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Abstract
We prove an injective version of Schanuel’s lemma from homological algebra in the
setting of exact categories.
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1 Introduction

Schanuel’s lemma is a useful tool in homological algebra and category theory. It
appears to have come about as a response to a question by Kaplansky, see [4, p. 166],
and simplifies the definition of the projective (or, injective) homological dimension
in module categories, hence in abelian categories. The typical categories that arise in
functional analysis are not abelian but lately, the use of exact structures on additive
categories of Banach modules and related ones has been suggested and indeed been
exploited successfully.

In [3], Bühler develops homological algebra for bounded cohomology in the setting
of Quillen’s exact categories. In [1], exact categories of sheaves of operator modules
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over C*-ringed spaces are studied. Relative cohomology and cohomological dimen-
sion for (not necessarily self-adjoint) operator algebras is the topic of [6], see also [8].
In view of this, it seems beneficial to establish an injective version of Schanuel’s lemma
for exact categories and show how it yields the injective dimension theorem.

Whenwe equip an additive categoryA with an exact structurewefix a pair (M ,P)

consisting of a class of monomorphismsM and a class of epimorphismsP such that
each μ ∈ M and π ∈ P form a kernel-cokernel pair which we write as

E F G
μ π

where E, F and G are objects in A . We require that M and P contain all identity
morphisms and are closed under composition, and term their elements as admissible
monomorphisms and admissible epimorphisms, respectively. Furthermore, the push-
out of an admissible monomorphism along an arbitrary morphism exists and yields an
admissiblemonomorphism, and, likewise, the pull-back of an admissible epimorphism
along an arbitrary morphism exists and yields an admissible epimorphism. If these
conditions are fulfilled and (M ,P) is invariant under isomorphisms, (M ,P) is
called an exact structure onA and will typically be denoted by Ex . The pair (A ,Ex)
is said to be an exact category.

Unlike in abelian categories not everymorphism in an exact category has a canonical
factorisation into an epimorphism followed by a monomorphism. One therefore has to
restrict to admissible morphisms which are those that arise as μ ◦ π for some μ ∈ M
and π ∈ P . (It is easy to check that, once such factorisation exists, it is unique up to
unique isomorphism.)

The kernel-cokernel pairs replace the usual short exact sequences in abelian cat-
egories while long exact sequences are built from admissible morphisms. A very
readable introduction into exact categories is given in [2].

In this note, we provide the details of how Schanuel’s lemmaworks in general exact
categories and establish the Injective Dimension Theorem (Theorem 3.5).

2 Preliminaries

We include here the necessary terminology and initial results, for a fixed exact category
(A ,Ex), where Ex = (M ,P).

Definition 2.1 An object I in an exact category (A ,Ex) isM -injective if, when given

E
μ

F and a morphism f ∈ MorA (E, I ), for objects E, F ∈ A , there exists a
morphism g ∈ MorA (F, I ) making the following diagram commutative

E F

I

μ

f
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The exact category has enough M -injectives if, for every E ∈ A , there exist an
M -injective object I and an admissible monomorphism E I .

We will also make use of the following characterisations of M -injective objects.

Proposition 2.2 Let E be an object in an exact category (A ,Ex). The following are
equivalent.

(i) E isM -injective;
(ii) Every admissible monomorphism E F, for F ∈ A , has a left inverse;
(iii) There exist an M -injective object I ∈ A and a morphism E −→ I with a left

inverse (i.e., E is a retract of an M -injective object).

The arguments are standard.
As exact categories are additive, we can form the product of any two objects (and

thus, of any finite number of objects).

Proposition 2.3 Let E, F,G be objects in an additive categoryA . The following are
equivalent:

(i) F is a product of E and G;
(ii) F is a coproduct of E and G;
(iii) There exist a kernel-cokernel pair in A ,

E F G
μ π (2.1)

and morphisms μ̃ ∈ MorA (F, E) and π̃ ∈ MorA (G, F) such that μ̃◦μ = idE
and π ◦ π̃ = idG, and μ ◦ μ̃ + π̃ ◦ π = idF;

(vi) There exist a kernel-cokernel pair in A ,

E F G
μ π (2.2)

and a morphism μ̃ ∈ MorA (F, E) such that μ̃◦μ = idE , the identity morphism
on E.

Moreover, if these equivalent conditions are met, the kernel-cokernel pair in Dia-
gram (2.2) will belong to every exact structure that can be placed on A .

Proof Finite products, coproducts and biproducts coincide in an additive category (see,
e.g., [7, Proposition 7.1–Corollary 7.3.]), and condition (iii) is just the definition of F
being a biproduct of E and G. That condition (iii) is equivalent to condition (iv) can
be proven in the exact same way as the ‘Splitting Lemma’ in module theory (see, e.g.,
[5, Proposition 4.3.]). The final statement of this proposition is a direct consequence
of the conditions required for monomorphisms and epimorphisms to be admissible;
see [2, Lemma 2.7.] for details.

Kernel-cokernel pairs satisfying condition (iii) of Proposition 2.3 are said to be
split. For objects E and F in A we will denote their (co)product by E ⊕ F .
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Proposition 2.4 Suppose E
μ

F π G is a kernel-cokernel pair in Ex.

(i) For any A ∈ A , there is a kernel-cokernel pair in Ex,

E ⊕ A F ⊕ A G

(ii) If F ∼= E⊕G, then F isM -injective if and only if both E and G areM -injective.

Proof We first prove (i). For A ∈ A , there exist split kernel-cokernel pairs

E E⊕A A and A F⊕A F
ι θρ τ

and π ◦ τ ∈ MorA (F ⊕ A,G) is an admissible epimorphism, as a compostion of
morphisms inP . Define ϕ ∈ MorA (E ⊕ A, F ⊕ A) by

ϕ = τ̃ ◦ μ ◦ ι̃ + θ ◦ ρ

using the same notation as in Proposition 2.3. Then (ϕ, π ◦ τ) is the desired kernel-
cokernel pair.

To show this, it is enough to demonstrate that ϕ is a kernel of π ◦ τ . First note the
composition

(π ◦ τ) ◦ ϕ = idF ◦ (π ◦ μ) ◦ ι̃ + π ◦ (τ ◦ θ) ◦ ρ = 0.

Now suppose there exist B ∈ A and a morphism f ∈ MorA (B, F ⊕ A) such that
(π ◦ τ) ◦ f = 0. As μ is a kernel for π, there exists a unique morphism g′ ∈
MorA (B, E) such that μ ◦ g′ = τ ◦ f . Define g ∈ MorA (B, E ⊕ A) by

g = ι ◦ g′ + ρ̃ ◦ ˜θ ◦ f .

Then ϕ ◦ g = (̃τ ◦ τ) ◦ f + (θ ◦ ˜θ) ◦ f = idF⊕A ◦ f = f .
To finish the proof of (i), we show that there is no other morphism h ∈

MorA (B, E ⊕ A) such that ϕ ◦ h = f . Suppose we have such a morphism h. Then,
˜θ ◦ f = ˜θ ◦ ϕ ◦ h = ρ ◦ h, and μ ◦ g′ = τ ◦ f = τ ◦ ϕ ◦ h = μ ◦ ι̃ ◦ h, and therefore
g′ = ι̃ ◦ h. Combining these facts gives:

h = idE⊕A ◦ h = (ι ◦ ι̃ + ρ̃ ◦ ρ) = ι ◦ g′ + ρ̃ ◦ ˜θ ◦ f = g,

as required.
For assertion (ii) suppose F ∼= E ⊕ G. Then there exist morphisms μ̃ ∈

MorA (F, E) and π̃ ∈ MorA (G, F) such that μ̃ ◦ μ = idE and π ◦ π̃ = idG ,
and μ◦ μ̃+ π̃ ◦π = idF . In particular, E and G are retracts of F . By Proposition 2.2,
if F is M -injective so are E and G. Finally, suppose E and G are M -injective and
there is an admissible monomorphism

F B
f
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where B ∈ A . Because E and G are M -injective, there exist gE ∈ MorA (B, E)

such that μ̃ = gE ◦ f and gG ∈ MorA (B,G) such that and π = gF ◦ f . Let
g = μ ◦ gE + π̃ ◦ gG , then g is a left inverse of f , indeed:

g ◦ f = μ ◦ (gE ◦ f ) + π̃ ◦ (gG ◦ f ) = μ ◦ μ̃ + π̃ ◦ π = idF .

Hence, by Proposition 2.2, F isM -injective. �	

3 Schanuel’s Lemma

Fix an exact category (A ,Ex). The following is the injective version of Schanuel’s
lemma for exact categories.

Proposition 3.1 Suppose E
μ

I π F and E
μ′

I ′ π ′
F ′ are kernel-cokernel

pairs in Ex, and that I , I ′ areM -injective objects. Then I ⊕ F ′ ∼= I ′ ⊕ F in A .

Proof First, by the axioms of an exact structure, we can form the following push-out,

E I

I ′ C

μ

μ′ h

h′

(3.1)

where every morphism is an admissible monomorphism. Extending this diagram to
include the given cokernels, and adding in some zero morphisms, we get the following
commutative diagram:

E I F

I ′ C

F ′

μ

μ′ h

h′

π

π ′
0

0 (3.2)

By the universal property of push-outs, there are a unique morphism p ∈ Mor(C, F)

such that ph′ = 0 and ph = π , and a unique morphism p′ ∈ Mor(C, F ′) such that
p′h = 0 and p′h′ = π ′. Hence, we have the following commutative diagram:
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E I F

I ′ C F

F ′ F ′

μ

μ′ h

h′

π

π ′
p

p′

idF

idF ′

(3.3)

The result will follow if the middle row and middle column are both split kernel-
cokernel pairs. As h, h′ ∈ M and I , I ′ are M -injective, this will be the case if both
(h′, p) and (h, p′) are kernel-cokernel pairs. We deal with (h′, p), the other pair is
done in the exact same way.

To show that (h′, p) is a kernel-cokernel pair, it is enough to verify that p is a
cokernel of h′. Suppose there exist an object G ∈ A and a morphism q ∈ Mor(C,G)

such that qh′ = 0. We are done if we find a unique morphism ψ ∈ Mor(F,G) such
that the following diagram is commutative:

I ′ C F

G

h′ p

q
ψ

0

0

(3.4)

We have (qh)μ = q(hμ) = q(h′μ′) = 0 and, because (μ, π) is a kernel-cokernel
pair, there exists a unique morphism t ∈ Mor(F,G) such that tπ = qh. Therefore,
the following diagram is commutative:

E I

I ′ C

G

μ

μ′ h

h′
q

0

tπ
(3.5)

By the universal property of push-outs, q is the unique morphism C → G that makes
Diagram (3.5) commutative. However, (tp)h = t(ph) = tπ and (tp)h′ = t(ph′) = 0.
So, q = tp and setting ψ = t makes Diagram (3.4) commutative. Finally, suppose
there also exists t ′ ∈ Mor(F,G) such that q = t ′ p. Recalling from Diagram (3.3)
that π = ph, we have

t ′π = t ′(ph) = (t ′ p)h = (tp)h = t(ph) = tπ,

and, because π is an epimorphism, t ′ = t . Thus, uniqueness has been verified.
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Corollary 3.2 Suppose there is a diagram of morphisms in an exact category (A ,Ex)
of the form

E I F

E ′ I ′ F ′

∼=

such that I and I ′ are M -injective, the horizontal lines are in Ex and the vertical
arrow is an isomorphism. Then I ⊕ F ′ ∼= I ′ ⊕ F in A .

We extend Schanuel’s lemma to injective resolutions in Proposition 3.4 below.
Recall that a morphism is admissible if it is the composition μ ◦ π for some μ ∈ M
and π ∈ P . Such factorisation is unique up to unique isomorphism ([2, Lemma 8.4]).

Definition 3.3 For an object E ∈ A , anM -injective resolution of E is a sequence of
admissible morphisms of the form:

E I 0 · · · I n−1 I n · · ·

G0 G1 Gn−1 Gn Gn+1

∼=

such that, for each n ≥ 0, the object I n isM -injective, and

Gn I n Gn+1

forms a kernel-cokernel pair in Ex (this is the exactness condition at I n).

If A has enough M -injectives, we can build an injective resolution for every object
in A .

Proposition 3.4 Suppose we have the following M -injective resolutions of E, with
the factorisation of each admissible morphism included:

E I 0 · · · I n−1 I n · · ·

G0 G1 Gn−1 Gn Gn+1

∼=
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and

E J 0 · · · Jn−1 Jn · · ·

H0 H1 Hn−1 Hn Hn+1

∼=

Then, for each n ≥ 1, we have isomorphisms

I 0⊕J 1⊕I 2⊕ · · ·⊕J 2n−1⊕G2n ∼= J 0⊕I 1⊕J 2⊕ · · · ⊕I 2n−1⊕H2n

and

I 0⊕J 1⊕I 2⊕ · · · ⊕J 2n−1⊕I 2n⊕H2n+1 ∼= J 0⊕I 1⊕J 2⊕ · · ·⊕I 2n−1⊕J 2n⊕G2n+1.

Proof We prove this by induction. For n = 1, first note that Corollary 3.2, applied to
the diagram

G0 I 0 G1

H0 J 0 H1

∼=

gives I 0⊕H1 ∼= J 0⊕G1. By Proposition 2.4, there is a diagram of the form

I 0⊕H1 I 0⊕J 1 H2

J 0⊕G1 J 0⊕I 1 G2

∼=

and Corollary 3.2 gives I 0⊕J 1⊕G2 ∼= J 0⊕I 1⊕H2. To finish the proof for n = 1,
we again apply Proposition 2.4 followed by Corollary 3.2, to get a diagram

I 0⊕J 1⊕G2 I 0⊕J 1⊕I 2 G3

J 0⊕I 1⊕H2 J 0⊕I 1⊕J 2 H3

∼=

and an isomorphism I 0⊕J 1⊕I 2⊕H3 ∼= J 0⊕I 1⊕J 2⊕G3.
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Assume the result holds some n ≥ 1. By Proposition 2.4, there is a diagram of the
form

I 0⊕ · · · ⊕ I 2n⊕H2n+1 I 0⊕ · · · ⊕ I 2n⊕J 2n+1 H2(n+1)

J 0⊕ · · · ⊕ J 2n⊕G2n+1 J 0⊕ · · · ⊕ J 2n⊕I 2n+1 G2(n+1)

∼=

and Corollary 3.2 gives

I 0⊕J 1⊕I 2⊕ · · · ⊕J 2(n+1)−1⊕G2(n+1)

∼= J 0⊕I 1⊕J 2⊕ · · · ⊕I 2(n+1)−1⊕H2(n+1).

One final application of Proposition 2.4 yields the following diagram:

I 0⊕J 1⊕I 2⊕ · · · ⊕J 2n+1⊕G2(n+1) J 0⊕I 1⊕J 2⊕ · · · ⊕I 2n+1⊕H2(n+1)

I 0⊕J 1⊕I 2⊕ · · · ⊕J 2n+1⊕I 2(n+1) J 0⊕I 1⊕J 2⊕ · · · ⊕I 2n+1⊕J 2(n+1)

G2(n+1)+1 H2(n+1)+1

∼=

By Corollary 3.2,

I 0⊕J 1⊕I 2⊕ · · ·⊕J 2(n+1)−1⊕I 2(n+1)⊕H2(n+1)+1

∼= J 0⊕I 1⊕J 2⊕ · · · ⊕I 2(n+1)−1⊕J 2(n+1)⊕G2(n+1)+1

as required. �	
We can now prove the Injective Dimension Theorem.

Theorem 3.5 LetM be the class of admissible monomorphisms in an exact category
(A ,Ex). SupposeA has enoughM -injectives. The following are equivalent for n ≥ 1
and every E ∈ A .

(i) If there is an exact sequence of admissible morphisms

E I 0 · · · I n−1 F (3.6)

with each Im, 0 ≤ m ≤ n − 1 injective, then F must be injective;
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(ii) There is an exact sequence of admissible morphisms

E I 0 · · · I n−1 I n (3.7)

with each Im, 0 ≤ m ≤ n injective.

Proof Let E ∈ A . First we show (i) implies (ii). AsA has enoughM -injectives, we
can build anM -injective resolution of E :

E J 0 · · · Jn−1 Jn · · ·

G0 G1 Gn−1 Gn

∼=

Relabel J k as I k for all 0 ≤ k ≤ n − 1 and Gn as I n , this gives an exact sequence as
in Diagram (3.7), and I n must be M -injective, by condition (i).

Now suppose that condition (ii) holds. There must exist an injective resolution of
E of the form

E J 0 · · · Jn−1 Jn · · ·

H0 H1 Hn−1 Jn
∼= ∼=

and for any exact sequence as in Diagram (3.6), with each I n injective, there exists an
injective resolution

E I 0 · · · I n−1 I n · · ·

G0 G1 Gn−1 Gn

∼=

with Gn = F . By Proposition 3.4, there exists a kernel-cokernel pair

F I G
μ π

and a morphism μ̃ ∈ MorA (I , F) such that μ̃ ◦ μ = idF , and I is a finite product of
M -injective objects. Then by Proposition 2.4, I is injective and μ̃ is a left inverse for
μ, hence, by Proposition 2.2, F isM -injective.

Definition 3.6 LetM be the class of admissible monomorphisms in an exact category
(A ,Ex). We say E ∈ A has finite M -injective dimension if there exists an exact
sequence of admissible morphisms as in Diagram (3.7) with all Im M -injective. If E



Schanuel’s Lemma for Exact Categories Page 11 of 12 76

is of finite M -injective dimension we write InjM -dim (E) = 0 if E is M -injective
and InjM -dim (E) = n if E is not M -injective and n is the smallest natural number
such that there exists an exact sequence of admissible morphisms as in Diagram (3.7)
where every Im isM -injective. If E is not of finiteM -injective dimension, we write
InjM -dim (E) = ∞.

The global dimension of the exact category (A ,Ex) is

sup
{

InjM -dim (E) | E ∈ A
} ∈ N0 ∪ {∞}.

Remark 3.7 TheM -injective dimension of an object E in an exact category (A ,Ex)
can be obtained by examining any of itsM -injective resolutions. Indeed, suppose the
following is anM -injective resolution of E (with the factorisation of each admissible
morphism included):

E J 0 · · · Jn−1 Jn · · ·

G0 G1 Gn−1 Gn

∼=

Then, by Theorem 3.5, InjM -dim (E) ≤ n if and only if Gn isM -injective.

The original version of Schanuel’s lemma is formulated for projective resolutions,
see, e.g., [4, Lemma 5.1] or [9, Theorem 3.41]. An analogous version using the epi-
morphisms in the class P can be obtained in any exact category with exact structure
(M ,P).
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