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Abstract
In the presence of a positive, compactly supported measure on an affine algebraic
curve, we relate the density of polynomials in Lebesgue L2-space to the existence
of analytic bounded point evaluations. Analogues to the complex plane results of
Thomson and Brennan are obtained on rational curves.

Keywords Bounded point evaluation · Rational approximation · Subnormal
operator · Rational curve
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1 Introduction

Let n be a positive integer and C[z] denote the algebra of polynomials in n complex
variables z = (z1, z2, . . . , zn). Let V ⊂ C

n be a complex affine curve, that is, an
algebraic variety (common zero set of finitely many polynomials) of dimension 1.
When necessary, we consider V as an algebraic variety endowed with its reduced

Jörg Eschmeier, in memoriam.
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structural sheaf. Given a positive Borel measure μ supported by a compact subset K
of V we consider the closure P2(μ) of C[z] in L2(μ). A central question of function
theory is the relationship between the density of polynomials in Lebesgue space, that
is P2(μ) = L2(μ) versus the existence of bounded point evaluations λ for P2(μ):

|p(λ)| ≤ C‖p‖2,μ, p ∈ C[z].

Note that, if such a point exists, then it belongs to V . If the above estimate holds, with
the same constant, for an open set, we say that the measureμ admits analytic bounded
point evaluations. By enlarging the notion of (analytic) bounded point evaluation
beyond polynomials, such as to rational functions with prescribed pole location, one
has to specify the algebra of analytic functions for which the above bound holds.

In the case of measures defined on the complex plane, this density problem is
classical, naturally related to Szegö’s Limit Theorem (on the circle), determinateness
of the moment problem on the line, the structure of cyclic subnormal operators [1, 5,
10]. We owe to Jim Thomson [13] the definitive answer, encrypted in one definitive
statement which culminates more than half a century of partial results:

For a positive Borel measure μ, compactly supported on the complex plane and
without point masses, P2(μ) �= L2(μ) if and only if there exist analytic bounded point
evaluations.

A different proof of Thomson’s theorem appears in [3], together with authoritative
historical comments. The cloud of such point evaluations gives essential information
about the building blocks of subnormal operators [5]. Several generalizations of Thom-
son’s Theorem to the case of rational functions have been proposed, see the recent
survey [6] for a detailed account, or [14] for some recent advances. In the present note
we rely on Brennan’s rational approximation theorem, reported with an original proof
in [4].

Our aim is to start investigating conditions assuring the validity of Thomson’s
Theorem on algebraic curves.

2 Algebraic Curves with Polynomial Parametrization

To fix ideas we start with the simplest framework. In this section we assume that the
algebraic curve V admits a polynomial parametrization. This is a well studied subclass
of rational curves, not neglected by its relevance to numerical algebraic geometry [12].
To simplify terminology, we say that V is a polynomial curve.

A key algebraic observation is that one can change the parametrization of V to a
proper polynomial parametrization [12, Theorem 6.11], which in turn is normal [12,
Corollary 6.21]. To be more specific, given a polynomial curve V , there exists a map

P = (p1, . . . , pn) : C → V, pi ∈ C[ζ ], 1 ≤ i ≤ n,

with the property that P is bijective away from a finite set of points and avoids at most
finitely many points of V . The complex coordinate on the parameter space is ζ ∈ C.
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That is the fibre P−1P(ζ ) has cardinality one, with the exception of finitely many
points ζ ∈ C, where it is finite.

We denote byO the sheaf of complex analytic functions. Since the map P is finite,
Grauert’s Theorem states that the direct image sheaf P∗OC, defined by the sheaf
associated to the presheaf P∗OC(U ) = O(P−1(U )) for U open in Cn , is coherent as
a OCn -module. We refer to [8, Chapter I, Section 3] for the proof and terminology.
Moreover,

P∗OC(Cn) = O(C). (2.1)

Consider the natural pull-back morphism

� : OCn −→ P∗OC

defined by h 	→ P∗h = h ◦ P.

Lemma 2.1 Let P = (p1, . . . , pn) : C → C
n, pi ∈ C[z], 1 ≤ i ≤ n, be an injective

map away from a finite set of points. Then

dimO(C)/P∗O(Cn) < ∞.

Proof The kernel I of � is the ideal sheaf defining the curve V = P(C). The short
exact sequence

0 I OCn Im� 0
ψ

implies the coherence of the image sheaf Im�. In view of the subsection I.1.5 of [8,
page 48], the cokernelS of � is zero at every point y ∈ C

n with card(P−1(y)) = 1.
Hence S is a coherent analytic sheaf, supported by finitely many points of Cn , that
is

dimS (Cn) < ∞.

The long exact sequence of cohomology induced from the short exact sequence

0 Im� P∗OC S 0,
q

where q is the quotient morphism, implies H1(Cn,Im�) = 0. Hence, from equa-
tion 2.1 the desired finiteness follows. �

Returning to the polynomial density in Lebesgue space, we carry the data from V
to the parameter space, and there we invoke Thomson’s Theorem. More precisely, let
μ be a positive Borel measure supported by a compact subset K of V . Since we are
seeking non-trivial bounded point evaluations, we assume that μ does not have point
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masses, that is μ({y}) = 0 for all y ∈ K . The pre-image set L = P−1(K ) is compact
since the map P is finite.

Let A ⊂ K denote the finite subset of points y ∈ K with the cardinality of P−1({y})
bigger than one. The singular points of V are included in A. Let B = P−1(A), also a
finite subset of L . Denote K ′ = K \ A and L ′ = L \ B. Then the restriction map

P ′ = P|L ′ : L ′ −→ K ′

is bijective. Finally, let μ′ = χK ′μ denote the restriction of the measure μ to K ′, and
take the push-forward measure ν = (P ′−1)∗μ′. The positive measure ν is supported
by V and does not possess atoms.

Since the measure μ does not carry point masses, L2(μ) = L2(μ′) isometrically,
and consequently P2(μ) = P2(μ′). Let φ be a continuous function on Cn . Then

∫
K

φdμ =
∫
K ′

φdμ′ =
∫

φ ◦ Pdν.

In other terms the pull-back map

P∗ : L2(μ) −→ L2(ν)

is isometric. Due to the local structure of an algebraic curve, continuous functions in
the ambient space separate, modulo finitely many singular points, different branches
of the curve, see for instance Section 2.5 in [12]. Hence, by passing to Borel functions,
we find that the isometric map P∗ is onto, hence a unitary operator.

Proposition 2.2 Under the assumptions above, the space P2(μ) admits analytic
bounded point evaluations if and only if P2(ν) admits analytic bounded point evalu-
ations.

Proof Assume that α ∈ L is an analytic bounded point evaluation with respect to
P2(ν). Let P(α) = β. For every p ∈ C[z] one finds

|p(β)| = |p ◦ P(α)| ≤ C‖p ◦ P‖2,ν = C‖p‖2,μ
where C > 0 is a universal constant. Therefore P2(μ) admits analytic point evalua-
tions filling a neighborhood of β.

Conversely, assume that P2(μ) admits bounded point evaluations (with the same
bound C) at every point of an open subset U of V . While the map P : C −→ V may
not be surjective, it avoids only finitely many points of V in its range, cf. Theorem
2.2.43 in [12]. Choose a point β ∈ U which possesses a pre-image, that is α ∈ C

such that P(α) = β. We claim that at α, is a bounded point evaluation for P2(ν).
The algebra of entire functions O(Cn) is dense in P2(μ), and we have deduced from
Grauert’s finiteness theorem that P∗O(Cn) is a finite codimensional subspace ofO(C).
Hence there exists a finite dimensional space of entire functions W ⊂ O(C) with the
property that P∗O(Cn) + W is a dense subspace of P2(ν). Since α is a bounded
point evaluation for both P∗O(Cn) and W , and dimW < ∞, we infer that α is a
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bounded point evaluation for the entire space P2(ν), with a locally bounded constant
C(α) = sup p(α)

‖p‖2,ν . �

Theorem 2.3 Let V ⊂ C
n be a polynomial curve and letμ be a positive Borel measure

supported by a compact subset of V . Assume that μ does not have point masses and
P2(μ) �= L2(μ). Then, and only then, there exist analytic bounded point evaluations
for P2(μ).

Proof Choose, as before in this section, a normal, polynomial parametrization P :
C −→ C

n of the curve V . Let ν denote the pull-back measure of μ on C. We claim
P2(ν) �= L2(ν).

Suppose by contradiction P2(ν) = L2(ν). Lemma 2.1 implies that P∗P2(μ) is a
finite codimenion subspace of L2(ν). But the pull-back map P∗ is unitary at the level
of L2 spaces. Hence P2(μ) is a finite codimension subspace of L2(μ).

The multiplication operator Mi on P2(μ) by the coordinate function zi is sub-
normal, for every i, 1 ≤ i ≤ n. The corresponding normal extension Ni , is
represented by the multiplication by zi on L2(μ). With respect to the decomposi-
tion L2(μ) = P2(μ) ⊕ P2(μ)⊥, we can write Ni in 2 × 2 blocks:

Ni =
[
Mi Si
0 Ti

]

with both Si and Ti finite rank operators, 1 ≤ i ≤ n. The normality block operator
equation of these extensions yields:

[M∗
i , Mi ] = Si S

∗
i and S∗

i Si = [Ti , T ∗
i ].

Since Si is a finite rank operator and trace of S∗
i Si vanishes, we find Si = 0 for

all i, 1 ≤ i ≤ n. This in turn shows that both Mzi and Ti ’s are normal operators.
By assumption P2(μ) �= L2(μ), that is the block carrying the commuting normal
matrices Ti is non-trivial. Then a common eigenvector of the Ti ’s exists, implying the
existence of a point mass for the measure μ. A contradiction.

According to Thomson’s theorem [13], the space P2(ν) admits a non-empty open
set of bounded point evaluations. Hence by Proposition, 2.2, P2(μ) has analytic
bounded point evaluations. For the only then part, we note that if P2(μ) admits
bounded point evaluations, then P2(μ) �= L2(μ) as otherwise the unitarity of the
pull back map implies P2(ν) = L2(ν)which is a contradiction to Thomson’s theorem
via Proposition, 2.2. This completes the proof. �

3 Rational Curves

The general case of rational curves is not much different. This time we change the
base via a rational map, and invoke a generalization of Thomson’s theorem proved by
Brennan [4]. We state the main result and indicate the very similar deduction molded
on the proof detailed in the previous section.
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Theorem 3.1 Let V be a rational curve in C
n and let μ be a positive Borel measure

without point masses, supported by a compact subset of V . Then P2(μ) �= L2(μ) if
and only if there are analytic P2(μ)-bounded point evaluations.

Proof Let R = (r1, r2, . . . , rn) be an n-tuple of rational functions which properly
parametrizes the affine curve V . That is, denoting by S ⊂ C the poles of R, the
holomorphic map

R : C \ S −→ V

is one to one, except finitely many points, and it covers V except finitely many points.
We refer to Section 4.4.2 in [12] for terminology and basic results. Let ρ denote a
sufficiently large radius, so that the support of the measure μ is contained in the ball
B(0, ρ). The pull-back

U = R−1B(0, ρ)

is an open subset of C, of finite connectivity, with piece-wise smooth boundary. In
particular we can assume that every connected component of the complement of U
has positive diameter.

The restricted analytic map

R : U −→ B(0, ρ)

has finite fibres, hence it is proper. Grauert’s finiteness theorem implies that the direct
image sheaf R∗OU is coherent and

R∗OU (B(0, ρ)) = O(U ).

See again Theorem I.1.5 in [8]. As in the previous section, the coherence of R∗OU

and the injectivity of R modulo a finite set imply that

dimO(U )/R∗O(B(0, ρ)) < ∞.

Next we define the pull-back measure ν on U as in the previous proof:

∫
φ dμ =

∫
φ ◦ R dν,

for every continuous function φ : B(0, ρ) −→ C.
Let R2(U , ν) denote the closure in L2(ν), of rational functions with poles on the

complement of U . Runge’s approximation theorem implies that R2(U , ν) is also the
closure of the algebraO(U ) in L2(ν). The counterpart of Proposition 2.2 has the same
proof:

There exist analytic bounded point evaluations with respect to P2(μ) if and only if
there exists analytic bounded point evaluations with respect to R2(U , ν).
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Theorem 1 in [4] asserts, under the positive diameter assumption of the connected
components of U and the lack of point masses, that R2(U , ν) �= L2(ν) if and only if
there exist analytic bounded point evaluations with respect to R2(U , ν). �
Corollary 3.2 A commuting subnormal tuple with Taylor’s joint spectrum contained
in a rational curve admits joint invariant subspaces.

Proof For a commuting subnormal tuple with Taylor’s joint spectrum contained in a
rational curve, it is enough to show the same for cyclic subnormal tuple of operators,
in fact, by [7, Remark 2.2], it suffices to show the same for the tuple of multiplication
operator Mz = (Mz1 , . . . , Mzn ) by the coordinate functions on P2(μ). From The-
orem 3.1, it follows that if β = (β1, . . . , βn) is a bounded point evaluation point,
then ∩ ker(Mzi − βi )

∗ is non-trivial and hence the closure of
∑

(zi − βi )P2(μ) is a
non-trivial invariant subspace for Mz . �

4 Concluding Remarks

4.1 Analytic Coordinate Charts

The above proof carries verbatim on an algebraic curve V , in case the measure μ is
compactly supported in a coordinate chart V ⊂ V . More specifically, assuming the
existence of a bi-holomorphic map

f : U −→ V

where U ⊂ C is an open set with complement C \ U consisting of finitely many
connected sets of positive diameter.

4.2 Resolution of Singularities

Uniform approximation by analytic functions defined on an open Riemann surface is
much better understood, with definitive results generalizing Runge’s Theorem or even
Mergelyan’s Theorem, see for instance [2, 11].

Let V be an affine algebraic curve. The well known desingularization procedure
provides a birational transform p : X −→ V , where X is an open Riemann surface,
see for instance [9]. Our main proof carries without major adaptation to the map p,
raising the following intriguing question.

Open Problem. Let X be an open Riemann surface of finite genus, and let μ be a
positive Borel measure on X without point masses. Let U ⊂ X be an open, relatively
compact subset of X ,with finitely many components of X \U , none reduced to a point.
Assume the closed support of the measureμ is contained inU . Then analytic functions
O(U ) are dense in L2(μ) if and only if there are no corresponding bounded analytic
point evaluations.

The precautions in stating the above question with specific topological constraints
on the open set U are resonant to Brennan’s main result proved in the complex plane
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X = C, [4]. A simple application of themuch stronger, uniform approximation results,
can be formulated as follows.

Remark 4.1 Let X be an open Riemann surface. Assume that the measure μ is sup-
ported by a piecewise smooth curve � ⊂ X with the property that the complement
X \ � is connected. Then P2(μ) = L2(μ).

Simply because O(X) is dense in the space of continuous functions C(�), hence
in L2(μ), according to Scheinberg’s master theorem [11]. The situation of an ellip-
tic curve X , with � as one of the generating cycles of homology of the projective
completion of X , is notable in this respect.

4.3 Generic Linear Projections

Let V ⊂ C
n be an affine algebraic curve and let μ be a positive Borel measure

supported by V . If there are L2(μ)-bounded point evaluations for polynomials, then
any generic linear map

L : Cn −→ C

will detect them. Indeed, Thomson’s Theorem applied to the measure L∗μ on C and
the fact that L is an open map, except the exceptional case when a component of V is
contained in the fibre of L , imply

|p(L(λ)| ≤ C‖p ◦ L‖2,μ = C‖p‖2,L∗μ.

A simple example shows that the converse does not hold.
Indeed, let V be the curve in C

2 given by the equation z1z2 = 1, and let μ be the
positive measure

∫
p(z1, z2)dμ =

∫ π

−π

p(eit , e−i t )dt, p ∈ C[z1, z2].

If (λ, 1
λ
) were an analytic bounded point for this measure, by taking polynomial in z1,

or z2, and say |λ| > 1, one would obtain the impossible estimate

|q(λ)|2 ≤ C
∫ π

−π

|q(eit )|2dt, q ∈ C[z].

As a matter of fact, one finds easily the isometric identification P2(μ) ≡ L2(T, dθ),
where T is the unit circle. The pull-back map φ∗ : f 	→ f ◦ φ from L2(μ) to
L2(T, dθ), where φ : z 	→ (z, 1

z ) from T into V , gives the isometric identification,

since μ = φ∗(dθ) and φ∗
C[z1, z2] = C[z] + C[ 1z ] is dense in L2(T, dθ). Hence, the

space P2(μ) does not carry bounded point evaluations.
On the other hand, considering the linear map L(z1, z2) = z1 + az2, one finds that

for all complex numbers a of modulus different than 1, the measure L∗μ is integration
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along an ellipse, against a positive weight times arc length. Hence the space P2(L∗μ)

does admit bounded analytic point evaluations. In particular P2(L∗μ) = H2(D) for
a = 0.

Data availability Data sharing is not applicable to this article as no data sets were generated or analysed
during the current study.
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