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Abstract

We show that the joint spectrum of two commuting isometries can vary widely depend-
ing on various factors. It can range from being small (of measure zero or an analytic
disc for example) to the full bidisc. En route, we discover a new model pair in the
negative defect case and relate it to the modified bi-shift.

Mathematics Subject Classification Primary 47A13 - 47A45 - 47A65

1 Introduction

An isometry V is called pure if V*" converges to O strongly as n — oo. This is
equivalent to saying that V is the unilateral shift of multiplicity equal to the dimension
of the range of the defect operator I — VV*.

The famous Wold decomposition [17, 23] tells us that given an isometry V on
a Hilbert space H, the space H breaks uniquely into a direct sum H = Ho & Hé
of reducing subspaces such that V|3, is a unitary and V|H0L is a pure isometry. This
immediately implies that for a non-unitary isometry V (i.e., when the defect operator is
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positive and not zero), the spectrum o (V) is the closed unit discD = {z € C : |z| < 1}.
The situation for a pair of commuting isometries is vastly different.

The topic of commuting isometries has been vigorously pursued in the last two
decades, see [1, 2, 4-6, 11, 15, 16, 18, 20, 21] and the references therein. In [6] and
[51, the novel idea of using graphs has led to a clear understanding of structures.

The defect operator C(Vy, V3) is introduced in [12] and [13], as

C\Vi,Vp)=1-W; Vl* - VQVZ* +V V2V2*Vl*.

In [13] and [16], the authors provide the characterization of (Vy, V»), when the defect
is positive, negative or zero. It is well known (see [11, 13]) that a pair has positive
defect if and only if it is doubly commuting, and it has negative defect if and only if
it is dual doubly commuting. In all the three cases, the defect is either a projection or
negative of a projection. In general the defect is the difference of two projections; see
[16].

In this paper we study the pairs of commuting isometries, whose defect is the differ-
ence of two mutually orthogonal projections. We characterize such pairs in Theorem
2.1 and we classify them in Table 1. We also provide the characterization for a few
cases in Table 1; see Lemma 6.3 and Lemma 6.9. We rephrase the structure of (V1, V2)
in each case, which appears in Table 1, in a unified approach using the Berger-Coburn-
Lebow (BCL) Theorem. The joint spectrum is studied in detail for all the cases except
the last one appearing in Table 1.

There is the related concept of the fringe operators:

Fi:ker V" > ker V{* and F»:ker V) — ker V)
defined by,
Fi(x) = PeryyVa(x)  and - Fa(x) = Pyer vz Vi(x). (1.1)

In various characterizations of Table 1, we shall point out the criteria in terms of the
fringe operators for possible use in examples.

1.1 The Joint Spectrum

If (T, T») is a pair of commuting bounded operators on H, then for defining (see [14,
22]) the Taylor joint spectrum o (T, T>), one considers the Koszul complex K (T, T>):

0N H . HeH B HE O (1.2)

where 81(h) = (T\h, Toh) for h € H and 62(hy, ho) = T1ho — Toh for hy, hy € H.
From the way the complex is constructed, ran 6,1 < ker §,,. Whenran§,_; = ker g,
foralln = 1, 2, 3 we say that the Koszul complex K (T, T) is exact or the pair (T, T2)
is non-singular. A pair (A1, A2) € C2 is said to be in the joint spectrum o (T, T») if
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the pair (77 — A1 1, T, — Ap1) is singular. In the case of a singular pair, we say that the
non-singularity breaks at the stage n if ran 6,1 # Ker §,,.

Observe that the non-singularity breaks at stage 1 if and only if (A1, A2) is a joint
eigenvalue for (77, T>) and the non-singularity breaks at stage 3 if and only if the joint
range of (11 — 111, T> — A2 1) is not the whole space H. If (M1, M) isa joint eigenvalue
of (T}", Ty), then by the fact that ran T} +ran T, = H implies ker 7}" Nker T, = {0},
the non-singularity of the Koszul complex K (77 — A1, To — A1) breaks at stage 3.
There are a few elementary results which we record as a lemma so that we can refer
to it later.

Lemma 1.1 Let ‘H and K be two non-zero Hilbert spaces. Let (T1, T>) be a pair of
commuting bounded operators on 'H.

(1) o(T1, T2) S o(T1) x o(T2).
(2) If there is a non-trivial joint reducing subspace Hy for (Ty, Tr), i.e., if H =
Ho @ 'H(J)‘ and

Ho Hy
7.— (To 0 \Ho
To\o T JHE

then
o (T, T2) = o (T, Too) Uo(Th1, To1).

(3) (z1,22) € o(Th, T2) if and only if (z1, 22) € o (T}, T5).

(4) oUg ®@T, Ix @T2) =0(T1, Tr) =0(T1 @ I, Ta ® Ix).

(5) Let (S, S2) be a pair of commuting bounded operators on a Hilbert space K. If
(T, T) is jointly unitarily equivalent to (S1, S2), then o (T1, T2) = o (S1, $2).

(6) Forany T in B(H) and S in B(K), the joint spectrum o (T Q Iic, Iy ® S) is the
Cartesian product o (T) x o (S).

Thus, for commuting isometries V; and V3, we have o (V}, Vo) € D2. The joint
spectrum of a pair of commuting unitary operators is contained in the torus T2, where
T = {z € C: |z] = 1} is the unit circle in the complex plane.

This note uses the fundamental pairs of isometries consisting of multiplication
operators to describe the structure of (Vi, V»). These are fundamental in the sense
that in each case the sign of the defect operator is dictated by the fundamental pair
alone.

When the defect operator C(V7, V») of two commuting isometries is positive or
negative, but not zero, then the whole space H breaks into a direct sum of reducing
subspaces H = Hop & Hé in the style of Wold where the restriction of (V7, V2) on
the Ho part is the fundamental pair and the restriction of (Vi, V») on the H(J)‘ part has
defect zero. What the fundamental pair is depends on whether C(V7, V2) is positive
or negative. These are the contents of Theorem 4.11 and Theorem 5.10.

The fundamental pairs are such that in both cases (of C(V7, V,) positive or negative),

the joint spectrum of (Vy, V) is the whole closed bidisc DZ. These are done in Theorem
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4.11 and Theorem 5.11. If the defect operator C(Vy, V») is zero, the joint spectrum of
(V1, V») is contained in the topological boundary of the bidisc.

The structure theorem in the case ran V| = ran V5, shows that (V;, V») is the direct
sum of a prototypical pair (see Sect. 6.1.1) and a pair of commuting unitaries. The
joint spectrum is computed. The joint spectrum of the prototypical pair of this case, is
neither the closed bidisc nor contained inside the topological boundary of the bidisc.

In the case ran V, C ran Vi, the joint spectrum o (V1, V2) € {(z1, 2122) : 21,22 €
ﬁ}. The above inclusion is sharp; see Example 6.12, and it can be a strict inclusion;
see Example 6.13. Note that {(z1, z122) : 21,22 € ﬁ} has measure non-zero and it is
not equal to the closed bidisc.

In each case above except the case ran V, C ran V;, we point out the stage of the
Koszul complex where non-singularity is broken.

1.2 The Berger-Coburn-Lebow Theorem

For a Hilbert space &£, the Hardy space of £-valued functions on the unit disc in the
complex plane is

o o0
Hﬁ(&') = :f ;D — £ f isanalytic and f(z) = Zanz” with Z ||an||% <00¢.
n=0 n=0

Here the a, are from €. This is a Hilbert space with the inner product

00 00 00
<Zanzna anzn> = Z(ana bu)e
n=0 n=0 n=0

and is identifiable with Hﬁ ® £ where H]]%) stands for the Hardy space of scalar-valued
functions on ID. We shall use this identification throughout the paper, often without
any further mention, and M denotes the multiplication operator by the coordinate
function z on Hﬁ. For 1 € D, let k;, be the function in HD%) given by

1
1—z0

k() =) '3 =

n=0

It is well-known that the span of {k; : A € D} is dense in Hﬁ).

The space of B(E)-valued bounded analytic functions on I will be denoted by
H3?(B(E)). Naturally, if ¢ € Hp°(B(E)), then it induces a multiplication operator
M, on Hﬁ(é‘). One of the main tools for us is the Berger-Coburn-Lebow (BCL)
theorem [3].

Theorem 1.2 Let (Vy, V2) be a commuting pair of isometries acting on 'H. Then, up
to unitary equivalence, the Hilbert space H breaks into a direct sum of reducing
subspaces H = 'H, ® H,, such that
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(1) There is a unique (up to unitary equivalence) triple (£, P, U) where £ is a Hilbert
space, P is a projection on £ and U is a unitary on & such that H, = Hﬁ(é’),
the functions @1 and ¢, defined on D by

01 =U*(PY4+zP) and ¢2(z) = (P +zPH)U, (1.3)

are commuting multipliers in Hp°(B(E)) and Mlw,. Valn,) is equal to
(Mg, , Mg,).
(2) Viln, and Va|w, are commuting unitary operators.

The result of the theorem above will be called the BCL representation of (Vi, V3).
Using Theorem 1.2 we can compute the defect operator (see [13]), because My, =
Iy ® U*PL+ M, ®U*P and M, = Iy ® PU+ M ® P1U. Hence

C(My,, My,) = (I — M;M}) ® (U*PU — P) = Eg® (U*PU — P)

where E is the one dimensional projection onto the space of constant functions in Hﬁ.
Together with the fact that the defect operator of a pair of commuting unitary operators
is zero, this means, in the decomposition H = H, @ H,, with H, = HH%,(E),

C(Vi, V) = (Eg ® (U*PU — P)) ® 0. (1.4)

Definition 1.3 (1) ABCLtriple (£, P, U)is aHilbert space £, along with a projection
P and a unitary U. It is said to be the BCL triple for the pair of commuting
isometries (Vi, Vo) if £, P and U are as in Theorem 1.2, part (1).

(2) Given a BCL triple (£, P, U), the functions ¢1, ¢ : D — B(E) will always be
as defined in (1.3).

(3) A pair of commuting isometries (Vy, V») is called pure if H,, = {0} in its BCL
representation.

In fact, H,, is the unitary part of the product V = V1 V5 in its Wold decomposition
and £ = ker V*. Thus H,, = {0} if and only if V is pure.

The Berger-Coburn-Lebow theorem has an interesting consequence in the case
when the part H, is non-zero. We have ¢1(z)¢2(z) = z for every z € D and hence
My My, = M, ® Ic. Hence, by the spectral mapping theorem for joint spectra (see
for example [8]),

{2122 1 (21, 22) € 0(My,, My,)} = 0 (M, ® Ig) = D.

Thus, if H, # {0}, then o (M, , My,) cannot be contained in the torus T2. Hence by
Lemma 1.1 part (2), o (Vy, V2) cannot be contained in the torus T2.

Let (€, P, U) beaBCL triple. It is easy to see that if the Koszul complex K (¢ (z) —
A1, @2(z) — A2 1) breaks at stage 3 for some z € D, then the Koszul complex K (Mg, —
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A1, My, — Ao 1) breaks at stage 3. More generally, we show that, in all the cases under
consideration in this note except the case ran V, C ran V}, we have

Uzen0o (91(2), 92(2)) = 0 (M, My,). (1.5)

See Theorem 3.8, Theorem 4.15, Theorem 5.13 and Theorem 6.8.

In the following, when we consider the pair (Vi, V») of commuting isometries, V
denotes the product Vi V2, and {e, : n € Z} denotes the standard orthonormal basis
of 12(Z).

We end this section with the comment that one of the strong points of the BCL
theorem is that it models the V; in terms of functions of one variable whereas V;
could, a priori, be dependent on two variables (multipliers on the Hardy space of the
bidisc, for example). This strength will be greatly exploited in this note.

2 The Defect Operator

Recall that ([12] and [13]) the defect operator of a pair of commuting isometries
(V1, V,) is defined as

C(Vi, Vo) =1 = ViV =WV + ViVLVSV]. 2.1
It is easy to see that (see [16]) the defect
C(V1, V2) = Prer vy — Pyyker vit) = Prer vy — Pviker v (22)
and
ker Vi* @ Vi(ker V') = ker V5 @ Va(ker V) = ker V*V,'. (2.3)
Note that the defect operator lives on ker V* in the sense that the defect operator is
zero on the orthogonal component of ker V*. Equation (2.2) shows that the defect is
always a difference of two projections. Let
P = Pier v and P = Py, (ker Vi) 2.4)
Define

H :=ran Py Nker P, = ker V{* Nker V5,

Hy :=ran P, Nker P; = Vj(ker V;) N Va(ker V),
H3 :=ran P; Nran P, = ker V| N Va(ker V"),

Hy := ker Py Nker P, = Vi(ker V;°) Nker V.

Notice that H; L H; if i # j, and the H; are reducing for P; and P, and

H1® Ho D Hz ® Ha C ker V*. 2.5)
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Theorem 2.1 The following are equivalent:

(a) The defect C(V1, V) is the difference of two mutually orthogonal projections.
(b) ker V¥ =H| ® Ho & Hz & Hy.

(c) ker Vi = H ® Hs.

(d) Vi(ker V) = Ho @ Ha.

(e) If (£, P, U) is the BCL triple for (Vy, V3),

U*(ran P) = (U*(ran P) Nran P) & (U*(ran P) Nran PL). (2.6)
Proof Suppose
C(Vi,Vp) = Q01— Qr with ranQ; L ran Q) 2.7

for some projections Q1, Q> in ker V*. Notice that the pair (Q1, Q») satisfying (2.7)
is unique if it exists. Then for such a pair (V1, V2) we have

Iran 01 0 0
0 0 0

For any two projections P and Q in’H and x € H, Px — Qx = x implies that Px = x
and Ox = 0. Using this fact and (2.8) we see that:

Hi =ran Q; and H; =ran Q5.

Note that P} = P, = <I(’)C 00£> on I @ L for some I, £ that satisfy ker V* =
H1 & Hy ® K & L. Hence, by (2.8) ran P = H| & K and ran P, = H, & K. Thus

K =ran P; Nran P, = H3. Similarly £ = ker P Nker P» = H4. Therefore
ker V* = H1 ® Hr ® H3z ® Ha,

and in this decomposition

1000 0000
0000 0100

Pr=1ooro|l 2=loor0]| (2.9)
0000 0000

This proves (a) = (b), and (b)) = (a) is trivial.

Note the fact that, if £1, £, &3 and &4 are any subspaces of £ satisfying £ & & =
E=8E®&, thenE = (E1NE) DB (E1NEy) ifandonly if & = (E:NE) B (E2NEy).
Using the above fact the equivalence (c) <= (d) follows from (2.3).

The implication (b)) = (c) is clear. The implication (¢) = (b) follows from
the equivalence of (c¢) and (d) and (2.3).
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Table 1 Classification

ker V* = GB?:]H,‘ and

the status of H; The status of (Vy, V3) BCL characterization

C(Vi,V2) =0 and

Hi=0 for i=1,234 both Vi and V; are unitaries £=0
H; =0fori =1,2,4, C(V1,V2) =0 and Po1
H3 #0 V is a unitary, Vj is not a unitary -
H; =0fori =1,2,3, C(Vi,Vp) =0 and P=0
Ha #0 V1 is a unitary, V; is not a unitary -
H; =0fori =1,2, C(Vi,V2) =0 and P is non-trivial and
H; #0fori =3,4 both Vi and V; are not unitaries U reduces ran P
H1 =0, 1 1
H; #0fori =2,3,4 C(Vi,Vp) <0and C(Vy, Vo) #0 U(ran P—) C ran P
H2 =0, C(Vi,Va) = 0and C(V}, V) #£0 U(ran P) C ran P
H; #0fori =1,3,4 ’ = ’ -
‘H; =0fori =3,4, ran Vi =ranV, and P is non-trivial and
H; #0fori =1,2 V; is not a unitary Ul(ran P) = ran Pt
Ha =0, ran V) CranV, and P #1 and
H; #0fori=1,2,3 V5 is not unitary U(ran PL) Cran P
H3 =0, ran V5 C ran V| and P # 0 and
H; #0fori =1,2,4 V] is not unitary U(ran P) C ran P
H; #0fori =1,2,3,4 Unknown —

Note that ker M;l = ran(] — M(le;jl) = 1®ran(U*PU) = 1 ® U*(ran P),
ker M;fz = l®ran PLand M, (ker M:;l) = l®ran P.Now the proofof (a) <= (e)
follows from the equivalence (a) <= (c). O

Using the (e) part of the above theorem we easily get an example of a pair (V7, V2)

whose defect is not a difference of two mutually orthogonal projections.

Example2.2 Let £ = C2, U = l( ! 1) and P = (1 0>. The BCL triple
’ V2\-11 00

(€, P, U) does not satisfy (2.6), hence the defect of the pair (Vq, V;) correspond-

ing to this BCL triple, is not the difference of two mutually orthogonal projections.

The Table 1 gives a neat classification. We leave the proofs to the reader for the first
two columns. The contents of the third column will unfold as we progress. One can
notice that certain cases are not mentioned in the table. That is because those cases
cannot occur.

3 The Zero Defect Case
3.1 Structure

This subsection is mainly a rephrasing of known results. If one of the V;’s is a unitary,
then it is trivial to check that the defect C(V7, V») is zero. The following example is
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the prototypical example of a pure pair of commuting isometries with defect zero; this
example serves as a building block in the general structure, see Theorem 3.4.

Example 3.1 Let £ be a non-zero Hilbert space and W be a unitary on £. Consider the
commuting pair of isometries (M, ® I, IH]I%J ® W) on Hﬂ% ® L. As I @ W is a unitary,
the defect C(M; ® Iz, I;2 @ W) = 0. Also, o (M @ I, I;jy ® W) = D x o(W),
by Lemma 1.1 part (6). Also see [7].

Now consider the unitary A : H ® £ — Hj ® L given by

A (Z amzm) =Y Wam)". (3.1)
m=0

m=0

Then, A(M, @ W A* = M, ® I and A(Il ® W)A* = I ® W. This says that
M, W*, I®@W)and (M, ® I, I ® W) are jointly unitarily equivalent. In particular,
we have C(M, @ W*, I ® W) = 0 and

oM. QW* ITQ@W)=D x o (W) (3.2)

for any unitary W.

We proceed towards the structure of an arbitrary pair (Vi, V) with C(V1, V2) = 0.
A pair of commuting isometries (V1, V») is called doubly commuting if V| commutes
with V. The following lemma is proved in [13] and [16], it is relating positivity of the
defect operator C(V1, V») with double commutativity of the pair (Vi, V»). We give a
short proof here.

Lemma 3.2 Let (Vy, V) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(Vi, V2) = 0.
(b) (V1, V2) is doubly commuting.
(c) If (£, P, U) is the BCL triple for (Vi, V»), then U (ran P) C ran P.

Proof Since commuting unitaries are always doubly commuting, it is enough to
prove the equivalences when (Vi, Vo) = (My,, My,). By virtue of (1.4), we have
C(Vi, Vo) > 0if and only if U*PU > P which happens if and only if ran P is
invariant under U. Now,

My, M}, = M} My, if and only if (I — M.M?) ® (U*PU*PT) =0
if and only if PLUP =0

if and only if ran P is invariant under U.

This completes the proof. O

We recall some characterization results from [13] and add a few new ones.
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Lemma 3.3 Let (Vi, V) be a pair of commuting isometries on a Hilbert space 'H.
Then the following are equivalent:

(a) C(Vy, Vp) =0.

(b) ker V is a reducing subspace for Vi and Vi |yer vy IS a unitary.

(c) ker V" is a reducing subspace for Vo and V5 |y vy is a unitary.

(d) The fringe operators Fi and F> are unitaries.

(e) ker V" and ker V" are orthogonal and their direct sum is ker V*.

(f) tanVi ©ran V) @ (ran Vo, ©SranV) dranV = H.

(g) If (€, P, U) is the BCL triple for (V{, V), thenran P reduces U.

Proof The equivalences of (a), (b), (c¢), (d) and (e) follows easily from (2.2) and
(2.3).

(e) = (f): Suppose (e) is true. We shall show that ker V* = (ran V, S ran V).
Suppose x € ker V}*, which implies x € ran V, and x € (ran V)t. Sox € tan V2 ©
ranV). If x € (ranV, ©ran V), then x € ranV; and x € ker V*. So x € ker V.
Similarly, ker V;* = ran V| © ran V. Hence (f) is true.

(f) = (e): Suppose (f) is true. Since ranV C ran V|, we have ran V| =
(ran Vi ©ran V) @ ran V. Therefore ker Vl* = (ran Vi )J- = (ran V, ©ran V). Simi-
larly, ker V; = (ran V| © ran V). Hence ker V" ® ker V = ker V*.

(a) < (g): We use the formula C(Vy, Va) = (Eg @ (U*PU — P)) &0 from (1.4).
This gives

C(Vy, V) =0ifandonly if U"PU — P =0
if and only if ran P reduces U.

Thus, completes the proof. O
We now write the structure theorem given in Popovici [18, Sec. 4], which highlights
the importance of Example 3.1. We give a proof for the completeness.

Theorem 3.4 Let (Vy, Va) be a pair of commuting isometries on H with defect zero.
Let (€, P, U) be the BCL triple for (Vi, V»). Let £ = ran P and & = ran P, Then
&1, & are reducing subspaces for U, i.e.,

. (U1 O _(1g, O .
5—51@52,U—<0 Uz) and P_<O 0) inB& @ &)

for some unitaries Uy and U, on £ and & respectively.
Also, H = (HHZD Q&) D (HH% ® &) @ K where K = () ran(V1V2)" and in this

n>0
decomposition,
M, ® Ig, 0 0 I H2 ®U; 0 0
0 0 Wy 0 0 W
up to unitarily equivalence, for some unitary U; on &,i = 1,2 and commuting

unitaries Wi, Wy on K.
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Proof Let (£, P, U)be the BCL triple for (V1, V»). By Lemma 3.3, we have & reduces
U and in the decomposition £ = & & &, we have

_U10 _Igl()
U_<OU2) and P_(OO'
*

In this case, ¢1(z) = <ZU 0 ) and ¢ (z) = (L(])l ZO > , for z € D. Therefore,

1
0 U; Uz

M.®U; 0 Lp®U, 0
M‘Plz( 0 IHH%)@U; ’M(/?zz DO M. ® U, .

Note that (M, QUY, IH%) ®U;) and (M, Q1¢,, IH]]% ®U) are jointly unitarily equivalent
and (IH]%J ®US, M, ® U>) and (IH]% ®US, M, ® Ig,) are jointly unitarily equivalent;
see Example 3.1. This completes the proof, by Theorem 1.2. O
Remark 3.5 In the structure theorem (Theorem 3.4) one can write the U;, U, and

&1, & explicitly in terms of V| and V; as follows: & = ker V|, & = ker V' and
Ui = Valker v, Uz = V¥ lker v;- This is because of Lemma 3.3.

A comment is in order. Over several decades Marek Stociniski, first by himself and
then with his collaborators, has developed a complete structure theorem on commuting
pairs of isometries; see [5] and the references therein. One of his early results is the
following.

Theorem 3.6 (M. Stocinski [21]) Let (V1, V) be a pair of doubly commuting isome-
tries on a Hilbert space 'H. Then there exists a unique decomposition

H= Hss @ Hsu @ Hux @ Huu»

where the subspace 'H;; reduces both Vy and V, for all i, j € {s, u}. Moreover, Vi on
‘Hij is a shift if i = s and unitary if i = u and V, is a shift if j = s and unitary if
j=u.

By Theorem 3.4, and the fact that if one of the V;’s is a unitary then the defect is
zero, we have C(V1, V) = 0if and only if (V1, V) is doubly commuting and H; in
Theorem 3.6 is {0}.

3.2 Joint Spectrum
If (V1, V») is pure and defect C(V1, V) = 0, then by Theorem 3.4 and Remark 3.5,

D x o (U;) if V5 is unitary,
o(Vi,Va) = {o(U5) x D if V1 is unitary, (3.3)
D x o(Uy) Ua(Uy) x D if neither V; nor Vs is a unitary,

where U] = V2|ker Vl*, U2 = V1*|ker Vz*'
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Lemma 3.7 Let (Vi, V3) be a pair of commuting isometries with defect zero and
ker V* #£ {0}. Let (£, P, U) be the BCL triple for (Vi, V). Let U; = U |an p and
U2 = U|ran pL- Then

{(zA, M) 1 A € o (U1} if V2 is a unitary,
0 (91(2), 92(2)) = 1 {(r, zp) : u € o (U)} if V| is a unitary,
{(zA, A), (I, z) A e o(Uy), w e o(Uay)} otherwise.

3.4)

Here, for every point in the joint spectrum, the non-singularity breaks at stage 3.

Proof The proof in the case when neither V nor V; is a unitary is done below in detail.
The other cases follow similarly.

Letting £ = ran P and & = ran P, it is an easy check that both &£ and & are
non-trivial. By Lemma 3.3, £ reduces U. Hence in the decomposition £ = & & &,

we have
. ZUI* 0 _ (Ui O

for z € D. Then,
o(p1(z)) =0(UYUa(Uy) and o(a(z)) =0 (U) Uo(zU>)

for all z € D. For z € D, we have

01(De2(2) = 2lg 08, = P2(DP1(2).

Therefore, for all z # 0, by Lemma 1.1 part (1) and polynomial spectral mapping
theorem, we get

o (91(2), 92(2)) € {(zh, A), (T, zp) = A € o (U1), p € o (Un)).

For z = 0, it is easy to see that

o (¢1(0), 2(0)) € {(0, 1), (12, 0) : 2 € a(U1), n € o(U2)}.

To prove the other containments, let A € o (Uy). Then U; — A1 is not onto, because

Uy isnormal. Let h = m Lk = ki € & @ &. Then,
hy ko

2(Uf = ADki + Uy — ADhy )

(#1(@) = 2ADk + (2(0) —ADk = ((U; — 2Dky + (2Uz — Ahy
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Since U is a normal operator, ran(U; — AI) = ran(U{ — A1) and hence the first
component of the above spans only ran(U; — AT). Hence we have

ran(g) (z) — zAl) + ran(pa(z) — Al) # &1 D &

Therefore (zi, 1) € 0 (¢1(2), ¢2(2)).
Similarly, if © € o (U,), we have

ran(p)(z) — wl) + ran(pa(z) — zpul) # &1 @ &,
Therefore (1r, zi) € o (¢1(2), ¢2(2)). So,

o (@1(2), 92(2)) = {(zA, 1), (@, zp) = A € 9 (U1), € o(Up)} for z € D.

O
Theorem 3.8 With the hypothesis of Lemma 3.7, we also have
D x o(U)) if Vo is a unitary,
0 (My,, Myy) = Uzepo (91(2), 92(2)) = {0 (U3) x D if V1 is a unitary,
DxoU)U o(Uj) x D otherwise.
D x o (Uy) if Vo is a unitary,
and, for every point (z1,z2) € {o(Uy) xD if V| is a unitary, the

D xoU)Uo(Us) x D  otherwise,
non-singularity of K (Mg, — z11, My, — z21) breaks at stage 3.
Proof As in Lemma 3.7, we prove only the case when neither V| nor V; is a unitary,
other cases follow similarly.

We saw in the proof of Lemma 3.7 that for any point z € I, a pair of points
(z1,22) € 0(91(2), 92(2)) if and only if

ran(¢1(z) — z11) + ran(g2(z) — z221) # & @ &
Hence, if (z1, 22) € 0(91(2), ¥2(2)),
ran(My, —z11) + ran(My, — 221) # H*(£1 @ &). (3.5)
Therefore, (21, 22) € 0(My,, My,), which implies that
Uzeno (@1(2), 92(2)) € 0(My,, My,).
Note that

U,eno (91(2), 92(2)) = Uzenf(zh, M), (I, zit) : A € o (Uy), p € o(Ua)}
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=D x o(U;) Uo(Uy) x D. 3.6)
Since
MZ®U1* 0 I @ Uy 0
M<P1=< 0 IHu§®U2*> and M<P2:< DO M. QU,)’
we have

oMy, Myy) =0 (M; @ Uf', I @ Un) Vo (12 @ Uy, M @ Uy).
By (3.2), we have
0 (My,, My,) =D x o(Up) Ua(Us) x D. (3.7)

Therefore from (3.6) and (3.7) we have

0(My,, My,) =D x o(Uy) Uo (U3) x D = Uyepo (91(2), 92(2)).

The final thing to note is that for every point (z1, z2) inthe set D x o (U1) Uo (U) x D,
the non-singularity breaks at stage 3 and this is a direct consequence of (3.5). O

To conclude the section, we note that by Theorem 1.2, o (V1, V2) = o (M, , My,)U
o (Viln,, V2l#,)- Hence Theorem 3.8 tells that

Uzepo (91(2), 92(2)) S o (V1, V2). (3-8)

The equality in (3.8) holds if and only if o (Vi|y,, Valn,) € 0(My,, My,).

4 The Negative Defect Case
4.1 The Prototypical Example

When the defect operator is negative, a fundamental example plays an important role
in much the same way the unilateral shift plays its role in the Wold decomposition of
a single isometry. We shall first describe this example and then show how it is a part
of every pair of commuting isometries with negative defect.

The Hardy space of E-valued functions on the bidisc D? is

o0
HZ, (&) = { f:D* — £ fis analytic and f(z1, 22) = Z am.n2y'2y

m,n=0

o0
. 2
with E lam.nlle < 00

m,n=0
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This is a Hilbert space with the inner product

00 oo o0
m_n m_n
Z Am.nZ1 27 Z bunzi'zy ) = Z (m.n> bmn)e

m,n=0 m,n=0 m,n=0

and is identifiable with H]éz ®& where HH%)Z stands for the Hardy space of scalar-valued

functions on D?.
Let U : HH%)Z — HH%)Z be the unitary defined by

2 .
2SR it my = mo,
my _m 1 -1 .
UGEMZ?) =827 iftmy 4+ 1 =mo, 4.1
lemzfznz—2 ifm) +2 < mo.

on the orthonormal basis {z|"' 252}, m>>0-

The pair of multipliers by the coordinate functions (M;,, M;,) forms a pair of
doubly commuting isometries on H]I%ﬂ' There is a natural isomorphism between the
Hilbert spaces H]éz and H2 ® HZ wherein z|''z5 is identified with z|"' ® 5. In
this identification, the pair of coordinate multipliers (M,, M,,) is identified with
M, 1,1QM,).

Definition 4.1 The pair of bounded operators 7y := U*M;, and 12 := M,,U on the
Hardy space of the bidisc H]IZDz will be called the fundamental isometric pair with
negative defect.

The following lemma justifies the name except the word fundamental which will
be clear from Theorem 4.11.

Lemma 4.2 The pair (11, 12) is a pair of commuting isometries with defect negative
and non-zero.

Proof 1t is simple to check that the unitary U defined in (4.1) commutes with M, ,,
the operator of multiplication by the function z;z. That proves commutativity of 7

and 1. They are isometries because each is a product of an isometry and a unitary.
Now, let

W, = ker(tl*) = span{z%, zg, zg, ...} and W, = ker(ri") = span{l, z1, z%, ... L
Then, 7o(W);) = span{z», z%, z%, ... }. Thus, we have
C(t1, ) = PW| - Prz(Wl) = —Lspan{zy} = 0.

That completes the proof. O

We shall prove the following lemma to compute the joint spectrum of (z1, 72).
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Lemma4.3 Forany A € D, we have
(ran(zs — D))+ = {(1 — %) 'y x eker M;‘z} . (4.2)

Proof Using the Neumann series (I — AA)~! = 200 ATA™ for A € D and any
contraction A, it is straightforward that the equality

(ran(A — A1) = {(I — 2A)"'x : x € ker A¥}
is satisfied when A is an isometry. The proof is complete by noting that ker 7 =
ker U*M?, = ker M7 . O
Recall the Koszul complex for a pair of commuting bounded operators (77, 72)

from (1.2):

00X HA HeH B H B 0. (4.3)

It is well-known that the most difficult stage to treat for the purpose of showing lack
of exactness is the stage 2.

Proposition 4.4 The fundamental isometric pair with negative defect has the full closed
bidisc D? as its joint spectrum. Moreover, for every point in the open bidisc D?, the
non-singularity breaks at stage 2.

Proof Let A1, A>» € D. We shall find a non-zero function iy € (ran(ta — A21))* such
that

(t1 — A D)hy € ran(ty — A21). “4.4)
This would imply that there exists 7] € H = Hﬂéz such that
(ti =2 Dhy = (12 — A2 Dy
producing a pair (h1, hp) in ker §; which would not be in ran §;.
To that end, we shall use the description of (ran(zo — A7 ))L obtained in Lemma

4.3. Since any element from ker t} = ker M7, is of the form )" a,, 2} for a square
summable sequence {a, } >0, it follows from Lemma 4.3 that

o0 o0
(ran(zy — A1) = !(1 —how) T Y andl Y lanl < oo}
m=0 m=0

:Z(ZMZZU)H (Z amzlln> : Z |gm|2 < OO}
m=0

n=0 m=0

o0 o0
—n
> R amd T Y laml* < oot 4.5)
m,n=0

m=0
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Our candidate for A, to satisfy (4.4) is

1
hy = _ )L )Lmzm+2n n
(1 —zlz)(1 — Az1) Z He

m,n=0

By (4.5), this function is in (ran(t, — )\.2[))J_. We shall verify below that (1 — A1 1)h>
is in the closure of ran(7p — Az 7). Since |A2| < 1 and 17 is an isometry, (o — A21) is
bounded below and hence its range is closed. That will complete the proof.

First note that

00
—n
U Z A2 amzrln+2n no__ Z )\‘2 an Zm—i—2n—i—2 n o__ Z )“2 amzm+2ng

m,n=0 m,n=0 m,n=0

(4.6)

and

(M}, — A Dhy = M}, (ha) — Aiha

00 00
_ T Nam_m+2n—1_n T ym+1_m+2n_n
= Y = Y Rt
m,n=0 m,n=0
(m,n)#(0,0)
9]
—n —n
— Z 2 )Lrlnzrlnﬁ»Zn 1 n+ZA2 Z%n 1 n _ Z A2 )Lm+l m+2nZ;21
m=1,n=0 m,n=0
_ Z )\‘ )Lm-H m+2nzn+ZA2” 2n—1 n Z )\ )Lm+1 m+2nzg
m,n=0 m,n=0
_ Z)‘Z Z2n 1, n “4.7)

We now compute the inner product between a typical element of (ran(to — A>1))*
and (t1 — A11)h by using the two equations above.

o0
o mt2
(m —aDhy Y 3 awz T2
m,n=0

o0
=((U*M;, = MDhy, Y R a2

m,n=0

Mm]’lZsU Z )"2 amzm+2nzrzz — i (ha, Z )LZ amzm+2nzn

m,n=0 m,n=0

o0 o0
n —hn
Moy, M2 R a2 ) = (b Y R w2

m,n=0 m,n=0
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- <(M — M Dha, Z 2 am g>

m,n=0

<Z)\'2n 2n— lzg’ Z )\'2 amzm+2n n>_0

m,n=0

This shows that (t; — A11)hy € tan(ty — A2 1) = ran(t> — A1) and hence completes
the proof.
O

Note 4.5 In Remark 5.4, we shall see that there is a joint invariant subspace M for
(1, ©2) such that the defect operator of (11| m, T2l M) is positive (and not zero).

4.2 General Theory for the Negative Defect Case

Here we shall show that the fundamental example above is a typical example. This
helps us to compute the joint spectrum of any commuting pair of isometries with
negative defect.

In [11], Gaspar and Gaspar introduced the dual doubly commuting pairs. If (V;, V>)
is the minimal ummry extension to H of (Vi, V,) acting on H, then the pair of com-
muting isometries (Vl It 179 |H9H) is called the dual of (Vy, V;). If the dual is
doubly commuting, then (V1, V») is called a dual doubly commuting pair.

A pair (V1, V») of commuting isometries is called a bi-shift (see [19]) if there is
a wandering subspace R (i.e., V' VI*(R) L V' VJ*(R) if (p1, p2). (q1., q2) € Z%
and (p1, p2) # (g1, q2)) SuCh that

H= P V"V R).

(n1.m2)€Z2

(V1, V) is called a modified bi-shift if it is pure and its dual is a bi-shift.

Popovici used the concepts above greatly in his papers [19] and [20]. We are thankful
to him for sending us his papers. First we shall give a characterizing lemma for this
case; see also [13].

Lemma 4.6 Letr (Vy, V) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(Vi,V2) <0and C(Vy, Vo) #0.

(b) Va(ker Vi) D ker V}".

(c) Vi(ker V5) 2 ker V.

(d) The adjoint of the fringe operators are isometries and not unitaries.
(e) (V1, Va) is dual doubly commuting and C (Vy, V2) # 0.

(f) ker V" is orthogonal to ker V3 and ker V[ @ ker V;* # ker V*.

(g) C(Vi, V) is the negative of a non-zero projection.

(h) If (£, P, U) is the BCL triple for (Vy, V3), then U (ran P*) C ran Pt
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Proof The equivalence (¢) < (h) is proved in [11]. All other proof are along the same
lines as the proofs of various parts of Lemma 3.3. O

The geometrical structure and a model for dual doubly commuting isometries is
known due to [11, 18]. Here we observe that the multiplication operators M, ,i =1, 2
associated to (V7, V2) as in Theorem 1.2, have some special forms in this case. This
also helps us getting a model in the Hardy space of the bidisc. Some steps of the proof
are used to obtain Theorem 4.15. The wandering space arguments used in the proof
of the following theorem, appears in [18, Thm 4.3].

Let Y1, v» : D — B(I*(Z)) be the multipliers associated with the BCL triple
(I*(Z), p—, w) where p_ is the projection onto Span{e,, : n < 0} and w is the bilateral
shift on I2(Z).

Theorem 4.7 Let (Vy, Vo) be a pair of commuting isometries such that C(Vy, V3) is
a non-zero negative operator. Let (£, P, U) be the BCL triple for (Vi, V2). Then, up
to unitary equivalence

E=CDRL)®E

for some non-trivial closed subspace L and a closed subspace & of £. Moreover,

HXP(Z)® L HA(E)
Mo My, ® Ir 0 HY((Z) ® L
I 0 M| 2 sy | Hp(E2)

(4.8)
with C(My, |Hn§(52>’ My, |H]§(52)) = 0. In particular,

oMy, My,) =0 My, @I, My, @ Ip) S o(My,, My,) € o (Vi, V2). (4.9)
Proof Since C(Vy, V) < Oand C(Vy, Vo) # 0, by Lemma 4.6, U (ran PL) C
ran P+. Consider £ := (ran P+ & U(ran P1)) # {0}. Let m,n € Z and m > n.
Then for x, y € £ we have

(U"x,U"y) = (U "x,y) =0,

because U "x € U(ran P1). Therefore U™ (L) L U"(L)if m,n € Z and m # n.
Set &1 := @z U™ (L). Clearly U reduces £;. Now U (ran P1) C ran P implies:

®p=0 U"(L) C ran PL. (4.10)
Forallx € £,y eran P+ andn <0, (U"x, y) = (x, U™"y) = 0 implies that
@®n0 UML) Cran P. 4.11)

It is clear from inclusions (4.10) and (4.11) that P also reduces 1. Now Ulg, = W,
the bilateral shift on £ with the wandering subspace L and Plg, = Pgl— , the projection

on & 1= @u<oU"(L)in &).
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Let £ = ker V* = & @ &. In this decomposition we have,

U= and P = 1 .
< 0 U|52> < 0 Plg,

Let © : £ — 1>(Z) ® L be the unitary given by
OU"x)=e, @xforx € L,n €Z.

Then, with this identification (U, P) is jointly unitarily equivalent to

(5" 0) (757 40)
0 Ulg)’ 0 Ple,

where w is the bilateral shift on / 2(Z) and p_ is the projection in / 2(7) onto spanf{e, :
n < 0}. Therefore,

(0" ®Iz O preI, 0 p—-RlIs 0
e = ( 0 U*|52> |:( 0 PL|52 e 0 Plg,

<w*(pf +zp) QI 0 > _ (llfl @Iz 0 )
0 U*(P++zP)lg,) — 0 wi@ls)’
(4.12)

and

p—-QIs O ) (pi‘@lﬁ 0 )] (w@[g 0 )
= +z
¢2(2) [( 0 Plg) " 0 Pl 0 Ul

_ ((p_ +zpHo® I 0 ) _ (wz(z) I 0 >
- 0 (P+zPHUIg,) — 0 »m@ls, )’
(4.13)

where p denotes the projection Ipzy — p—in I2(Z). This in particular says that &
reduces ¢; (z) forz € D,i = 1, 2. Therefore Hﬁ(&) reduces My, , fori =1, 2, and

Myo1, 0 >:(M¢,,,®15 0

M, = ,i=1,2, 4.14
v ( 0 M, 0 M¢i|Hﬁ(€2)> “.14)

i‘Sz
where
¥1(2) = 0*(pt +zp2), ¥2(2) = (p— + zpHw

and ¢;|g, (2) == ¢i(2)|g, € B(&), forz e Dandi =1, 2.
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It remains to prove that C (M, |Hﬁ(52)’ M, | Hﬁ(&)) = 0. To that end, note that by
Lemma 3.3, it is enough to show that U (ran P|g,) = ran P|g,. Notice from (4.10)

and (4.11) thatran P|g, =ran P © (®,<0U"(L)). Hence
U(ran Plg,) = U(ran P © (@,<0U"(L)))
= U(ran P) © (@, <0U" " (L))
= (U(ran P1))t © (L @0 U"(L))
= (an P& L) © (L ®u<o U"(L) (. 1an PL = L& U(ran PL))
=ran P © (®,<oU" (L)) =ran P|g,.

It remains only to prove (4.9), and it follows directly from (4.8) by Lemma 1.1. O

Lemma 4.8 The pair (My,, My,) is jointly unitarily equivalent to (t1, 12). In partic-
ular,

o(My,, My,) = @

and for every point in D?, the non-singularity breaks at stage 2.

Proof Define the unitary A : H>

5, = Hj(*(2)) by

o o o0 o
ALY amad | =) (Z Amikkem + Y ak,m+ke_m> . (415
m=1

m,n=0 k=0 \m=0

Then, At;A* = My, fori = 1,2. Thatis, (My,, My,) is jointly unitarily equivalent
to (11, 12). In particular,

o (My,. My,) =0 (11,72) = D? (4.16)

and for every point in D?, the non-singularity breaks at stage 2 by Proposition 4.4. 0

We shall use the following lemma proved in [11] and [9].

Lemma4.9 Let (€, P, U) be a BCL triple. Then the pair (M, , My,) has a non-trivial
Jjoint reducing subspace if and only if (P, U) has a non-trivial joint reducing subspace.

Lemma 4.10 The pair (t1, T2) does not have any non-trivial joint reducing subspace.

Proof By Lemma 4.9, (71, 72) has a non-trivial joint reducing subspace if and only
if (p_, w) has a non-trivial joint reducing subspace in />(Z). Let £ # {0} be a joint
reducing subspace for (p_, w). Let f = ZnEZ aney € &, ay, # 0 for some ng € Z.
Now

w*"O(f) = Zanen—nov P—w*no(f) = Z apep—ny € &.

nez n<ng
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Hence ZnZnO anen—n, € & and
p_o* (Z anen_n0> = apye—1 € &.
n=ng
Since & is reducing for w and e_; € & we have & = [*(Z). O

The following theorem on the structure and the joint spectrum of commuting pair
of isometries with negative defect follows directly from Theorem 1.2, Theorem 4.7,
Lemma 1.1 and Lemma 4.8 and shows that when the defect of (Vi, V») is negative,
then apart from a reduced part which has defect zero, (V1, V) is the fundamental
isometric pair with negative defect, albeit with a higher multiplicity.

Theorem 4.11 Let (Vy, V2) be a pair of commuting isometries such that C(Vy, V2) <0
and C(Vy, Va) # 0. Then, there is a non-trivial subspace L C ker V* such that, up to
unitary equivalence, H = Hy @'Hd‘, where Hy = H]éz ® L and in this decomposition

T RI, 0 .
Vi=( 0 Vi|H5 ,i=1,2 and C(V1|’Héav2|'}—(é)=0’

where the dimension of L is same as the dimension of the range of C(Vy, V») and
(1, ©) is the fundamental isometric pair with negative defect. Moreover,

o(Vy, Vo) =D?

and for every point in D?, the non-singularity breaks at stage 2.
The pair (71, 72) serves as a model in many ways.

Theorem 4.12 A pair of commuting isometries (V1, V2) is a modified bi-shift if and
only if (Vy, Va) is jointly unitarily equivalent to (11 ® Iz, 12 ® I) for some Hilbert
space L.

Proof Let (Vi,V3) = (11 ® Iz, 70 ® I2). Then
ker V" = span{z%, z%, ...} ® L, ker V5" = span(l, zl,z%, LR L.

Clearly V*[xer v V5 lker vy and V V; are shifts. Therefore, by [20, Prop. 3.8] (Vi, V2)
is a modified bi-shift.

Suppose (Vi, V») is a modified bi-shift. If (£, P, U) is the BCL triple for (V1, V3),
then by [11, Thm. 2.4], U (ran P C ran PL. Hence by Lemma 4.6, C(V(, V2) <0
and C(Vy, V2) # 0. Therefore, by Theorem 4.11, up to unitary equivalence, V| and
V, are

I, 0 0 Rl 0 0
V1= 0 MZ®I(€1 0 ,V2: O IH]I%)®U1 0
0 0 IH]%)®U2 0 0 M, ® Ig,
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By [20, Prop. 3.8] we have & = & = {0}. Hence (Vy, V») is jointly unitarily equiv-
alentto (11 Q@ Iz, o ® I). O

Remark4.13 (I*(Z) @ L, p— @ I, w ® I) is the BCL triple for a modified bi-shift
(V1, V), where dim £ = dim(ran C(Vy, V»)). (See also [11, Thm. 2.4]).

Some other descriptions of modified bi-shift are given in [11], by Gaspar and Gaspar.
From the results in [11], it is clear that a dual doubly commuting pair is a direct sum
of a zero defect part and a modified bi-shift. (caution: the W in [11] is U* for us).

In the rest of this section we shall see the relation between the joint spectrum of
a pair of commuting isometries (Vi, V) with defect negative and non-zero, and the
joint spectrum of (¢1(z2), ¢2(2)), z € D, where ¢;’s are the multipliers given in the
BCL representation of (Vi, V»). Indeed, we prove that

a(Vi, Va) = 0(My,, My,) = U:cpo (91 (2), 92(2)) = D2 (4.17)

Lemma 4.14 Let the operator valued functions 1 and Y, be as in Theorem 4.7. Then,
Forz € D, (A1, ) € D? is a joint eigenvalue for (Y1 (2), ¥2(z)) if MiAs = z. Also

o (Y1(2). ¥2(2) = {(A1. A2) € D22 dyhg = 2}, (4.18)

and

Uzep0 (1), ¥2(2) = D? = o(My,. My,). (4.19)

Proof Letz € D\ {0} and A1, A € D be such that A1, = z. Consider

o 1 oo
—1
X)LI,AZZZ)\YE,Z-F)L—Z)\,; € 5.
n=0 1 n=1

Note that

Wi(Z)XAI,Az = )\’ix}\.],)\.zvi = 17 2.

Thatis, (A1, A2) is ajoint eigenvalue for (Y1 (z), ¥ (z)) with eigenvector x;, »,, where
z # 0and A1, Ay € D are such that LA, = z. Therefore,

o(Y1(2), ¥2(2)) 2 {(h1, A2) € D2 : Aydy =z} forz # 0.

As V¥1(z) and Y (z) are commuting contractions, o (¥1(z), ¥2(z)) C D2. Since
Y1(2)¥2(z) = zI, by spectral mapping theorem, we have the other inclusion. Hence

o (Y1(2). ¥2(2) = {(A1, A2) € D2 2 dyhy = 2} for z # 0. (4.20)
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For the case z = 0, consider for A1, A, € D\ {0},

]

00
1 _
Xr,0 = Z)»?é’n + k_e_l’ X050, = Zkg le_n and xp0 =e_j.
1
n=0

n=1

Then (A1, 0), (0, A2) and (0, 0) are joint eigenvalues for (1 (0), ¥ (0)) with the joint
eigenvectors x;, o, Xo,5, and xo o respectively. Therefore, by the similar reasoning as
in the case of z # 0, we get

o (Y1(0), ¥2(0)) =D x {0} U {0} x D = {(A1, 22) € D2 : A1ap =0}, (4.21)

Hence, by (4.20), (4.21) and Lemma 4.8, we get (4.19).
Indeed, one can show that the joint eigen spaces are one dimensional, for all the
joint eigenvalues of (¥1(2), ¥2(z)), z € D. ]

Theorem 4.15 Let (Vy, V2) be a pair of commuting isometries such that C(Vy, V2) <0
and C(Vi, Vp) # 0. Let (€, P, U) be the BCL triple for (Vi, V2). Then for z € D,
(A1, A2) € D? is a joint eigenvalue for (¢1(2), ¢2(2)) if hiha = z,

o (@1(2), 92(2)) = {(A1, 22) € D2 : Ajha = 2},

and

o (Vi, Va) = 0(My,, My,) = Uepo (¢1(2), 92(2)) = D2.

Moreover, the non-singularity breaks at stage 2.

Proof As ¢1(z) and ¢2(z) are commuting contractions, o (¢1(z), ¢2(z)) C D2. Since
012 p2(z) = zI, by spectral mapping theorem,

o (91(2), 92(2)) € {(A1, 42) € D? - Ayhg =2}

From (4.12) and (4.13) note that:

(7Z)® L &
Vi) ® I 0 )12(Z)®£ .
i(2) = ,i=1,2.
#il) ( 0 el
Now the proof follows from Lemma 4.14, Lemma 1.1 and Lemma 4.8. O

5 The Positive Defect Case

By Lemma 3.2 (see also [13, 16]), C(Vy, V2) > 0 if and only if (V}, V») is doubly
commuting. The structure of doubly commuting pair of isometries are well understood
in the literature; see [11, 18, 21]. We rephrase and shine some of the existing results
using the defect operator. We also study the joint spectrum in detail.
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5.1 The Prototypical Example

Definition 5.1 The fundamental isometric pair of positive defect is the bi-shift
(M, , M,), the pair of multiplication by the coordinate functions on Hﬁz.

It is folklore that the M, are isometries and the defect is positive because of the
following lemma. It will be clear from Theorem 5.10 why we call it fundamental.

Lemma 5.2 The defect operator C(M;,, M,) is the projection onto the one dimen-
sional space of constant functions.

Proof The proof is a straightforward computation. O

If (V1, V») is a bi-shift on H with the wandering subspace R, then A : H — Héz ®
R given by A(V{"'V,?x) = z{'z)> @ x,x € R is aunitary and AV;A* = M, ® Ig
fori = 1, 2. Also, by the above lemma dim(ran C(Vy, V»)) = dim R. The following
lemma is well known.

Lemma 5.3 The joint spectrum o (M, M;,) is the whole bidisc D2. Indeed, every
point in the open bidisc is a joint eigenvalue for (M}, M})). In particular, for every
(w1, wy) € D?, the non-singularity of K(My, — w11, My, — wyI) is broken at the

third stage.

Remark 5.4 Recall the pair (t1, 1) defined in Sect. 4.1. One can observe that
{r{"7} (1) : m,n > 0} is an orthonormal subset of Hﬂéz. Let M = span{z{"ty (1) :
m,n > 0} C H]éz. Clearly it is a joint invariant subspace (but not reducing) for
(11, 12). Identify M and Hﬁz via 7{"7y (1) > z{'z5. Clearly, the pair of isometries
(t1Im. 21 m) gets identified with (M, M;,) on Hﬂéz. Since C(M;,, M;,) > 0 and
C(M;,, M,,) # 0, the same is true for the pair (1|, T2/ A¢). Thus, a pair of com-
muting isometries with negative defect, when restricted to a joint invariant subspace,
can have positive defect.

5.2 The General Case of the Positive Defect Operator
We start with a characterization available in [13] and [16].

Lemma5.5 Let (Vi, V) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) C(Vy, V2) > 0and C(Vy, V2) # 0.

(b) Va(ker Vi) C ker V[,

(c) Vi(ker Vy) C ker V5.

(d) The fringe operators are isometries and not unitaries.

(e) (Vi, Va) is doubly commuting and C(Vy, V) # 0.

(f) C(V1, Va) is a non-zero projection.

(g) If (£, P, U) is the BCL triple for (V1, V2), then U (ran P) C ran P.
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Let n1,n2 : D — B(*(Z)) be the multipliers associated with the BCL triple
(I*(Z), pos+, w) where po is the projection onto Span{e,, : n > 0} and w is the bilateral
shift on /2(Z). Now, we obtain a structure theorem which has its own independent
interest and is applied later to obtain Theorem 5.13.

Theorem 5.6 Let (Vy, Va) be a pair of commuting isometries such that C(Vy, V3) is
a non-zero positive operator. Let (£, P, U) be the BCL triple for (Vy, V3). Then, up
to unitary equivalence

E=CDOL ®E
for some non-trivial closed subspace L and a closed subspace & of £. Moreover

H3(X(Z)® L HE(E)
M, - ( My, ® I 0 >H2(12(Z)>®c

= 5.1
0 M| 2 sy | Hp(E2) .1

with C(M, |Hﬁ(52), My, |H112>(52)) = 0. In particular,

oMy, My,) =c(My, ® Ig, M), ® Ip) C o (My,, My,) S o(V1, V2). (5.2)

Proof We shall not give details of this proof because it follows the same line as the
proof of Theorem 4.7. O

Lemma 5.7 The pair (M,,, My,) is jointly unitarily equivalent to (M;,, M,). In par-
ticular, o (M, , My,) = D2

Proof Define the unitary A : Hﬁz — HZ(*(Z)) by

o0 [o/0] o0 o0
A Z amn?i'zy | = Z (Z Atk k€—(m+1) + Z ak,m+k6m1> . (5.3)

m,n=0 k=0 \m=0 m=1

Then, AM,; A* = M,, fori = 1,2. Thatis, (M,,,, M,,) is jointly unitarily equivalent
to (M, M,). o
In particular, o (M,,, M,,) = o (M;,, M,) = D?, by Lemma 5.3. o

Remark 5.8 (I>(Z) ® L, po+ ® Iz, w ® Ir) is the BCL triple for the bi-shift with
wandering subspace L. (Compare this with the Remark 4.13).

Lemma 5.9 The pair (M, M;,) does not have any non-trivial joint reducing sub-
space.

The proof of the above lemma is similar to the proof of Lemma 4.10. Now the following
structure theorem for C (Vy, V;) > 0 follows from Theorem 1.2, Theorem 5.6, Lemma
5.7 and Lemma 5.2. It shows the role played by the bi-shift of a possibly higher
multiplicity and is a rephrasing of some results in [11, 21] using the defect operator.
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Theorem 5.10 Let (Vy, V3) be a pair of commuting isometries on H with C(Vy, V3) >
0and C(Vy, Vo) # 0. Then, there is a non-trivial Hilbert space L C ker V* such that,
up to unitary equivalence, H = Hy GBHS‘, where Hy = Héz QL. Inthis decomposition

- le.®[£ 0
V’_( 0 ViO)

and the defect operator C(Vyq, Vao) is zero. Moreover, the dimension of L is the same
as the dimension of the range of C(Vy, V»).

Theorem 5.11 Let (Vy, V») be a pair of commuting isometries on a Hilbert space H
with C(Vy, Vo) > 0 and C(V1, Vo) # 0. Then, o(Vi, Vo) = D? and every point
(w1, wy) € D? is a joint eigenvalue of(Vl*, Vz*). In particular, for every (w1, wa) €
D2, the non-singularity of K(V1 — w11, Vo — wal) is broken at the third stage.

Proof The proof follows from Theorem 5.11 and Lemma 5.3. O

The following lemma is useful to see the relation between the joint spectrum of
a pair of commuting isometries (V7, V) with defect positive and non-zero, and the
joint spectra o (¢1(2), ¢2(2)), z € D, where ¢;’s are the multipliers given in the BCL

theorem.

Lemma5.12 Let the operator valued functions ni and 2 be as in Theorem 5.6. Then,
forz €D, (A1, A2) € D? is a joint eigenvalue for (1 (z)*, 12(2)*) if \{A2 = z. Also,

o(1(2), 12(2)) = {(h1, A2) € D2 : Ay = 2}, 5.4

and

U.epo 11(2), m(2)) = D? = 0(M,,, My,). (5.5)

Proof Letz € D\ {0} and A1, A2 € ID be such that LA, = z. Consider

— e
Xpg g = E A oe, + A: E M ey
n=0 2 n=l1

Note that

* e .
T’Ii(Z) Xh1hy = )"ixkl,kzyl = ls 2.

That is, (A1, A2) is a joint eigenvalue for (171(z)*, n2(z)*) with eigenvector x;, ,,
where z # 0 and A1, A> € D are such that A{A, = z. Therefore,

o(1(2), 12(2)) 2 {(h1, Aa) € D2 : Ayhy = 2z} forz # 0.
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As 11(z) and 13 (z) are commuting contractions, we have o (n1(z), 12(2)) < D2. Since
n1(z)n2(z) = zI, by spectral mapping theorem, we have the other inclusion. Hence

o (11(2), 12(2)) = {(A1, 42) € D2 : Ahy = 2} for z # 0. (5.6)

For the case z = 0, consider for A1, A, € D\ {0},
1
XA1,0=Z)»1 e_n, X0, = Zkz en + _e 1and xp0 = e—_1.
A2

Then (A1, 0), (0, x2) and (0, 0) are joint eigenvalues for (171 (0)*, 72(0)*) with the joint
eigenvectors x;, o, X0,5, and xo o respectively. Therefore, by the similar reasoning as
in the case of z # 0, we get

o 1(0), 12(0)) =D x {0} U {0} x D = {(r1, 42) € D2 : hjha =0}).  (5.7)

Hence, by (5.6), (5.7) and Lemma 5.7, we get (5.5).
Indeed, one can show that the joint eigenspaces are one dimensional, for all the
joint eigenvalues of (11(z)*, n2(2)*), z € D. O

Theorem 5.13 Let (Vy, V2) be a pair of commuting isometries such that C(Vy, Vo) > 0
aﬂl C_’(V], Vo) # 0. Let (€, P, U) be the BCL triple for (Vi, V»). Then, for z € D,
(A1, A2) € D? is a joint eigenvalue for (¢1(2)*, 92(2)*) if \iA2 = z, also

o (@1(2), 92(2) = {(A1,22) € D7 : Aiha = 2. (5.8)
Moreover, every point in the open bidisc is a joint eigenvalue for (M (m , ) and
o (V1, V2) = 0(My,, My,) = Uzeno (91(2), 92(2)) = D. (5.9)

Proof Since ¢ (z) and ¢ (z) are commuting contractions, o (¢1(z), ¢2(z)) € D2. As
¢1(2)92(z) = zI, by spectral mapping theorem,

o (91(2), 92(2)) € {(A1, 42) € D? : Ayha =2}

In the same manner as in the proof of Theorem 4.7, we get

PZyeL &
(- (Mm@l 0 \P@DeL . _ .,
7 ( 0 goi<z>|gz) e

where £ = ran P © U (ran P) and & = ker V* & (I*(Z) ® L). Now the proof follows
from Lemma 5.12, Lemma 5.7 and Lemma 5.3. |
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6 Towards the General Defect Operator

This section deals with the cases of ran V| = ran V; and ran V, C ran V. We provide
the characterization and study the joint spectrum for both the cases. At the end of this
section we give an example for the unknown case of H; % 0 foralli =1, 2, 3, 4.

6.1 Range of V; Equal to the Range of V;

In this case the defect operator is the difference of two mutually orthogonal projections
whose ranges together span the kernel of V*. The structure in this case, known from
[4], is briefly recalled below because it is needed for deciphering the joint spectrum.

6.1.1 The Prototypical Family of Examples

Let £ be a Hilbert space and W be a unitary on £. Consider the pair of commuting
isometries (M, ® I, M, @ W) on HH%) ® L. Clearly ran(M; ® I) = ran(M, @ W).

Lemma 6.1 Let £ and W be as above. If (Vi, Vo) = (M, ® I, M; @ W), then there
are two projections P and Q such that

(1) they are mutually orthogonal to each other,

(2) the dimensions of ranges of P and Q are same,

(3) the span of the ranges of P and Q is the kernel of V* and
(4) the defect operator C(Vy, V2) on HH%) ®Lis P— Q.

Proof In keeping with the notation E for the projection onto the one dimensional sub-
space of constants in Hﬁ, let us denote by E the projection onto the one dimensional
space spanned by z. The kernel of V* is

ran(I @ I — Mzz(Mzz)* ®Ip) =ran((Eg+ E|) ® Ip) =5span{l,z} ® L
and the defect operator is

CVi,Va)=1Q® I — MM} QIc— MM @I +M*(MH*® I,
=Ey® I — M;EoM; ® I
=FEyQI—E1 Q1.

Thus, setting P = Eg ® I and Q = E| ® I, we are done. O
Lemma 6.2 [f L # {0}, then the joint spectrum of (M, @ Iy, M, ® W) is

oM, QI M, W) ={z(1,a) : z € D,ac o(W)}.

Proof This is a straightforward application of the polynomial spectral mapping theo-
rem. Consider the polynomial f(x1, x2) = (x1, x1x2). Then,

oM @I, M: W) = floM: ® I, Iz @ W))
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= f(o(My) x a(W))
={z(l,a):z €D, € a(W)}. 6.1)

O
6.1.2 General Theory

Theorem 6.3 Let (Vy, Vo) be a pair of commuting isometries on a Hilbert space 'H.

Then the following are equivalent:

(a) ran Vi =ran V;.

(b) Vi(ker V) = Va(ker V).

(c) The defect operator C(Vy, V3) is a difference of two mutually orthogonal projec-
tions Q1, Qo withran Q| ® ran Q, = ker V*.

(d) The fringe operators F1 and F> are zero.

(e) If (€, P, U) is the BCL triple for (Vy, V»), then U(ran P) = ran P+ (or equiva-
lently U (ran P) = ran P).

Proof (a) = (b) This is immediate from the equality
ker Vi @ Vi (ker V) = ker V* = ker V5" @ Va(ker V}*)

after we note that ran V| = ran V, implies that ker V|* = ker V.
(b) = (c) Set Py = Pyer vy and Py = Py, ker vy By (2.2), C(V1, V2) = P1 — Pa.
Moreover,

ran P; @ ran P, = ker V| @ Va(ker V}")
— ker V{' @ Vi (ker V5) (by (b))
= ker V*.

(¢) = (d) It is immediate by noticing that

01 = Pervy = Prervy and Q2 = Pyyker vy = Pvyker vp)

from the discussions in Sect. 2.

(¢) = (a) Immediate from the last line above.

(d) = (¢) Fi = 0 and F» = 0 implies that ker V;* L Va(ker V") and ker V¥ L
Vi (ker V). Now from (2.3), we see that Vi (ker V) = Va(ker V["). Set P| = Py, vy
and P = Py, er vy, to obtain (c).

Thus, we have shown the equivalences of (a), (b), (c¢) and (d).

(a) < (e)If (£, P, U) is the BCL triple for (V, V»), then

ran Vi =ran V,
if and only if

ker V" = ker V5
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if and only if
ker My, = ker M,
if and only if
ran Eg @ U*PU =ran Eg @ P+
if and only if

U*PU = P*+.

O

The following result is a special case of Remark 4.2 in [4], which shows that the
pair (M; ® I, M, ® W), studied in Sect. 6.1.1, is the prototypical pair in this case.
We give a proof which is different from the one in [4].

Theorem 6.4 Let (Vy, Vo) be a pair of commuting isometries on ‘H satisfying any of
the equivalent conditions in Theorem 6.3. Then, there exist Hilbert spaces L and K
such that up to unitarily equivalence H = (HH% ® L) ® K and in this decomposition,

(M1 0 (M, ®@W 0
V1—< ) Vz—( 0 W, )

for some unitary W on L and commuting unitaries Wi, W on K.

Proof Let (£, P, U) be the BCL triple for (Vi, V2). Let L = ran P+ By Theorem
6.3 (¢), we have U(L) = LT and U(LY) = L. Let Uy = Ul : £L — L+ and
Uy=Ulp1: L+ — L. Inthe decomposition £ = L1 @ L, we have

({0 U (10,20
U_<U20> and P—<00>.
k

0 U 0 U
Hence ¢1(z) = (ZUl* 02> and ¢(z2) = (ZUz Ol> for z € D, and

_ 0 1 ®Us _ 0 I®U
M(pl_<MZ®Uik 0 ) and M¢2_<MZ®U2 0 .

Let us define the unitary
A (HE® LY ®(HE®L) — HE® L

given by,

A((%igﬁ)) = Y UG+ Y (UaUDT Uaan)?,

n is even nis odd
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a, € L1, b, € L. One can see that AMy A" =M, ® Ig and AMp, A* =M, Q W,
where W = U, U,. This completes the proof by Theorem 1.2. O

Corollary 6.5 Let (Vi, Vo) be a pair of commuting isometries satisfying any of the
equivalent conditions in Theorem 6.3. If V1V, is pure, then both V| and V; are pure.

Since the BCL triple is unique (up to unitary equivalence), we shall use the following
convenient choice of BCL triple due to A. Maji et al in [16] for a pair of commuting
isometries.

Theorem 6.6 Let (V, Vo) be a pair of commuting isometries on a Hilbert space 'H.
Then, (ker V*, P, Uy) is the BCL triple for (Vi, V2), where P € B(ker V*) is the
orthogonal projection onto V,(ker V) and

* *
_ Valker v 0 ) ker Vi Va (ker Vi )
o= 0 v : ® — ®
Fhvidervy) Vi(ker V) ker Vf

is a unitary operator on ker V*,

Remark 6.7 In Theorem 6.4, we can write the W and £ explicitly in terms of V| and
V, as follows:

By Theorem 6.6 and Theorem 6.3, £L = ran PL = ker Vl*, Uy : ker Vl* —
Vi(ker V) given by Uy = Vaie; vy and Uz : Vi (ker Vi) — ker V| given by U, =
Vi'lvy (ker vyt)- Therefore W = V¥ ly, ker vir) Valier vyt -

6.1.3 Joint Spectrum

If (V1, V») is pure and satisfying any of the equivalent conditions in Theorem 6.3, then
by Theorem 6.4, Remark 6.7 and by Sect. 6.1, we have

a(Vi, Vo) = {z(1,€9) : 7 €D, ¢ € o(UU))), (6.2)

where Uy = Vayer Vi U, = V1*| Vi(ker Vi)

The final theorem of this section tells us the nature of elements in the joint spectrum
and the relation between the joint spectrum of the commuting isometries satisfying
any of the equivalent conditions in Theorem 6.3 and the joint spectra of the associated
multipliers at every point of D.

Theorem 6.8 Let (Vy, Vo) be a pair of commuting isometries on ‘H satisfying any of
the equivalent conditions in Theorem 6.3 and ker V* # {0}. Let (£, P, U) be the
BCL triple for (Vy, V3). Let Uy : ran P+ — ran P be the unitary given by Uy (x) =
U(x),x € ran Pt and U, : ran P — ran P be the unitary given by Us(y) =
U(y),y eran P. Then

e 0(p1(2), v2(2)) = {:I:\/E(e*i%, ei%) s ¢! € o(U1Us)}. Here for every point in
the joint spectrum, the non-singularity breaks at stage 3.
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o 0(My,, My)) = Uepo (91(2), 92(2)) = {z(1,€) : 2 € D, € € o (U1U)}.
Here, for every point (z1, z2) in the set {z(1, %) : z € D, ¥ € o(U1U>)}, the
non-singularity in the Koszul complex K (My, —z11, My, —z221) breaks at stage 3.

Proof Let&; = ran P and & = ran P. We have by Theorem 6.3 that U (1) = & and

*
U (&) = &1. Hence in the decomposition £ = & & &, we have ¢1(z) = <12* %2>
1

and ¢2(2) = (le] [(])1> , for z € D, where Uy and U, are as in the statement.
2
Now, we shall show that: for z € D,
o(p1(2)) ={weD: w? = @z for some o € o(U1Uy)}, (6.3)
o (p(2)) = {w € D : w? = az for some a € o (U1U»)}. (6.4)

Clearly (6.3) and (6.4) hold for z = 0. So assume that z 7# 0.

Assertion 1 If A is an eigenvalue of ¢ (z) then ’\72 is an eigenvalue of U U,. In partic-
ular, A € D.

Proof of Assertion 1. If A is an eigenvalue of ¢;(z), there exists a non-zero vector

hy ® hy € & ® &, such that ¢(2) <Z;> = A (Z;) which implies U*(hy) = Ay

and U (h;) = hy. Hence (U1U2)*hy = ’\Z—Zhl. Notice that 71 # 0, otherwise
Uy*(hy) = Ahy implies hy = 0. |

Assertion 2 For A € C, (¢1(z) — AI¢) is not onto if and only if (UU,)* — )‘1—2151) is
not onto. In particular, if (¢;(z) — Alg) is not onto then A € . Also

)\2
ran(¢1(z) — Al) = {(Z;) eI ®E A + U;hz € ran((U1Un)* — ?[)} .
(6.5)

Proof of Assertion 2. Let (Z;) € & @ &. We have (¢1(z2) — Al) (Z;) _

—Mhy + Ux*hy . k - I B Ky
<ZU1*h] —Ah2> - Letk = (kz) € &1 @ &. Now (¢1(z) — Al) (hz) = (kz)
if and only if —Ah; + Uz*(hy) = k; and

5 Ak + Ux* (k
(U1U2)" — 7151)(111) = 1+—2(2)

This proves Assertion 2.

Using Assertions 1 and 2 and the fact that for any bounded normal operator T if
o € o(T) then T — «I is not onto, we get (6.3) for z # 0. In a similar way, one can
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show (6.4) and for z # 0

2
ran(ga(z) — AI) = {(2) e&1®E : Ak + Uiky € ran((U1Up) — %1)} .
(6.6)

For z € D, since

0 (¢1(2), 92(2)) S 0(91(2)) X 0(¢2(2))

and

01(D)@2(2) = zlg 08, = P2(De1(2),

by spectral mapping theorem we get,

o (¢1(2), 92(2))
C{(z1,22) €D? : 21> =@z, 22> = Bz, 2122 = 2, forsome @, B € o (U1U7)}.

= {(z1,22) € D? : 212 = @z, 22° = @z, 2122 = 2, for some « € o (U1 Ua)}.

Let z # 0 and z1, z2 € D be such thatzl2 =az, 122 = oz and z1zp = z for some
o € o(U1Uj). We shall show that ran(¢1(z) —z11) +ran(p2(z) —z21) # E1 @ E,. For

y

o) € ran(¢;(z) — z11) +ran(g2(z) — z21).

this, let y ¢ ran(U U, — «I). Suppose (

Then there exists (Zl) € ran(p1(z) — z11) and <]]?> € ran(¢2(z) — z21) such that
2 2

<Z;) + (2 = (g) . Since ran T = ran T* for any bounded normal operator T,

note that from (6.5) and (6.6), we have z1h1 +Ux*ho, 20ki +Uiky € ran(U Uy —al).
Since y ¢ ran(U;U, — ol), we have (z1U; — 2pUs*) (k) ¢ ran(U Uy — al). So
(U1Uy — al)*(Uy(ky)) ¢ ran(U; U, — o). Which is a contradiction, as ran(U; U, —
al) =ran(U Uy — al)*. Soran(p(z) — z11) +ran(pa(z) — z221) # &1 @ &, for all
z#0,z1,22 € D such that 712 = @z, 70> = azand z1z» = z forsome o € o (U1Uy).
Also, note that ran(¢; (0)) + ran(¢z(0)) = & & 0. Hence, we have

o (¢1(2), ¥2(2))
={(z1,22) € D?:z1° =@z, 22> = az, 2122 = 2, forsome o € o (U; Us)}

— (£ /Z(e712, ¢l %) : e € o (U Us))

forz € D.
As we saw, for any point (21, z2) € 0(¢1(2), ¢2(2)),z € D,

ran(p1(z) — z11) + ran(ga(z) — z221) # & @ &
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Hence
ran(My, — z11) + ran(My, — 221) # H*(€) © &).

Therefore (z1, z2) € 0(My,, My,), whichimplies U,cpo (¢1(2), 92(2)) € o (My,, My,).
Notice that for every point (z1, z2) in U,epo (¢1(2), ¢2(2)), the non-singularity of
KMy, —z11, My, — zo1) breaks at stage 3.

Take z € D and €'/ € o (U Us). Let w = ze%_zl — we=7 and 20 = we?. So
(21, 22) € o (p1(w?), 2(w?)) and (z1, z2) = z(1, €'?). Hence we have the equality:

Uzeno (91(2), 92(2))
= U.en{(z1,20) € D? : 212 =@z, 22% = @z, 2120 = z, forsome & € o(UUs)}
={z(l,a):zeD,a € a(U1Uy)}. (6.7)

Now as in the proof of Theorem 6.4, we have (M, , M, ) is jointly unitarily equiv-
alent to (M; ® Ig,, M; ® UyUy), hence from (6.1) and (6.7), we have

0(My,, My,) =0 (M, ® Ig,, M; @ UrUy) = {z(1, @) : z € D, & € o(U1 U2)}
= U;eno (91(2), 92(2)).

O
Note that o (V1, V2) = 0 (My,, My,) Uo (Vi|n,, V2ln,), by Theorem 1.2. Hence
by Theorem 6.8,

0 (Mg, My,) = Uzeno (91(2), 92(2)) S o(V1, V2). (6.8)

The above inclusion is an equality if and only if o (Vi|x,, V2ln,) € 0 (My,, My,).

6.2 Range of one Isometry is Strictly Contained in the Range of Other

If (V1, V3) is any pair of commuting isometries with V3 is not unitary, set Vo, = V| V3.
Then (Vi, V») satisfy ran V, C ran V. Since the study of the case ran V| C ran V5 is
equivalent to the case of ran V, C ran Vi, we consider only the case ran V, C ran V.

Lemma 6.9 Ler (Vy, V) be a pair of commuting isometries on a Hilbert space H.
Then the following are equivalent:

(a) ran Vo C ran V.

(b) Va(ker V") C Vi(ker V).

(c) The fringe operator F1 = 0 and F> # 0.

(d) If (€, P, U) is the BCL triple for (Vi, V2), then U(ran P) C ran P+ (or equiva-
lently U*(ran P) C ran P).

(e) If F is the defect space of V, and if (M; @ Ir) & W is the Wold decomposition
of Vo, then Vi = My, @ W1, with ¢(2) = W*(QL + zQ) for some unitary W and
projection Q # I in B(F), and a unitary Wy on H & Hﬁ(]—').
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Proof (a) <= (b) and (a) <= (c) follows from (2.3).

(a) < (d): Let (€, P, U) be the BCL triple for (Vi, V»). Note that ker Vl* C
ker V" if and only if ker M5 C ker M;2 if and only if U*PU < PL and U*PU #
P if and only if U(ran P) C ran P, because ker M;l = 1 ®ran(U*PU) and
ker M:;z =1 ®ran PL.

(a) <= (e): By Douglas Lemma ( [10]), we have V», = V; V3 for some isometry
(non-unitary) V3. Notice that V3 commutes with V;. Let (F, Q, W) be the BCL triple
for (Vi, V3). Then, (see Theorem 1.2)

Vi=M,® W, Vs=My,®WsinB(HZ(F) ® (H e HE(F))),

where ¢(z) = W*(QL +zQ) and ¥ (z) = (Q + zQ1)W for all z € ID. Now since
Vo = ViVzand p(2)¥(z) = z for all z € D we have

where W, = W W3. This completes the proof of (a) = (e), because V3 is not a
unitary implies that Q # 1. (e) = (a) is trivial. O

6.2.1 Joint Spectrum
Consider the pair

Vi, V2) = (U*v", U'v™ 6.9)
with V an isometry (not unitary) and U a unitary which commutes with V', for some
non-negative integers n, m, [,k and n < m, as in [4, Sec. 4]. Since U is a unitary
commuting with V', we have

ran Vo = ran U' V"™ = ran V" Cran V" =ran UkV" =ran V.

In [4], Burdak has given the model for such pairs, viz.,

Vi=MQWHe W, Vo= M"®W)e W, (6.10)
for some unitary W, Wi, W. We shall now compute the joint spectrum o (M} ®
wk, M!" ® W) of the pure part, as an easy application of the polynomial spectral
mapping theorem, viz., consider the polynomial f : C> — C? given by,

f(z1,22) = (225, 21 2h).

By the polynomial spectral mapping theorem,

oM @WK M@ W) =o(f(M.®1,1®W))
=floM RI.IQW)
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= fD x (W)
={("*, ")z €D, a € 5 (W)).

Following example shows that the class considered in [4], namely, the class of pairs
of the type given in (6.9), is only a subclass of this case.

Example 6.10 Let H = Hﬁz and (Vq, Vo) = (M;,, M;,,). Then there is no unitary
U commuting with both V; and V; such that V{" = UV, for any m, n. In particular,
(V1, V») is not of the form given in (6.9). But clearly ran V, C ran V.

Lemma 6.11 Let (Vi, V») be a pair of commuting isometries, with ran V, C ran V.
Then,

o(Vi, Va) € {(z1,22) : |z2] < |z1l, 21 € D}. (6.11)

Proof By Douglas Lemma ( [10]), we have V, = V| V3 for some isometry V3, which
commutes with V;. Consider the polynomial p : C> — C?2 given by p(z1,22) =
(z1, 2122). By the spectral mapping theorem,

o(Vi,V2) =o(p(V1, V3)) = p(a(V1, V3))
C p(D x D) = {(z1,2122) : 21, 22 € D}

={(z1,22) : Iz2| < lz1l, z1 € D}.

m}

The inclusion in (6.11) is sharp; see Example 6.12, and it can be a strict inclusion;
see Example 6.13.

Example 6.12 Consider the pair (M;,, M;,;,) of commuting isometries in H 2(]1))2).
Notice that

00 00
m_n . 2

ran(lezz) = Z m,ni1 3y - Z |am,nl” < 00

m,n>1 m,n>1

() 00
m_n . 2 —
- E Am.n2) 25 - E lam,nl” <00 ¢ =ran My, .
m>1,n>0 m>1,n>0

Consider the polynomial p : C? —» (2 given by p(z1,22) = (z1,2z122). By the
spectral mapping theorem, we have

o(M,, M;,,) = o(p(M;,, Mz,)) = p(o(M,, Mz,)) = p(D x D)

={(z1,22) : 22| < lz1],z1 € D}.

. . . g2
The measure of the above spectrum is non-zero, indeed it is ”7
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Example 6.13 Let 0 < m < n. Consider (M, M?). Then,

o0 o o o
ran M! = Zakzk22|ak|2<oo - Zakzk: Z|ak|2<oo =ran M".
k=n k=n k=m k=m

By the spectral mapping theorem,
oM, M) ={(".2") : 2 € D} C {(z1,2122) : 21, 22 € D}.

Example6.14 Let H = H7, ® Hg,, and V; = M, @ 7; fori = 1,2. Then (Vy, V2)
is a pair of commuting isometries with defect Eg @ — Pspan(z,}- Clearly the defect is
a difference of two mutually orthogonal projections and (V7, V») lies in the unknown
case given in Table 1.

The following example gives an irreducible pair of commuting isometries lying in the
unknown case given in Table 1.

Example 6.15 Consider the pure pair (Vi, V) with the BCL triple (1%(Z), por, w)
where w is the bilateral shift and pg; is the projection in 12(Z) onto span{eg, e1}.
Then

C(V1,V2) = Eg ® (@" po1@ — po1) = Eo ® pspanfe_;) — E0 ® Pspanfe;)>  (6.12)

where Ej is the one dimensional projection onto the space of constant functions in
H]%). The pair (V1, V,) is irreducible. To show this, we shall show that the pair (po1, @)
is irreducible; see [9, 11]. Suppose & # {0} is a reducing subspace for (po;, w). Let
Znez apey € & and a,, # 0 for some no € Z. Consider

k() _
w E ane, = E anen—n, € &o.

nez nez

This implies that po1 Y, cz Gnen—ny, = angeo + ang+1€1 € Eo. Hence w*(anyeo +
Qngt1€1) = apge—1 + apgr1€0 € Ep. So apge—1 € &. Thus e_; € &, shows that
& =12(2).

The pair (V7, V») lies in the unknown case of H; # O foralli = 1, 2, 3, 4 mentioned
in Table 1. To see this first note that (6.12) shows that C(Vy, V;) is a difference of two
mutually orthogonal projections and one can see that, it is not in any other case of the
Table 1, using the characterization in terms of BCL given for those cases.
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