrum.

6.1.1 The Prototypical Family of Examples

Let L be a Hilbert space and W be a unitary on L. Consider the pair of commuting
isometries (Mz ⊗ I , Mz ⊗ W ) on H2

D
⊗ L. Clearly ran(Mz ⊗ I ) = ran(Mz ⊗ W ).

Lemma 6.1 Let L and W be as above. If (V1, V2) = (Mz ⊗ I , Mz ⊗ W ), then there
are two projections P and Q such that

(1) they are mutually orthogonal to each other,
(2) the dimensions of ranges of P and Q are same,
(3) the span of the ranges of P and Q is the kernel of V ∗ and
(4) the defect operator C(V1, V2) on H2

D
⊗ L is P − Q.

Proof In keeping with the notation E0 for the projection onto the one dimensional sub-
space of constants in H2

D
, let us denote by E1 the projection onto the one dimensional

space spanned by z. The kernel of V ∗ is

ran(I ⊗ IL − M2
z (M

2
z )

∗ ⊗ IL) = ran((E0 + E1) ⊗ IL) = span{1, z} ⊗ L

and the defect operator is

C(V1, V2) = I ⊗ IL − MzM
∗
z ⊗ IL − MzM

∗
z ⊗ IL + M2

z (M
2
z )

∗ ⊗ IL
= E0 ⊗ IL − MzE0M

∗
z ⊗ IL

= E0 ⊗ IL − E1 ⊗ IL.

Thus, setting P = E0 ⊗ IL and Q = E1 ⊗ IL, we are done. ��
Lemma 6.2 If L 
= {0}, then the joint spectrum of (Mz ⊗ IL, Mz ⊗ W ) is

σ(Mz ⊗ IL, Mz ⊗ W ) = {z(1, α) : z ∈ D, α ∈ σ(W )}.

Proof This is a straightforward application of the polynomial spectral mapping theo-
rem. Consider the polynomial f (x1, x2) = (x1, x1x2). Then,

σ(Mz ⊗ IL, Mz ⊗ W ) = f (σ (Mz ⊗ IL, IH2
D

⊗ W ))
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= f (σ (Mz) × σ(W ))

= {z(1, α) : z ∈ D, α ∈ σ(W )}. (6.1)

��

6.1.2 General Theory

Theorem 6.3 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) ran V1 = ran V2.
(b) V1(ker V ∗

2 ) = V2(ker V ∗
1 ).

(c) The defect operator C(V1, V2) is a difference of two mutually orthogonal projec-
tions Q1, Q2 with ran Q1 ⊕ ran Q2 = ker V ∗.

(d) The fringe operators F1 and F2 are zero.
(e) If (E, P,U ) is the BCL triple for (V1, V2), then U (ran P) = ran P⊥ (or equiva-

lently U (ran P⊥) = ran P).

Proof (a) ⇒ (b) This is immediate from the equality

ker V ∗
1 ⊕ V1(ker V

∗
2 ) = ker V ∗ = ker V ∗

2 ⊕ V2(ker V
∗
1 )

after we note that ran V1 = ran V2 implies that ker V ∗
1 = ker V ∗

2 .

(b) ⇒ (c) Set P1 = Pker V ∗
1
and P2 = PV2(ker V ∗

1 ). By (2.2), C(V1, V2) = P1 − P2.
Moreover,

ran P1 ⊕ ran P2 = ker V ∗
1 ⊕ V2(ker V

∗
1 )

= ker V ∗
1 ⊕ V1(ker V

∗
2 ) (by (b))

= ker V ∗.

(c) ⇒ (d) It is immediate by noticing that

Q1 = Pker V ∗
1

= Pker V ∗
2

and Q2 = PV2(ker V ∗
1 ) = PV1(ker V ∗

2 )

from the discussions in Sect. 2.
(c) ⇒ (a) Immediate from the last line above.
(d) ⇒ (c) F1 = 0 and F2 = 0 implies that ker V ∗

1 ⊥ V2(ker V ∗
1 ) and ker V ∗

2 ⊥
V1(ker V ∗

2 ). Now from (2.3), we see that V1(ker V ∗
2 ) = V2(ker V ∗

1 ). Set P1 = Pker V ∗
1

and P2 = PV2(ker V ∗
1 ), to obtain (c).

Thus, we have shown the equivalences of (a), (b), (c) and (d).

(a) ⇐⇒ (e) If (E, P,U ) is the BCL triple for (V1, V2), then

ran V1 = ran V2

if and only if

ker V ∗
1 = ker V ∗

2
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if and only if

ker M∗
ϕ1

= ker M∗
ϕ2

if and only if

ran E0 ⊗U∗PU = ran E0 ⊗ P⊥

if and only if

U∗PU = P⊥.

��
The following result is a special case of Remark 4.2 in [4], which shows that the

pair (Mz ⊗ I , Mz ⊗ W ), studied in Sect. 6.1.1, is the prototypical pair in this case.
We give a proof which is different from the one in [4].

Theorem 6.4 Let (V1, V2) be a pair of commuting isometries on H satisfying any of
the equivalent conditions in Theorem 6.3. Then, there exist Hilbert spaces L and K
such that up to unitarily equivalenceH = (H2

D
⊗L) ⊕K and in this decomposition,

V1 =
(
Mz ⊗ IL 0

0 W1

)
, V2 =

(
Mz ⊗ W 0

0 W2

)
,

for some unitary W on L and commuting unitaries W1,W2 on K.

Proof Let (E, P,U ) be the BCL triple for (V1, V2). Let L = ran P⊥. By Theorem
6.3 (e), we have U (L) = L⊥ and U (L⊥) = L. Let U1 = U |L : L → L⊥ and
U2 = U |L⊥ : L⊥ → L. In the decomposition E = L⊥ ⊕ L, we have

U =
(
0 U1
U2 0

)
and P =

(
IL⊥ 0
0 0

)
.

Hence ϕ1(z) =
(

0 U∗
2

zU∗
1 0

)
and ϕ2(z) =

(
0 U1

zU2 0

)
for z ∈ D, and

Mϕ1 =
(

0 I ⊗U∗
2

Mz ⊗U∗
1 0

)
and Mϕ2 =

(
0 I ⊗U1

Mz ⊗U2 0

)
.

Let us define the unitary

� : (H2
D

⊗ L⊥) ⊕ (H2
D

⊗ L) → H2
D

⊗ L

given by,

�

((∑∞
n=0 anz

n∑∞
n=0 bnz

n

))
:=

∑
n is even

(U2U1)
n
2 (bn

2
)zn +

∑
n is odd

(U2U1)
n−1
2 U2(a n−1

2
)zn,
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an ∈ L⊥, bn ∈ L. One can see that �Mϕ1�
∗ = Mz ⊗ IL and �Mϕ2�

∗ = Mz ⊗ W ,

where W = U2U1. This completes the proof by Theorem 1.2. ��
Corollary 6.5 Let (V1, V2) be a pair of commuting isometries satisfying any of the
equivalent conditions in Theorem 6.3. If V1V2 is pure, then both V1 and V2 are pure.

Since theBCL triple is unique (up to unitary equivalence),we shall use the following
convenient choice of BCL triple due to A. Maji et al in [16] for a pair of commuting
isometries.

Theorem 6.6 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then, (ker V ∗, P,U0) is the BCL triple for (V1, V2), where P ∈ B(ker V ∗) is the
orthogonal projection onto V2(ker V ∗

1 ) and

U0 =
(
V2|ker V ∗

1
0

0 V ∗
1 |V1(ker V ∗

2 )

)
:

ker V ∗
1 V2(ker V ∗

1 )

⊕ → ⊕
V1(ker V ∗

2 ) ker V ∗
2

is a unitary operator on ker V ∗.

Remark 6.7 In Theorem 6.4, we can write the W and L explicitly in terms of V1 and
V2 as follows:

By Theorem 6.6 and Theorem 6.3, L = ran P⊥ = ker V ∗
1 , U1 : ker V ∗

1 →
V1(ker V ∗

1 ) given by U1 = V2|ker V ∗
1
and U2 : V1(ker V ∗

1 ) → ker V ∗
1 given by U2 =

V ∗
1 |V1(ker V ∗

1 ). Therefore W = V ∗
1 |V1(ker V ∗

1 )V2|ker V ∗
1
.

6.1.3 Joint Spectrum

If (V1, V2) is pure and satisfying any of the equivalent conditions in Theorem 6.3, then
by Theorem 6.4, Remark 6.7 and by Sect. 6.1, we have

σ(V1, V2) = {z(1, eiθ ) : z ∈ D, eiθ ∈ σ(U2U1)}, (6.2)

where U1 = V2|ker V ∗
1
,U2 = V ∗

1 |V1(ker V ∗
1 ).

The final theorem of this section tells us the nature of elements in the joint spectrum
and the relation between the joint spectrum of the commuting isometries satisfying
any of the equivalent conditions in Theorem 6.3 and the joint spectra of the associated
multipliers at every point of D.

Theorem 6.8 Let (V1, V2) be a pair of commuting isometries on H satisfying any of
the equivalent conditions in Theorem 6.3 and ker V ∗ 
= {0}. Let (E, P,U ) be the
BCL triple for (V1, V2). Let U1 : ran P⊥ → ran P be the unitary given by U1(x) =
U (x), x ∈ ran P⊥ and U2 : ran P → ran P⊥ be the unitary given by U2(y) =
U (y), y ∈ ran P. Then

• σ(ϕ1(z), ϕ2(z)) = {±√
z(e−i θ

2 , ei
θ
2 ) : eiθ ∈ σ(U1U2)}. Here for every point in

the joint spectrum, the non-singularity breaks at stage 3.
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• σ(Mϕ1 , Mϕ2) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) = {z(1, eiθ ) : z ∈ D, eiθ ∈ σ(U1U2)}.
Here, for every point (z1, z2) in the set {z(1, eiθ ) : z ∈ D, eiθ ∈ σ(U1U2)}, the
non-singularity in the Koszul complex K (Mϕ1 −z1 I , Mϕ2 −z2 I ) breaks at stage 3.

Proof LetE1 = ran P andE2 = ran P⊥.Wehave byTheorem6.3 thatU (E1) = E2 and
U (E2) = E1. Hence in the decomposition E = E1 ⊕ E2, we have ϕ1(z) =

(
0 U∗

2
zU∗

1 0

)

and ϕ2(z) =
(

0 U1
zU2 0

)
, for z ∈ D, where U1 and U2 are as in the statement.

Now, we shall show that: for z ∈ D,

σ (ϕ1(z)) = {w ∈ D : w2 = αz for some α ∈ σ(U1U2)}, (6.3)

σ(ϕ2(z)) = {w ∈ D : w2 = αz for some α ∈ σ(U1U2)}. (6.4)

Clearly (6.3) and (6.4) hold for z = 0. So assume that z 
= 0.

Assertion 1 If λ is an eigenvalue of ϕ1(z) then λ2

z is an eigenvalue ofU1U2. In partic-
ular, λ ∈ D.

Proof of Assertion 1. If λ is an eigenvalue of ϕ1(z), there exists a non-zero vector

h1 ⊕ h2 ∈ E1 ⊕ E2 such that ϕ1(z)

(
h1
h2

)
= λ

(
h1
h2

)
which implies U2

∗(h2) = λh1

and z
λ
U∗
1 (h1) = h2. Hence (U1U2)

∗h1 = λ2

z h1. Notice that h1 
= 0, otherwise
U2

∗(h2) = λh1 implies h2 = 0. ��

Assertion 2 For λ ∈ C, (ϕ1(z) − λIE ) is not onto if and only if ((U1U2)
∗ − λ2

z IE1) is
not onto. In particular, if (ϕ1(z) − λIE ) is not onto then λ ∈ D. Also

ran(ϕ1(z) − λI ) =
{(

h1
h2

)
∈ E1 ⊕ E2 : λh1 +U∗

2 h2 ∈ ran((U1U2)
∗ − λ2

z
I )

}
.

(6.5)

Proof of Assertion 2. Let
(
h1
h2

)
∈ E1 ⊕ E2. We have (ϕ1(z) − λI )

(
h1
h2

)
=(−λh1 +U2

∗h2
zU1

∗h1 − λh2

)
. Let k =

(
k1
k2

)
∈ E1 ⊕ E2. Now (ϕ1(z) − λI )

(
h1
h2

)
=
(
k1
k2

)

if and only if −λh1 +U2
∗(h2) = k1 and

((U1U2)
∗ − λ2

z
IE1)(h1) = λk1 +U2

∗(k2)
z

.

This proves Assertion 2.

Using Assertions 1 and 2 and the fact that for any bounded normal operator T if
α ∈ σ(T ) then T − α I is not onto, we get (6.3) for z 
= 0. In a similar way, one can
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show (6.4) and for z 
= 0

ran(ϕ2(z) − λI ) =
{(

k1
k2

)
∈ E1 ⊕ E2 : λk1 +U1k2 ∈ ran((U1U2) − λ2

z
I )

}
.

(6.6)

For z ∈ D, since

σ(ϕ1(z), ϕ2(z)) ⊆ σ(ϕ1(z)) × σ(ϕ2(z))

and

ϕ1(z)ϕ2(z) = z IE1⊕E2 = ϕ2(z)ϕ1(z),

by spectral mapping theorem we get,

σ(ϕ1(z), ϕ2(z))

⊆ {(z1, z2) ∈ D
2 : z12 = αz, z2

2 = βz, z1z2 = z, for some α, β ∈ σ(U1U2)}.
= {(z1, z2) ∈ D

2 : z12 = αz, z2
2 = αz, z1z2 = z, for some α ∈ σ(U1U2)}.

Let z 
= 0 and z1, z2 ∈ D be such that z12 = αz, z22 = αz and z1z2 = z for some
α ∈ σ(U1U2). We shall show that ran(ϕ1(z)− z1 I )+ ran(ϕ2(z)− z2 I ) 
= E1⊕E2. For
this, let y /∈ ran(U1U2 − α I ). Suppose

(
y
0

)
∈ ran(ϕ1(z) − z1 I ) + ran(ϕ2(z) − z2 I ).

Then there exists

(
h1
h2

)
∈ ran(ϕ1(z) − z1 I ) and

(
k1
k2

)
∈ ran(ϕ2(z) − z2 I ) such that(

h1
h2

)
+
(
k1
k2

)
=
(
y
0

)
. Since ran T = ran T ∗ for any bounded normal operator T ,

note that from (6.5) and (6.6), we have z1h1+U2
∗h2, z2k1+U1k2 ∈ ran(U1U2−α I ).

Since y /∈ ran(U1U2 − α I ), we have (z1U1 − z2U2
∗)(k2) /∈ ran(U1U2 − α I ). So

(U1U2 − α I )∗(U1(k2)) /∈ ran(U1U2 − α I ). Which is a contradiction, as ran(U1U2 −
α I ) = ran(U1U2 − α I )∗. So ran(ϕ1(z) − z1 I ) + ran(ϕ2(z) − z2 I ) 
= E1 ⊕ E2 for all
z 
= 0, z1, z2 ∈ D such that z12 = αz, z22 = αz and z1z2 = z for some α ∈ σ(U1U2).
Also, note that ran(ϕ1(0)) + ran(ϕ2(0)) = E1 ⊕ 0. Hence, we have

σ(ϕ1(z), ϕ2(z))

= {(z1, z2) ∈ D
2 : z12 = αz, z2

2 = αz, z1z2 = z, for some α ∈ σ(U1U2)}
= {±√

z(e−i θ
2 , ei

θ
2 ) : eiθ ∈ σ(U1U2)}

for z ∈ D.

As we saw, for any point (z1, z2) ∈ σ(ϕ1(z), ϕ2(z)), z ∈ D,

ran(ϕ1(z) − z1 I ) + ran(ϕ2(z) − z2 I ) 
= E1 ⊕ E2.
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Hence

ran(Mϕ1 − z1 I ) + ran(Mϕ2 − z2 I ) 
= H2(E1 ⊕ E2).

Therefore (z1, z2) ∈ σ(Mϕ1, Mϕ2),which implies∪z∈Dσ(ϕ1(z), ϕ2(z)) ⊆ σ(Mϕ1 , Mϕ2).

Notice that for every point (z1, z2) in ∪z∈Dσ(ϕ1(z), ϕ2(z)), the non-singularity of
K (Mϕ1 − z1 I , Mϕ2 − z2 I ) breaks at stage 3.

Take z ∈ D and eiθ ∈ σ(U1U2). Let w = ze
iθ
2 , z1 = we− iθ

2 and z2 = we
iθ
2 . So

(z1, z2) ∈ σ(ϕ1(w
2), ϕ2(w

2)) and (z1, z2) = z(1, eiθ ). Hence we have the equality:

∪z∈Dσ(ϕ1(z), ϕ2(z))

= ∪z∈D{(z1, z2) ∈ D
2 : z12 = αz, z2

2 = αz, z1z2 = z, for some α ∈ σ(U1U2)}
= {z(1, α) : z ∈ D, α ∈ σ(U1U2)}. (6.7)

Now as in the proof of Theorem 6.4, we have (Mϕ1 , Mϕ2) is jointly unitarily equiv-
alent to (Mz ⊗ IE2 , Mz ⊗U2U1), hence from (6.1) and (6.7), we have

σ(Mϕ1, Mϕ2) = σ(Mz ⊗ IE2 , Mz ⊗U2U1) = {z(1, α) : z ∈ D, α ∈ σ(U1U2)}
= ∪z∈Dσ(ϕ1(z), ϕ2(z)).

��
Note that σ(V1, V2) = σ(Mϕ1 , Mϕ2) ∪ σ(V1|Hu , V2|Hu ), by Theorem 1.2. Hence

by Theorem 6.8,

σ(Mϕ1 , Mϕ2) = ∪z∈Dσ(ϕ1(z), ϕ2(z)) ⊆ σ(V1, V2). (6.8)

The above inclusion is an equality if and only if σ(V1|Hu , V2|Hu ) ⊆ σ(Mϕ1, Mϕ2).

6.2 Range of one Isometry is Strictly Contained in the Range of Other

If (V1, V3) is any pair of commuting isometries with V3 is not unitary, set V2 = V1V3.
Then (V1, V2) satisfy ran V2 � ran V1. Since the study of the case ran V1 � ran V2 is
equivalent to the case of ran V2 � ran V1, we consider only the case ran V2 � ran V1.

Lemma 6.9 Let (V1, V2) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) ran V2 � ran V1.
(b) V2(ker V ∗

1 ) � V1(ker V ∗
2 ).

(c) The fringe operator F1 = 0 and F2 
= 0.
(d) If (E, P,U ) is the BCL triple for (V1, V2), then U (ran P) � ran P⊥ (or equiva-

lently U∗(ran P) � ran P⊥).
(e) If F is the defect space of V2 and if (Mz ⊗ IF ) ⊕ W2 is the Wold decomposition

of V2, then V1 = Mϕ ⊕W1, with ϕ(z) = W ∗(Q⊥ + zQ) for some unitary W and
projection Q 
= I in B(F), and a unitary W1 onH � H2

D
(F).
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Proof (a) ⇐⇒ (b) and (a) ⇐⇒ (c) follows from (2.3).
(a) ⇐⇒ (d): Let (E, P,U ) be the BCL triple for (V1, V2). Note that ker V ∗

1 �

ker V ∗
2 if and only if ker M∗

φ1
� ker M∗

φ2
if and only if U∗PU ≤ P⊥ and U∗PU 
=

P⊥ if and only if U (ran P) � ran P⊥, because ker M∗
φ1

= 1 ⊗ ran(U∗PU ) and

ker M∗
φ2

= 1 ⊗ ran P⊥.

(a) ⇐⇒ (e): By Douglas Lemma ( [10]), we have V2 = V1V3 for some isometry
(non-unitary) V3. Notice that V3 commutes with V1. Let (F , Q,W ) be the BCL triple
for (V1, V3). Then, (see Theorem 1.2)

V1 = Mϕ ⊕ W1, V3 = Mψ ⊕ W3 in B(H2
D
(F) ⊕ (H � H2

D
(F))),

where φ(z) = W ∗(Q⊥ + zQ) and ψ(z) = (Q + zQ⊥)W for all z ∈ D. Now since
V2 = V1V3 and ϕ(z)ψ(z) = z for all z ∈ D we have

V2 = Mz ⊗ IF ⊕ W2,

where W2 = W1W3. This completes the proof of (a) �⇒ (e), because V3 is not a
unitary implies that Q 
= I . (e) �⇒ (a) is trivial. ��

6.2.1 Joint Spectrum

Consider the pair

(V1, V2) = (UkV n,UlVm) (6.9)

with V an isometry (not unitary) and U a unitary which commutes with V , for some
non-negative integers n,m, l, k and n < m, as in [4, Sec. 4]. Since U is a unitary
commuting with V , we have

ran V2 = ranUlVm = ran Vm
� ran V n = ranUkV n = ran V1.

In [4], Burdak has given the model for such pairs, viz.,

V1 = (Mn
z ⊗ Wk) ⊕ W1, V2 = (Mm

z ⊗ Wl) ⊕ W2, (6.10)

for some unitary W ,W1,W2. We shall now compute the joint spectrum σ(Mn
z ⊗

Wk, Mm
z ⊗ Wl) of the pure part, as an easy application of the polynomial spectral

mapping theorem, viz., consider the polynomial f : C
2 → C

2 given by,

f (z1, z2) = (zn1z
k
2, z

m
1 z

l
2).

By the polynomial spectral mapping theorem,

σ(Mn
z ⊗ Wk, Mm

z ⊗ Wl) = σ( f (Mz ⊗ I , I ⊗ W ))

= f (σ (Mz ⊗ I , I ⊗ W )
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= f (D × σ(W ))

= {(znαk, zmαl) : z ∈ D, α ∈ σ(W )}.

Following example shows that the class considered in [4], namely, the class of pairs
of the type given in (6.9), is only a subclass of this case.

Example 6.10 Let H = H2
D2 and (V1, V2) = (Mz1, Mz1z2). Then there is no unitary

U commuting with both V1 and V2 such that Vm
1 = UVn

2 for any m, n. In particular,
(V1, V2) is not of the form given in (6.9). But clearly ran V2 � ran V1.

Lemma 6.11 Let (V1, V2) be a pair of commuting isometries, with ran V2 � ran V1.
Then,

σ(V1, V2) ⊆ {(z1, z2) : |z2| ≤ |z1|, z1 ∈ D}. (6.11)

Proof By Douglas Lemma ( [10]), we have V2 = V1V3 for some isometry V3, which
commutes with V1. Consider the polynomial p : C

2 → C
2 given by p(z1, z2) =

(z1, z1z2). By the spectral mapping theorem,

σ(V1, V2) = σ(p(V1, V3)) = p(σ (V1, V3))

⊆ p(D × D) = {(z1, z1z2) : z1, z2 ∈ D}
= {(z1, z2) : |z2| ≤ |z1|, z1 ∈ D}.

��
The inclusion in (6.11) is sharp; see Example 6.12, and it can be a strict inclusion;

see Example 6.13.

Example 6.12 Consider the pair (Mz1, Mz1z2) of commuting isometries in H2(D2).

Notice that

ran(Mz1z2) =
⎧⎨
⎩

∞∑
m,n≥1

am,nz
m
1 z

n
2 :

∞∑
m,n≥1

|am,n|2 < ∞
⎫⎬
⎭

�

⎧⎨
⎩

∞∑
m≥1,n≥0

am,nz
m
1 z

n
2 :

∞∑
m≥1,n≥0

|am,n|2 < ∞
⎫⎬
⎭ = ranMz1 .

Consider the polynomial p : C
2 → C

2 given by p(z1, z2) = (z1, z1z2). By the
spectral mapping theorem, we have

σ(Mz1 , Mz1z2) = σ(p(Mz1 , Mz2)) = p(σ (Mz1 , Mz2)) = p(D × D)

= {(z1, z2) : |z2| ≤ |z1|, z1 ∈ D}.

The measure of the above spectrum is non-zero, indeed it is π2

2 .
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Example 6.13 Let 0 ≤ m < n. Consider (Mm
z , Mn

z ). Then,

ranMn
z =

{ ∞∑
k=n

akz
k :

∞∑
k=n

|ak |2 < ∞
}

�

{ ∞∑
k=m

akz
k :

∞∑
k=m

|ak |2 < ∞
}

= ranMm
z .

By the spectral mapping theorem,

σ(Mm
z , Mn

z ) = {(zm, zn) : z ∈ D} � {(z1, z1z2) : z1, z2 ∈ D}.

Example 6.14 Let H = H2
D2 ⊕ H2

D2 , and Vi = Mzi ⊕ τi for i = 1, 2. Then (V1, V2)
is a pair of commuting isometries with defect E0 ⊕ −Pspan{z2}. Clearly the defect is
a difference of two mutually orthogonal projections and (V1, V2) lies in the unknown
case given in Table 1.

The following example gives an irreducible pair of commuting isometries lying in the
unknown case given in Table 1.

Example 6.15 Consider the pure pair (V1, V2) with the BCL triple (l2(Z), p01, ω)

where ω is the bilateral shift and p01 is the projection in l2(Z) onto span{e0, e1}.
Then

C(V1, V2) = E0 ⊗ (ω∗ p01ω − p01) = E0 ⊗ pspan{e−1} − E0 ⊗ pspan{e1}, (6.12)

where E0 is the one dimensional projection onto the space of constant functions in
H2
D
. The pair (V1, V2) is irreducible. To show this, we shall show that the pair (p01, ω)

is irreducible; see [9, 11]. Suppose E0 
= {0} is a reducing subspace for (p01, ω). Let∑
n∈Z anen ∈ E0 and an0 
= 0 for some n0 ∈ Z. Consider

ω∗n0 ∑
n∈Z

anen =
∑
n∈Z

anen−n0 ∈ E0.

This implies that p01
∑

n∈Z anen−n0 = an0e0 + an0+1e1 ∈ E0. Hence ω∗(an0e0 +
an0+1e1) = an0e−1 + an0+1e0 ∈ E0. So an0e−1 ∈ E0. Thus e−1 ∈ E0, shows that
E0 = l2(Z).

The pair (V1, V2) lies in the unknown case ofHi 
= 0 for all i = 1, 2, 3, 4mentioned
in Table 1. To see this first note that (6.12) shows that C(V1, V2) is a difference of two
mutually orthogonal projections and one can see that, it is not in any other case of the
Table 1, using the characterization in terms of BCL given for those cases.
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